]> git.proxmox.com Git - qemu.git/blob - arch_init.c
dd5deffa91fa4ed4cf8bfcee59c34bfa70a14f7f
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audiodev.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "exec/gdbstub.h"
44 #include "hw/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 15;
69 #endif
70
71
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_MOXIE)
89 #define QEMU_ARCH QEMU_ARCH_MOXIE
90 #elif defined(TARGET_OPENRISC)
91 #define QEMU_ARCH QEMU_ARCH_OPENRISC
92 #elif defined(TARGET_PPC)
93 #define QEMU_ARCH QEMU_ARCH_PPC
94 #elif defined(TARGET_S390X)
95 #define QEMU_ARCH QEMU_ARCH_S390X
96 #elif defined(TARGET_SH4)
97 #define QEMU_ARCH QEMU_ARCH_SH4
98 #elif defined(TARGET_SPARC)
99 #define QEMU_ARCH QEMU_ARCH_SPARC
100 #elif defined(TARGET_XTENSA)
101 #define QEMU_ARCH QEMU_ARCH_XTENSA
102 #elif defined(TARGET_UNICORE32)
103 #define QEMU_ARCH QEMU_ARCH_UNICORE32
104 #endif
105
106 const uint32_t arch_type = QEMU_ARCH;
107
108 /***********************************************************/
109 /* ram save/restore */
110
111 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
112 #define RAM_SAVE_FLAG_COMPRESS 0x02
113 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
114 #define RAM_SAVE_FLAG_PAGE 0x08
115 #define RAM_SAVE_FLAG_EOS 0x10
116 #define RAM_SAVE_FLAG_CONTINUE 0x20
117 #define RAM_SAVE_FLAG_XBZRLE 0x40
118
119
120 static struct defconfig_file {
121 const char *filename;
122 /* Indicates it is an user config file (disabled by -no-user-config) */
123 bool userconfig;
124 } default_config_files[] = {
125 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
126 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
127 { NULL }, /* end of list */
128 };
129
130
131 int qemu_read_default_config_files(bool userconfig)
132 {
133 int ret;
134 struct defconfig_file *f;
135
136 for (f = default_config_files; f->filename; f++) {
137 if (!userconfig && f->userconfig) {
138 continue;
139 }
140 ret = qemu_read_config_file(f->filename);
141 if (ret < 0 && ret != -ENOENT) {
142 return ret;
143 }
144 }
145
146 return 0;
147 }
148
149 static inline bool is_zero_page(uint8_t *p)
150 {
151 return buffer_find_nonzero_offset(p, TARGET_PAGE_SIZE) ==
152 TARGET_PAGE_SIZE;
153 }
154
155 /* struct contains XBZRLE cache and a static page
156 used by the compression */
157 static struct {
158 /* buffer used for XBZRLE encoding */
159 uint8_t *encoded_buf;
160 /* buffer for storing page content */
161 uint8_t *current_buf;
162 /* buffer used for XBZRLE decoding */
163 uint8_t *decoded_buf;
164 /* Cache for XBZRLE */
165 PageCache *cache;
166 } XBZRLE = {
167 .encoded_buf = NULL,
168 .current_buf = NULL,
169 .decoded_buf = NULL,
170 .cache = NULL,
171 };
172
173
174 int64_t xbzrle_cache_resize(int64_t new_size)
175 {
176 if (XBZRLE.cache != NULL) {
177 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
178 TARGET_PAGE_SIZE;
179 }
180 return pow2floor(new_size);
181 }
182
183 /* accounting for migration statistics */
184 typedef struct AccountingInfo {
185 uint64_t dup_pages;
186 uint64_t norm_pages;
187 uint64_t iterations;
188 uint64_t xbzrle_bytes;
189 uint64_t xbzrle_pages;
190 uint64_t xbzrle_cache_miss;
191 uint64_t xbzrle_overflows;
192 } AccountingInfo;
193
194 static AccountingInfo acct_info;
195
196 static void acct_clear(void)
197 {
198 memset(&acct_info, 0, sizeof(acct_info));
199 }
200
201 uint64_t dup_mig_bytes_transferred(void)
202 {
203 return acct_info.dup_pages * TARGET_PAGE_SIZE;
204 }
205
