]> git.proxmox.com Git - mirror_qemu.git/blob - arch_init.c
ram: account the amount of transferred ram better
[mirror_qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audiodev.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "exec/gdbstub.h"
44 #include "hw/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 15;
69 #endif
70
71
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_OPENRISC)
89 #define QEMU_ARCH QEMU_ARCH_OPENRISC
90 #elif defined(TARGET_PPC)
91 #define QEMU_ARCH QEMU_ARCH_PPC
92 #elif defined(TARGET_S390X)
93 #define QEMU_ARCH QEMU_ARCH_S390X
94 #elif defined(TARGET_SH4)
95 #define QEMU_ARCH QEMU_ARCH_SH4
96 #elif defined(TARGET_SPARC)
97 #define QEMU_ARCH QEMU_ARCH_SPARC
98 #elif defined(TARGET_XTENSA)
99 #define QEMU_ARCH QEMU_ARCH_XTENSA
100 #elif defined(TARGET_UNICORE32)
101 #define QEMU_ARCH QEMU_ARCH_UNICORE32
102 #endif
103
104 const uint32_t arch_type = QEMU_ARCH;
105
106 /***********************************************************/
107 /* ram save/restore */
108
109 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
110 #define RAM_SAVE_FLAG_COMPRESS 0x02
111 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
112 #define RAM_SAVE_FLAG_PAGE 0x08
113 #define RAM_SAVE_FLAG_EOS 0x10
114 #define RAM_SAVE_FLAG_CONTINUE 0x20
115 #define RAM_SAVE_FLAG_XBZRLE 0x40
116
117 #ifdef __ALTIVEC__
118 #include <altivec.h>
119 #define VECTYPE vector unsigned char
120 #define SPLAT(p) vec_splat(vec_ld(0, p), 0)
121 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
122 /* altivec.h may redefine the bool macro as vector type.
123 * Reset it to POSIX semantics. */
124 #undef bool
125 #define bool _Bool
126 #elif defined __SSE2__
127 #include <emmintrin.h>
128 #define VECTYPE __m128i
129 #define SPLAT(p) _mm_set1_epi8(*(p))
130 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
131 #else
132 #define VECTYPE unsigned long
133 #define SPLAT(p) (*(p) * (~0UL / 255))
134 #define ALL_EQ(v1, v2) ((v1) == (v2))
135 #endif
136
137
138 static struct defconfig_file {
139 const char *filename;
140 /* Indicates it is an user config file (disabled by -no-user-config) */
141 bool userconfig;
142 } default_config_files[] = {
143 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
144 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
145 { NULL }, /* end of list */
146 };
147
148
149 int qemu_read_default_config_files(bool userconfig)
150 {
151 int ret;
152 struct defconfig_file *f;
153
154 for (f = default_config_files; f->filename; f++) {
155 if (!userconfig && f->userconfig) {
156 continue;
157 }
158 ret = qemu_read_config_file(f->filename);
159 if (ret < 0 && ret != -ENOENT) {
160 return ret;
161 }
162 }
163
164 return 0;
165 }
166
167 static int is_dup_page(uint8_t *page)
168 {
169 VECTYPE *p = (VECTYPE *)page;
170 VECTYPE val = SPLAT(page);
171 int i;
172
173 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
174 if (!ALL_EQ(val, p[i])) {
175 return 0;
176 }
177 }
178
179 return 1;
180 }
181
182 /* struct contains XBZRLE cache and a static page
183 used by the compression */
184 static struct {
185 /* buffer used for XBZRLE encoding */
186 uint8_t *encoded_buf;
187 /* buffer for storing page content */
188 uint8_t *current_buf;
189 /* buffer used for XBZRLE decoding */
190 uint8_t *decoded_buf;
191 /* Cache for XBZRLE */
192 PageCache *cache;
193 } XBZRLE = {
194 .encoded_buf = NULL,
195 .current_buf = NULL,
196 .decoded_buf = NULL,
197 .cache = NULL,
198 };
199
200
201 int64_t xbzrle_cache_resize(int64_t new_size)
