]> git.proxmox.com Git - mirror_qemu.git/blob - arch_init.c
arch_init: Alloc and free data struct for compression
[mirror_qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <zlib.h>
28 #ifndef _WIN32
29 #include <sys/types.h>
30 #include <sys/mman.h>
31 #endif
32 #include "config.h"
33 #include "monitor/monitor.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/bitops.h"
36 #include "qemu/bitmap.h"
37 #include "sysemu/arch_init.h"
38 #include "audio/audio.h"
39 #include "hw/i386/pc.h"
40 #include "hw/pci/pci.h"
41 #include "hw/audio/audio.h"
42 #include "sysemu/kvm.h"
43 #include "migration/migration.h"
44 #include "hw/i386/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/audio/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qemu/error-report.h"
50 #include "qmp-commands.h"
51 #include "trace.h"
52 #include "exec/cpu-all.h"
53 #include "exec/ram_addr.h"
54 #include "hw/acpi/acpi.h"
55 #include "qemu/host-utils.h"
56 #include "qemu/rcu_queue.h"
57
58 #ifdef DEBUG_ARCH_INIT
59 #define DPRINTF(fmt, ...) \
60 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
61 #else
62 #define DPRINTF(fmt, ...) \
63 do { } while (0)
64 #endif
65
66 #ifdef TARGET_SPARC
67 int graphic_width = 1024;
68 int graphic_height = 768;
69 int graphic_depth = 8;
70 #else
71 int graphic_width = 800;
72 int graphic_height = 600;
73 int graphic_depth = 32;
74 #endif
75
76
77 #if defined(TARGET_ALPHA)
78 #define QEMU_ARCH QEMU_ARCH_ALPHA
79 #elif defined(TARGET_ARM)
80 #define QEMU_ARCH QEMU_ARCH_ARM
81 #elif defined(TARGET_CRIS)
82 #define QEMU_ARCH QEMU_ARCH_CRIS
83 #elif defined(TARGET_I386)
84 #define QEMU_ARCH QEMU_ARCH_I386
85 #elif defined(TARGET_M68K)
86 #define QEMU_ARCH QEMU_ARCH_M68K
87 #elif defined(TARGET_LM32)
88 #define QEMU_ARCH QEMU_ARCH_LM32
89 #elif defined(TARGET_MICROBLAZE)
90 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
91 #elif defined(TARGET_MIPS)
92 #define QEMU_ARCH QEMU_ARCH_MIPS
93 #elif defined(TARGET_MOXIE)
94 #define QEMU_ARCH QEMU_ARCH_MOXIE
95 #elif defined(TARGET_OPENRISC)
96 #define QEMU_ARCH QEMU_ARCH_OPENRISC
97 #elif defined(TARGET_PPC)
98 #define QEMU_ARCH QEMU_ARCH_PPC
99 #elif defined(TARGET_S390X)
100 #define QEMU_ARCH QEMU_ARCH_S390X
101 #elif defined(TARGET_SH4)
102 #define QEMU_ARCH QEMU_ARCH_SH4
103 #elif defined(TARGET_SPARC)
104 #define QEMU_ARCH QEMU_ARCH_SPARC
105 #elif defined(TARGET_XTENSA)
106 #define QEMU_ARCH QEMU_ARCH_XTENSA
107 #elif defined(TARGET_UNICORE32)
108 #define QEMU_ARCH QEMU_ARCH_UNICORE32
109 #elif defined(TARGET_TRICORE)
110 #define QEMU_ARCH QEMU_ARCH_TRICORE
111 #endif
112
113 const uint32_t arch_type = QEMU_ARCH;
114 static bool mig_throttle_on;
115 static int dirty_rate_high_cnt;
116 static void check_guest_throttling(void);
117
118 static uint64_t bitmap_sync_count;
119
120 /***********************************************************/
121 /* ram save/restore */
122
123 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
124 #define RAM_SAVE_FLAG_COMPRESS 0x02
125 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
126 #define RAM_SAVE_FLAG_PAGE 0x08
127 #define RAM_SAVE_FLAG_EOS 0x10
128 #define RAM_SAVE_FLAG_CONTINUE 0x20
129 #define RAM_SAVE_FLAG_XBZRLE 0x40
130 /* 0x80 is reserved in migration.h start with 0x100 next */
131 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
132
133 static struct defconfig_file {
134 const char *filename;
135 /* Indicates it is an user config file (disabled by -no-user-config) */
136 bool userconfig;
137 } default_config_files[] = {
138 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
139 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
140 { NULL }, /* end of list */
141 };
142
143 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
144
145 int qemu_read_default_config_files(bool userconfig)
146 {
147 int ret;
148 struct defconfig_file *f;
149
150 for (f = default_config_files; f->filename; f++) {
151 if (!userconfig && f->userconfig) {
152 continue;
153 }
154 ret = qemu_read_config_file(f->filename);
155 if (ret < 0 && ret != -ENOENT) {
156 return ret;
157 }
158 }
159
160 return 0;
161 }
162
163 static inline bool is_zero_range(uint8_t *p, uint64_t size)
164 {
165 return buffer_find_nonzero_offset(p, size) == size;
166 }
167
168 /* struct contains XBZRLE cache and a static page
169 used by the compression */
170 static struct {
171 /* buffer used for XBZRLE encoding */
172 uint8_t *encoded_buf;
173 /* buffer for storing page content */
174 uint8_t *current_buf;
175 /* Cache for XBZRLE, Protected by lock. */
176 PageCache *cache;
177 QemuMutex lock;
178 } XBZRLE;
179
180 /* buffer used for XBZRLE decoding */
181 static uint8_t *xbzrle_decoded_buf;
182
183 static void XBZRLE_cache_lock(void)
184 {
185 if (migrate_use_xbzrle())
186 qemu_mutex_lock(&XBZRLE.lock);
187 }
188
189 static void XBZRLE_cache_unlock(void)
190 {
191 if (migrate_use_xbzrle())
192 qemu_mutex_unlock(&XBZRLE.lock);
193 }
194
195 /*
196 * called from qmp_migrate_set_cache_size in main thread, possibly while
197 * a migration is in progress.
