]> git.proxmox.com Git - mirror_qemu.git/blob - arch_init.c
exec: split length -> used_length/max_length
[mirror_qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52 #include "exec/ram_addr.h"
53 #include "hw/acpi/acpi.h"
54 #include "qemu/host-utils.h"
55
56 #ifdef DEBUG_ARCH_INIT
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61 do { } while (0)
62 #endif
63
64 #ifdef TARGET_SPARC
65 int graphic_width = 1024;
66 int graphic_height = 768;
67 int graphic_depth = 8;
68 #else
69 int graphic_width = 800;
70 int graphic_height = 600;
71 int graphic_depth = 32;
72 #endif
73
74
75 #if defined(TARGET_ALPHA)
76 #define QEMU_ARCH QEMU_ARCH_ALPHA
77 #elif defined(TARGET_ARM)
78 #define QEMU_ARCH QEMU_ARCH_ARM
79 #elif defined(TARGET_CRIS)
80 #define QEMU_ARCH QEMU_ARCH_CRIS
81 #elif defined(TARGET_I386)
82 #define QEMU_ARCH QEMU_ARCH_I386
83 #elif defined(TARGET_M68K)
84 #define QEMU_ARCH QEMU_ARCH_M68K
85 #elif defined(TARGET_LM32)
86 #define QEMU_ARCH QEMU_ARCH_LM32
87 #elif defined(TARGET_MICROBLAZE)
88 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
89 #elif defined(TARGET_MIPS)
90 #define QEMU_ARCH QEMU_ARCH_MIPS
91 #elif defined(TARGET_MOXIE)
92 #define QEMU_ARCH QEMU_ARCH_MOXIE
93 #elif defined(TARGET_OPENRISC)
94 #define QEMU_ARCH QEMU_ARCH_OPENRISC
95 #elif defined(TARGET_PPC)
96 #define QEMU_ARCH QEMU_ARCH_PPC
97 #elif defined(TARGET_S390X)
98 #define QEMU_ARCH QEMU_ARCH_S390X
99 #elif defined(TARGET_SH4)
100 #define QEMU_ARCH QEMU_ARCH_SH4
101 #elif defined(TARGET_SPARC)
102 #define QEMU_ARCH QEMU_ARCH_SPARC
103 #elif defined(TARGET_XTENSA)
104 #define QEMU_ARCH QEMU_ARCH_XTENSA
105 #elif defined(TARGET_UNICORE32)
106 #define QEMU_ARCH QEMU_ARCH_UNICORE32
107 #elif defined(TARGET_TRICORE)
108 #define QEMU_ARCH QEMU_ARCH_TRICORE
109 #endif
110
111 const uint32_t arch_type = QEMU_ARCH;
112 static bool mig_throttle_on;
113 static int dirty_rate_high_cnt;
114 static void check_guest_throttling(void);
115
116 static uint64_t bitmap_sync_count;
117
118 /***********************************************************/
119 /* ram save/restore */
120
121 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
122 #define RAM_SAVE_FLAG_COMPRESS 0x02
123 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
124 #define RAM_SAVE_FLAG_PAGE 0x08
125 #define RAM_SAVE_FLAG_EOS 0x10
126 #define RAM_SAVE_FLAG_CONTINUE 0x20
127 #define RAM_SAVE_FLAG_XBZRLE 0x40
128 /* 0x80 is reserved in migration.h start with 0x100 next */
129
130 static struct defconfig_file {
131 const char *filename;
132 /* Indicates it is an user config file (disabled by -no-user-config) */
133 bool userconfig;
134 } default_config_files[] = {
135 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
136 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
137 { NULL }, /* end of list */
138 };
139
140 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
141
142 int qemu_read_default_config_files(bool userconfig)
143 {
144 int ret;
145 struct defconfig_file *f;
146
147 for (f = default_config_files; f->filename; f++) {
148 if (!userconfig && f->userconfig) {
149 continue;
150 }
151 ret = qemu_read_config_file(f->filename);
152 if (ret < 0 && ret != -ENOENT) {
153 return ret;
154 }
155 }
156
157 return 0;
158 }
159
160 static inline bool is_zero_range(uint8_t *p, uint64_t size)
161 {
162 return buffer_find_nonzero_offset(p, size) == size;
163 }
164
165 /* struct contains XBZRLE cache and a static page
166 used by the compression */
167 static struct {
168 /* buffer used for XBZRLE encoding */
169 uint8_t *encoded_buf;
170 /* buffer for storing page content */
171 uint8_t *current_buf;
172 /* Cache for XBZRLE, Protected by lock. */
173 PageCache *cache;
174 QemuMutex lock;
175 } XBZRLE;
176
177 /* buffer used for XBZRLE decoding */
178 static uint8_t *xbzrle_decoded_buf;
179
180 static void XBZRLE_cache_lock(void)
181 {
182 if (migrate_use_xbzrle())
183 qemu_mutex_lock(&XBZRLE.lock);
184 }
185
186 static void XBZRLE_cache_unlock(void)
187 {
188 if (migrate_use_xbzrle())
189 qemu_mutex_unlock(&XBZRLE.lock);
190 }
191
192 /*
193 * called from qmp_migrate_set_cache_size in main thread, possibly while
194 * a migration is in progress.
