]> git.proxmox.com Git - mirror_frr.git/blob - bgpd/bgp_keepalives.c
Merge pull request #5619 from qlyoung/fix-zebra-netlink-undefined-bitshift
[mirror_frr.git] / bgpd / bgp_keepalives.c
1 /* BGP Keepalives.
2 * Implements a producer thread to generate BGP keepalives for peers.
3 * Copyright (C) 2017 Cumulus Networks, Inc.
4 * Quentin Young
5 *
6 * This file is part of FRRouting.
7 *
8 * FRRouting is free software; you can redistribute it and/or modify it under
9 * the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2, or (at your option) any later
11 * version.
12 *
13 * FRRouting is distributed in the hope that it will be useful, but WITHOUT ANY
14 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16 * details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; see the file COPYING; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /* clang-format off */
24 #include <zebra.h>
25 #include <pthread.h> // for pthread_mutex_lock, pthread_mutex_unlock
26
27 #include "frr_pthread.h" // for frr_pthread
28 #include "hash.h" // for hash, hash_clean, hash_create_size...
29 #include "log.h" // for zlog_debug
30 #include "memory.h" // for MTYPE_TMP, XFREE, XCALLOC, XMALLOC
31 #include "monotime.h" // for monotime, monotime_since
32
33 #include "bgpd/bgpd.h" // for peer, PEER_THREAD_KEEPALIVES_ON, peer...
34 #include "bgpd/bgp_debug.h" // for bgp_debug_neighbor_events
35 #include "bgpd/bgp_packet.h" // for bgp_keepalive_send
36 #include "bgpd/bgp_keepalives.h"
37 /* clang-format on */
38
39 /*
40 * Peer KeepAlive Timer.
41 * Associates a peer with the time of its last keepalive.
42 */
43 struct pkat {
44 /* the peer to send keepalives to */
45 struct peer *peer;
46 /* absolute time of last keepalive sent */
47 struct timeval last;
48 };
49
50 /* List of peers we are sending keepalives for, and associated mutex. */
51 static pthread_mutex_t *peerhash_mtx;
52 static pthread_cond_t *peerhash_cond;
53 static struct hash *peerhash;
54
55 static struct pkat *pkat_new(struct peer *peer)
56 {
57 struct pkat *pkat = XMALLOC(MTYPE_TMP, sizeof(struct pkat));
58 pkat->peer = peer;
59 monotime(&pkat->last);
60 return pkat;
61 }
62
63 static void pkat_del(void *pkat)
64 {
65 XFREE(MTYPE_TMP, pkat);
66 }
67
68
69 /*
70 * Callback for hash_iterate. Determines if a peer needs a keepalive and if so,
71 * generates and sends it.
72 *
73 * For any given peer, if the elapsed time since its last keepalive exceeds its
74 * configured keepalive timer, a keepalive is sent to the peer and its
75 * last-sent time is reset. Additionally, If the elapsed time does not exceed
76 * the configured keepalive timer, but the time until the next keepalive is due
77 * is within a hardcoded tolerance, a keepalive is sent as if the configured
78 * timer was exceeded. Doing this helps alleviate nanosecond sleeps between
79 * ticks by grouping together peers who are due for keepalives at roughly the
80 * same time. This tolerance value is arbitrarily chosen to be 100ms.
81 *
82 * In addition, this function calculates the maximum amount of time that the
83 * keepalive thread can sleep before another tick needs to take place. This is
84 * equivalent to shortest time until a keepalive is due for any one peer.
85 *
86 * @return maximum time to wait until next update (0 if infinity)
87 */
88 static void peer_process(struct hash_bucket *hb, void *arg)
89 {
90 struct pkat *pkat = hb->data;
91
92 struct timeval *next_update = arg;
93
94 static struct timeval elapsed; // elapsed time since keepalive
95 static struct timeval ka = {0}; // peer->v_keepalive as a timeval
96 static struct timeval diff; // ka - elapsed
97
98 static const struct timeval tolerance = {0, 100000};
99
100 uint32_t v_ka = atomic_load_explicit(&pkat->peer->v_keepalive,
101 memory_order_relaxed);
102
103 /* 0 keepalive timer means no keepalives */
104 if (v_ka == 0)
105 return;
106
107 /* calculate elapsed time since last keepalive */
108 monotime_since(&pkat->last, &elapsed);
109
110 /* calculate difference between elapsed time and configured time */
111 ka.tv_sec = v_ka;
112 timersub(&ka, &elapsed, &diff);
113
114 int send_keepalive =
115 elapsed.tv_sec >= ka.tv_sec || timercmp(&diff, &tolerance, <);
116
117 if (send_keepalive) {
118 if (bgp_debug_neighbor_events(pkat->peer))
119 zlog_debug("%s [FSM] Timer (keepalive timer expire)",
120 pkat->peer->host);
121
122 bgp_keepalive_send(pkat->peer);
123 monotime(&pkat->last);
124 memset(&elapsed, 0x00, sizeof(struct timeval));
125 diff = ka;
126 }
127
128 /* if calculated next update for this peer < current delay, use it */
129 if (next_update->tv_sec < 0 || timercmp(&diff, next_update, <))
130 *next_update = diff;
131 }
132
133 static bool peer_hash_cmp(const void *f, const void *s)
134 {
135 const struct pkat *p1 = f;
136 const struct pkat *p2 = s;
137
138 return p1->peer == p2->peer;
139 }
140
141 static unsigned int peer_hash_key(const void *arg)
142 {
143 const struct pkat *pkat = arg;
144 return (uintptr_t)pkat->peer;
145 }
146
147 /* Cleanup handler / deinitializer. */
148 static void bgp_keepalives_finish(void *arg)
149 {
150 if (peerhash) {
151 hash_clean(peerhash, pkat_del);
152 hash_free(peerhash);
153 }
154
155 peerhash = NULL;
156
157 pthread_mutex_unlock(peerhash_mtx);
158 pthread_mutex_destroy(peerhash_mtx);
159 pthread_cond_destroy(peerhash_cond);
160
161 XFREE(MTYPE_TMP, peerhash_mtx);
162 XFREE(MTYPE_TMP, peerhash_cond);
163 }
164
165 /*
166 * Entry function for peer keepalive generation pthread.