198 * A running migration maybe using the cache and might finish during this
199 * call, hence changes to the cache are protected by XBZRLE.lock().
200 */
201 int64_t xbzrle_cache_resize(int64_t new_size)
202 {
203 PageCache *new_cache;
204 int64_t ret;
205
206 if (new_size < TARGET_PAGE_SIZE) {
207 return -1;
208 }
209
210 XBZRLE_cache_lock();
211
212 if (XBZRLE.cache != NULL) {
213 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
214 goto out_new_size;
215 }
216 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
217 TARGET_PAGE_SIZE);
218 if (!new_cache) {
219 error_report("Error creating cache");
220 ret = -1;
221 goto out;
222 }
223
224 cache_fini(XBZRLE.cache);
225 XBZRLE.cache = new_cache;
226 }
227
228 out_new_size:
229 ret = pow2floor(new_size);
230 out:
231 XBZRLE_cache_unlock();
232 return ret;
233 }
234
235 /* accounting for migration statistics */
236 typedef struct AccountingInfo {
237 uint64_t dup_pages;
238 uint64_t skipped_pages;
239 uint64_t norm_pages;
240 uint64_t iterations;
241 uint64_t xbzrle_bytes;
242 uint64_t xbzrle_pages;
243 uint64_t xbzrle_cache_miss;
244 double xbzrle_cache_miss_rate;
245 uint64_t xbzrle_overflows;
246 } AccountingInfo;
247
248 static AccountingInfo acct_info;
249
250 static void acct_clear(void)
251 {
252 memset(&acct_info, 0, sizeof(acct_info));
253 }
254
255 uint64_t dup_mig_bytes_transferred(void)
256 {
257 return acct_info.dup_pages * TARGET_PAGE_SIZE;
258 }
259
260 uint64_t dup_mig_pages_transferred(void)
261 {
262 return acct_info.dup_pages;
263 }
264
265 uint64_t skipped_mig_bytes_transferred(void)
266 {
267 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
268 }
269
270 uint64_t skipped_mig_pages_transferred(void)
271 {
272 return acct_info.skipped_pages;
273 }
274
275 uint64_t norm_mig_bytes_transferred(void)
276 {
277 return acct_info.norm_pages * TARGET_PAGE_SIZE;
278 }
279
280 uint64_t norm_mig_pages_transferred(void)
281 {
282 return acct_info.norm_pages;
283 }
284
285 uint64_t xbzrle_mig_bytes_transferred(void)
286 {
287 return acct_info.xbzrle_bytes;
288 }
289
290 uint64_t xbzrle_mig_pages_transferred(void)
291 {
292 return acct_info.xbzrle_pages;
293 }
294
295 uint64_t xbzrle_mig_pages_cache_miss(void)
296 {
297 return acct_info.xbzrle_cache_miss;
298 }
299
300 double xbzrle_mig_cache_miss_rate(void)
301 {
302 return acct_info.xbzrle_cache_miss_rate;
303 }
304
305 uint64_t xbzrle_mig_pages_overflow(void)
306 {
307 return acct_info.xbzrle_overflows;
308 }
309
310 /* This is the last block that we have visited serching for dirty pages
311 */
312 static RAMBlock *last_seen_block;
313 /* This is the last block from where we have sent data */
314 static RAMBlock *last_sent_block;
315 static ram_addr_t last_offset;
316 static unsigned long *migration_bitmap;
317 static uint64_t migration_dirty_pages;
318 static uint32_t last_version;
319 static bool ram_bulk_stage;
320
321 struct CompressParam {
322 bool start;
323 bool done;
324 QEMUFile *file;
325 QemuMutex mutex;
326 QemuCond cond;
327 RAMBlock *block;
328 ram_addr_t offset;
329 };
330 typedef struct CompressParam CompressParam;
331
332 struct DecompressParam {
333 /* To be done */
334 };
335 typedef struct DecompressParam DecompressParam;
336
337 static CompressParam *comp_param;
338 static QemuThread *compress_threads;
339 /* comp_done_cond is used to wake up the migration thread when
340 * one of the compression threads has finished the compression.
341 * comp_done_lock is used to co-work with comp_done_cond.
342 */
343 static QemuMutex *comp_done_lock;
344 static QemuCond *comp_done_cond;
345 /* The empty QEMUFileOps will be used by file in CompressParam */
346 static const QEMUFileOps empty_ops = { };
347 static bool quit_comp_thread;
348 static bool quit_decomp_thread;
349 static DecompressParam *decomp_param;
350 static QemuThread *decompress_threads;
351 static uint8_t *compressed_data_buf;
352
353 static void *do_data_compress(void *opaque)
354 {
355 while (!quit_comp_thread) {
356
357 /* To be done */
358
359 }
360
361 return NULL;
362 }
363
364 static inline void terminate_compression_threads(void)
365 {
366 quit_comp_thread = true;
367
368 /* To be done */
369 }
370
371 void migrate_compress_threads_join(void)
372 {
373 int i, thread_count;
374
375 if (!migrate_use_compression()) {
376 return;
377 }
378 terminate_compression_threads();
379 thread_count = migrate_compress_threads();
380 for (i = 0; i < thread_count; i++) {
381 qemu_thread_join(compress_threads + i);
382 qemu_fclose(comp_param[i].file);
383 qemu_mutex_destroy(&comp_param[i].mutex);
384 qemu_cond_destroy(&comp_param[i].cond);
385 }
386 qemu_mutex_destroy(comp_done_lock);
387 qemu_cond_destroy(comp_done_cond);
388 g_free(compress_threads);
389 g_free(comp_param);
390 g_free(comp_done_cond);
391 g_free(comp_done_lock);
392 compress_threads = NULL;
393 comp_param = NULL;
394 comp_done_cond = NULL;
395 comp_done_lock = NULL;
396 }
397
398 void migrate_compress_threads_create(void)
399 {
400 int i, thread_count;
401
402 if (!migrate_use_compression()) {
403 return;
404 }
405 quit_comp_thread = false;
406 thread_count = migrate_compress_threads();
407 compress_threads = g_new0(QemuThread, thread_count);
408 comp_param = g_new0(CompressParam, thread_count);
409 comp_done_cond = g_new0(QemuCond, 1);
410 comp_done_lock = g_new0(QemuMutex, 1);
411 qemu_cond_init(comp_done_cond);
412 qemu_mutex_init(comp_done_lock);
413 for (i = 0; i < thread_count; i++) {
414 /* com_param[i].file is just used as a dummy buffer to save data, set
415 * it's ops to empty.