195 * A running migration maybe using the cache and might finish during this
196 * call, hence changes to the cache are protected by XBZRLE.lock().
197 */
198 int64_t xbzrle_cache_resize(int64_t new_size)
199 {
200 PageCache *new_cache;
201 int64_t ret;
202
203 if (new_size < TARGET_PAGE_SIZE) {
204 return -1;
205 }
206
207 XBZRLE_cache_lock();
208
209 if (XBZRLE.cache != NULL) {
210 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
211 goto out_new_size;
212 }
213 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
214 TARGET_PAGE_SIZE);
215 if (!new_cache) {
216 error_report("Error creating cache");
217 ret = -1;
218 goto out;
219 }
220
221 cache_fini(XBZRLE.cache);
222 XBZRLE.cache = new_cache;
223 }
224
225 out_new_size:
226 ret = pow2floor(new_size);
227 out:
228 XBZRLE_cache_unlock();
229 return ret;
230 }
231
232 /* accounting for migration statistics */
233 typedef struct AccountingInfo {
234 uint64_t dup_pages;
235 uint64_t skipped_pages;
236 uint64_t norm_pages;
237 uint64_t iterations;
238 uint64_t xbzrle_bytes;
239 uint64_t xbzrle_pages;
240 uint64_t xbzrle_cache_miss;
241 double xbzrle_cache_miss_rate;
242 uint64_t xbzrle_overflows;
243 } AccountingInfo;
244
245 static AccountingInfo acct_info;
246
247 static void acct_clear(void)
248 {
249 memset(&acct_info, 0, sizeof(acct_info));
250 }
251
252 uint64_t dup_mig_bytes_transferred(void)
253 {
254 return acct_info.dup_pages * TARGET_PAGE_SIZE;
255 }
256
257 uint64_t dup_mig_pages_transferred(void)
258 {
259 return acct_info.dup_pages;
260 }
261
262 uint64_t skipped_mig_bytes_transferred(void)
263 {
264 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
265 }
266
267 uint64_t skipped_mig_pages_transferred(void)
268 {
269 return acct_info.skipped_pages;
270 }
271
272 uint64_t norm_mig_bytes_transferred(void)
273 {
274 return acct_info.norm_pages * TARGET_PAGE_SIZE;
275 }
276
277 uint64_t norm_mig_pages_transferred(void)
278 {
279 return acct_info.norm_pages;
280 }
281
282 uint64_t xbzrle_mig_bytes_transferred(void)
283 {
284 return acct_info.xbzrle_bytes;
285 }
286
287 uint64_t xbzrle_mig_pages_transferred(void)
288 {
289 return acct_info.xbzrle_pages;
290 }
291
292 uint64_t xbzrle_mig_pages_cache_miss(void)
293 {
294 return acct_info.xbzrle_cache_miss;
295 }
296
297 double xbzrle_mig_cache_miss_rate(void)
298 {
299 return acct_info.xbzrle_cache_miss_rate;
300 }
301
302 uint64_t xbzrle_mig_pages_overflow(void)
303 {
304 return acct_info.xbzrle_overflows;
305 }
306
307 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
308 int cont, int flag)
309 {
310 size_t size;
311
312 qemu_put_be64(f, offset | cont | flag);
313 size = 8;
314
315 if (!cont) {
316 qemu_put_byte(f, strlen(block->idstr));
317 qemu_put_buffer(f, (uint8_t *)block->idstr,
318 strlen(block->idstr));
319 size += 1 + strlen(block->idstr);
320 }
321 return size;
322 }
323
324 /* This is the last block that we have visited serching for dirty pages
325 */
326 static RAMBlock *last_seen_block;
327 /* This is the last block from where we have sent data */
328 static RAMBlock *last_sent_block;
329 static ram_addr_t last_offset;
330 static unsigned long *migration_bitmap;
331 static uint64_t migration_dirty_pages;
332 static uint32_t last_version;
333 static bool ram_bulk_stage;
334
335 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
336 * The important thing is that a stale (not-yet-0'd) page be replaced
337 * by the new data.
