]> git.proxmox.com Git - mirror_frr.git/blob - bgpd/bgp_zebra.c
bgpd: Replace bgp_flag_* to [UN]SET/CHECK_FLAG macros
[mirror_frr.git] / bgpd / bgp_zebra.c
1 /* zebra client
2 * Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "stream.h"
25 #include "network.h"
26 #include "prefix.h"
27 #include "log.h"
28 #include "sockunion.h"
29 #include "zclient.h"
30 #include "routemap.h"
31 #include "thread.h"
32 #include "queue.h"
33 #include "memory.h"
34 #include "lib/json.h"
35 #include "lib/bfd.h"
36 #include "filter.h"
37 #include "mpls.h"
38 #include "vxlan.h"
39 #include "pbr.h"
40
41 #include "bgpd/bgpd.h"
42 #include "bgpd/bgp_route.h"
43 #include "bgpd/bgp_attr.h"
44 #include "bgpd/bgp_nexthop.h"
45 #include "bgpd/bgp_zebra.h"
46 #include "bgpd/bgp_fsm.h"
47 #include "bgpd/bgp_debug.h"
48 #include "bgpd/bgp_errors.h"
49 #include "bgpd/bgp_mpath.h"
50 #include "bgpd/bgp_nexthop.h"
51 #include "bgpd/bgp_nht.h"
52 #include "bgpd/bgp_bfd.h"
53 #include "bgpd/bgp_label.h"
54 #if ENABLE_BGP_VNC
55 #include "bgpd/rfapi/rfapi_backend.h"
56 #include "bgpd/rfapi/vnc_export_bgp.h"
57 #endif
58 #include "bgpd/bgp_evpn.h"
59 #include "bgpd/bgp_mplsvpn.h"
60 #include "bgpd/bgp_labelpool.h"
61 #include "bgpd/bgp_pbr.h"
62 #include "bgpd/bgp_evpn_private.h"
63 #include "bgpd/bgp_mac.h"
64
65 /* All information about zebra. */
66 struct zclient *zclient = NULL;
67
68 /* Can we install into zebra? */
69 static inline int bgp_install_info_to_zebra(struct bgp *bgp)
70 {
71 if (zclient->sock <= 0)
72 return 0;
73
74 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
75 zlog_debug("%s: No zebra instance to talk to, not installing information",
76 __PRETTY_FUNCTION__);
77 return 0;
78 }
79
80 return 1;
81 }
82
83 int zclient_num_connects;
84
85 /* Router-id update message from zebra. */
86 static int bgp_router_id_update(ZAPI_CALLBACK_ARGS)
87 {
88 struct prefix router_id;
89
90 zebra_router_id_update_read(zclient->ibuf, &router_id);
91
92 if (BGP_DEBUG(zebra, ZEBRA)) {
93 char buf[PREFIX2STR_BUFFER];
94 prefix2str(&router_id, buf, sizeof(buf));
95 zlog_debug("Rx Router Id update VRF %u Id %s", vrf_id, buf);
96 }
97
98 bgp_router_id_zebra_bump(vrf_id, &router_id);
99 return 0;
100 }
101
102 /* Nexthop update message from zebra. */
103 static int bgp_read_nexthop_update(ZAPI_CALLBACK_ARGS)
104 {
105 bgp_parse_nexthop_update(cmd, vrf_id);
106 return 0;
107 }
108
109 static int bgp_read_import_check_update(ZAPI_CALLBACK_ARGS)
110 {
111 bgp_parse_nexthop_update(cmd, vrf_id);
112 return 0;
113 }
114
115 /* Set or clear interface on which unnumbered neighbor is configured. This
116 * would in turn cause BGP to initiate or turn off IPv6 RAs on this
117 * interface.