206 uint64_t dup_mig_pages_transferred(void)
207 {
208 return acct_info.dup_pages;
209 }
210
211 uint64_t norm_mig_bytes_transferred(void)
212 {
213 return acct_info.norm_pages * TARGET_PAGE_SIZE;
214 }
215
216 uint64_t norm_mig_pages_transferred(void)
217 {
218 return acct_info.norm_pages;
219 }
220
221 uint64_t xbzrle_mig_bytes_transferred(void)
222 {
223 return acct_info.xbzrle_bytes;
224 }
225
226 uint64_t xbzrle_mig_pages_transferred(void)
227 {
228 return acct_info.xbzrle_pages;
229 }
230
231 uint64_t xbzrle_mig_pages_cache_miss(void)
232 {
233 return acct_info.xbzrle_cache_miss;
234 }
235
236 uint64_t xbzrle_mig_pages_overflow(void)
237 {
238 return acct_info.xbzrle_overflows;
239 }
240
241 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
242 int cont, int flag)
243 {
244 size_t size;
245
246 qemu_put_be64(f, offset | cont | flag);
247 size = 8;
248
249 if (!cont) {
250 qemu_put_byte(f, strlen(block->idstr));
251 qemu_put_buffer(f, (uint8_t *)block->idstr,
252 strlen(block->idstr));
253 size += 1 + strlen(block->idstr);
254 }
255 return size;
256 }
257
258 #define ENCODING_FLAG_XBZRLE 0x1
259
260 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
261 ram_addr_t current_addr, RAMBlock *block,
262 ram_addr_t offset, int cont, bool last_stage)
263 {
264 int encoded_len = 0, bytes_sent = -1;
265 uint8_t *prev_cached_page;
266
267 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
268 if (!last_stage) {
269 cache_insert(XBZRLE.cache, current_addr, current_data);
270 }
271 acct_info.xbzrle_cache_miss++;
272 return -1;
273 }
274
275 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
276
277 /* save current buffer into memory */
278 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
279
280 /* XBZRLE encoding (if there is no overflow) */
281 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
282 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
283 TARGET_PAGE_SIZE);
284 if (encoded_len == 0) {
285 DPRINTF("Skipping unmodified page\n");
286 return 0;
287 } else if (encoded_len == -1) {
288 DPRINTF("Overflow\n");
289 acct_info.xbzrle_overflows++;
290 /* update data in the cache */
291 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
292 return -1;
293 }
294
295 /* we need to update the data in the cache, in order to get the same data */
296 if (!last_stage) {
297 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
298 }
299
300 /* Send XBZRLE based compressed page */
301 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
302 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
303 qemu_put_be16(f, encoded_len);
304 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
305 bytes_sent += encoded_len + 1 + 2;
306 acct_info.xbzrle_pages++;
307 acct_info.xbzrle_bytes += bytes_sent;
308
309 return bytes_sent;
310 }
311
312
313 /* This is the last block that we have visited serching for dirty pages
314 */
315 static RAMBlock *last_seen_block;
316 /* This is the last block from where we have sent data */
317 static RAMBlock *last_sent_block;
318 static ram_addr_t last_offset;
319 static unsigned long *migration_bitmap;
320 static uint64_t migration_dirty_pages;
321 static uint32_t last_version;
322
323 static inline
324 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
325 ram_addr_t start)
326 {
327 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
328 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
329 unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS);
330