338 * As a bonus, if the page wasn't in the cache it gets added so that
339 * when a small write is made into the 0'd page it gets XBZRLE sent
340 */
341 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
342 {
343 if (ram_bulk_stage || !migrate_use_xbzrle()) {
344 return;
345 }
346
347 /* We don't care if this fails to allocate a new cache page
348 * as long as it updated an old one */
349 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE);
350 }
351
352 #define ENCODING_FLAG_XBZRLE 0x1
353
354 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
355 ram_addr_t current_addr, RAMBlock *block,
356 ram_addr_t offset, int cont, bool last_stage)
357 {
358 int encoded_len = 0, bytes_sent = -1;
359 uint8_t *prev_cached_page;
360
361 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
362 acct_info.xbzrle_cache_miss++;
363 if (!last_stage) {
364 if (cache_insert(XBZRLE.cache, current_addr, *current_data) == -1) {
365 return -1;
366 } else {
367 /* update *current_data when the page has been
368 inserted into cache */
369 *current_data = get_cached_data(XBZRLE.cache, current_addr);
370 }
371 }
372 return -1;
373 }
374
375 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
376
377 /* save current buffer into memory */
378 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
379
380 /* XBZRLE encoding (if there is no overflow) */
381 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
382 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
383 TARGET_PAGE_SIZE);
384 if (encoded_len == 0) {
385 DPRINTF("Skipping unmodified page\n");
386 return 0;
387 } else if (encoded_len == -1) {
388 DPRINTF("Overflow\n");
389 acct_info.xbzrle_overflows++;
390 /* update data in the cache */
391 if (!last_stage) {
392 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
393 *current_data = prev_cached_page;
394 }
395 return -1;
396 }
397
398 /* we need to update the data in the cache, in order to get the same data */
399 if (!last_stage) {
400 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
401 }
402
403 /* Send XBZRLE based compressed page */
404 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
405 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
406 qemu_put_be16(f, encoded_len);
407 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
408 bytes_sent += encoded_len + 1 + 2;
409 acct_info.xbzrle_pages++;
410 acct_info.xbzrle_bytes += bytes_sent;
411
412 return bytes_sent;
413 }
414
415 static inline
416 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
417 ram_addr_t start)
418 {
419 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
420 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
421 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
422 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
423
424 unsigned long next;
425
426 if (ram_bulk_stage && nr > base) {
427 next = nr + 1;
428 } else {
429 next = find_next_bit(migration_bitmap, size, nr);
430 }
431
432 if (next < size) {
433 clear_bit(next, migration_bitmap);
434 migration_dirty_pages--;
435 }
436 return (next - base) << TARGET_PAGE_BITS;
437 }
438
439 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
440 {
441 bool ret;
442 int nr = addr >> TARGET_PAGE_BITS;
443
444 ret = test_and_set_bit(nr, migration_bitmap);
445
446 if (!ret) {
447 migration_dirty_pages++;
448 }
449 return ret;
450 }
451
452 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
453 {
454 ram_addr_t addr;
455 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
456
457 /* start address is aligned at the start of a word? */
458 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
459 int k;
460 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
461 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
462
463 for (k = page; k < page + nr; k++) {
464 if (src[k]) {
465 unsigned long new_dirty;
466 new_dirty = ~migration_bitmap[k];
467 migration_bitmap[k] |= src[k];
468 new_dirty &= src[k];
469 migration_dirty_pages += ctpopl(new_dirty);
470 src[k] = 0;
471 }
472 }
473 } else {
474 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
475 if (cpu_physical_memory_get_dirty(start + addr,
476 TARGET_PAGE_SIZE,
477 DIRTY_MEMORY_MIGRATION)) {
478 cpu_physical_memory_reset_dirty(start + addr,
479 TARGET_PAGE_SIZE,
480 DIRTY_MEMORY_MIGRATION);
481 migration_bitmap_set_dirty(start + addr);
482 }
483 }
484 }
485 }
486
487
488 /* Needs iothread lock! */
489 /* Fix me: there are too many global variables used in migration process. */
490 static int64_t start_time;
491 static int64_t bytes_xfer_prev;
492 static int64_t num_dirty_pages_period;
493
494 static void migration_bitmap_sync_init(void)
495 {
496 start_time = 0;
497 bytes_xfer_prev = 0;
498 num_dirty_pages_period = 0;
499 }
500
501 static void migration_bitmap_sync(void)
502 {
503 RAMBlock *block;
504 uint64_t num_dirty_pages_init = migration_dirty_pages;
505 MigrationState *s = migrate_get_current();
506 int64_t end_time;
507 int64_t bytes_xfer_now;
508 static uint64_t xbzrle_cache_miss_prev;
509 static uint64_t iterations_prev;
510
511 bitmap_sync_count++;
512
513 if (!bytes_xfer_prev) {
514 bytes_xfer_prev = ram_bytes_transferred();
515 }
516
517 if (!start_time) {
518 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
519 }
520
521 trace_migration_bitmap_sync_start();
522 address_space_sync_dirty_bitmap(&address_space_memory);
523
524 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
525 migration_bitmap_sync_range(block->mr->ram_addr, block->used_length);
526 }
527 trace_migration_bitmap_sync_end(migration_dirty_pages
528 - num_dirty_pages_init);
529 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
530 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
531
532 /* more than 1 second = 1000 millisecons */
533 if (end_time > start_time + 1000) {
534 if (migrate_auto_converge()) {
535 /* The following detection logic can be refined later. For now:
536 Check to see if the dirtied bytes is 50% more than the approx.
537 amount of bytes that just got transferred since the last time we
538 were in this routine. If that happens >N times (for now N==4)
539 we turn on the throttle down logic */
540 bytes_xfer_now = ram_bytes_transferred();
541 if (s->dirty_pages_rate &&
542 (num_dirty_pages_period * TARGET_PAGE_SIZE >
543 (bytes_xfer_now - bytes_xfer_prev)/2) &&
544 (dirty_rate_high_cnt++ > 4)) {
545 trace_migration_throttle();
546 mig_throttle_on = true;
547 dirty_rate_high_cnt = 0;
548 }
549 bytes_xfer_prev = bytes_xfer_now;
550 } else {
551 mig_throttle_on = false;
552 }
553 if (migrate_use_xbzrle()) {
554 if (iterations_prev != 0) {
555 acct_info.xbzrle_cache_miss_rate =
556 (double)(acct_info.xbzrle_cache_miss -
557 xbzrle_cache_miss_prev) /
558 (acct_info.iterations - iterations_prev);
559 }
560 iterations_prev = acct_info.iterations;
561 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
562 }
563 s->dirty_pages_rate = num_dirty_pages_period * 1000
564 / (end_time - start_time);
565 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
566 start_time = end_time;
567 num_dirty_pages_period = 0;
568 s->dirty_sync_count = bitmap_sync_count;
569 }
570 }
571
572 /*
573 * ram_save_page: Send the given page to the stream
574 *
575 * Returns: Number of bytes written.
576 */
577 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
578 bool last_stage)
579 {
580 int bytes_sent;
581 int cont;
582 ram_addr_t current_addr;
583 MemoryRegion *mr = block->mr;
584 uint8_t *p;
585 int ret;
586 bool send_async = true;
587
588 cont = (block == last_sent_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
589
590 p = memory_region_get_ram_ptr(mr) + offset;
591
592 /* In doubt sent page as normal */
593 bytes_sent = -1;
594 ret = ram_control_save_page(f, block->offset,
595 offset, TARGET_PAGE_SIZE, &bytes_sent);
596
597 XBZRLE_cache_lock();
598
599 current_addr = block->offset + offset;
600 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
601 if (ret != RAM_SAVE_CONTROL_DELAYED) {
602 if (bytes_sent > 0) {
603 acct_info.norm_pages++;
604 } else if (bytes_sent == 0) {
605 acct_info.dup_pages++;
606 }
607 }
608 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
609 acct_info.dup_pages++;
610 bytes_sent = save_block_hdr(f, block, offset, cont,
611 RAM_SAVE_FLAG_COMPRESS);
612 qemu_put_byte(f, 0);
613 bytes_sent++;
614 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
615 * page would be stale
616 */
617 xbzrle_cache_zero_page(current_addr);
618 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
619 bytes_sent = save_xbzrle_page(f, &p, current_addr, block,
620 offset, cont, last_stage);
621 if (!last_stage) {
622 /* Can't send this cached data async, since the cache page
623 * might get updated before it gets to the wire
624 */
625 send_async = false;
626 }
627 }
628
629 /* XBZRLE overflow or normal page */
630 if (bytes_sent == -1) {
631 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
632 if (send_async) {
633 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
634 } else {
635 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
636 }
637 bytes_sent += TARGET_PAGE_SIZE;
638 acct_info.norm_pages++;
639 }
640
641 XBZRLE_cache_unlock();
642
643 return bytes_sent;
644 }
645
646 /*
647 * ram_find_and_save_block: Finds a page to send and sends it to f
648 *
649 * Returns: The number of bytes written.
