]> git.proxmox.com Git - mirror_frr.git/blob - bgpd/bgp_keepalives.c
bgpd: IPv6 session flapping with MP_REACH_NLRI and 0.0.0.0 in NEXT_HOP attribute
[mirror_frr.git] / bgpd / bgp_keepalives.c
1 /* BGP Keepalives.
2 * Implements a producer thread to generate BGP keepalives for peers.
3 * Copyright (C) 2017 Cumulus Networks, Inc.
4 * Quentin Young
5 *
6 * This file is part of FRRouting.
7 *
8 * FRRouting is free software; you can redistribute it and/or modify it under
9 * the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2, or (at your option) any later
11 * version.
12 *
13 * FRRouting is distributed in the hope that it will be useful, but WITHOUT ANY
14 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16 * details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; see the file COPYING; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /* clang-format off */
24 #include <zebra.h>
25 #include <pthread.h> // for pthread_mutex_lock, pthread_mutex_unlock
26
27 #include "frr_pthread.h" // for frr_pthread
28 #include "hash.h" // for hash, hash_clean, hash_create_size...
29 #include "log.h" // for zlog_debug
30 #include "memory.h" // for MTYPE_TMP, XFREE, XCALLOC, XMALLOC
31 #include "monotime.h" // for monotime, monotime_since
32
33 #include "bgpd/bgpd.h" // for peer, PEER_THREAD_KEEPALIVES_ON, peer...
34 #include "bgpd/bgp_debug.h" // for bgp_debug_neighbor_events
35 #include "bgpd/bgp_packet.h" // for bgp_keepalive_send
36 #include "bgpd/bgp_keepalives.h"
37 /* clang-format on */
38
39 /*
40 * Peer KeepAlive Timer.
41 * Associates a peer with the time of its last keepalive.
42 */
43 struct pkat {
44 /* the peer to send keepalives to */
45 struct peer *peer;
46 /* absolute time of last keepalive sent */
47 struct timeval last;
48 };
49
50 /* List of peers we are sending keepalives for, and associated mutex. */
51 static pthread_mutex_t *peerhash_mtx;
52 static pthread_cond_t *peerhash_cond;
53 static struct hash *peerhash;
54
55 static struct pkat *pkat_new(struct peer *peer)
56 {
57 struct pkat *pkat = XMALLOC(MTYPE_TMP, sizeof(struct pkat));
58 pkat->peer = peer;
59 monotime(&pkat->last);
60 return pkat;
61 }
62
63 static void pkat_del(void *pkat)
64 {
65 XFREE(MTYPE_TMP, pkat);
66 }
67
68
69 /*
70 * Callback for hash_iterate. Determines if a peer needs a keepalive and if so,
71 * generates and sends it.
72 *
73 * For any given peer, if the elapsed time since its last keepalive exceeds its
74 * configured keepalive timer, a keepalive is sent to the peer and its
75 * last-sent time is reset. Additionally, If the elapsed time does not exceed
76 * the configured keepalive timer, but the time until the next keepalive is due
77 * is within a hardcoded tolerance, a keepalive is sent as if the configured
78 * timer was exceeded. Doing this helps alleviate nanosecond sleeps between
79 * ticks by grouping together peers who are due for keepalives at roughly the
80 * same time. This tolerance value is arbitrarily chosen to be 100ms.
81 *
82 * In addition, this function calculates the maximum amount of time that the
83 * keepalive thread can sleep before another tick needs to take place. This is
84 * equivalent to shortest time until a keepalive is due for any one peer.
85 *
86 * @return maximum time to wait until next update (0 if infinity)
87 */
88 static void peer_process(struct hash_bucket *hb, void *arg)
89 {
90 struct pkat *pkat = hb->data;
91
92 struct timeval *next_update = arg;
93
94 static struct timeval elapsed; // elapsed time since keepalive
95 static struct timeval ka = {0}; // peer->v_keepalive as a timeval
96 static struct timeval diff; // ka - elapsed
97
98 static struct timeval tolerance = {0, 100000};
99
100 /* calculate elapsed time since last keepalive */
101 monotime_since(&pkat->last, &elapsed);
102
103 /* calculate difference between elapsed time and configured time */
104 ka.tv_sec = pkat->peer->v_keepalive;
105 timersub(&ka, &elapsed, &diff);
106
107 int send_keepalive =
108 elapsed.tv_sec >= ka.tv_sec || timercmp(&diff, &tolerance, <);
109
110 if (send_keepalive) {
111 if (bgp_debug_neighbor_events(pkat->peer))
112 zlog_debug("%s [FSM] Timer (keepalive timer expire)",
113 pkat->peer->host);
114
115 bgp_keepalive_send(pkat->peer);
116 monotime(&pkat->last);
117 memset(&elapsed, 0x00, sizeof(struct timeval));
118 diff = ka;
119 }
120
121 /* if calculated next update for this peer < current delay, use it */
122 if (next_update->tv_sec < 0 || timercmp(&diff, next_update, <))
123 *next_update = diff;
124 }
125
126 static bool peer_hash_cmp(const void *f, const void *s)
127 {
128 const struct pkat *p1 = f;
129 const struct pkat *p2 = s;
130
131 return p1->peer == p2->peer;
132 }
133
134 static unsigned int peer_hash_key(void *arg)
135 {
136 struct pkat *pkat = arg;
137 return (uintptr_t)pkat->peer;
138 }
139
140 /* Cleanup handler / deinitializer. */
141 static void bgp_keepalives_finish(void *arg)
142 {
143 if (peerhash) {
144 hash_clean(peerhash, pkat_del);
145 hash_free(peerhash);
146 }
147
148 peerhash = NULL;
149
150 pthread_mutex_unlock(peerhash_mtx);
151 pthread_mutex_destroy(peerhash_mtx);
152 pthread_cond_destroy(peerhash_cond);
153
154 XFREE(MTYPE_TMP, peerhash_mtx);
155 XFREE(MTYPE_TMP, peerhash_cond);
156 }
157
158 /*
159 * Entry function for peer keepalive generation pthread.
