]> git.proxmox.com Git - qemu.git/blob - arch_init.c
9f32ee012410a3d19537ddc379a7fadfe07e7cca
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audiodev.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "exec/gdbstub.h"
44 #include "hw/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 15;
69 #endif
70
71
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_OPENRISC)
89 #define QEMU_ARCH QEMU_ARCH_OPENRISC
90 #elif defined(TARGET_PPC)
91 #define QEMU_ARCH QEMU_ARCH_PPC
92 #elif defined(TARGET_S390X)
93 #define QEMU_ARCH QEMU_ARCH_S390X
94 #elif defined(TARGET_SH4)
95 #define QEMU_ARCH QEMU_ARCH_SH4
96 #elif defined(TARGET_SPARC)
97 #define QEMU_ARCH QEMU_ARCH_SPARC
98 #elif defined(TARGET_XTENSA)
99 #define QEMU_ARCH QEMU_ARCH_XTENSA
100 #elif defined(TARGET_UNICORE32)
101 #define QEMU_ARCH QEMU_ARCH_UNICORE32
102 #endif
103
104 const uint32_t arch_type = QEMU_ARCH;
105
106 /***********************************************************/
107 /* ram save/restore */
108
109 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
110 #define RAM_SAVE_FLAG_COMPRESS 0x02
111 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
112 #define RAM_SAVE_FLAG_PAGE 0x08
113 #define RAM_SAVE_FLAG_EOS 0x10
114 #define RAM_SAVE_FLAG_CONTINUE 0x20
115 #define RAM_SAVE_FLAG_XBZRLE 0x40
116
117 #ifdef __ALTIVEC__
118 #include <altivec.h>
119 #define VECTYPE vector unsigned char
120 #define SPLAT(p) vec_splat(vec_ld(0, p), 0)
121 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
122 /* altivec.h may redefine the bool macro as vector type.
123 * Reset it to POSIX semantics. */
124 #undef bool
125 #define bool _Bool
126 #elif defined __SSE2__
127 #include <emmintrin.h>
128 #define VECTYPE __m128i
129 #define SPLAT(p) _mm_set1_epi8(*(p))
130 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
131 #else
132 #define VECTYPE unsigned long
133 #define SPLAT(p) (*(p) * (~0UL / 255))
134 #define ALL_EQ(v1, v2) ((v1) == (v2))
135 #endif
136
137
138 static struct defconfig_file {
139 const char *filename;
140 /* Indicates it is an user config file (disabled by -no-user-config) */
141 bool userconfig;
142 } default_config_files[] = {
143 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
144 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
145 { NULL }, /* end of list */
146 };
147
148
149 int qemu_read_default_config_files(bool userconfig)
150 {
151 int ret;
152 struct defconfig_file *f;
153
154 for (f = default_config_files; f->filename; f++) {
155 if (!userconfig && f->userconfig) {
156 continue;
157 }
158 ret = qemu_read_config_file(f->filename);
159 if (ret < 0 && ret != -ENOENT) {
160 return ret;
161 }
162 }
163
164 return 0;
165 }
166
167 static int is_dup_page(uint8_t *page)
168 {
169 VECTYPE *p = (VECTYPE *)page;
170 VECTYPE val = SPLAT(page);
171 int i;
172
173 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
174 if (!ALL_EQ(val, p[i])) {
175 return 0;
176 }
177 }
178
179 return 1;
180 }
181
182 /* struct contains XBZRLE cache and a static page
183 used by the compression */
184 static struct {
185 /* buffer used for XBZRLE encoding */
186 uint8_t *encoded_buf;
187 /* buffer for storing page content */
188 uint8_t *current_buf;
189 /* buffer used for XBZRLE decoding */
190 uint8_t *decoded_buf;
191 /* Cache for XBZRLE */
192 PageCache *cache;
193 } XBZRLE = {
194 .encoded_buf = NULL,
195 .current_buf = NULL,
196 .decoded_buf = NULL,
197 .cache = NULL,
198 };
199
200
201 int64_t xbzrle_cache_resize(int64_t new_size)
202 {
203 if (XBZRLE.cache != NULL) {
204 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