416 */
417 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
418 qemu_mutex_init(&comp_param[i].mutex);
419 qemu_cond_init(&comp_param[i].cond);
420 qemu_thread_create(compress_threads + i, "compress",
421 do_data_compress, comp_param + i,
422 QEMU_THREAD_JOINABLE);
423 }
424 }
425
426 /**
427 * save_page_header: Write page header to wire
428 *
429 * If this is the 1st block, it also writes the block identification
430 *
431 * Returns: Number of bytes written
432 *
433 * @f: QEMUFile where to send the data
434 * @block: block that contains the page we want to send
435 * @offset: offset inside the block for the page
436 * in the lower bits, it contains flags
437 */
438 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
439 {
440 size_t size;
441
442 qemu_put_be64(f, offset);
443 size = 8;
444
445 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
446 qemu_put_byte(f, strlen(block->idstr));
447 qemu_put_buffer(f, (uint8_t *)block->idstr,
448 strlen(block->idstr));
449 size += 1 + strlen(block->idstr);
450 }
451 return size;
452 }
453
454 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
455 * The important thing is that a stale (not-yet-0'd) page be replaced
456 * by the new data.
457 * As a bonus, if the page wasn't in the cache it gets added so that
458 * when a small write is made into the 0'd page it gets XBZRLE sent
459 */
460 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
461 {
462 if (ram_bulk_stage || !migrate_use_xbzrle()) {
463 return;
464 }
465
466 /* We don't care if this fails to allocate a new cache page
467 * as long as it updated an old one */
468 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
469 bitmap_sync_count);
470 }
471
472 #define ENCODING_FLAG_XBZRLE 0x1
473
474 /**
475 * save_xbzrle_page: compress and send current page
476 *
477 * Returns: 1 means that we wrote the page
478 * 0 means that page is identical to the one already sent
479 * -1 means that xbzrle would be longer than normal
480 *
481 * @f: QEMUFile where to send the data
482 * @current_data:
483 * @current_addr:
484 * @block: block that contains the page we want to send
485 * @offset: offset inside the block for the page
486 * @last_stage: if we are at the completion stage
487 * @bytes_transferred: increase it with the number of transferred bytes
488 */
489 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
490 ram_addr_t current_addr, RAMBlock *block,
491 ram_addr_t offset, bool last_stage,
492 uint64_t *bytes_transferred)
493 {
494 int encoded_len = 0, bytes_xbzrle;
495 uint8_t *prev_cached_page;
496
497 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
498 acct_info.xbzrle_cache_miss++;
499 if (!last_stage) {
500 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
501 bitmap_sync_count) == -1) {
502 return -1;
503 } else {
504 /* update *current_data when the page has been
505 inserted into cache */
506 *current_data = get_cached_data(XBZRLE.cache, current_addr);
507 }
508 }
509 return -1;
510 }
511
512 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
513
514 /* save current buffer into memory */
515 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
516
517 /* XBZRLE encoding (if there is no overflow) */
518 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
519 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
520 TARGET_PAGE_SIZE);
521 if (encoded_len == 0) {
522 DPRINTF("Skipping unmodified page\n");
523 return 0;
524 } else if (encoded_len == -1) {
525 DPRINTF("Overflow\n");
526 acct_info.xbzrle_overflows++;
527 /* update data in the cache */
528 if (!last_stage) {
529 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
530 *current_data = prev_cached_page;
531 }
532 return -1;
533 }
534
535 /* we need to update the data in the cache, in order to get the same data */
536 if (!last_stage) {
537 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
538 }
539
540 /* Send XBZRLE based compressed page */
541 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
542 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
543 qemu_put_be16(f, encoded_len);
544 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
545 bytes_xbzrle += encoded_len + 1 + 2;
546 acct_info.xbzrle_pages++;
547 acct_info.xbzrle_bytes += bytes_xbzrle;
548 *bytes_transferred += bytes_xbzrle;
549
550 return 1;
551 }
552
553 static inline
554 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
555 ram_addr_t start)
556 {
557 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
558 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
559 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
560 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
561
562 unsigned long next;
563
564 if (ram_bulk_stage && nr > base) {
565 next = nr + 1;
566 } else {
567 next = find_next_bit(migration_bitmap, size, nr);
568 }
569
570 if (next < size) {
571 clear_bit(next, migration_bitmap);
572 migration_dirty_pages--;
573 }
574 return (next - base) << TARGET_PAGE_BITS;
575 }
576
577 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
578 {
579 bool ret;
580 int nr = addr >> TARGET_PAGE_BITS;
581
582 ret = test_and_set_bit(nr, migration_bitmap);
583
584 if (!ret) {
585 migration_dirty_pages++;
586 }
587 return ret;
588 }
589
590 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
591 {
592 ram_addr_t addr;
593 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
594
595 /* start address is aligned at the start of a word? */
596 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
597 int k;
598 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
599 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
600
601 for (k = page; k < page + nr; k++) {
602 if (src[k]) {
603 unsigned long new_dirty;
604 new_dirty = ~migration_bitmap[k];
605 migration_bitmap[k] |= src[k];
606 new_dirty &= src[k];
607 migration_dirty_pages += ctpopl(new_dirty);
608 src[k] = 0;
609 }
610 }
611 } else {
612 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
613 if (cpu_physical_memory_get_dirty(start + addr,
614 TARGET_PAGE_SIZE,
615 DIRTY_MEMORY_MIGRATION)) {
616 cpu_physical_memory_reset_dirty(start + addr,
617 TARGET_PAGE_SIZE,
618 DIRTY_MEMORY_MIGRATION);
619 migration_bitmap_set_dirty(start + addr);
620 }
621 }
622 }
623 }
624
625
626 /* Fix me: there are too many global variables used in migration process. */
627 static int64_t start_time;
628 static int64_t bytes_xfer_prev;
629 static int64_t num_dirty_pages_period;
630
631 static void migration_bitmap_sync_init(void)
632 {
633 start_time = 0;
634 bytes_xfer_prev = 0;
635 num_dirty_pages_period = 0;
636 }
637
638 /* Called with iothread lock held, to protect ram_list.dirty_memory[] */
639 static void migration_bitmap_sync(void)
640 {
641 RAMBlock *block;
642 uint64_t num_dirty_pages_init = migration_dirty_pages;
643 MigrationState *s = migrate_get_current();
644 int64_t end_time;
645 int64_t bytes_xfer_now;
646 static uint64_t xbzrle_cache_miss_prev;
647 static uint64_t iterations_prev;
648
649 bitmap_sync_count++;
650
651 if (!bytes_xfer_prev) {
652 bytes_xfer_prev = ram_bytes_transferred();
653 }
654
655 if (!start_time) {
656 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
657 }
658
659 trace_migration_bitmap_sync_start();
660 address_space_sync_dirty_bitmap(&address_space_memory);
661
662 rcu_read_lock();
663 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
664 migration_bitmap_sync_range(block->mr->ram_addr, block->used_length);
665 }
666 rcu_read_unlock();
667
668 trace_migration_bitmap_sync_end(migration_dirty_pages
669 - num_dirty_pages_init);
670 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
671 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
672
673 /* more than 1 second = 1000 millisecons */
674 if (end_time > start_time + 1000) {
675 if (migrate_auto_converge()) {
676 /* The following detection logic can be refined later. For now:
677 Check to see if the dirtied bytes is 50% more than the approx.
678 amount of bytes that just got transferred since the last time we
679 were in this routine. If that happens >N times (for now N==4)
680 we turn on the throttle down logic */
681 bytes_xfer_now = ram_bytes_transferred();
682 if (s->dirty_pages_rate &&
683 (num_dirty_pages_period * TARGET_PAGE_SIZE >
684 (bytes_xfer_now - bytes_xfer_prev)/2) &&
685 (dirty_rate_high_cnt++ > 4)) {
686 trace_migration_throttle();
687 mig_throttle_on = true;
688 dirty_rate_high_cnt = 0;
689 }
690 bytes_xfer_prev = bytes_xfer_now;
691 } else {
692 mig_throttle_on = false;
693 }
694 if (migrate_use_xbzrle()) {
695 if (iterations_prev != 0) {
696 acct_info.xbzrle_cache_miss_rate =
697 (double)(acct_info.xbzrle_cache_miss -
698 xbzrle_cache_miss_prev) /
699 (acct_info.iterations - iterations_prev);
700 }
701 iterations_prev = acct_info.iterations;
702 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
703 }
704 s->dirty_pages_rate = num_dirty_pages_period * 1000
705 / (end_time - start_time);
706 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
707 start_time = end_time;
708 num_dirty_pages_period = 0;
709 s->dirty_sync_count = bitmap_sync_count;
710 }
711 }
712
713 /**
714 * ram_save_page: Send the given page to the stream
715 *
716 * Returns: Number of pages written.
717 *
718 * @f: QEMUFile where to send the data
719 * @block: block that contains the page we want to send
720 * @offset: offset inside the block for the page
721 * @last_stage: if we are at the completion stage
722 * @bytes_transferred: increase it with the number of transferred bytes
723 */
724 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
725 bool last_stage, uint64_t *bytes_transferred)
726 {
727 int pages = -1;
728 uint64_t bytes_xmit;
729 ram_addr_t current_addr;
730 MemoryRegion *mr = block->mr;
731 uint8_t *p;
732 int ret;
733 bool send_async = true;
734
735 p = memory_region_get_ram_ptr(mr) + offset;
736
737 /* In doubt sent page as normal */
738 bytes_xmit = 0;
739 ret = ram_control_save_page(f, block->offset,
740 offset, TARGET_PAGE_SIZE, &bytes_xmit);
741 if (bytes_xmit) {
742 *bytes_transferred += bytes_xmit;
743 pages = 1;
744 }
745
746 XBZRLE_cache_lock();
747
748 current_addr = block->offset + offset;
749
750 if (block == last_sent_block) {
751 offset |= RAM_SAVE_FLAG_CONTINUE;
752 }
753 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
754 if (ret != RAM_SAVE_CONTROL_DELAYED) {
755 if (bytes_xmit > 0) {
756 acct_info.norm_pages++;
757 } else if (bytes_xmit == 0) {
758 acct_info.dup_pages++;
759 }
760 }
761 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
762 acct_info.dup_pages++;
763 *bytes_transferred += save_page_header(f, block,
764 offset | RAM_SAVE_FLAG_COMPRESS);
765 qemu_put_byte(f, 0);
766 *bytes_transferred += 1;
767 pages = 1;
768 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
769 * page would be stale
770 */
771 xbzrle_cache_zero_page(current_addr);
772 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
773 pages = save_xbzrle_page(f, &p, current_addr, block,
774 offset, last_stage, bytes_transferred);
775 if (!last_stage) {
776 /* Can't send this cached data async, since the cache page
777 * might get updated before it gets to the wire
778 */
779 send_async = false;
780 }
781 }
782
783 /* XBZRLE overflow or normal page */
784 if (pages == -1) {
785 *bytes_transferred += save_page_header(f, block,
786 offset | RAM_SAVE_FLAG_PAGE);
787 if (send_async) {
788 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
789 } else {
790 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
791 }
792 *bytes_transferred += TARGET_PAGE_SIZE;
793 pages = 1;
794 acct_info.norm_pages++;
795 }
796
797 XBZRLE_cache_unlock();
798
799 return pages;
800 }
801
802 /**
803 * ram_save_compressed_page: compress the given page and send it to the stream
804 *
805 * Returns: Number of pages written.
806 *
807 * @f: QEMUFile where to send the data
808 * @block: block that contains the page we want to send
809 * @offset: offset inside the block for the page
810 * @last_stage: if we are at the completion stage
811 * @bytes_transferred: increase it with the number of transferred bytes
812 */
813 static int ram_save_compressed_page(QEMUFile *f, RAMBlock *block,
814 ram_addr_t offset, bool last_stage,
815 uint64_t *bytes_transferred)
816 {
817 int pages = -1;
818
819 /* To be done*/
820
821 return pages;
822 }
823
824 /**
825 * ram_find_and_save_block: Finds a dirty page and sends it to f
826 *
827 * Called within an RCU critical section.