202 {
203 if (XBZRLE.cache != NULL) {
204 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
205 TARGET_PAGE_SIZE;
206 }
207 return pow2floor(new_size);
208 }
209
210 /* accounting for migration statistics */
211 typedef struct AccountingInfo {
212 uint64_t dup_pages;
213 uint64_t norm_pages;
214 uint64_t iterations;
215 uint64_t xbzrle_bytes;
216 uint64_t xbzrle_pages;
217 uint64_t xbzrle_cache_miss;
218 uint64_t xbzrle_overflows;
219 } AccountingInfo;
220
221 static AccountingInfo acct_info;
222
223 static void acct_clear(void)
224 {
225 memset(&acct_info, 0, sizeof(acct_info));
226 }
227
228 uint64_t dup_mig_bytes_transferred(void)
229 {
230 return acct_info.dup_pages * TARGET_PAGE_SIZE;
231 }
232
233 uint64_t dup_mig_pages_transferred(void)
234 {
235 return acct_info.dup_pages;
236 }
237
238 uint64_t norm_mig_bytes_transferred(void)
239 {
240 return acct_info.norm_pages * TARGET_PAGE_SIZE;
241 }
242
243 uint64_t norm_mig_pages_transferred(void)
244 {
245 return acct_info.norm_pages;
246 }
247
248 uint64_t xbzrle_mig_bytes_transferred(void)
249 {
250 return acct_info.xbzrle_bytes;
251 }
252
253 uint64_t xbzrle_mig_pages_transferred(void)
254 {
255 return acct_info.xbzrle_pages;
256 }
257
258 uint64_t xbzrle_mig_pages_cache_miss(void)
259 {
260 return acct_info.xbzrle_cache_miss;
261 }
262
263 uint64_t xbzrle_mig_pages_overflow(void)
264 {
265 return acct_info.xbzrle_overflows;
266 }
267
268 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
269 int cont, int flag)
270 {
271 size_t size;
272
273 qemu_put_be64(f, offset | cont | flag);
274 size = 8;
275
276 if (!cont) {
277 qemu_put_byte(f, strlen(block->idstr));
278 qemu_put_buffer(f, (uint8_t *)block->idstr,
279 strlen(block->idstr));
280 size += 1 + strlen(block->idstr);
281 }
282 return size;
283 }
284
285 #define ENCODING_FLAG_XBZRLE 0x1
286
287 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
288 ram_addr_t current_addr, RAMBlock *block,
289 ram_addr_t offset, int cont, bool last_stage)
290 {
291 int encoded_len = 0, bytes_sent = -1;
292 uint8_t *prev_cached_page;
293
294 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
295 if (!last_stage) {
296 cache_insert(XBZRLE.cache, current_addr,
297 g_memdup(current_data, TARGET_PAGE_SIZE));
298 }
299 acct_info.xbzrle_cache_miss++;
300 return -1;
301 }
302
303 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
304
305 /* save current buffer into memory */
306 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
307
308 /* XBZRLE encoding (if there is no overflow) */
309 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
310 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
311 TARGET_PAGE_SIZE);
312 if (encoded_len == 0) {
313 DPRINTF("Skipping unmodified page\n");
314 return 0;
315 } else if (encoded_len == -1) {
316 DPRINTF("Overflow\n");
317 acct_info.xbzrle_overflows++;
318 /* update data in the cache */
319 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
320 return -1;
321 }
322
323 /* we need to update the data in the cache, in order to get the same data */
324 if (!last_stage) {
325 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
326 }
327
328 /* Send XBZRLE based compressed page */
329 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
330 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
331 qemu_put_be16(f, encoded_len);
332 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
333 bytes_sent += encoded_len + 1 + 2;
334 acct_info.xbzrle_pages++;