331 unsigned long next = find_next_bit(migration_bitmap, size, nr);
332
333 if (next < size) {
334 clear_bit(next, migration_bitmap);
335 migration_dirty_pages--;
336 }
337 return (next - base) << TARGET_PAGE_BITS;
338 }
339
340 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
341 ram_addr_t offset)
342 {
343 bool ret;
344 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
345
346 ret = test_and_set_bit(nr, migration_bitmap);
347
348 if (!ret) {
349 migration_dirty_pages++;
350 }
351 return ret;
352 }
353
354 /* Needs iothread lock! */
355
356 static void migration_bitmap_sync(void)
357 {
358 RAMBlock *block;
359 ram_addr_t addr;
360 uint64_t num_dirty_pages_init = migration_dirty_pages;
361 MigrationState *s = migrate_get_current();
362 static int64_t start_time;
363 static int64_t num_dirty_pages_period;
364 int64_t end_time;
365
366 if (!start_time) {
367 start_time = qemu_get_clock_ms(rt_clock);
368 }
369
370 trace_migration_bitmap_sync_start();
371 memory_global_sync_dirty_bitmap(get_system_memory());
372
373 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
374 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
375 if (memory_region_test_and_clear_dirty(block->mr,
376 addr, TARGET_PAGE_SIZE,
377 DIRTY_MEMORY_MIGRATION)) {
378 migration_bitmap_set_dirty(block->mr, addr);
379 }
380 }
381 }
382 trace_migration_bitmap_sync_end(migration_dirty_pages
383 - num_dirty_pages_init);
384 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
385 end_time = qemu_get_clock_ms(rt_clock);
386
387 /* more than 1 second = 1000 millisecons */
388 if (end_time > start_time + 1000) {
389 s->dirty_pages_rate = num_dirty_pages_period * 1000
390 / (end_time - start_time);
391 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
392 start_time = end_time;
393 num_dirty_pages_period = 0;
394 }
395 }
396
397 /*
398 * ram_save_block: Writes a page of memory to the stream f
399 *
400 * Returns: The number of bytes written.
401 * 0 means no dirty pages
402 */
403
404 static int ram_save_block(QEMUFile *f, bool last_stage)
405 {
406 RAMBlock *block = last_seen_block;
407 ram_addr_t offset = last_offset;
408 bool complete_round = false;
409 int bytes_sent = 0;
410 MemoryRegion *mr;
411 ram_addr_t current_addr;
412
413 if (!block)
414 block = QTAILQ_FIRST(&ram_list.blocks);
415
416 while (true) {
417 mr = block->mr;
418 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
419 if (complete_round && block == last_seen_block &&
420 offset >= last_offset) {
421 break;
422 }
423 if (offset >= block->length) {
424 offset = 0;
425 block = QTAILQ_NEXT(block, next);
426 if (!block) {
427 block = QTAILQ_FIRST(&ram_list.blocks);
428 complete_round = true;
429 }
430 } else {
431 uint8_t *p;
432 int cont = (block == last_sent_block) ?
433 RAM_SAVE_FLAG_CONTINUE : 0;
434
435 p = memory_region_get_ram_ptr(mr) + offset;
436
437 /* In doubt sent page as normal */
438 bytes_sent = -1;
439 if (is_zero_page(p)) {
440 acct_info.dup_pages++;
441 bytes_sent = save_block_hdr(f, block, offset, cont,
442 RAM_SAVE_FLAG_COMPRESS);
443 qemu_put_byte(f, 0);
444 bytes_sent++;
445 } else if (migrate_use_xbzrle()) {
446 current_addr = block->offset + offset;
447 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
448 offset, cont, last_stage);
449 if (!last_stage) {
450 p = get_cached_data(XBZRLE.cache, current_addr);
451 }
452 }
453
454 /* XBZRLE overflow or normal page */
455 if (bytes_sent == -1) {
456 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
457 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