828 *
829 * Returns: The number of pages written
830 * 0 means no dirty pages
831 *
832 * @f: QEMUFile where to send the data
833 * @last_stage: if we are at the completion stage
834 * @bytes_transferred: increase it with the number of transferred bytes
835 */
836
837 static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
838 uint64_t *bytes_transferred)
839 {
840 RAMBlock *block = last_seen_block;
841 ram_addr_t offset = last_offset;
842 bool complete_round = false;
843 int pages = 0;
844 MemoryRegion *mr;
845
846 if (!block)
847 block = QLIST_FIRST_RCU(&ram_list.blocks);
848
849 while (true) {
850 mr = block->mr;
851 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
852 if (complete_round && block == last_seen_block &&
853 offset >= last_offset) {
854 break;
855 }
856 if (offset >= block->used_length) {
857 offset = 0;
858 block = QLIST_NEXT_RCU(block, next);
859 if (!block) {
860 block = QLIST_FIRST_RCU(&ram_list.blocks);
861 complete_round = true;
862 ram_bulk_stage = false;
863 }
864 } else {
865 if (migrate_use_compression()) {
866 pages = ram_save_compressed_page(f, block, offset, last_stage,
867 bytes_transferred);
868 } else {
869 pages = ram_save_page(f, block, offset, last_stage,
870 bytes_transferred);
871 }
872
873 /* if page is unmodified, continue to the next */
874 if (pages > 0) {
875 last_sent_block = block;
876 break;
877 }
878 }
879 }
880
881 last_seen_block = block;
882 last_offset = offset;
883
884 return pages;
885 }
886
887 static uint64_t bytes_transferred;
888
889 void acct_update_position(QEMUFile *f, size_t size, bool zero)
890 {
891 uint64_t pages = size / TARGET_PAGE_SIZE;
892 if (zero) {
893 acct_info.dup_pages += pages;
894 } else {
895 acct_info.norm_pages += pages;
896 bytes_transferred += size;
897 qemu_update_position(f, size);
898 }
899 }
900
901 static ram_addr_t ram_save_remaining(void)
902 {
903 return migration_dirty_pages;
904 }
905
906 uint64_t ram_bytes_remaining(void)
907 {
908 return ram_save_remaining() * TARGET_PAGE_SIZE;
909 }
910
911 uint64_t ram_bytes_transferred(void)
912 {
913 return bytes_transferred;
914 }
915
916 uint64_t ram_bytes_total(void)
917 {
918 RAMBlock *block;
919 uint64_t total = 0;
920
921 rcu_read_lock();
922 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
923 total += block->used_length;
924 rcu_read_unlock();
925 return total;
926 }
927
928 void free_xbzrle_decoded_buf(void)
929 {
930 g_free(xbzrle_decoded_buf);
931 xbzrle_decoded_buf = NULL;
932 }
933
934 static void migration_end(void)
935 {
936 if (migration_bitmap) {
937 memory_global_dirty_log_stop();
938 g_free(migration_bitmap);
939 migration_bitmap = NULL;
940 }
941
942 XBZRLE_cache_lock();
943 if (XBZRLE.cache) {
944 cache_fini(XBZRLE.cache);
945 g_free(XBZRLE.encoded_buf);
946 g_free(XBZRLE.current_buf);
947 XBZRLE.cache = NULL;
948 XBZRLE.encoded_buf = NULL;
949 XBZRLE.current_buf = NULL;
950 }
951 XBZRLE_cache_unlock();
952 }
953
954 static void ram_migration_cancel(void *opaque)
955 {
956 migration_end();
957 }
958
959 static void reset_ram_globals(void)
960 {
961 last_seen_block = NULL;
962 last_sent_block = NULL;
963 last_offset = 0;
964 last_version = ram_list.version;
965 ram_bulk_stage = true;
966 }
967
968 #define MAX_WAIT 50 /* ms, half buffered_file limit */
969
970
971 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
972 * long-running RCU critical section. When rcu-reclaims in the code
973 * start to become numerous it will be necessary to reduce the
974 * granularity of these critical sections.
975 */
976
977 static int ram_save_setup(QEMUFile *f, void *opaque)
978 {
979 RAMBlock *block;
980 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
981
982 mig_throttle_on = false;
983 dirty_rate_high_cnt = 0;
984 bitmap_sync_count = 0;
985 migration_bitmap_sync_init();
986
987 if (migrate_use_xbzrle()) {
988 XBZRLE_cache_lock();
989 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
990 TARGET_PAGE_SIZE,
991 TARGET_PAGE_SIZE);
992 if (!XBZRLE.cache) {
993 XBZRLE_cache_unlock();
994 error_report("Error creating cache");
995 return -1;
996 }
997 XBZRLE_cache_unlock();
998
999 /* We prefer not to abort if there is no memory */
1000 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1001 if (!XBZRLE.encoded_buf) {
1002 error_report("Error allocating encoded_buf");
1003 return -1;
1004 }
1005
1006 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1007 if (!XBZRLE.current_buf) {
1008 error_report("Error allocating current_buf");
1009 g_free(XBZRLE.encoded_buf);
1010 XBZRLE.encoded_buf = NULL;
1011 return -1;
1012 }
1013
1014 acct_clear();
1015 }
1016
1017 /* iothread lock needed for ram_list.dirty_memory[] */
1018 qemu_mutex_lock_iothread();
1019 qemu_mutex_lock_ramlist();
1020 rcu_read_lock();
1021 bytes_transferred = 0;
1022 reset_ram_globals();
1023
1024 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1025 migration_bitmap = bitmap_new(ram_bitmap_pages);
1026 bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
1027
1028 /*
1029 * Count the total number of pages used by ram blocks not including any
1030 * gaps due to alignment or unplugs.