335 acct_info.xbzrle_bytes += bytes_sent;
336
337 return bytes_sent;
338 }
339
340
341 /* This is the last block that we have visited serching for dirty pages
342 */
343 static RAMBlock *last_seen_block;
344 /* This is the last block from where we have sent data */
345 static RAMBlock *last_sent_block;
346 static ram_addr_t last_offset;
347 static unsigned long *migration_bitmap;
348 static uint64_t migration_dirty_pages;
349 static uint32_t last_version;
350
351 static inline
352 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
353 ram_addr_t start)
354 {
355 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
356 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
357 unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS);
358
359 unsigned long next = find_next_bit(migration_bitmap, size, nr);
360
361 if (next < size) {
362 clear_bit(next, migration_bitmap);
363 migration_dirty_pages--;
364 }
365 return (next - base) << TARGET_PAGE_BITS;
366 }
367
368 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
369 ram_addr_t offset)
370 {
371 bool ret;
372 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
373
374 ret = test_and_set_bit(nr, migration_bitmap);
375
376 if (!ret) {
377 migration_dirty_pages++;
378 }
379 return ret;
380 }
381
382 static void migration_bitmap_sync(void)
383 {
384 RAMBlock *block;
385 ram_addr_t addr;
386 uint64_t num_dirty_pages_init = migration_dirty_pages;
387 MigrationState *s = migrate_get_current();
388 static int64_t start_time;
389 static int64_t num_dirty_pages_period;
390 int64_t end_time;
391
392 if (!start_time) {
393 start_time = qemu_get_clock_ms(rt_clock);
394 }
395
396 trace_migration_bitmap_sync_start();
397 memory_global_sync_dirty_bitmap(get_system_memory());
398
399 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
400 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
401 if (memory_region_test_and_clear_dirty(block->mr,
402 addr, TARGET_PAGE_SIZE,
403 DIRTY_MEMORY_MIGRATION)) {
404 migration_bitmap_set_dirty(block->mr, addr);
405 }
406 }
407 }
408 trace_migration_bitmap_sync_end(migration_dirty_pages
409 - num_dirty_pages_init);
410 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
411 end_time = qemu_get_clock_ms(rt_clock);
412
413 /* more than 1 second = 1000 millisecons */
414 if (end_time > start_time + 1000) {
415 s->dirty_pages_rate = num_dirty_pages_period * 1000
416 / (end_time - start_time);
417 start_time = end_time;
418 num_dirty_pages_period = 0;
419 }
420 }
421
422 /*
423 * ram_save_block: Writes a page of memory to the stream f
424 *
425 * Returns: 0: if the page hasn't changed
426 * -1: if there are no more dirty pages
427 * n: the amount of bytes written in other case
428 */
429
430 static int ram_save_block(QEMUFile *f, bool last_stage)
431 {
432 RAMBlock *block = last_seen_block;
433 ram_addr_t offset = last_offset;
434 bool complete_round = false;
435 int bytes_sent = -1;
436 MemoryRegion *mr;
437 ram_addr_t current_addr;
438
439 if (!block)
440 block = QTAILQ_FIRST(&ram_list.blocks);
441
442 while (true) {
443 mr = block->mr;
444 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
445 if (complete_round && block == last_seen_block &&
446 offset >= last_offset) {
447 break;
448 }
449 if (offset >= block->length) {
450 offset = 0;
451 block = QTAILQ_NEXT(block, next);
452 if (!block) {
453 block = QTAILQ_FIRST(&ram_list.blocks);
454 complete_round = true;
455 }
456 } else {
457 uint8_t *p;
458 int cont = (block == last_sent_block) ?