167 */
168 void *bgp_keepalives_start(void *arg)
169 {
170 struct frr_pthread *fpt = arg;
171 fpt->master->owner = pthread_self();
172
173 struct timeval currtime = {0, 0};
174 struct timeval aftertime = {0, 0};
175 struct timeval next_update = {0, 0};
176 struct timespec next_update_ts = {0, 0};
177
178 peerhash_mtx = XCALLOC(MTYPE_TMP, sizeof(pthread_mutex_t));
179 peerhash_cond = XCALLOC(MTYPE_TMP, sizeof(pthread_cond_t));
180
181 /* initialize mutex */
182 pthread_mutex_init(peerhash_mtx, NULL);
183
184 /* use monotonic clock with condition variable */
185 pthread_condattr_t attrs;
186 pthread_condattr_init(&attrs);
187 pthread_condattr_setclock(&attrs, CLOCK_MONOTONIC);
188 pthread_cond_init(peerhash_cond, &attrs);
189 pthread_condattr_destroy(&attrs);
190
191 /*
192 * We are not using normal FRR pthread mechanics and are
193 * not using fpt_run
194 */
195 frr_pthread_set_name(fpt);
196
197 /* initialize peer hashtable */
198 peerhash = hash_create_size(2048, peer_hash_key, peer_hash_cmp, NULL);
199 pthread_mutex_lock(peerhash_mtx);
200
201 /* register cleanup handler */
202 pthread_cleanup_push(&bgp_keepalives_finish, NULL);
203
204 /* notify anybody waiting on us that we are done starting up */
205 frr_pthread_notify_running(fpt);
206
207 while (atomic_load_explicit(&fpt->running, memory_order_relaxed)) {
208 if (peerhash->count > 0)
209 pthread_cond_timedwait(peerhash_cond, peerhash_mtx,
210 &next_update_ts);
211 else
212 while (peerhash->count == 0
213 && atomic_load_explicit(&fpt->running,
214 memory_order_relaxed))
215 pthread_cond_wait(peerhash_cond, peerhash_mtx);
216
217 monotime(&currtime);
218
219 next_update.tv_sec = -1;
220
221 hash_iterate(peerhash, peer_process, &next_update);
222 if (next_update.tv_sec == -1)
223 memset(&next_update, 0x00, sizeof(next_update));
224
225 monotime_since(&currtime, &aftertime);
226
227 timeradd(&currtime, &next_update, &next_update);
228 TIMEVAL_TO_TIMESPEC(&next_update, &next_update_ts);
229 }
230
231 /* clean up */
232 pthread_cleanup_pop(1);
233
234 return NULL;
235 }
236
237 /* --- thread external functions ------------------------------------------- */
238
239 void bgp_keepalives_on(struct peer *peer)
240 {
241 if (CHECK_FLAG(peer->thread_flags, PEER_THREAD_KEEPALIVES_ON))
242 return;
243
244 struct frr_pthread *fpt = bgp_pth_ka;
245 assert(fpt->running);
246
247 /* placeholder bucket data to use for fast key lookups */
248 static struct pkat holder = {0};
249
250 /*
251 * We need to ensure that bgp_keepalives_init was called first
252 */
253 assert(peerhash_mtx);
254
255 frr_with_mutex(peerhash_mtx) {
256 holder.peer = peer;
257 if (!hash_lookup(peerhash, &holder)) {
258 struct pkat *pkat = pkat_new(peer);
259 hash_get(peerhash, pkat, hash_alloc_intern);
260 peer_lock(peer);
261 }
262 SET_FLAG(peer->thread_flags, PEER_THREAD_KEEPALIVES_ON);
263 }
264 bgp_keepalives_wake();
265 }
266
267 void bgp_keepalives_off(struct peer *peer)
268 {
269 if (!CHECK_FLAG(peer->thread_flags, PEER_THREAD_KEEPALIVES_ON))
270 return;
271
272 struct frr_pthread *fpt = bgp_pth_ka;
273 assert(fpt->running);
274
275 /* placeholder bucket data to use for fast key lookups */
276 static struct pkat holder = {0};
277
278 /*
279 * We need to ensure that bgp_keepalives_init was called first
280 */
281 assert(peerhash_mtx);
282
283 frr_with_mutex(peerhash_mtx) {
284 holder.peer = peer;
285 struct pkat *res = hash_release(peerhash, &holder);
286 if (res) {
287 pkat_del(res);
288 peer_unlock(peer);
289 }
290 UNSET_FLAG(peer->thread_flags, PEER_THREAD_KEEPALIVES_ON);
291 }
292 }
293
294 void bgp_keepalives_wake(void)
295 {
296 frr_with_mutex(peerhash_mtx) {
297 pthread_cond_signal(peerhash_cond);
298 }
299 }
300
301 int bgp_keepalives_stop(struct frr_pthread *fpt, void **result)
302 {
303 assert(fpt->running);
304
305 atomic_store_explicit(&fpt->running, false, memory_order_relaxed);
306 bgp_keepalives_wake();
307
308 pthread_join(fpt->thread, result);
309 return 0;
310 }