650 * 0 means no dirty pages
651 */
652
653 static int ram_find_and_save_block(QEMUFile *f, bool last_stage)
654 {
655 RAMBlock *block = last_seen_block;
656 ram_addr_t offset = last_offset;
657 bool complete_round = false;
658 int bytes_sent = 0;
659 MemoryRegion *mr;
660
661 if (!block)
662 block = QTAILQ_FIRST(&ram_list.blocks);
663
664 while (true) {
665 mr = block->mr;
666 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
667 if (complete_round && block == last_seen_block &&
668 offset >= last_offset) {
669 break;
670 }
671 if (offset >= block->used_length) {
672 offset = 0;
673 block = QTAILQ_NEXT(block, next);
674 if (!block) {
675 block = QTAILQ_FIRST(&ram_list.blocks);
676 complete_round = true;
677 ram_bulk_stage = false;
678 }
679 } else {
680 bytes_sent = ram_save_page(f, block, offset, last_stage);
681
682 /* if page is unmodified, continue to the next */
683 if (bytes_sent > 0) {
684 last_sent_block = block;
685 break;
686 }
687 }
688 }
689 last_seen_block = block;
690 last_offset = offset;
691
692 return bytes_sent;
693 }
694
695 static uint64_t bytes_transferred;
696
697 void acct_update_position(QEMUFile *f, size_t size, bool zero)
698 {
699 uint64_t pages = size / TARGET_PAGE_SIZE;
700 if (zero) {
701 acct_info.dup_pages += pages;
702 } else {
703 acct_info.norm_pages += pages;
704 bytes_transferred += size;
705 qemu_update_position(f, size);
706 }
707 }
708
709 static ram_addr_t ram_save_remaining(void)
710 {
711 return migration_dirty_pages;
712 }
713
714 uint64_t ram_bytes_remaining(void)
715 {
716 return ram_save_remaining() * TARGET_PAGE_SIZE;
717 }
718
719 uint64_t ram_bytes_transferred(void)
720 {
721 return bytes_transferred;
722 }
723
724 uint64_t ram_bytes_total(void)
725 {
726 RAMBlock *block;
727 uint64_t total = 0;
728
729 QTAILQ_FOREACH(block, &ram_list.blocks, next)
730 total += block->used_length;
731
732 return total;
733 }
734
735 void free_xbzrle_decoded_buf(void)
736 {
737 g_free(xbzrle_decoded_buf);
738 xbzrle_decoded_buf = NULL;
739 }
740
741 static void migration_end(void)
742 {
743 if (migration_bitmap) {
744 memory_global_dirty_log_stop();
745 g_free(migration_bitmap);
746 migration_bitmap = NULL;
747 }
748
749 XBZRLE_cache_lock();
750 if (XBZRLE.cache) {
751 cache_fini(XBZRLE.cache);
752 g_free(XBZRLE.encoded_buf);
753 g_free(XBZRLE.current_buf);
754 XBZRLE.cache = NULL;
755 XBZRLE.encoded_buf = NULL;
756 XBZRLE.current_buf = NULL;
757 }
758 XBZRLE_cache_unlock();
759 }
760
761 static void ram_migration_cancel(void *opaque)
762 {
763 migration_end();
764 }
765
766 static void reset_ram_globals(void)
767 {
768 last_seen_block = NULL;
769 last_sent_block = NULL;
770 last_offset = 0;
771 last_version = ram_list.version;
772 ram_bulk_stage = true;
773 }
774
775 #define MAX_WAIT 50 /* ms, half buffered_file limit */
776
777 static int ram_save_setup(QEMUFile *f, void *opaque)
778 {
779 RAMBlock *block;
780 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
781
782 mig_throttle_on = false;
783 dirty_rate_high_cnt = 0;
784 bitmap_sync_count = 0;
785 migration_bitmap_sync_init();
786
787 if (migrate_use_xbzrle()) {
788 XBZRLE_cache_lock();
789 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
790 TARGET_PAGE_SIZE,
791 TARGET_PAGE_SIZE);
792 if (!XBZRLE.cache) {
793 XBZRLE_cache_unlock();
794 error_report("Error creating cache");
795 return -1;
796 }
797 XBZRLE_cache_unlock();
798
799 /* We prefer not to abort if there is no memory */
800 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
801 if (!XBZRLE.encoded_buf) {
802 error_report("Error allocating encoded_buf");
803 return -1;
804 }
805
806 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
807 if (!XBZRLE.current_buf) {
808 error_report("Error allocating current_buf");
809 g_free(XBZRLE.encoded_buf);
810 XBZRLE.encoded_buf = NULL;
811 return -1;
812 }
813
814 acct_clear();
815 }
816
817 qemu_mutex_lock_iothread();
818 qemu_mutex_lock_ramlist();
819 bytes_transferred = 0;
820 reset_ram_globals();
821
822 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
823 migration_bitmap = bitmap_new(ram_bitmap_pages);
824 bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
825
826 /*
827 * Count the total number of pages used by ram blocks not including any
828 * gaps due to alignment or unplugs.
829 */
830 migration_dirty_pages = 0;
831 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
832 uint64_t block_pages;
833
834 block_pages = block->used_length >> TARGET_PAGE_BITS;
835 migration_dirty_pages += block_pages;
836 }
837
838 memory_global_dirty_log_start();
839 migration_bitmap_sync();
840 qemu_mutex_unlock_iothread();
841
842 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
843
844 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
845 qemu_put_byte(f, strlen(block->idstr));
846 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
847 qemu_put_be64(f, block->used_length);
848 }
849
850 qemu_mutex_unlock_ramlist();
851
852 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
853 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
854
855 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
856
857 return 0;
858 }
859
860 static int ram_save_iterate(QEMUFile *f, void *opaque)
861 {
862 int ret;
863 int i;
864 int64_t t0;
865 int total_sent = 0;
866
867 qemu_mutex_lock_ramlist();
868
869 if (ram_list.version != last_version) {
870 reset_ram_globals();
871 }
872
873 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
874
875 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
876 i = 0;
877 while ((ret = qemu_file_rate_limit(f)) == 0) {
878 int bytes_sent;
879
880 bytes_sent = ram_find_and_save_block(f, false);
881 /* no more blocks to sent */
882 if (bytes_sent == 0) {
883 break;
884 }
885 total_sent += bytes_sent;
886 acct_info.iterations++;
887 check_guest_throttling();
888 /* we want to check in the 1st loop, just in case it was the 1st time
889 and we had to sync the dirty bitmap.