160 */
161 void *bgp_keepalives_start(void *arg)
162 {
163 struct frr_pthread *fpt = arg;
164 fpt->master->owner = pthread_self();
165
166 struct timeval currtime = {0, 0};
167 struct timeval aftertime = {0, 0};
168 struct timeval next_update = {0, 0};
169 struct timespec next_update_ts = {0, 0};
170
171 peerhash_mtx = XCALLOC(MTYPE_TMP, sizeof(pthread_mutex_t));
172 peerhash_cond = XCALLOC(MTYPE_TMP, sizeof(pthread_cond_t));
173
174 /* initialize mutex */
175 pthread_mutex_init(peerhash_mtx, NULL);
176
177 /* use monotonic clock with condition variable */
178 pthread_condattr_t attrs;
179 pthread_condattr_init(&attrs);
180 pthread_condattr_setclock(&attrs, CLOCK_MONOTONIC);
181 pthread_cond_init(peerhash_cond, &attrs);
182 pthread_condattr_destroy(&attrs);
183
184 /*
185 * We are not using normal FRR pthread mechanics and are
186 * not using fpt_run
187 */
188 frr_pthread_set_name(fpt);
189
190 /* initialize peer hashtable */
191 peerhash = hash_create_size(2048, peer_hash_key, peer_hash_cmp, NULL);
192 pthread_mutex_lock(peerhash_mtx);
193
194 /* register cleanup handler */
195 pthread_cleanup_push(&bgp_keepalives_finish, NULL);
196
197 /* notify anybody waiting on us that we are done starting up */
198 frr_pthread_notify_running(fpt);
199
200 while (atomic_load_explicit(&fpt->running, memory_order_relaxed)) {
201 if (peerhash->count > 0)
202 pthread_cond_timedwait(peerhash_cond, peerhash_mtx,
203 &next_update_ts);
204 else
205 while (peerhash->count == 0
206 && atomic_load_explicit(&fpt->running,
207 memory_order_relaxed))
208 pthread_cond_wait(peerhash_cond, peerhash_mtx);
209
210 monotime(&currtime);
211
212 next_update.tv_sec = -1;
213
214 hash_iterate(peerhash, peer_process, &next_update);
215 if (next_update.tv_sec == -1)
216 memset(&next_update, 0x00, sizeof(next_update));
217
218 monotime_since(&currtime, &aftertime);
219
220 timeradd(&currtime, &next_update, &next_update);
221 TIMEVAL_TO_TIMESPEC(&next_update, &next_update_ts);
222 }
223
224 /* clean up */
225 pthread_cleanup_pop(1);
226
227 return NULL;
228 }
229
230 /* --- thread external functions ------------------------------------------- */
231
232 void bgp_keepalives_on(struct peer *peer)
233 {
234 if (CHECK_FLAG(peer->thread_flags, PEER_THREAD_KEEPALIVES_ON))
235 return;
236
237 struct frr_pthread *fpt = bgp_pth_ka;
238 assert(fpt->running);
239
240 /* placeholder bucket data to use for fast key lookups */
241 static struct pkat holder = {0};
242
243 /*
244 * We need to ensure that bgp_keepalives_init was called first
245 */
246 assert(peerhash_mtx);
247
248 pthread_mutex_lock(peerhash_mtx);
249 {
250 holder.peer = peer;
251 if (!hash_lookup(peerhash, &holder)) {
252 struct pkat *pkat = pkat_new(peer);
253 hash_get(peerhash, pkat, hash_alloc_intern);
254 peer_lock(peer);
255 }
256 SET_FLAG(peer->thread_flags, PEER_THREAD_KEEPALIVES_ON);
257 }
258 pthread_mutex_unlock(peerhash_mtx);
259 bgp_keepalives_wake();
260 }
261
262 void bgp_keepalives_off(struct peer *peer)
263 {
264 if (!CHECK_FLAG(peer->thread_flags, PEER_THREAD_KEEPALIVES_ON))
265 return;
266
267 struct frr_pthread *fpt = bgp_pth_ka;
268 assert(fpt->running);
269
270 /* placeholder bucket data to use for fast key lookups */
271 static struct pkat holder = {0};
272
273 /*
274 * We need to ensure that bgp_keepalives_init was called first
275 */
276 assert(peerhash_mtx);
277
278 pthread_mutex_lock(peerhash_mtx);
279 {
280 holder.peer = peer;
281 struct pkat *res = hash_release(peerhash, &holder);
282 if (res) {
283 pkat_del(res);
284 peer_unlock(peer);
285 }
286 UNSET_FLAG(peer->thread_flags, PEER_THREAD_KEEPALIVES_ON);
287 }
288 pthread_mutex_unlock(peerhash_mtx);
289 }
290
291 void bgp_keepalives_wake(void)
292 {
293 pthread_mutex_lock(peerhash_mtx);
294 {
295 pthread_cond_signal(peerhash_cond);
296 }
297 pthread_mutex_unlock(peerhash_mtx);
298 }
299
300 int bgp_keepalives_stop(struct frr_pthread *fpt, void **result)
301 {
302 assert(fpt->running);
303
304 atomic_store_explicit(&fpt->running, false, memory_order_relaxed);
305 bgp_keepalives_wake();
306
307 pthread_join(fpt->thread, result);
308 return 0;
309 }