458 bytes_sent += TARGET_PAGE_SIZE;
459 acct_info.norm_pages++;
460 }
461
462 /* if page is unmodified, continue to the next */
463 if (bytes_sent > 0) {
464 last_sent_block = block;
465 break;
466 }
467 }
468 }
469 last_seen_block = block;
470 last_offset = offset;
471
472 return bytes_sent;
473 }
474
475 static uint64_t bytes_transferred;
476
477 static ram_addr_t ram_save_remaining(void)
478 {
479 return migration_dirty_pages;
480 }
481
482 uint64_t ram_bytes_remaining(void)
483 {
484 return ram_save_remaining() * TARGET_PAGE_SIZE;
485 }
486
487 uint64_t ram_bytes_transferred(void)
488 {
489 return bytes_transferred;
490 }
491
492 uint64_t ram_bytes_total(void)
493 {
494 RAMBlock *block;
495 uint64_t total = 0;
496
497 QTAILQ_FOREACH(block, &ram_list.blocks, next)
498 total += block->length;
499
500 return total;
501 }
502
503 static void migration_end(void)
504 {
505 if (migration_bitmap) {
506 memory_global_dirty_log_stop();
507 g_free(migration_bitmap);
508 migration_bitmap = NULL;
509 }
510
511 if (XBZRLE.cache) {
512 cache_fini(XBZRLE.cache);
513 g_free(XBZRLE.cache);
514 g_free(XBZRLE.encoded_buf);
515 g_free(XBZRLE.current_buf);
516 g_free(XBZRLE.decoded_buf);
517 XBZRLE.cache = NULL;
518 }
519 }
520
521 static void ram_migration_cancel(void *opaque)
522 {
523 migration_end();
524 }
525
526 static void reset_ram_globals(void)
527 {
528 last_seen_block = NULL;
529 last_sent_block = NULL;
530 last_offset = 0;
531 last_version = ram_list.version;
532 }
533
534 #define MAX_WAIT 50 /* ms, half buffered_file limit */
535
536 static int ram_save_setup(QEMUFile *f, void *opaque)
537 {
538 RAMBlock *block;
539 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
540
541 migration_bitmap = bitmap_new(ram_pages);
542 bitmap_set(migration_bitmap, 0, ram_pages);
543 migration_dirty_pages = ram_pages;
544
545 if (migrate_use_xbzrle()) {
546 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
547 TARGET_PAGE_SIZE,
548 TARGET_PAGE_SIZE);
549 if (!XBZRLE.cache) {
550 DPRINTF("Error creating cache\n");
551 return -1;
552 }
553 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
554 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
555 acct_clear();
556 }
557
558 qemu_mutex_lock_iothread();
559 qemu_mutex_lock_ramlist();
560 bytes_transferred = 0;
561 reset_ram_globals();
562
563 memory_global_dirty_log_start();
564 migration_bitmap_sync();
565 qemu_mutex_unlock_iothread();
566
567 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
568
569 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
570 qemu_put_byte(f, strlen(block->idstr));
571 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
572 qemu_put_be64(f, block->length);
573 }
574
575 qemu_mutex_unlock_ramlist();
576 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
577
578 return 0;
579 }
580
581 static int ram_save_iterate(QEMUFile *f, void *opaque)
582 {
583 int ret;
584 int i;
585 int64_t t0;
586 int total_sent = 0;
587
588 qemu_mutex_lock_ramlist();
589
590 if (ram_list.version != last_version) {
591 reset_ram_globals();
592 }
593
594 t0 = qemu_get_clock_ns(rt_clock);
595 i = 0;
596 while ((ret = qemu_file_rate_limit(f)) == 0) {
597 int bytes_sent;
598
599 bytes_sent = ram_save_block(f, false);
600 /* no more blocks to sent */
601 if (bytes_sent == 0) {
602 break;
603 }
604 total_sent += bytes_sent;
605 acct_info.iterations++;
606 /* we want to check in the 1st loop, just in case it was the 1st time
607 and we had to sync the dirty bitmap.