459 RAM_SAVE_FLAG_CONTINUE : 0;
460
461 p = memory_region_get_ram_ptr(mr) + offset;
462
463 if (is_dup_page(p)) {
464 acct_info.dup_pages++;
465 bytes_sent = save_block_hdr(f, block, offset, cont,
466 RAM_SAVE_FLAG_COMPRESS);
467 qemu_put_byte(f, *p);
468 bytes_sent += 1;
469 } else if (migrate_use_xbzrle()) {
470 current_addr = block->offset + offset;
471 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
472 offset, cont, last_stage);
473 if (!last_stage) {
474 p = get_cached_data(XBZRLE.cache, current_addr);
475 }
476 }
477
478 /* either we didn't send yet (we may have had XBZRLE overflow) */
479 if (bytes_sent == -1) {
480 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
481 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
482 bytes_sent += TARGET_PAGE_SIZE;
483 acct_info.norm_pages++;
484 }
485
486 /* if page is unmodified, continue to the next */
487 if (bytes_sent != 0) {
488 last_sent_block = block;
489 break;
490 }
491 }
492 }
493 last_seen_block = block;
494 last_offset = offset;
495
496 return bytes_sent;
497 }
498
499 static uint64_t bytes_transferred;
500
501 static ram_addr_t ram_save_remaining(void)
502 {
503 return migration_dirty_pages;
504 }
505
506 uint64_t ram_bytes_remaining(void)
507 {
508 return ram_save_remaining() * TARGET_PAGE_SIZE;
509 }
510
511 uint64_t ram_bytes_transferred(void)
512 {
513 return bytes_transferred;
514 }
515
516 uint64_t ram_bytes_total(void)
517 {
518 RAMBlock *block;
519 uint64_t total = 0;
520
521 QTAILQ_FOREACH(block, &ram_list.blocks, next)
522 total += block->length;
523
524 return total;
525 }
526
527 static void migration_end(void)
528 {
529 if (migration_bitmap) {
530 memory_global_dirty_log_stop();
531 g_free(migration_bitmap);
532 migration_bitmap = NULL;
533 }
534
535 if (XBZRLE.cache) {
536 cache_fini(XBZRLE.cache);
537 g_free(XBZRLE.cache);
538 g_free(XBZRLE.encoded_buf);
539 g_free(XBZRLE.current_buf);
540 g_free(XBZRLE.decoded_buf);
541 XBZRLE.cache = NULL;
542 }
543 }
544
545 static void ram_migration_cancel(void *opaque)
546 {
547 migration_end();
548 }
549
550 static void reset_ram_globals(void)
551 {
552 last_seen_block = NULL;
553 last_sent_block = NULL;
554 last_offset = 0;
555 last_version = ram_list.version;
556 }
557
558 #define MAX_WAIT 50 /* ms, half buffered_file limit */
559
560 static int ram_save_setup(QEMUFile *f, void *opaque)
561 {
562 RAMBlock *block;
563 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
564
565 migration_bitmap = bitmap_new(ram_pages);
566 bitmap_set(migration_bitmap, 0, ram_pages);
567 migration_dirty_pages = ram_pages;
568
569 qemu_mutex_lock_ramlist();
570 bytes_transferred = 0;
571 reset_ram_globals();
572
573 if (migrate_use_xbzrle()) {
574 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
575 TARGET_PAGE_SIZE,
576 TARGET_PAGE_SIZE);
577 if (!XBZRLE.cache) {
578 DPRINTF("Error creating cache\n");
579 return -1;
580 }
581 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
582 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
583 acct_clear();
584 }
585
586 memory_global_dirty_log_start();
587 migration_bitmap_sync();
588
589 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
590
591 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
592 qemu_put_byte(f, strlen(block->idstr));
593 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
594 qemu_put_be64(f, block->length);
595 }
596
597 qemu_mutex_unlock_ramlist();
598 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
599
600 return 0;
601 }
602
603 static int ram_save_iterate(QEMUFile *f, void *opaque)
604 {
605 int ret;
606 int i;
607 int64_t t0;
608
609 qemu_mutex_lock_ramlist();
610
611 if (ram_list.version != last_version) {
612 reset_ram_globals();
613 }
614
615 t0 = qemu_get_clock_ns(rt_clock);
616 i = 0;
617 while ((ret = qemu_file_rate_limit(f)) == 0) {
618 int bytes_sent;
619
620 bytes_sent = ram_save_block(f, false);
621 /* no more blocks to sent */
622 if (bytes_sent < 0) {
623 break;
624 }
625 bytes_transferred += bytes_sent;
626 acct_info.iterations++;
627 /* we want to check in the 1st loop, just in case it was the 1st time
628 and we had to sync the dirty bitmap.