118 */
119 static void bgp_update_interface_nbrs(struct bgp *bgp, struct interface *ifp,
120 struct interface *upd_ifp)
121 {
122 struct listnode *node, *nnode;
123 struct peer *peer;
124
125 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
126 if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)) {
127 if (upd_ifp) {
128 peer->ifp = upd_ifp;
129 bgp_zebra_initiate_radv(bgp, peer);
130 } else {
131 bgp_zebra_terminate_radv(bgp, peer);
132 peer->ifp = upd_ifp;
133 }
134 }
135 }
136 }
137
138 static int bgp_read_fec_update(int command, struct zclient *zclient,
139 zebra_size_t length)
140 {
141 bgp_parse_fec_update();
142 return 0;
143 }
144
145 static void bgp_start_interface_nbrs(struct bgp *bgp, struct interface *ifp)
146 {
147 struct listnode *node, *nnode;
148 struct peer *peer;
149
150 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
151 if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)
152 && peer->status != Established) {
153 if (peer_active(peer))
154 BGP_EVENT_ADD(peer, BGP_Stop);
155 BGP_EVENT_ADD(peer, BGP_Start);
156 }
157 }
158 }
159
160 static void bgp_nbr_connected_add(struct bgp *bgp, struct nbr_connected *ifc)
161 {
162 struct listnode *node;
163 struct connected *connected;
164 struct interface *ifp;
165 struct prefix *p;
166
167 /* Kick-off the FSM for any relevant peers only if there is a
168 * valid local address on the interface.
169 */
170 ifp = ifc->ifp;
171 for (ALL_LIST_ELEMENTS_RO(ifp->connected, node, connected)) {
172 p = connected->address;
173 if (p->family == AF_INET6
174 && IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
175 break;
176 }
177 if (!connected)
178 return;
179
180 bgp_start_interface_nbrs(bgp, ifp);
181 }
182
183 static void bgp_nbr_connected_delete(struct bgp *bgp, struct nbr_connected *ifc,
184 int del)
185 {
186 struct listnode *node, *nnode;
187 struct peer *peer;
188 struct interface *ifp;
189
190 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
191 if (peer->conf_if
192 && (strcmp(peer->conf_if, ifc->ifp->name) == 0)) {
193 peer->last_reset = PEER_DOWN_NBR_ADDR_DEL;
194 BGP_EVENT_ADD(peer, BGP_Stop);
195 }
196 }
197 /* Free neighbor also, if we're asked to. */
198 if (del) {
199 ifp = ifc->ifp;
200 listnode_delete(ifp->nbr_connected, ifc);
201 nbr_connected_free(ifc);
202 }
203 }
204
205 static int bgp_ifp_destroy(struct interface *ifp)
206 {
207 struct bgp *bgp;
208
209 bgp = bgp_lookup_by_vrf_id(ifp->vrf_id);
210
211 if (BGP_DEBUG(zebra, ZEBRA))
212 zlog_debug("Rx Intf del VRF %u IF %s", ifp->vrf_id, ifp->name);
213
214 if (bgp)
215 bgp_update_interface_nbrs(bgp, ifp, NULL);
216
217 bgp_mac_del_mac_entry(ifp);
218
219 return 0;
220 }
221
222 static int bgp_ifp_up(struct interface *ifp)
223 {
224 struct connected *c;
225 struct nbr_connected *nc;
226 struct listnode *node, *nnode;
227 struct bgp *bgp;
228
229 bgp = bgp_lookup_by_vrf_id(ifp->vrf_id);
230
231 bgp_mac_add_mac_entry(ifp);
232
233 if (BGP_DEBUG(zebra, ZEBRA))
234 zlog_debug("Rx Intf up VRF %u IF %s", ifp->vrf_id, ifp->name);
235
236 if (!bgp)
237 return 0;
238
239 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
240 bgp_connected_add(bgp, c);
241
242 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
243 bgp_nbr_connected_add(bgp, nc);
244
245 return 0;
246 }
247
248 static int bgp_ifp_down(struct interface *ifp)
249 {
250 struct connected *c;
251 struct nbr_connected *nc;
252 struct listnode *node, *nnode;
253 struct bgp *bgp;
254 struct peer *peer;
255
256 bgp = bgp_lookup_by_vrf_id(ifp->vrf_id);
257
258 bgp_mac_del_mac_entry(ifp);
259
260 if (BGP_DEBUG(zebra, ZEBRA))
261 zlog_debug("Rx Intf down VRF %u IF %s", ifp->vrf_id, ifp->name);
262
263 if (!bgp)
264 return 0;
265
266 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
267 bgp_connected_delete(bgp, c);
268
269 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
270 bgp_nbr_connected_delete(bgp, nc, 1);
271
272 /* Fast external-failover */
273 if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
274
275 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
276 #if defined(HAVE_CUMULUS)
277 /* Take down directly connected EBGP peers as well as
278 * 1-hop BFD
279 * tracked (directly connected) IBGP peers.