890 qemu_get_clock_ns() is a bit expensive, so we only check each some
891 iterations
892 */
893 if ((i & 63) == 0) {
894 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
895 if (t1 > MAX_WAIT) {
896 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
897 t1, i);
898 break;
899 }
900 }
901 i++;
902 }
903
904 qemu_mutex_unlock_ramlist();
905
906 /*
907 * Must occur before EOS (or any QEMUFile operation)
908 * because of RDMA protocol.
909 */
910 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
911
912 bytes_transferred += total_sent;
913
914 /*
915 * Do not count these 8 bytes into total_sent, so that we can
916 * return 0 if no page had been dirtied.
917 */
918 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
919 bytes_transferred += 8;
920
921 ret = qemu_file_get_error(f);
922 if (ret < 0) {
923 return ret;
924 }
925
926 return total_sent;
927 }
928
929 static int ram_save_complete(QEMUFile *f, void *opaque)
930 {
931 qemu_mutex_lock_ramlist();
932 migration_bitmap_sync();
933
934 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
935
936 /* try transferring iterative blocks of memory */
937
938 /* flush all remaining blocks regardless of rate limiting */
939 while (true) {
940 int bytes_sent;
941
942 bytes_sent = ram_find_and_save_block(f, true);
943 /* no more blocks to sent */
944 if (bytes_sent == 0) {
945 break;
946 }
947 bytes_transferred += bytes_sent;
948 }
949
950 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
951 migration_end();
952
953 qemu_mutex_unlock_ramlist();
954 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
955
956 return 0;
957 }
958
959 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
960 {
961 uint64_t remaining_size;
962
963 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
964
965 if (remaining_size < max_size) {
966 qemu_mutex_lock_iothread();
967 migration_bitmap_sync();
968 qemu_mutex_unlock_iothread();
969 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
970 }
971 return remaining_size;
972 }
973
974 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
975 {
976 unsigned int xh_len;
977 int xh_flags;
978
979 if (!xbzrle_decoded_buf) {
980 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
981 }
982
983 /* extract RLE header */
984 xh_flags = qemu_get_byte(f);
985 xh_len = qemu_get_be16(f);
986
987 if (xh_flags != ENCODING_FLAG_XBZRLE) {
988 error_report("Failed to load XBZRLE page - wrong compression!");
989 return -1;
990 }
991
992 if (xh_len > TARGET_PAGE_SIZE) {
993 error_report("Failed to load XBZRLE page - len overflow!");
994 return -1;
995 }
996 /* load data and decode */
997 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
998
999 /* decode RLE */
1000 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
1001 TARGET_PAGE_SIZE) == -1) {
1002 error_report("Failed to load XBZRLE page - decode error!");
1003 return -1;
1004 }
1005
1006 return 0;
1007 }
1008
1009 static inline void *host_from_stream_offset(QEMUFile *f,
1010 ram_addr_t offset,
1011 int flags)
1012 {
1013 static RAMBlock *block = NULL;
1014 char id[256];
1015 uint8_t len;
1016
1017 if (flags & RAM_SAVE_FLAG_CONTINUE) {
1018 if (!block || block->max_length <= offset) {
1019 error_report("Ack, bad migration stream!");
1020 return NULL;
1021 }
1022
1023 return memory_region_get_ram_ptr(block->mr) + offset;
1024 }
1025
1026 len = qemu_get_byte(f);
1027 qemu_get_buffer(f, (uint8_t *)id, len);
1028 id[len] = 0;
1029
1030 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1031 if (!strncmp(id, block->idstr, sizeof(id)) &&
1032 block->max_length > offset) {
1033 return memory_region_get_ram_ptr(block->mr) + offset;
1034 }
1035 }
1036
1037 error_report("Can't find block %s!", id);
1038 return NULL;
1039 }
1040
1041 /*
1042 * If a page (or a whole RDMA chunk) has been
1043 * determined to be zero, then zap it.