205 TARGET_PAGE_SIZE;
206 }
207 return pow2floor(new_size);
208 }
209
210 /* accounting for migration statistics */
211 typedef struct AccountingInfo {
212 uint64_t dup_pages;
213 uint64_t norm_pages;
214 uint64_t iterations;
215 uint64_t xbzrle_bytes;
216 uint64_t xbzrle_pages;
217 uint64_t xbzrle_cache_miss;
218 uint64_t xbzrle_overflows;
219 } AccountingInfo;
220
221 static AccountingInfo acct_info;
222
223 static void acct_clear(void)
224 {
225 memset(&acct_info, 0, sizeof(acct_info));
226 }
227
228 uint64_t dup_mig_bytes_transferred(void)
229 {
230 return acct_info.dup_pages * TARGET_PAGE_SIZE;
231 }
232
233 uint64_t dup_mig_pages_transferred(void)
234 {
235 return acct_info.dup_pages;
236 }
237
238 uint64_t norm_mig_bytes_transferred(void)
239 {
240 return acct_info.norm_pages * TARGET_PAGE_SIZE;
241 }
242
243 uint64_t norm_mig_pages_transferred(void)
244 {
245 return acct_info.norm_pages;
246 }
247
248 uint64_t xbzrle_mig_bytes_transferred(void)
249 {
250 return acct_info.xbzrle_bytes;
251 }
252
253 uint64_t xbzrle_mig_pages_transferred(void)
254 {
255 return acct_info.xbzrle_pages;
256 }
257
258 uint64_t xbzrle_mig_pages_cache_miss(void)
259 {
260 return acct_info.xbzrle_cache_miss;
261 }
262
263 uint64_t xbzrle_mig_pages_overflow(void)
264 {
265 return acct_info.xbzrle_overflows;
266 }
267
268 static void save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
269 int cont, int flag)
270 {
271 qemu_put_be64(f, offset | cont | flag);
272 if (!cont) {
273 qemu_put_byte(f, strlen(block->idstr));
274 qemu_put_buffer(f, (uint8_t *)block->idstr,
275 strlen(block->idstr));
276 }
277
278 }
279
280 #define ENCODING_FLAG_XBZRLE 0x1
281
282 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
283 ram_addr_t current_addr, RAMBlock *block,
284 ram_addr_t offset, int cont, bool last_stage)
285 {
286 int encoded_len = 0, bytes_sent = -1;
287 uint8_t *prev_cached_page;
288
289 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
290 if (!last_stage) {
291 cache_insert(XBZRLE.cache, current_addr,
292 g_memdup(current_data, TARGET_PAGE_SIZE));
293 }
294 acct_info.xbzrle_cache_miss++;
295 return -1;
296 }
297
298 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
299
300 /* save current buffer into memory */
301 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
302
303 /* XBZRLE encoding (if there is no overflow) */
304 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
305 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
306 TARGET_PAGE_SIZE);
307 if (encoded_len == 0) {
308 DPRINTF("Skipping unmodified page\n");
309 return 0;
310 } else if (encoded_len == -1) {
311 DPRINTF("Overflow\n");
312 acct_info.xbzrle_overflows++;
313 /* update data in the cache */
314 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
315 return -1;
316 }
317
318 /* we need to update the data in the cache, in order to get the same data */
319 if (!last_stage) {
320 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
321 }
322
323 /* Send XBZRLE based compressed page */
324 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
325 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
326 qemu_put_be16(f, encoded_len);
327 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
328 bytes_sent = encoded_len + 1 + 2;
329 acct_info.xbzrle_pages++;
330 acct_info.xbzrle_bytes += bytes_sent;
331
332 return bytes_sent;
333 }
334
335
336 /* This is the last block that we have visited serching for dirty pages
337 */
338 static RAMBlock *last_seen_block;