280 */
281 if ((peer->ttl != BGP_DEFAULT_TTL)
282 && (peer->gtsm_hops != 1)
283 && (!peer->bfd_info
284 || bgp_bfd_is_peer_multihop(peer)))
285 #else
286 /* Take down directly connected EBGP peers */
287 if ((peer->ttl != BGP_DEFAULT_TTL)
288 && (peer->gtsm_hops != 1))
289 #endif
290 continue;
291
292 if (ifp == peer->nexthop.ifp) {
293 BGP_EVENT_ADD(peer, BGP_Stop);
294 peer->last_reset = PEER_DOWN_IF_DOWN;
295 }
296 }
297 }
298
299 return 0;
300 }
301
302 static int bgp_interface_address_add(ZAPI_CALLBACK_ARGS)
303 {
304 struct connected *ifc;
305 struct bgp *bgp;
306
307 bgp = bgp_lookup_by_vrf_id(vrf_id);
308
309 ifc = zebra_interface_address_read(cmd, zclient->ibuf, vrf_id);
310
311 if (ifc == NULL)
312 return 0;
313
314 if (bgp_debug_zebra(ifc->address)) {
315 char buf[PREFIX2STR_BUFFER];
316 prefix2str(ifc->address, buf, sizeof(buf));
317 zlog_debug("Rx Intf address add VRF %u IF %s addr %s", vrf_id,
318 ifc->ifp->name, buf);
319 }
320
321 if (!bgp)
322 return 0;
323
324 if (if_is_operative(ifc->ifp)) {
325 bgp_connected_add(bgp, ifc);
326
327 /* If we have learnt of any neighbors on this interface,
328 * check to kick off any BGP interface-based neighbors,
329 * but only if this is a link-local address.
330 */
331 if (IN6_IS_ADDR_LINKLOCAL(&ifc->address->u.prefix6)
332 && !list_isempty(ifc->ifp->nbr_connected))
333 bgp_start_interface_nbrs(bgp, ifc->ifp);
334 }
335
336 return 0;
337 }
338
339 static int bgp_interface_address_delete(ZAPI_CALLBACK_ARGS)
340 {
341 struct connected *ifc;
342 struct bgp *bgp;
343
344 bgp = bgp_lookup_by_vrf_id(vrf_id);
345
346 ifc = zebra_interface_address_read(cmd, zclient->ibuf, vrf_id);
347
348 if (ifc == NULL)
349 return 0;
350
351 if (bgp_debug_zebra(ifc->address)) {
352 char buf[PREFIX2STR_BUFFER];
353 prefix2str(ifc->address, buf, sizeof(buf));
354 zlog_debug("Rx Intf address del VRF %u IF %s addr %s", vrf_id,
355 ifc->ifp->name, buf);
356 }
357
358 if (bgp && if_is_operative(ifc->ifp)) {
359 bgp_connected_delete(bgp, ifc);
360 }
361
362 connected_free(&ifc);
363
364 return 0;
365 }
366
367 static int bgp_interface_nbr_address_add(ZAPI_CALLBACK_ARGS)
368 {
369 struct nbr_connected *ifc = NULL;
370 struct bgp *bgp;
371
372 ifc = zebra_interface_nbr_address_read(cmd, zclient->ibuf, vrf_id);
373
374 if (ifc == NULL)
375 return 0;
376
377 if (bgp_debug_zebra(ifc->address)) {
378 char buf[PREFIX2STR_BUFFER];
379 prefix2str(ifc->address, buf, sizeof(buf));
380 zlog_debug("Rx Intf neighbor add VRF %u IF %s addr %s", vrf_id,
381 ifc->ifp->name, buf);
382 }
383
384 if (if_is_operative(ifc->ifp)) {
385 bgp = bgp_lookup_by_vrf_id(vrf_id);
386 if (bgp)
387 bgp_nbr_connected_add(bgp, ifc);
388 }
389
390 return 0;
391 }
392
393 static int bgp_interface_nbr_address_delete(ZAPI_CALLBACK_ARGS)
394 {
395 struct nbr_connected *ifc = NULL;
396 struct bgp *bgp;
397
398 ifc = zebra_interface_nbr_address_read(cmd, zclient->ibuf, vrf_id);
399
400 if (ifc == NULL)
401 return 0;
402
403 if (bgp_debug_zebra(ifc->address)) {