1044 */
1045 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1046 {
1047 if (ch != 0 || !is_zero_range(host, size)) {
1048 memset(host, ch, size);
1049 }
1050 }
1051
1052 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1053 {
1054 int flags = 0, ret = 0;
1055 static uint64_t seq_iter;
1056
1057 seq_iter++;
1058
1059 if (version_id != 4) {
1060 ret = -EINVAL;
1061 }
1062
1063 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
1064 ram_addr_t addr, total_ram_bytes;
1065 void *host;
1066 uint8_t ch;
1067
1068 addr = qemu_get_be64(f);
1069 flags = addr & ~TARGET_PAGE_MASK;
1070 addr &= TARGET_PAGE_MASK;
1071
1072 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
1073 case RAM_SAVE_FLAG_MEM_SIZE:
1074 /* Synchronize RAM block list */
1075 total_ram_bytes = addr;
1076 while (!ret && total_ram_bytes) {
1077 RAMBlock *block;
1078 uint8_t len;
1079 char id[256];
1080 ram_addr_t length;
1081
1082 len = qemu_get_byte(f);
1083 qemu_get_buffer(f, (uint8_t *)id, len);
1084 id[len] = 0;
1085 length = qemu_get_be64(f);
1086
1087 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1088 if (!strncmp(id, block->idstr, sizeof(id))) {
1089 if (block->used_length != length) {
1090 error_report("Length mismatch: %s: 0x" RAM_ADDR_FMT
1091 " in != 0x" RAM_ADDR_FMT, id, length,
1092 block->used_length);
1093 ret = -EINVAL;
1094 }
1095 break;
1096 }
1097 }
1098
1099 if (!block) {
1100 error_report("Unknown ramblock \"%s\", cannot "
1101 "accept migration", id);
1102 ret = -EINVAL;
1103 }
1104
1105 total_ram_bytes -= length;
1106 }
1107 break;
1108 case RAM_SAVE_FLAG_COMPRESS:
1109 host = host_from_stream_offset(f, addr, flags);
1110 if (!host) {
1111 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1112 ret = -EINVAL;
1113 break;
1114 }
1115
1116 ch = qemu_get_byte(f);
1117 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1118 break;
1119 case RAM_SAVE_FLAG_PAGE:
1120 host = host_from_stream_offset(f, addr, flags);
1121 if (!host) {
1122 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1123 ret = -EINVAL;
1124 break;
1125 }
1126
1127 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1128 break;
1129 case RAM_SAVE_FLAG_XBZRLE:
1130 host = host_from_stream_offset(f, addr, flags);
1131 if (!host) {
1132 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1133 ret = -EINVAL;
1134 break;
1135 }
1136
1137 if (load_xbzrle(f, addr, host) < 0) {
1138 error_report("Failed to decompress XBZRLE page at "
1139 RAM_ADDR_FMT, addr);
1140 ret = -EINVAL;
1141 break;
1142 }
1143 break;
1144 case RAM_SAVE_FLAG_EOS:
1145 /* normal exit */
1146 break;
1147 default:
1148 if (flags & RAM_SAVE_FLAG_HOOK) {
1149 ram_control_load_hook(f, flags);
1150 } else {
1151 error_report("Unknown combination of migration flags: %#x",
1152 flags);
1153 ret = -EINVAL;
1154 }
1155 }
1156 if (!ret) {
1157 ret = qemu_file_get_error(f);
1158 }
1159 }
1160
1161 DPRINTF("Completed load of VM with exit code %d seq iteration "
1162 "%" PRIu64 "\n", ret, seq_iter);
1163 return ret;
1164 }
1165
1166 static SaveVMHandlers savevm_ram_handlers = {
1167 .save_live_setup = ram_save_setup,
1168 .save_live_iterate = ram_save_iterate,
1169 .save_live_complete = ram_save_complete,
1170 .save_live_pending = ram_save_pending,
1171 .load_state = ram_load,
1172 .cancel = ram_migration_cancel,
1173 };
1174
1175 void ram_mig_init(void)
1176 {
1177 qemu_mutex_init(&XBZRLE.lock);
1178 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1179 }
1180
1181 struct soundhw {
1182 const char *name;
1183 const char *descr;
1184 int enabled;
1185 int isa;
1186 union {
1187 int (*init_isa) (ISABus *bus);
1188 int (*init_pci) (PCIBus *bus);
1189 } init;
1190 };
1191
1192 static struct soundhw soundhw[9];
1193 static int soundhw_count;
1194
1195 void isa_register_soundhw(const char *name, const char *descr,
1196 int (*init_isa)(ISABus *bus))
1197 {
1198 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1199 soundhw[soundhw_count].name = name;
1200 soundhw[soundhw_count].descr = descr;
1201 soundhw[soundhw_count].isa = 1;
1202 soundhw[soundhw_count].init.init_isa = init_isa;
1203 soundhw_count++;
1204 }
1205
1206 void pci_register_soundhw(const char *name, const char *descr,
1207 int (*init_pci)(PCIBus *bus))
1208 {
1209 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1210 soundhw[soundhw_count].name = name;
1211 soundhw[soundhw_count].descr = descr;
1212 soundhw[soundhw_count].isa = 0;
1213 soundhw[soundhw_count].init.init_pci = init_pci;
1214 soundhw_count++;
1215 }
1216
1217 void select_soundhw(const char *optarg)
1218 {
1219 struct soundhw *c;