608 qemu_get_clock_ns() is a bit expensive, so we only check each some
609 iterations
610 */
611 if ((i & 63) == 0) {
612 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
613 if (t1 > MAX_WAIT) {
614 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
615 t1, i);
616 break;
617 }
618 }
619 i++;
620 }
621
622 qemu_mutex_unlock_ramlist();
623
624 if (ret < 0) {
625 bytes_transferred += total_sent;
626 return ret;
627 }
628
629 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
630 total_sent += 8;
631 bytes_transferred += total_sent;
632
633 return total_sent;
634 }
635
636 static int ram_save_complete(QEMUFile *f, void *opaque)
637 {
638 qemu_mutex_lock_ramlist();
639 migration_bitmap_sync();
640
641 /* try transferring iterative blocks of memory */
642
643 /* flush all remaining blocks regardless of rate limiting */
644 while (true) {
645 int bytes_sent;
646
647 bytes_sent = ram_save_block(f, true);
648 /* no more blocks to sent */
649 if (bytes_sent == 0) {
650 break;
651 }
652 bytes_transferred += bytes_sent;
653 }
654 migration_end();
655
656 qemu_mutex_unlock_ramlist();
657 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
658
659 return 0;
660 }
661
662 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
663 {
664 uint64_t remaining_size;
665
666 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
667
668 if (remaining_size < max_size) {
669 qemu_mutex_lock_iothread();
670 migration_bitmap_sync();
671 qemu_mutex_unlock_iothread();
672 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
673 }
674 return remaining_size;
675 }
676
677 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
678 {
679 int ret, rc = 0;
680 unsigned int xh_len;
681 int xh_flags;
682
683 if (!XBZRLE.decoded_buf) {
684 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
685 }
686
687 /* extract RLE header */
688 xh_flags = qemu_get_byte(f);
689 xh_len = qemu_get_be16(f);
690
691 if (xh_flags != ENCODING_FLAG_XBZRLE) {
692 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
693 return -1;
694 }
695
696 if (xh_len > TARGET_PAGE_SIZE) {
697 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
698 return -1;
699 }
700 /* load data and decode */
701 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
702
703 /* decode RLE */
704 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
705 TARGET_PAGE_SIZE);
706 if (ret == -1) {
707 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
708 rc = -1;
709 } else if (ret > TARGET_PAGE_SIZE) {
710 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
711 ret, TARGET_PAGE_SIZE);
712 abort();
713 }
714
715 return rc;
716 }
717
718 static inline void *host_from_stream_offset(QEMUFile *f,
719 ram_addr_t offset,
720 int flags)
721 {
722 static RAMBlock *block = NULL;
723 char id[256];
724 uint8_t len;
725
726 if (flags & RAM_SAVE_FLAG_CONTINUE) {
727 if (!block) {
728 fprintf(stderr, "Ack, bad migration stream!\n");
729 return NULL;
730 }
731
732 return memory_region_get_ram_ptr(block->mr) + offset;
733 }
734
735 len = qemu_get_byte(f);
736 qemu_get_buffer(f, (uint8_t *)id, len);
737 id[len] = 0;
738
739 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
740 if (!strncmp(id, block->idstr, sizeof(id)))
741 return memory_region_get_ram_ptr(block->mr) + offset;
742 }
743
744 fprintf(stderr, "Can't find block %s!\n", id);
745 return NULL;
746 }
747
748 static int ram_load(QEMUFile *f, void *opaque, int version_id)
749 {
750 ram_addr_t addr;
751 int flags, ret = 0;
752 int error;
753 static uint64_t seq_iter;
754
755 seq_iter++;
756
757 if (version_id < 4 || version_id > 4) {
758 return -EINVAL;
759 }
760
761 do {
762 addr = qemu_get_be64(f);
763
764 flags = addr & ~TARGET_PAGE_MASK;
765 addr &= TARGET_PAGE_MASK;