404 char buf[PREFIX2STR_BUFFER];
405 prefix2str(ifc->address, buf, sizeof(buf));
406 zlog_debug("Rx Intf neighbor del VRF %u IF %s addr %s", vrf_id,
407 ifc->ifp->name, buf);
408 }
409
410 if (if_is_operative(ifc->ifp)) {
411 bgp = bgp_lookup_by_vrf_id(vrf_id);
412 if (bgp)
413 bgp_nbr_connected_delete(bgp, ifc, 0);
414 }
415
416 nbr_connected_free(ifc);
417
418 return 0;
419 }
420
421 /* VRF update for an interface. */
422 static int bgp_interface_vrf_update(ZAPI_CALLBACK_ARGS)
423 {
424 struct interface *ifp;
425 vrf_id_t new_vrf_id;
426 struct connected *c;
427 struct nbr_connected *nc;
428 struct listnode *node, *nnode;
429 struct bgp *bgp;
430 struct peer *peer;
431
432 ifp = zebra_interface_vrf_update_read(zclient->ibuf, vrf_id,
433 &new_vrf_id);
434 if (!ifp)
435 return 0;
436
437 if (BGP_DEBUG(zebra, ZEBRA) && ifp)
438 zlog_debug("Rx Intf VRF change VRF %u IF %s NewVRF %u", vrf_id,
439 ifp->name, new_vrf_id);
440
441 bgp = bgp_lookup_by_vrf_id(vrf_id);
442
443 if (bgp) {
444 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
445 bgp_connected_delete(bgp, c);
446
447 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
448 bgp_nbr_connected_delete(bgp, nc, 1);
449
450 /* Fast external-failover */
451 if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
452 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
453 if ((peer->ttl != BGP_DEFAULT_TTL)
454 && (peer->gtsm_hops != 1))
455 continue;
456
457 if (ifp == peer->nexthop.ifp)
458 BGP_EVENT_ADD(peer, BGP_Stop);
459 }
460 }
461 }
462
463 if_update_to_new_vrf(ifp, new_vrf_id);
464
465 bgp = bgp_lookup_by_vrf_id(new_vrf_id);
466 if (!bgp)
467 return 0;
468
469 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
470 bgp_connected_add(bgp, c);
471
472 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
473 bgp_nbr_connected_add(bgp, nc);
474 return 0;
475 }
476
477 /* Zebra route add and delete treatment. */
478 static int zebra_read_route(ZAPI_CALLBACK_ARGS)
479 {
480 enum nexthop_types_t nhtype;
481 struct zapi_route api;
482 union g_addr nexthop;
483 ifindex_t ifindex;
484 int add, i;
485 struct bgp *bgp;
486
487 bgp = bgp_lookup_by_vrf_id(vrf_id);
488 if (!bgp)
489 return 0;
490
491 if (zapi_route_decode(zclient->ibuf, &api) < 0)
492 return -1;
493
494 /* we completely ignore srcdest routes for now. */
495 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_SRCPFX))
496 return 0;
497
498 /* ignore link-local address. */
499 if (api.prefix.family == AF_INET6
500 && IN6_IS_ADDR_LINKLOCAL(&api.prefix.u.prefix6))
501 return 0;
502
503 nexthop = api.nexthops[0].gate;
504 ifindex = api.nexthops[0].ifindex;
505 nhtype = api.nexthops[0].type;
506
507 add = (cmd == ZEBRA_REDISTRIBUTE_ROUTE_ADD);
508 if (add) {
509 /*
510 * The ADD message is actually an UPDATE and there is no
511 * explicit DEL
512 * for a prior redistributed route, if any. So, perform an
513 * implicit
514 * DEL processing for the same redistributed route from any
515 * other
516 * source type.