1031 */
1032 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1033
1034 memory_global_dirty_log_start();
1035 migration_bitmap_sync();
1036 qemu_mutex_unlock_ramlist();
1037 qemu_mutex_unlock_iothread();
1038
1039 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1040
1041 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1042 qemu_put_byte(f, strlen(block->idstr));
1043 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1044 qemu_put_be64(f, block->used_length);
1045 }
1046
1047 rcu_read_unlock();
1048
1049 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1050 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1051
1052 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1053
1054 return 0;
1055 }
1056
1057 static int ram_save_iterate(QEMUFile *f, void *opaque)
1058 {
1059 int ret;
1060 int i;
1061 int64_t t0;
1062 int pages_sent = 0;
1063
1064 rcu_read_lock();
1065 if (ram_list.version != last_version) {
1066 reset_ram_globals();
1067 }
1068
1069 /* Read version before ram_list.blocks */
1070 smp_rmb();
1071
1072 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
1073
1074 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1075 i = 0;
1076 while ((ret = qemu_file_rate_limit(f)) == 0) {
1077 int pages;
1078
1079 pages = ram_find_and_save_block(f, false, &bytes_transferred);
1080 /* no more pages to sent */
1081 if (pages == 0) {
1082 break;
1083 }
1084 pages_sent += pages;
1085 acct_info.iterations++;
1086 check_guest_throttling();
1087 /* we want to check in the 1st loop, just in case it was the 1st time
1088 and we had to sync the dirty bitmap.
1089 qemu_get_clock_ns() is a bit expensive, so we only check each some
1090 iterations
1091 */
1092 if ((i & 63) == 0) {
1093 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
1094 if (t1 > MAX_WAIT) {
1095 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
1096 t1, i);
1097 break;
1098 }
1099 }
1100 i++;
1101 }
1102 rcu_read_unlock();
1103
1104 /*
1105 * Must occur before EOS (or any QEMUFile operation)
1106 * because of RDMA protocol.
1107 */
1108 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
1109
1110 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1111 bytes_transferred += 8;
1112
1113 ret = qemu_file_get_error(f);
1114 if (ret < 0) {
1115 return ret;
1116 }
1117
1118 return pages_sent;
1119 }
1120
1121 /* Called with iothread lock */
1122 static int ram_save_complete(QEMUFile *f, void *opaque)
1123 {
1124 rcu_read_lock();
1125
1126 migration_bitmap_sync();
1127
1128 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
1129
1130 /* try transferring iterative blocks of memory */
1131
1132 /* flush all remaining blocks regardless of rate limiting */
1133 while (true) {
1134 int pages;
1135
1136 pages = ram_find_and_save_block(f, true, &bytes_transferred);
1137 /* no more blocks to sent */
1138 if (pages == 0) {
1139 break;
1140 }
1141 }
1142
1143 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
1144 migration_end();
1145
1146 rcu_read_unlock();
1147 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1148
1149 return 0;
1150 }
1151
1152 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
1153 {
1154 uint64_t remaining_size;
1155
1156 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1157
1158 if (remaining_size < max_size) {
1159 qemu_mutex_lock_iothread();
1160 rcu_read_lock();
1161 migration_bitmap_sync();
1162 rcu_read_unlock();
1163 qemu_mutex_unlock_iothread();
1164 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1165 }
1166 return remaining_size;
1167 }
1168
1169 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
1170 {
1171 unsigned int xh_len;
1172 int xh_flags;
1173
1174 if (!xbzrle_decoded_buf) {
1175 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1176 }
1177
1178 /* extract RLE header */
1179 xh_flags = qemu_get_byte(f);
1180 xh_len = qemu_get_be16(f);
1181
1182 if (xh_flags != ENCODING_FLAG_XBZRLE) {
1183 error_report("Failed to load XBZRLE page - wrong compression!");
1184 return -1;
1185 }
1186
1187 if (xh_len > TARGET_PAGE_SIZE) {
1188 error_report("Failed to load XBZRLE page - len overflow!");
1189 return -1;
1190 }
1191 /* load data and decode */
1192 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
1193
1194 /* decode RLE */
1195 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
1196 TARGET_PAGE_SIZE) == -1) {
1197 error_report("Failed to load XBZRLE page - decode error!");
1198 return -1;
1199 }
1200
1201 return 0;
1202 }
1203
1204 /* Must be called from within a rcu critical section.
1205 * Returns a pointer from within the RCU-protected ram_list.
1206 */
1207 static inline void *host_from_stream_offset(QEMUFile *f,
1208 ram_addr_t offset,
1209 int flags)
1210 {
1211 static RAMBlock *block = NULL;
1212 char id[256];
1213 uint8_t len;
1214
1215 if (flags & RAM_SAVE_FLAG_CONTINUE) {
1216 if (!block || block->max_length <= offset) {
1217 error_report("Ack, bad migration stream!");
1218 return NULL;
1219 }
1220
1221 return memory_region_get_ram_ptr(block->mr) + offset;
1222 }
1223
1224 len = qemu_get_byte(f);
1225 qemu_get_buffer(f, (uint8_t *)id, len);
1226 id[len] = 0;
1227
1228 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1229 if (!strncmp(id, block->idstr, sizeof(id)) &&
1230 block->max_length > offset) {
1231 return memory_region_get_ram_ptr(block->mr) + offset;
1232 }
1233 }
1234
1235 error_report("Can't find block %s!", id);
1236 return NULL;
1237 }
1238
1239 /*
1240 * If a page (or a whole RDMA chunk) has been
1241 * determined to be zero, then zap it.