1220
1221 if (is_help_option(optarg)) {
1222 show_valid_cards:
1223
1224 if (soundhw_count) {
1225 printf("Valid sound card names (comma separated):\n");
1226 for (c = soundhw; c->name; ++c) {
1227 printf ("%-11s %s\n", c->name, c->descr);
1228 }
1229 printf("\n-soundhw all will enable all of the above\n");
1230 } else {
1231 printf("Machine has no user-selectable audio hardware "
1232 "(it may or may not have always-present audio hardware).\n");
1233 }
1234 exit(!is_help_option(optarg));
1235 }
1236 else {
1237 size_t l;
1238 const char *p;
1239 char *e;
1240 int bad_card = 0;
1241
1242 if (!strcmp(optarg, "all")) {
1243 for (c = soundhw; c->name; ++c) {
1244 c->enabled = 1;
1245 }
1246 return;
1247 }
1248
1249 p = optarg;
1250 while (*p) {
1251 e = strchr(p, ',');
1252 l = !e ? strlen(p) : (size_t) (e - p);
1253
1254 for (c = soundhw; c->name; ++c) {
1255 if (!strncmp(c->name, p, l) && !c->name[l]) {
1256 c->enabled = 1;
1257 break;
1258 }
1259 }
1260
1261 if (!c->name) {
1262 if (l > 80) {
1263 error_report("Unknown sound card name (too big to show)");
1264 }
1265 else {
1266 error_report("Unknown sound card name `%.*s'",
1267 (int) l, p);
1268 }
1269 bad_card = 1;
1270 }
1271 p += l + (e != NULL);
1272 }
1273
1274 if (bad_card) {
1275 goto show_valid_cards;
1276 }
1277 }
1278 }
1279
1280 void audio_init(void)
1281 {
1282 struct soundhw *c;
1283 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1284 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1285
1286 for (c = soundhw; c->name; ++c) {
1287 if (c->enabled) {
1288 if (c->isa) {
1289 if (!isa_bus) {
1290 error_report("ISA bus not available for %s", c->name);
1291 exit(1);
1292 }
1293 c->init.init_isa(isa_bus);
1294 } else {
1295 if (!pci_bus) {
1296 error_report("PCI bus not available for %s", c->name);
1297 exit(1);
1298 }
1299 c->init.init_pci(pci_bus);
1300 }
1301 }
1302 }
1303 }
1304
1305 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1306 {
1307 int ret;
1308
1309 if (strlen(str) != 36) {
1310 return -1;
1311 }
1312
1313 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1314 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1315 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1316 &uuid[15]);
1317
1318 if (ret != 16) {
1319 return -1;
1320 }
1321 return 0;
1322 }
1323
1324 void do_acpitable_option(const QemuOpts *opts)
1325 {
1326 #ifdef TARGET_I386
1327 Error *err = NULL;
1328
1329 acpi_table_add(opts, &err);
1330 if (err) {
1331 error_report("Wrong acpi table provided: %s",
1332 error_get_pretty(err));
1333 error_free(err);
1334 exit(1);
1335 }
1336 #endif
1337 }
1338
1339 void do_smbios_option(QemuOpts *opts)
1340 {
1341 #ifdef TARGET_I386
1342 smbios_entry_add(opts);
1343 #endif
1344 }
1345
1346 void cpudef_init(void)
1347 {
1348 #if defined(cpudef_setup)
1349 cpudef_setup(); /* parse cpu definitions in target config file */
1350 #endif
1351 }
1352
1353 int kvm_available(void)
1354 {
1355 #ifdef CONFIG_KVM
1356 return 1;
1357 #else
1358 return 0;
1359 #endif
1360 }
1361
1362 int xen_available(void)
1363 {
1364 #ifdef CONFIG_XEN
1365 return 1;
1366 #else
1367 return 0;
1368 #endif
1369 }
1370
1371
1372 TargetInfo *qmp_query_target(Error **errp)
1373 {
1374 TargetInfo *info = g_malloc0(sizeof(*info));
1375
1376 info->arch = g_strdup(TARGET_NAME);
1377
1378 return info;
1379 }
1380
1381 /* Stub function that's gets run on the vcpu when its brought out of the
1382 VM to run inside qemu via async_run_on_cpu()*/
1383 static void mig_sleep_cpu(void *opq)
1384 {
1385 qemu_mutex_unlock_iothread();
1386 g_usleep(30*1000);
1387 qemu_mutex_lock_iothread();
1388 }
1389
1390 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1391 much time in the VM. The migration thread will try to catchup.
1392 Workload will experience a performance drop.
1393 */
1394 static void mig_throttle_guest_down(void)
1395 {
1396 CPUState *cpu;
1397
1398 qemu_mutex_lock_iothread();
1399 CPU_FOREACH(cpu) {
1400 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1401 }
1402 qemu_mutex_unlock_iothread();
1403 }
1404
1405 static void check_guest_throttling(void)
1406 {
1407 static int64_t t0;
1408 int64_t t1;
1409
1410 if (!mig_throttle_on) {
1411 return;
1412 }
1413
1414 if (!t0) {
1415 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1416 return;
1417 }
1418
1419 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1420
1421 /* If it has been more than 40 ms since the last time the guest
1422 * was throttled then do it again.
1423 */
1424 if (40 < (t1-t0)/1000000) {
1425 mig_throttle_guest_down();
1426 t0 = t1;
1427 }
1428 }