629 qemu_get_clock_ns() is a bit expensive, so we only check each some
630 iterations
631 */
632 if ((i & 63) == 0) {
633 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
634 if (t1 > MAX_WAIT) {
635 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
636 t1, i);
637 break;
638 }
639 }
640 i++;
641 }
642
643 if (ret < 0) {
644 return ret;
645 }
646
647 qemu_mutex_unlock_ramlist();
648 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
649
650 return i;
651 }
652
653 static int ram_save_complete(QEMUFile *f, void *opaque)
654 {
655 migration_bitmap_sync();
656
657 qemu_mutex_lock_ramlist();
658
659 /* try transferring iterative blocks of memory */
660
661 /* flush all remaining blocks regardless of rate limiting */
662 while (true) {
663 int bytes_sent;
664
665 bytes_sent = ram_save_block(f, true);
666 /* no more blocks to sent */
667 if (bytes_sent < 0) {
668 break;
669 }
670 bytes_transferred += bytes_sent;
671 }
672 migration_end();
673
674 qemu_mutex_unlock_ramlist();
675 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
676
677 return 0;
678 }
679
680 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
681 {
682 uint64_t remaining_size;
683
684 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
685
686 if (remaining_size < max_size) {
687 migration_bitmap_sync();
688 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
689 }
690 return remaining_size;
691 }
692
693 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
694 {
695 int ret, rc = 0;
696 unsigned int xh_len;
697 int xh_flags;
698
699 if (!XBZRLE.decoded_buf) {
700 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
701 }
702
703 /* extract RLE header */
704 xh_flags = qemu_get_byte(f);
705 xh_len = qemu_get_be16(f);
706
707 if (xh_flags != ENCODING_FLAG_XBZRLE) {
708 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
709 return -1;
710 }
711
712 if (xh_len > TARGET_PAGE_SIZE) {
713 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
714 return -1;
715 }
716 /* load data and decode */
717 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
718
719 /* decode RLE */
720 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
721 TARGET_PAGE_SIZE);
722 if (ret == -1) {
723 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
724 rc = -1;
725 } else if (ret > TARGET_PAGE_SIZE) {
726 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
727 ret, TARGET_PAGE_SIZE);
728 abort();
729 }
730
731 return rc;
732 }
733
734 static inline void *host_from_stream_offset(QEMUFile *f,
735 ram_addr_t offset,
736 int flags)
737 {
738 static RAMBlock *block = NULL;
739 char id[256];
740 uint8_t len;
741
742 if (flags & RAM_SAVE_FLAG_CONTINUE) {
743 if (!block) {
744 fprintf(stderr, "Ack, bad migration stream!\n");
745 return NULL;
746 }
747
748 return memory_region_get_ram_ptr(block->mr) + offset;
749 }
750
751 len = qemu_get_byte(f);
752 qemu_get_buffer(f, (uint8_t *)id, len);
753 id[len] = 0;
754
755 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
756 if (!strncmp(id, block->idstr, sizeof(id)))
757 return memory_region_get_ram_ptr(block->mr) + offset;
758 }
759
760 fprintf(stderr, "Can't find block %s!\n", id);
761 return NULL;
762 }
763
764 static int ram_load(QEMUFile *f, void *opaque, int version_id)
765 {
766 ram_addr_t addr;
767 int flags, ret = 0;
768 int error;
769 static uint64_t seq_iter;
770
771 seq_iter++;
772
773 if (version_id < 4 || version_id > 4) {
774 return -EINVAL;
775 }
776
777 do {
778 addr = qemu_get_be64(f);
779
780 flags = addr & ~TARGET_PAGE_MASK;
781 addr &= TARGET_PAGE_MASK;
782
783 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
784 if (version_id == 4) {
785 /* Synchronize RAM block list */
786 char id[256];