339 /* This is the last block from where we have sent data */
340 static RAMBlock *last_sent_block;
341 static ram_addr_t last_offset;
342 static unsigned long *migration_bitmap;
343 static uint64_t migration_dirty_pages;
344 static uint32_t last_version;
345
346 static inline bool migration_bitmap_test_and_reset_dirty(MemoryRegion *mr,
347 ram_addr_t offset)
348 {
349 bool ret;
350 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
351
352 ret = test_and_clear_bit(nr, migration_bitmap);
353
354 if (ret) {
355 migration_dirty_pages--;
356 }
357 return ret;
358 }
359
360 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
361 ram_addr_t offset)
362 {
363 bool ret;
364 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
365
366 ret = test_and_set_bit(nr, migration_bitmap);
367
368 if (!ret) {
369 migration_dirty_pages++;
370 }
371 return ret;
372 }
373
374 static void migration_bitmap_sync(void)
375 {
376 RAMBlock *block;
377 ram_addr_t addr;
378 uint64_t num_dirty_pages_init = migration_dirty_pages;
379 MigrationState *s = migrate_get_current();
380 static int64_t start_time;
381 static int64_t num_dirty_pages_period;
382 int64_t end_time;
383
384 if (!start_time) {
385 start_time = qemu_get_clock_ms(rt_clock);
386 }
387
388 trace_migration_bitmap_sync_start();
389 memory_global_sync_dirty_bitmap(get_system_memory());
390
391 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
392 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
393 if (memory_region_test_and_clear_dirty(block->mr,
394 addr, TARGET_PAGE_SIZE,
395 DIRTY_MEMORY_MIGRATION)) {
396 migration_bitmap_set_dirty(block->mr, addr);
397 }
398 }
399 }
400 trace_migration_bitmap_sync_end(migration_dirty_pages
401 - num_dirty_pages_init);
402 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
403 end_time = qemu_get_clock_ms(rt_clock);
404
405 /* more than 1 second = 1000 millisecons */
406 if (end_time > start_time + 1000) {
407 s->dirty_pages_rate = num_dirty_pages_period * 1000
408 / (end_time - start_time);
409 start_time = end_time;
410 num_dirty_pages_period = 0;
411 }
412 }
413
414 /*
415 * ram_save_block: Writes a page of memory to the stream f
416 *
417 * Returns: 0: if the page hasn't changed
418 * -1: if there are no more dirty pages
419 * n: the amount of bytes written in other case
420 */
421
422 static int ram_save_block(QEMUFile *f, bool last_stage)
423 {
424 RAMBlock *block = last_seen_block;
425 ram_addr_t offset = last_offset;
426 int bytes_sent = -1;
427 MemoryRegion *mr;
428 ram_addr_t current_addr;
429
430 if (!block)
431 block = QTAILQ_FIRST(&ram_list.blocks);
432
433 do {
434 mr = block->mr;
435 if (migration_bitmap_test_and_reset_dirty(mr, offset)) {
436 uint8_t *p;
437 int cont = (block == last_sent_block) ?
438 RAM_SAVE_FLAG_CONTINUE : 0;
439
440 p = memory_region_get_ram_ptr(mr) + offset;
441
442 if (is_dup_page(p)) {
443 acct_info.dup_pages++;
444 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_COMPRESS);
445 qemu_put_byte(f, *p);
446 bytes_sent = 1;
447 } else if (migrate_use_xbzrle()) {
448 current_addr = block->offset + offset;
449 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
450 offset, cont, last_stage);
451 if (!last_stage) {
452 p = get_cached_data(XBZRLE.cache, current_addr);
453 }
454 }
455
456 /* either we didn't send yet (we may have had XBZRLE overflow) */
457 if (bytes_sent == -1) {
458 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
459 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
460 bytes_sent = TARGET_PAGE_SIZE;
461 acct_info.norm_pages++;
462 }
463