1242 */
1243 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1244 {
1245 if (ch != 0 || !is_zero_range(host, size)) {
1246 memset(host, ch, size);
1247 }
1248 }
1249
1250 static void *do_data_decompress(void *opaque)
1251 {
1252 while (!quit_decomp_thread) {
1253 /* To be done */
1254 }
1255
1256 return NULL;
1257 }
1258
1259 void migrate_decompress_threads_create(void)
1260 {
1261 int i, thread_count;
1262
1263 thread_count = migrate_decompress_threads();
1264 decompress_threads = g_new0(QemuThread, thread_count);
1265 decomp_param = g_new0(DecompressParam, thread_count);
1266 compressed_data_buf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
1267 quit_decomp_thread = false;
1268 for (i = 0; i < thread_count; i++) {
1269 qemu_thread_create(decompress_threads + i, "decompress",
1270 do_data_decompress, decomp_param + i,
1271 QEMU_THREAD_JOINABLE);
1272 }
1273 }
1274
1275 void migrate_decompress_threads_join(void)
1276 {
1277 int i, thread_count;
1278
1279 quit_decomp_thread = true;
1280 thread_count = migrate_decompress_threads();
1281 for (i = 0; i < thread_count; i++) {
1282 qemu_thread_join(decompress_threads + i);
1283 }
1284 g_free(decompress_threads);
1285 g_free(decomp_param);
1286 g_free(compressed_data_buf);
1287 decompress_threads = NULL;
1288 decomp_param = NULL;
1289 compressed_data_buf = NULL;
1290 }
1291
1292 static void decompress_data_with_multi_threads(uint8_t *compbuf,
1293 void *host, int len)
1294 {
1295 /* To be done */
1296 }
1297
1298 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1299 {
1300 int flags = 0, ret = 0;
1301 static uint64_t seq_iter;
1302 int len = 0;
1303
1304 seq_iter++;
1305
1306 if (version_id != 4) {
1307 ret = -EINVAL;
1308 }
1309
1310 /* This RCU critical section can be very long running.
1311 * When RCU reclaims in the code start to become numerous,
1312 * it will be necessary to reduce the granularity of this
1313 * critical section.
1314 */
1315 rcu_read_lock();
1316 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
1317 ram_addr_t addr, total_ram_bytes;
1318 void *host;
1319 uint8_t ch;
1320
1321 addr = qemu_get_be64(f);
1322 flags = addr & ~TARGET_PAGE_MASK;
1323 addr &= TARGET_PAGE_MASK;
1324
1325 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
1326 case RAM_SAVE_FLAG_MEM_SIZE:
1327 /* Synchronize RAM block list */
1328 total_ram_bytes = addr;
1329 while (!ret && total_ram_bytes) {
1330 RAMBlock *block;
1331 uint8_t len;
1332 char id[256];
1333 ram_addr_t length;
1334
1335 len = qemu_get_byte(f);
1336 qemu_get_buffer(f, (uint8_t *)id, len);
1337 id[len] = 0;
1338 length = qemu_get_be64(f);
1339
1340 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1341 if (!strncmp(id, block->idstr, sizeof(id))) {
1342 if (length != block->used_length) {
1343 Error *local_err = NULL;
1344
1345 ret = qemu_ram_resize(block->offset, length, &local_err);
1346 if (local_err) {
1347 error_report_err(local_err);
1348 }
1349 }
1350 break;
1351 }
1352 }
1353
1354 if (!block) {
1355 error_report("Unknown ramblock \"%s\", cannot "
1356 "accept migration", id);
1357 ret = -EINVAL;
1358 }
1359
1360 total_ram_bytes -= length;
1361 }
1362 break;
1363 case RAM_SAVE_FLAG_COMPRESS:
1364 host = host_from_stream_offset(f, addr, flags);
1365 if (!host) {
1366 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1367 ret = -EINVAL;
1368 break;
1369 }
1370 ch = qemu_get_byte(f);
1371 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1372 break;
1373 case RAM_SAVE_FLAG_PAGE:
1374 host = host_from_stream_offset(f, addr, flags);
1375 if (!host) {
1376 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1377 ret = -EINVAL;
1378 break;
1379 }
1380 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1381 break;
1382 case RAM_SAVE_FLAG_COMPRESS_PAGE:
1383 host = host_from_stream_offset(f, addr, flags);
1384 if (!host) {
1385 error_report("Invalid RAM offset " RAM_ADDR_FMT, addr);
1386 ret = -EINVAL;
1387 break;
1388 }
1389
1390 len = qemu_get_be32(f);
1391 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
1392 error_report("Invalid compressed data length: %d", len);
1393 ret = -EINVAL;
1394 break;
1395 }
1396 qemu_get_buffer(f, compressed_data_buf, len);
1397 decompress_data_with_multi_threads(compressed_data_buf, host, len);
1398 break;
1399 case RAM_SAVE_FLAG_XBZRLE:
1400 host = host_from_stream_offset(f, addr, flags);
1401 if (!host) {
1402 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1403 ret = -EINVAL;
1404 break;
1405 }
1406 if (load_xbzrle(f, addr, host) < 0) {
1407 error_report("Failed to decompress XBZRLE page at "
1408 RAM_ADDR_FMT, addr);
1409 ret = -EINVAL;
1410 break;
1411 }
1412 break;
1413 case RAM_SAVE_FLAG_EOS:
1414 /* normal exit */
1415 break;
1416 default:
1417 if (flags & RAM_SAVE_FLAG_HOOK) {
1418 ram_control_load_hook(f, flags);
1419 } else {
1420 error_report("Unknown combination of migration flags: %#x",
1421 flags);
1422 ret = -EINVAL;
1423 }
1424 }
1425 if (!ret) {
1426 ret = qemu_file_get_error(f);
1427 }
1428 }
1429
1430 rcu_read_unlock();
1431 DPRINTF("Completed load of VM with exit code %d seq iteration "
1432 "%" PRIu64 "\n", ret, seq_iter);
1433 return ret;
1434 }
1435
1436 static SaveVMHandlers savevm_ram_handlers = {
1437 .save_live_setup = ram_save_setup,
1438 .save_live_iterate = ram_save_iterate,
1439 .save_live_complete = ram_save_complete,
1440 .save_live_pending = ram_save_pending,
1441 .load_state = ram_load,
1442 .cancel = ram_migration_cancel,
1443 };
1444
1445 void ram_mig_init(void)
1446 {
1447 qemu_mutex_init(&XBZRLE.lock);
1448 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1449 }
1450
1451 struct soundhw {
1452 const char *name;