787 ram_addr_t length;
788 ram_addr_t total_ram_bytes = addr;
789
790 while (total_ram_bytes) {
791 RAMBlock *block;
792 uint8_t len;
793
794 len = qemu_get_byte(f);
795 qemu_get_buffer(f, (uint8_t *)id, len);
796 id[len] = 0;
797 length = qemu_get_be64(f);
798
799 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
800 if (!strncmp(id, block->idstr, sizeof(id))) {
801 if (block->length != length) {
802 ret = -EINVAL;
803 goto done;
804 }
805 break;
806 }
807 }
808
809 if (!block) {
810 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
811 "accept migration\n", id);
812 ret = -EINVAL;
813 goto done;
814 }
815
816 total_ram_bytes -= length;
817 }
818 }
819 }
820
821 if (flags & RAM_SAVE_FLAG_COMPRESS) {
822 void *host;
823 uint8_t ch;
824
825 host = host_from_stream_offset(f, addr, flags);
826 if (!host) {
827 return -EINVAL;
828 }
829
830 ch = qemu_get_byte(f);
831 memset(host, ch, TARGET_PAGE_SIZE);
832 #ifndef _WIN32
833 if (ch == 0 &&
834 (!kvm_enabled() || kvm_has_sync_mmu()) &&
835 getpagesize() <= TARGET_PAGE_SIZE) {
836 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
837 }
838 #endif
839 } else if (flags & RAM_SAVE_FLAG_PAGE) {
840 void *host;
841
842 host = host_from_stream_offset(f, addr, flags);
843 if (!host) {
844 return -EINVAL;
845 }
846
847 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
848 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
849 if (!migrate_use_xbzrle()) {
850 return -EINVAL;
851 }
852 void *host = host_from_stream_offset(f, addr, flags);
853 if (!host) {
854 return -EINVAL;
855 }
856
857 if (load_xbzrle(f, addr, host) < 0) {
858 ret = -EINVAL;
859 goto done;
860 }
861 }
862 error = qemu_file_get_error(f);
863 if (error) {
864 ret = error;
865 goto done;
866 }
867 } while (!(flags & RAM_SAVE_FLAG_EOS));
868
869 done:
870 DPRINTF("Completed load of VM with exit code %d seq iteration "
871 "%" PRIu64 "\n", ret, seq_iter);
872 return ret;
873 }
874
875 SaveVMHandlers savevm_ram_handlers = {
876 .save_live_setup = ram_save_setup,
877 .save_live_iterate = ram_save_iterate,
878 .save_live_complete = ram_save_complete,
879 .save_live_pending = ram_save_pending,
880 .load_state = ram_load,
881 .cancel = ram_migration_cancel,
882 };
883
884 #ifdef HAS_AUDIO
885 struct soundhw {
886 const char *name;
887 const char *descr;
888 int enabled;
889 int isa;
890 union {
891 int (*init_isa) (ISABus *bus);
892 int (*init_pci) (PCIBus *bus);
893 } init;
894 };
895
896 static struct soundhw soundhw[] = {
897 #ifdef HAS_AUDIO_CHOICE
898 #ifdef CONFIG_PCSPK
899 {
900 "pcspk",
901 "PC speaker",
902 0,
903 1,
904 { .init_isa = pcspk_audio_init }
905 },
906 #endif
907
908 #ifdef CONFIG_SB16
909 {
910 "sb16",
911 "Creative Sound Blaster 16",
912 0,
913 1,
914 { .init_isa = SB16_init }
915 },
916 #endif
917
918 #ifdef CONFIG_CS4231A
919 {
920 "cs4231a",
921 "CS4231A",
922 0,
923 1,
924 { .init_isa = cs4231a_init }
925 },
926 #endif
927
928 #ifdef CONFIG_ADLIB
929 {
930 "adlib",
931 #ifdef HAS_YMF262
932 "Yamaha YMF262 (OPL3)",
933 #else
934 "Yamaha YM3812 (OPL2)",
935 #endif
936 0,
937 1,
938 { .init_isa = Adlib_init }
939 },
940 #endif
941
942 #ifdef CONFIG_GUS
943 {
944 "gus",
945 "Gravis Ultrasound GF1",
946 0,
947 1,
948 { .init_isa = GUS_init }
949 },
950 #endif
951
952 #ifdef CONFIG_AC97
953 {
954 "ac97",
955 "Intel 82801AA AC97 Audio",
956 0,
957 0,
958 { .init_pci = ac97_init }
959 },
960 #endif
961
962 #ifdef CONFIG_ES1370
963 {
964 "es1370",
965 "ENSONIQ AudioPCI ES1370",
966 0,
967 0,
968 { .init_pci = es1370_init }
969 },
970 #endif
971
972 #ifdef CONFIG_HDA
973 {
974 "hda",
975 "Intel HD Audio",
976 0,
977 0,
978 { .init_pci = intel_hda_and_codec_init }
979 },
980 #endif