464 /* if page is unmodified, continue to the next */
465 if (bytes_sent != 0) {
466 last_sent_block = block;
467 break;
468 }
469 }
470
471 offset += TARGET_PAGE_SIZE;
472 if (offset >= block->length) {
473 offset = 0;
474 block = QTAILQ_NEXT(block, next);
475 if (!block)
476 block = QTAILQ_FIRST(&ram_list.blocks);
477 }
478 } while (block != last_seen_block || offset != last_offset);
479
480 last_seen_block = block;
481 last_offset = offset;
482
483 return bytes_sent;
484 }
485
486 static uint64_t bytes_transferred;
487
488 static ram_addr_t ram_save_remaining(void)
489 {
490 return migration_dirty_pages;
491 }
492
493 uint64_t ram_bytes_remaining(void)
494 {
495 return ram_save_remaining() * TARGET_PAGE_SIZE;
496 }
497
498 uint64_t ram_bytes_transferred(void)
499 {
500 return bytes_transferred;
501 }
502
503 uint64_t ram_bytes_total(void)
504 {
505 RAMBlock *block;
506 uint64_t total = 0;
507
508 QTAILQ_FOREACH(block, &ram_list.blocks, next)
509 total += block->length;
510
511 return total;
512 }
513
514 static void migration_end(void)
515 {
516 if (migration_bitmap) {
517 memory_global_dirty_log_stop();
518 g_free(migration_bitmap);
519 migration_bitmap = NULL;
520 }
521
522 if (XBZRLE.cache) {
523 cache_fini(XBZRLE.cache);
524 g_free(XBZRLE.cache);
525 g_free(XBZRLE.encoded_buf);
526 g_free(XBZRLE.current_buf);
527 g_free(XBZRLE.decoded_buf);
528 XBZRLE.cache = NULL;
529 }
530 }
531
532 static void ram_migration_cancel(void *opaque)
533 {
534 migration_end();
535 }
536
537 static void reset_ram_globals(void)
538 {
539 last_seen_block = NULL;
540 last_sent_block = NULL;
541 last_offset = 0;
542 last_version = ram_list.version;
543 }
544
545 #define MAX_WAIT 50 /* ms, half buffered_file limit */
546
547 static int ram_save_setup(QEMUFile *f, void *opaque)
548 {
549 RAMBlock *block;
550 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
551
552 migration_bitmap = bitmap_new(ram_pages);
553 bitmap_set(migration_bitmap, 0, ram_pages);
554 migration_dirty_pages = ram_pages;
555
556 qemu_mutex_lock_ramlist();
557 bytes_transferred = 0;
558 reset_ram_globals();
559
560 if (migrate_use_xbzrle()) {
561 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
562 TARGET_PAGE_SIZE,
563 TARGET_PAGE_SIZE);
564 if (!XBZRLE.cache) {
565 DPRINTF("Error creating cache\n");
566 return -1;
567 }
568 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
569 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
570 acct_clear();
571 }
572
573 memory_global_dirty_log_start();
574 migration_bitmap_sync();
575
576 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
577
578 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
579 qemu_put_byte(f, strlen(block->idstr));
580 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
581 qemu_put_be64(f, block->length);
582 }
583
584 qemu_mutex_unlock_ramlist();
585 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
586
587 return 0;
588 }
589
590 static int ram_save_iterate(QEMUFile *f, void *opaque)
591 {
592 int ret;
593 int i;
594 int64_t t0;
595
596 qemu_mutex_lock_ramlist();
597
598 if (ram_list.version != last_version) {
599 reset_ram_globals();
600 }
601
602 t0 = qemu_get_clock_ns(rt_clock);
603 i = 0;
604 while ((ret = qemu_file_rate_limit(f)) == 0) {
605 int bytes_sent;
606
607 bytes_sent = ram_save_block(f, false);
608 /* no more blocks to sent */
609 if (bytes_sent < 0) {
610 break;
611 }
612 bytes_transferred += bytes_sent;
613 acct_info.iterations++;
614 /* we want to check in the 1st loop, just in case it was the 1st time
615 and we had to sync the dirty bitmap.