1453 const char *descr;
1454 int enabled;
1455 int isa;
1456 union {
1457 int (*init_isa) (ISABus *bus);
1458 int (*init_pci) (PCIBus *bus);
1459 } init;
1460 };
1461
1462 static struct soundhw soundhw[9];
1463 static int soundhw_count;
1464
1465 void isa_register_soundhw(const char *name, const char *descr,
1466 int (*init_isa)(ISABus *bus))
1467 {
1468 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1469 soundhw[soundhw_count].name = name;
1470 soundhw[soundhw_count].descr = descr;
1471 soundhw[soundhw_count].isa = 1;
1472 soundhw[soundhw_count].init.init_isa = init_isa;
1473 soundhw_count++;
1474 }
1475
1476 void pci_register_soundhw(const char *name, const char *descr,
1477 int (*init_pci)(PCIBus *bus))
1478 {
1479 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1480 soundhw[soundhw_count].name = name;
1481 soundhw[soundhw_count].descr = descr;
1482 soundhw[soundhw_count].isa = 0;
1483 soundhw[soundhw_count].init.init_pci = init_pci;
1484 soundhw_count++;
1485 }
1486
1487 void select_soundhw(const char *optarg)
1488 {
1489 struct soundhw *c;
1490
1491 if (is_help_option(optarg)) {
1492 show_valid_cards:
1493
1494 if (soundhw_count) {
1495 printf("Valid sound card names (comma separated):\n");
1496 for (c = soundhw; c->name; ++c) {
1497 printf ("%-11s %s\n", c->name, c->descr);
1498 }
1499 printf("\n-soundhw all will enable all of the above\n");
1500 } else {
1501 printf("Machine has no user-selectable audio hardware "
1502 "(it may or may not have always-present audio hardware).\n");
1503 }
1504 exit(!is_help_option(optarg));
1505 }
1506 else {
1507 size_t l;
1508 const char *p;
1509 char *e;
1510 int bad_card = 0;
1511
1512 if (!strcmp(optarg, "all")) {
1513 for (c = soundhw; c->name; ++c) {
1514 c->enabled = 1;
1515 }
1516 return;
1517 }
1518
1519 p = optarg;
1520 while (*p) {
1521 e = strchr(p, ',');
1522 l = !e ? strlen(p) : (size_t) (e - p);
1523
1524 for (c = soundhw; c->name; ++c) {
1525 if (!strncmp(c->name, p, l) && !c->name[l]) {
1526 c->enabled = 1;
1527 break;
1528 }
1529 }
1530
1531 if (!c->name) {
1532 if (l > 80) {
1533 error_report("Unknown sound card name (too big to show)");
1534 }
1535 else {
1536 error_report("Unknown sound card name `%.*s'",
1537 (int) l, p);
1538 }
1539 bad_card = 1;
1540 }
1541 p += l + (e != NULL);
1542 }
1543
1544 if (bad_card) {
1545 goto show_valid_cards;
1546 }
1547 }
1548 }
1549
1550 void audio_init(void)
1551 {
1552 struct soundhw *c;
1553 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1554 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1555
1556 for (c = soundhw; c->name; ++c) {
1557 if (c->enabled) {
1558 if (c->isa) {
1559 if (!isa_bus) {
1560 error_report("ISA bus not available for %s", c->name);
1561 exit(1);
1562 }
1563 c->init.init_isa(isa_bus);
1564 } else {
1565 if (!pci_bus) {
1566 error_report("PCI bus not available for %s", c->name);
1567 exit(1);
1568 }
1569 c->init.init_pci(pci_bus);
1570 }
1571 }
1572 }
1573 }
1574
1575 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1576 {
1577 int ret;
1578
1579 if (strlen(str) != 36) {
1580 return -1;
1581 }
1582
1583 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1584 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1585 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1586 &uuid[15]);
1587
1588 if (ret != 16) {
1589 return -1;
1590 }
1591 return 0;
1592 }
1593
1594 void do_acpitable_option(const QemuOpts *opts)
1595 {
1596 #ifdef TARGET_I386
1597 Error *err = NULL;
1598
1599 acpi_table_add(opts, &err);
1600 if (err) {
1601 error_report("Wrong acpi table provided: %s",
1602 error_get_pretty(err));
1603 error_free(err);
1604 exit(1);
1605 }
1606 #endif
1607 }
1608
1609 void do_smbios_option(QemuOpts *opts)
1610 {
1611 #ifdef TARGET_I386
1612 smbios_entry_add(opts);
1613 #endif
1614 }
1615
1616 void cpudef_init(void)
1617 {
1618 #if defined(cpudef_setup)
1619 cpudef_setup(); /* parse cpu definitions in target config file */
1620 #endif
1621 }
1622
1623 int kvm_available(void)
1624 {
1625 #ifdef CONFIG_KVM
1626 return 1;
1627 #else
1628 return 0;
1629 #endif
1630 }
1631
1632 int xen_available(void)
1633 {
1634 #ifdef CONFIG_XEN
1635 return 1;
1636 #else
1637 return 0;
1638 #endif
1639 }
1640
1641
1642 TargetInfo *qmp_query_target(Error **errp)
1643 {
1644 TargetInfo *info = g_malloc0(sizeof(*info));
1645
1646 info->arch = g_strdup(TARGET_NAME);
1647
1648 return info;
1649 }
1650
1651 /* Stub function that's gets run on the vcpu when its brought out of the
1652 VM to run inside qemu via async_run_on_cpu()*/
1653 static void mig_sleep_cpu(void *opq)
1654 {
1655 qemu_mutex_unlock_iothread();
1656 g_usleep(30*1000);
1657 qemu_mutex_lock_iothread();
1658 }
1659
1660 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1661 much time in the VM. The migration thread will try to catchup.
1662 Workload will experience a performance drop.
1663 */
1664 static void mig_throttle_guest_down(void)
1665 {
1666 CPUState *cpu;
1667
1668 qemu_mutex_lock_iothread();
1669 CPU_FOREACH(cpu) {
1670 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1671 }
1672 qemu_mutex_unlock_iothread();
1673 }
1674
1675 static void check_guest_throttling(void)
1676 {
1677 static int64_t t0;
1678 int64_t t1;
1679
1680 if (!mig_throttle_on) {
1681 return;
1682 }
1683
1684 if (!t0) {
1685 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1686 return;
1687 }
1688
1689 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1690
1691 /* If it has been more than 40 ms since the last time the guest
1692 * was throttled then do it again.
1693 */
1694 if (40 < (t1-t0)/1000000) {
1695 mig_throttle_guest_down();
1696 t0 = t1;
1697 }
1698 }