766
767 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
768 if (version_id == 4) {
769 /* Synchronize RAM block list */
770 char id[256];
771 ram_addr_t length;
772 ram_addr_t total_ram_bytes = addr;
773
774 while (total_ram_bytes) {
775 RAMBlock *block;
776 uint8_t len;
777
778 len = qemu_get_byte(f);
779 qemu_get_buffer(f, (uint8_t *)id, len);
780 id[len] = 0;
781 length = qemu_get_be64(f);
782
783 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
784 if (!strncmp(id, block->idstr, sizeof(id))) {
785 if (block->length != length) {
786 ret = -EINVAL;
787 goto done;
788 }
789 break;
790 }
791 }
792
793 if (!block) {
794 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
795 "accept migration\n", id);
796 ret = -EINVAL;
797 goto done;
798 }
799
800 total_ram_bytes -= length;
801 }
802 }
803 }
804
805 if (flags & RAM_SAVE_FLAG_COMPRESS) {
806 void *host;
807 uint8_t ch;
808
809 host = host_from_stream_offset(f, addr, flags);
810 if (!host) {
811 return -EINVAL;
812 }
813
814 ch = qemu_get_byte(f);
815 memset(host, ch, TARGET_PAGE_SIZE);
816 #ifndef _WIN32
817 if (ch == 0 &&
818 (!kvm_enabled() || kvm_has_sync_mmu()) &&
819 getpagesize() <= TARGET_PAGE_SIZE) {
820 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
821 }
822 #endif
823 } else if (flags & RAM_SAVE_FLAG_PAGE) {
824 void *host;
825
826 host = host_from_stream_offset(f, addr, flags);
827 if (!host) {
828 return -EINVAL;
829 }
830
831 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
832 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
833 void *host = host_from_stream_offset(f, addr, flags);
834 if (!host) {
835 return -EINVAL;
836 }
837
838 if (load_xbzrle(f, addr, host) < 0) {
839 ret = -EINVAL;
840 goto done;
841 }
842 }
843 error = qemu_file_get_error(f);
844 if (error) {
845 ret = error;
846 goto done;
847 }
848 } while (!(flags & RAM_SAVE_FLAG_EOS));
849
850 done:
851 DPRINTF("Completed load of VM with exit code %d seq iteration "
852 "%" PRIu64 "\n", ret, seq_iter);
853 return ret;
854 }
855
856 SaveVMHandlers savevm_ram_handlers = {
857 .save_live_setup = ram_save_setup,
858 .save_live_iterate = ram_save_iterate,
859 .save_live_complete = ram_save_complete,
860 .save_live_pending = ram_save_pending,
861 .load_state = ram_load,
862 .cancel = ram_migration_cancel,
863 };
864
865 #ifdef HAS_AUDIO
866 struct soundhw {
867 const char *name;
868 const char *descr;
869 int enabled;
870 int isa;
871 union {
872 int (*init_isa) (ISABus *bus);
873 int (*init_pci) (PCIBus *bus);
874 } init;
875 };
876
877 static struct soundhw soundhw[] = {
878 #ifdef HAS_AUDIO_CHOICE
879 #ifdef CONFIG_PCSPK
880 {
881 "pcspk",
882 "PC speaker",
883 0,
884 1,
885 { .init_isa = pcspk_audio_init }
886 },
887 #endif
888
889 #ifdef CONFIG_SB16
890 {
891 "sb16",
892 "Creative Sound Blaster 16",
893 0,
894 1,
895 { .init_isa = SB16_init }
896 },
897 #endif
898
899 #ifdef CONFIG_CS4231A
900 {
901 "cs4231a",
902 "CS4231A",
903 0,
904 1,
905 { .init_isa = cs4231a_init }
906 },
907 #endif
908
909 #ifdef CONFIG_ADLIB
910 {
911 "adlib",
912 #ifdef HAS_YMF262
913 "Yamaha YMF262 (OPL3)",
914 #else
915 "Yamaha YM3812 (OPL2)",
916 #endif
917 0,
918 1,
919 { .init_isa = Adlib_init }
920 },
921 #endif
922
923 #ifdef CONFIG_GUS
924 {
925 "gus",
926 "Gravis Ultrasound GF1",
927 0,
928 1,
929 { .init_isa = GUS_init }
930 },
931 #endif
932
933 #ifdef CONFIG_AC97
934 {
935 "ac97",
936 "Intel 82801AA AC97 Audio",
937 0,
938 0,
939 { .init_pci = ac97_init }
940 },
941 #endif
942
943 #ifdef CONFIG_ES1370
944 {
945 "es1370",
946 "ENSONIQ AudioPCI ES1370",
947 0,
948 0,
949 { .init_pci = es1370_init }
950 },
951 #endif
952
953 #ifdef CONFIG_HDA
954 {
955 "hda",
956 "Intel HD Audio",
957 0,
958 0,