616 qemu_get_clock_ns() is a bit expensive, so we only check each some
617 iterations
618 */
619 if ((i & 63) == 0) {
620 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
621 if (t1 > MAX_WAIT) {
622 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
623 t1, i);
624 break;
625 }
626 }
627 i++;
628 }
629
630 if (ret < 0) {
631 return ret;
632 }
633
634 qemu_mutex_unlock_ramlist();
635 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
636
637 return i;
638 }
639
640 static int ram_save_complete(QEMUFile *f, void *opaque)
641 {
642 migration_bitmap_sync();
643
644 qemu_mutex_lock_ramlist();
645
646 /* try transferring iterative blocks of memory */
647
648 /* flush all remaining blocks regardless of rate limiting */
649 while (true) {
650 int bytes_sent;
651
652 bytes_sent = ram_save_block(f, true);
653 /* no more blocks to sent */
654 if (bytes_sent < 0) {
655 break;
656 }
657 bytes_transferred += bytes_sent;
658 }
659 migration_end();
660
661 qemu_mutex_unlock_ramlist();
662 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
663
664 return 0;
665 }
666
667 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
668 {
669 uint64_t remaining_size;
670
671 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
672
673 if (remaining_size < max_size) {
674 migration_bitmap_sync();
675 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
676 }
677 return remaining_size;
678 }
679
680 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
681 {
682 int ret, rc = 0;
683 unsigned int xh_len;
684 int xh_flags;
685
686 if (!XBZRLE.decoded_buf) {
687 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
688 }
689
690 /* extract RLE header */
691 xh_flags = qemu_get_byte(f);
692 xh_len = qemu_get_be16(f);
693
694 if (xh_flags != ENCODING_FLAG_XBZRLE) {
695 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
696 return -1;
697 }
698
699 if (xh_len > TARGET_PAGE_SIZE) {
700 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
701 return -1;
702 }
703 /* load data and decode */
704 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
705
706 /* decode RLE */
707 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
708 TARGET_PAGE_SIZE);
709 if (ret == -1) {
710 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
711 rc = -1;
712 } else if (ret > TARGET_PAGE_SIZE) {
713 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
714 ret, TARGET_PAGE_SIZE);
715 abort();
716 }
717
718 return rc;
719 }
720
721 static inline void *host_from_stream_offset(QEMUFile *f,
722 ram_addr_t offset,
723 int flags)
724 {
725 static RAMBlock *block = NULL;
726 char id[256];
727 uint8_t len;
728
729 if (flags & RAM_SAVE_FLAG_CONTINUE) {
730 if (!block) {
731 fprintf(stderr, "Ack, bad migration stream!\n");
732 return NULL;
733 }
734
735 return memory_region_get_ram_ptr(block->mr) + offset;
736 }
737
738 len = qemu_get_byte(f);
739 qemu_get_buffer(f, (uint8_t *)id, len);
740 id[len] = 0;
741
742 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
743 if (!strncmp(id, block->idstr, sizeof(id)))
744 return memory_region_get_ram_ptr(block->mr) + offset;
745 }
746
747 fprintf(stderr, "Can't find block %s!\n", id);
748 return NULL;
749 }
750
751 static int ram_load(QEMUFile *f, void *opaque, int version_id)
752 {
753 ram_addr_t addr;
754 int flags, ret = 0;
755 int error;
756 static uint64_t seq_iter;
757
758 seq_iter++;
759
760 if (version_id < 4 || version_id > 4) {
761 return -EINVAL;
762 }
763
764 do {
765 addr = qemu_get_be64(f);
766
767 flags = addr & ~TARGET_PAGE_MASK;
768 addr &= TARGET_PAGE_MASK;
769
770 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
771 if (version_id == 4) {
772 /* Synchronize RAM block list */