981
982 #endif /* HAS_AUDIO_CHOICE */
983
984 { NULL, NULL, 0, 0, { NULL } }
985 };
986
987 void select_soundhw(const char *optarg)
988 {
989 struct soundhw *c;
990
991 if (is_help_option(optarg)) {
992 show_valid_cards:
993
994 #ifdef HAS_AUDIO_CHOICE
995 printf("Valid sound card names (comma separated):\n");
996 for (c = soundhw; c->name; ++c) {
997 printf ("%-11s %s\n", c->name, c->descr);
998 }
999 printf("\n-soundhw all will enable all of the above\n");
1000 #else
1001 printf("Machine has no user-selectable audio hardware "
1002 "(it may or may not have always-present audio hardware).\n");
1003 #endif
1004 exit(!is_help_option(optarg));
1005 }
1006 else {
1007 size_t l;
1008 const char *p;
1009 char *e;
1010 int bad_card = 0;
1011
1012 if (!strcmp(optarg, "all")) {
1013 for (c = soundhw; c->name; ++c) {
1014 c->enabled = 1;
1015 }
1016 return;
1017 }
1018
1019 p = optarg;
1020 while (*p) {
1021 e = strchr(p, ',');
1022 l = !e ? strlen(p) : (size_t) (e - p);
1023
1024 for (c = soundhw; c->name; ++c) {
1025 if (!strncmp(c->name, p, l) && !c->name[l]) {
1026 c->enabled = 1;
1027 break;
1028 }
1029 }
1030
1031 if (!c->name) {
1032 if (l > 80) {
1033 fprintf(stderr,
1034 "Unknown sound card name (too big to show)\n");
1035 }
1036 else {
1037 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1038 (int) l, p);
1039 }
1040 bad_card = 1;
1041 }
1042 p += l + (e != NULL);
1043 }
1044
1045 if (bad_card) {
1046 goto show_valid_cards;
1047 }
1048 }
1049 }
1050
1051 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1052 {
1053 struct soundhw *c;
1054
1055 for (c = soundhw; c->name; ++c) {
1056 if (c->enabled) {
1057 if (c->isa) {
1058 if (isa_bus) {
1059 c->init.init_isa(isa_bus);
1060 }
1061 } else {
1062 if (pci_bus) {
1063 c->init.init_pci(pci_bus);
1064 }
1065 }
1066 }
1067 }
1068 }
1069 #else
1070 void select_soundhw(const char *optarg)
1071 {
1072 }
1073 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1074 {
1075 }
1076 #endif
1077
1078 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1079 {
1080 int ret;
1081
1082 if (strlen(str) != 36) {
1083 return -1;
1084 }
1085
1086 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1087 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1088 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1089 &uuid[15]);
1090
1091 if (ret != 16) {
1092 return -1;
1093 }
1094 #ifdef TARGET_I386
1095 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1096 #endif
1097 return 0;
1098 }
1099
1100 void do_acpitable_option(const char *optarg)
1101 {
1102 #ifdef TARGET_I386
1103 if (acpi_table_add(optarg) < 0) {
1104 fprintf(stderr, "Wrong acpi table provided\n");
1105 exit(1);
1106 }
1107 #endif
1108 }
1109
1110 void do_smbios_option(const char *optarg)
1111 {
1112 #ifdef TARGET_I386
1113 if (smbios_entry_add(optarg) < 0) {
1114 fprintf(stderr, "Wrong smbios provided\n");
1115 exit(1);
1116 }
1117 #endif
1118 }
1119
1120 void cpudef_init(void)
1121 {
1122 #if defined(cpudef_setup)
1123 cpudef_setup(); /* parse cpu definitions in target config file */
1124 #endif
1125 }
1126
1127 int audio_available(void)
1128 {
1129 #ifdef HAS_AUDIO
1130 return 1;
1131 #else
1132 return 0;
1133 #endif
1134 }
1135
1136 int tcg_available(void)
1137 {
1138 return 1;
1139 }
1140
1141 int kvm_available(void)
1142 {
1143 #ifdef CONFIG_KVM
1144 return 1;
1145 #else
1146 return 0;
1147 #endif
1148 }
1149
1150 int xen_available(void)
1151 {
1152 #ifdef CONFIG_XEN
1153 return 1;
1154 #else
1155 return 0;
1156 #endif
1157 }
1158
1159
1160 TargetInfo *qmp_query_target(Error **errp)
1161 {
1162 TargetInfo *info = g_malloc0(sizeof(*info));
1163
1164 info->arch = TARGET_TYPE;
1165
1166 return info;
1167 }