959 { .init_pci = intel_hda_and_codec_init }
960 },
961 #endif
962
963 #endif /* HAS_AUDIO_CHOICE */
964
965 { NULL, NULL, 0, 0, { NULL } }
966 };
967
968 void select_soundhw(const char *optarg)
969 {
970 struct soundhw *c;
971
972 if (is_help_option(optarg)) {
973 show_valid_cards:
974
975 #ifdef HAS_AUDIO_CHOICE
976 printf("Valid sound card names (comma separated):\n");
977 for (c = soundhw; c->name; ++c) {
978 printf ("%-11s %s\n", c->name, c->descr);
979 }
980 printf("\n-soundhw all will enable all of the above\n");
981 #else
982 printf("Machine has no user-selectable audio hardware "
983 "(it may or may not have always-present audio hardware).\n");
984 #endif
985 exit(!is_help_option(optarg));
986 }
987 else {
988 size_t l;
989 const char *p;
990 char *e;
991 int bad_card = 0;
992
993 if (!strcmp(optarg, "all")) {
994 for (c = soundhw; c->name; ++c) {
995 c->enabled = 1;
996 }
997 return;
998 }
999
1000 p = optarg;
1001 while (*p) {
1002 e = strchr(p, ',');
1003 l = !e ? strlen(p) : (size_t) (e - p);
1004
1005 for (c = soundhw; c->name; ++c) {
1006 if (!strncmp(c->name, p, l) && !c->name[l]) {
1007 c->enabled = 1;
1008 break;
1009 }
1010 }
1011
1012 if (!c->name) {
1013 if (l > 80) {
1014 fprintf(stderr,
1015 "Unknown sound card name (too big to show)\n");
1016 }
1017 else {
1018 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1019 (int) l, p);
1020 }
1021 bad_card = 1;
1022 }
1023 p += l + (e != NULL);
1024 }
1025
1026 if (bad_card) {
1027 goto show_valid_cards;
1028 }
1029 }
1030 }
1031
1032 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1033 {
1034 struct soundhw *c;
1035
1036 for (c = soundhw; c->name; ++c) {
1037 if (c->enabled) {
1038 if (c->isa) {
1039 if (isa_bus) {
1040 c->init.init_isa(isa_bus);
1041 }
1042 } else {
1043 if (pci_bus) {
1044 c->init.init_pci(pci_bus);
1045 }
1046 }
1047 }
1048 }
1049 }
1050 #else
1051 void select_soundhw(const char *optarg)
1052 {
1053 }
1054 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1055 {
1056 }
1057 #endif
1058
1059 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1060 {
1061 int ret;
1062
1063 if (strlen(str) != 36) {
1064 return -1;
1065 }
1066
1067 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1068 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1069 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1070 &uuid[15]);
1071
1072 if (ret != 16) {
1073 return -1;
1074 }
1075 #ifdef TARGET_I386
1076 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1077 #endif
1078 return 0;
1079 }
1080
1081 void do_acpitable_option(const char *optarg)
1082 {
1083 #ifdef TARGET_I386
1084 if (acpi_table_add(optarg) < 0) {
1085 fprintf(stderr, "Wrong acpi table provided\n");
1086 exit(1);
1087 }
1088 #endif
1089 }
1090
1091 void do_smbios_option(const char *optarg)
1092 {
1093 #ifdef TARGET_I386
1094 if (smbios_entry_add(optarg) < 0) {
1095 fprintf(stderr, "Wrong smbios provided\n");
1096 exit(1);
1097 }
1098 #endif
1099 }
1100
1101 void cpudef_init(void)
1102 {
1103 #if defined(cpudef_setup)
1104 cpudef_setup(); /* parse cpu definitions in target config file */
1105 #endif
1106 }
1107
1108 int audio_available(void)
1109 {
1110 #ifdef HAS_AUDIO
1111 return 1;
1112 #else
1113 return 0;
1114 #endif
1115 }
1116
1117 int tcg_available(void)
1118 {
1119 return 1;
1120 }
1121
1122 int kvm_available(void)
1123 {
1124 #ifdef CONFIG_KVM
1125 return 1;
1126 #else
1127 return 0;
1128 #endif
1129 }
1130
1131 int xen_available(void)
1132 {
1133 #ifdef CONFIG_XEN
1134 return 1;
1135 #else
1136 return 0;
1137 #endif
1138 }
1139
1140
1141 TargetInfo *qmp_query_target(Error **errp)
1142 {
1143 TargetInfo *info = g_malloc0(sizeof(*info));
1144
1145 info->arch = TARGET_TYPE;
1146
1147 return info;
1148 }