773 char id[256];
774 ram_addr_t length;
775 ram_addr_t total_ram_bytes = addr;
776
777 while (total_ram_bytes) {
778 RAMBlock *block;
779 uint8_t len;
780
781 len = qemu_get_byte(f);
782 qemu_get_buffer(f, (uint8_t *)id, len);
783 id[len] = 0;
784 length = qemu_get_be64(f);
785
786 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
787 if (!strncmp(id, block->idstr, sizeof(id))) {
788 if (block->length != length) {
789 ret = -EINVAL;
790 goto done;
791 }
792 break;
793 }
794 }
795
796 if (!block) {
797 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
798 "accept migration\n", id);
799 ret = -EINVAL;
800 goto done;
801 }
802
803 total_ram_bytes -= length;
804 }
805 }
806 }
807
808 if (flags & RAM_SAVE_FLAG_COMPRESS) {
809 void *host;
810 uint8_t ch;
811
812 host = host_from_stream_offset(f, addr, flags);
813 if (!host) {
814 return -EINVAL;
815 }
816
817 ch = qemu_get_byte(f);
818 memset(host, ch, TARGET_PAGE_SIZE);
819 #ifndef _WIN32
820 if (ch == 0 &&
821 (!kvm_enabled() || kvm_has_sync_mmu()) &&
822 getpagesize() <= TARGET_PAGE_SIZE) {
823 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
824 }
825 #endif
826 } else if (flags & RAM_SAVE_FLAG_PAGE) {
827 void *host;
828
829 host = host_from_stream_offset(f, addr, flags);
830 if (!host) {
831 return -EINVAL;
832 }
833
834 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
835 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
836 if (!migrate_use_xbzrle()) {
837 return -EINVAL;
838 }
839 void *host = host_from_stream_offset(f, addr, flags);
840 if (!host) {
841 return -EINVAL;
842 }
843
844 if (load_xbzrle(f, addr, host) < 0) {
845 ret = -EINVAL;
846 goto done;
847 }
848 }
849 error = qemu_file_get_error(f);
850 if (error) {
851 ret = error;
852 goto done;
853 }
854 } while (!(flags & RAM_SAVE_FLAG_EOS));
855
856 done:
857 DPRINTF("Completed load of VM with exit code %d seq iteration "
858 "%" PRIu64 "\n", ret, seq_iter);
859 return ret;
860 }
861
862 SaveVMHandlers savevm_ram_handlers = {
863 .save_live_setup = ram_save_setup,
864 .save_live_iterate = ram_save_iterate,
865 .save_live_complete = ram_save_complete,
866 .save_live_pending = ram_save_pending,
867 .load_state = ram_load,
868 .cancel = ram_migration_cancel,
869 };
870
871 #ifdef HAS_AUDIO
872 struct soundhw {
873 const char *name;
874 const char *descr;
875 int enabled;
876 int isa;
877 union {
878 int (*init_isa) (ISABus *bus);
879 int (*init_pci) (PCIBus *bus);
880 } init;
881 };
882
883 static struct soundhw soundhw[] = {
884 #ifdef HAS_AUDIO_CHOICE
885 #ifdef CONFIG_PCSPK
886 {
887 "pcspk",
888 "PC speaker",
889 0,
890 1,
891 { .init_isa = pcspk_audio_init }
892 },
893 #endif
894
895 #ifdef CONFIG_SB16
896 {
897 "sb16",
898 "Creative Sound Blaster 16",
899 0,
900 1,
901 { .init_isa = SB16_init }
902 },
903 #endif
904
905 #ifdef CONFIG_CS4231A
906 {
907 "cs4231a",
908 "CS4231A",
909 0,
910 1,
911 { .init_isa = cs4231a_init }
912 },
913 #endif
914
915 #ifdef CONFIG_ADLIB
916 {
917 "adlib",
918 #ifdef HAS_YMF262
919 "Yamaha YMF262 (OPL3)",
920 #else
921 "Yamaha YM3812 (OPL2)",
922 #endif
923 0,
924 1,
925 { .init_isa = Adlib_init }
926 },
927 #endif
928
929 #ifdef CONFIG_GUS
930 {
931 "gus",
932 "Gravis Ultrasound GF1",
933 0,
934 1,
935 { .init_isa = GUS_init }
936 },
937 #endif
938
939 #ifdef CONFIG_AC97
940 {
941 "ac97",
942 "Intel 82801AA AC97 Audio",
943 0,
944 0,
945 { .init_pci = ac97_init }
946 },
947 #endif
948
949 #ifdef CONFIG_ES1370
950 {
951 "es1370",
952 "ENSONIQ AudioPCI ES1370",
953 0,
954 0,
955 { .init_pci = es1370_init }
956 },
957 #endif
958
959 #ifdef CONFIG_HDA
960 {
961 "hda",
962 "Intel HD Audio",
963 0,
964 0,
965 { .init_pci = intel_hda_and_codec_init }
966 },
967 #endif
968
969 #endif /* HAS_AUDIO_CHOICE */
970
971 { NULL, NULL, 0, 0, { NULL } }
972 };
973
974 void select_soundhw(const char *optarg)
975 {
976 struct soundhw *c;
977
978 if (is_help_option(optarg)) {
979 show_valid_cards:
980
981 #ifdef HAS_AUDIO_CHOICE
982 printf("Valid sound card names (comma separated):\n");
983 for (c = soundhw; c->name; ++c) {
984 printf ("%-11s %s\n", c->name, c->descr);
985 }
986 printf("\n-soundhw all will enable all of the above\n");
987 #else
988 printf("Machine has no user-selectable audio hardware "
989 "(it may or may not have always-present audio hardware).\n");
990 #endif
991 exit(!is_help_option(optarg));
992 }
993 else {
994 size_t l;
995 const char *p;
996 char *e;
997 int bad_card = 0;
998
999 if (!strcmp(optarg, "all")) {
1000 for (c = soundhw; c->name; ++c) {
1001 c->enabled = 1;
1002 }
1003 return;
1004 }
1005
1006 p = optarg;
1007 while (*p) {
1008 e = strchr(p, ',');
1009 l = !e ? strlen(p) : (size_t) (e - p);
1010
1011 for (c = soundhw; c->name; ++c) {
1012 if (!strncmp(c->name, p, l) && !c->name[l]) {
1013 c->enabled = 1;
1014 break;
1015 }
1016 }
1017
1018 if (!c->name) {
1019 if (l > 80) {
1020 fprintf(stderr,
1021 "Unknown sound card name (too big to show)\n");
1022 }
1023 else {
1024 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1025 (int) l, p);
1026 }
1027 bad_card = 1;
1028 }
1029 p += l + (e != NULL);
1030 }
1031
1032 if (bad_card) {
1033 goto show_valid_cards;
1034 }
1035 }
1036 }
1037
1038 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1039 {
1040 struct soundhw *c;
1041
1042 for (c = soundhw; c->name; ++c) {
1043 if (c->enabled) {
1044 if (c->isa) {
1045 if (isa_bus) {
1046 c->init.init_isa(isa_bus);
1047 }
1048 } else {
1049 if (pci_bus) {
1050 c->init.init_pci(pci_bus);
1051 }
1052 }
1053 }
1054 }
1055 }
1056 #else
1057 void select_soundhw(const char *optarg)
1058 {
1059 }
1060 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1061 {
1062 }
1063 #endif
1064
1065 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1066 {
1067 int ret;
1068
1069 if (strlen(str) != 36) {
1070 return -1;
1071 }
1072
1073 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1074 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1075 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1076 &uuid[15]);
1077
1078 if (ret != 16) {
1079 return -1;
1080 }
1081 #ifdef TARGET_I386
1082 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1083 #endif
1084 return 0;
1085 }
1086
1087 void do_acpitable_option(const char *optarg)
1088 {
1089 #ifdef TARGET_I386
1090 if (acpi_table_add(optarg) < 0) {
1091 fprintf(stderr, "Wrong acpi table provided\n");
1092 exit(1);
1093 }
1094 #endif
1095 }
1096
1097 void do_smbios_option(const char *optarg)
1098 {
1099 #ifdef TARGET_I386
1100 if (smbios_entry_add(optarg) < 0) {
1101 fprintf(stderr, "Wrong smbios provided\n");
1102 exit(1);
1103 }
1104 #endif
1105 }
1106
1107 void cpudef_init(void)
1108 {
1109 #if defined(cpudef_setup)
1110 cpudef_setup(); /* parse cpu definitions in target config file */
1111 #endif
1112 }
1113
1114 int audio_available(void)
1115 {
1116 #ifdef HAS_AUDIO
1117 return 1;
1118 #else
1119 return 0;
1120 #endif
1121 }
1122
1123 int tcg_available(void)
1124 {
1125 return 1;
1126 }
1127
1128 int kvm_available(void)
1129 {
1130 #ifdef CONFIG_KVM
1131 return 1;
1132 #else
1133 return 0;
1134 #endif
1135 }
1136
1137 int xen_available(void)
1138 {
1139 #ifdef CONFIG_XEN
1140 return 1;
1141 #else
1142 return 0;
1143 #endif
1144 }
1145
1146
1147 TargetInfo *qmp_query_target(Error **errp)
1148 {
1149 TargetInfo *info = g_malloc0(sizeof(*info));
1150
1151 info->arch = TARGET_TYPE;
1152
1153 return info;
1154 }