517 */
518 for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
519 if (i != api.type)
520 bgp_redistribute_delete(bgp, &api.prefix, i,
521 api.instance);
522 }
523
524 /* Now perform the add/update. */
525 bgp_redistribute_add(bgp, &api.prefix, &nexthop, ifindex,
526 nhtype, api.metric, api.type, api.instance,
527 api.tag);
528 } else {
529 bgp_redistribute_delete(bgp, &api.prefix, api.type,
530 api.instance);
531 }
532
533 if (bgp_debug_zebra(&api.prefix)) {
534 char buf[2][PREFIX_STRLEN];
535
536 prefix2str(&api.prefix, buf[0], sizeof(buf[0]));
537 if (add) {
538 inet_ntop(api.prefix.family, &nexthop, buf[1],
539 sizeof(buf[1]));
540 zlog_debug(
541 "Rx route ADD VRF %u %s[%d] %s nexthop %s (type %d if %u) metric %u tag %" ROUTE_TAG_PRI,
542 vrf_id, zebra_route_string(api.type),
543 api.instance, buf[0], buf[1], nhtype,
544 ifindex, api.metric, api.tag);
545 } else {
546 zlog_debug(
547 "Rx route DEL VRF %u %s[%d] %s",
548 vrf_id, zebra_route_string(api.type),
549 api.instance, buf[0]);
550 }
551 }
552
553 return 0;
554 }
555
556 struct interface *if_lookup_by_ipv4(struct in_addr *addr, vrf_id_t vrf_id)
557 {
558 struct vrf *vrf;
559 struct listnode *cnode;
560 struct interface *ifp;
561 struct connected *connected;
562 struct prefix_ipv4 p;
563 struct prefix *cp;
564
565 vrf = vrf_lookup_by_id(vrf_id);
566 if (!vrf)
567 return NULL;
568
569 p.family = AF_INET;
570 p.prefix = *addr;
571 p.prefixlen = IPV4_MAX_BITLEN;
572
573 FOR_ALL_INTERFACES (vrf, ifp) {
574 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
575 cp = connected->address;
576
577 if (cp->family == AF_INET)
578 if (prefix_match(cp, (struct prefix *)&p))
579 return ifp;
580 }
581 }
582 return NULL;
583 }
584
585 struct interface *if_lookup_by_ipv4_exact(struct in_addr *addr, vrf_id_t vrf_id)
586 {
587 struct vrf *vrf;
588 struct listnode *cnode;
589 struct interface *ifp;
590 struct connected *connected;
591 struct prefix *cp;
592
593 vrf = vrf_lookup_by_id(vrf_id);
594 if (!vrf)
595 return NULL;
596
597 FOR_ALL_INTERFACES (vrf, ifp) {
598 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
599 cp = connected->address;
600
601 if (cp->family == AF_INET)
602 if (IPV4_ADDR_SAME(&cp->u.prefix4, addr))
603 return ifp;
604 }
605 }
606 return NULL;
607 }
608
609 struct interface *if_lookup_by_ipv6(struct in6_addr *addr, ifindex_t ifindex,
610 vrf_id_t vrf_id)
611 {
612 struct vrf *vrf;
613 struct listnode *cnode;
614 struct interface *ifp;
615 struct connected *connected;
616 struct prefix_ipv6 p;
617 struct prefix *cp;
618
619 vrf = vrf_lookup_by_id(vrf_id);
620 if (!vrf)
621 return NULL;
622
623 p.family = AF_INET6;
624 p.prefix = *addr;
625 p.prefixlen = IPV6_MAX_BITLEN;
626
627 FOR_ALL_INTERFACES (vrf, ifp) {
628 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
629 cp = connected->address;
630
631 if (cp->family == AF_INET6)
632 if (prefix_match(cp, (struct prefix *)&p)) {
633 if (IN6_IS_ADDR_LINKLOCAL(
634 &cp->u.prefix6)) {
635 if (ifindex == ifp->ifindex)
636 return ifp;
637 } else
638 return ifp;
639 }
640 }
641 }
642 return NULL;
643 }
644
645 struct interface *if_lookup_by_ipv6_exact(struct in6_addr *addr,
646 ifindex_t ifindex, vrf_id_t vrf_id)
647 {
648 struct vrf *vrf;
649 struct listnode *cnode;
650 struct interface *ifp;
651 struct connected *connected;
652 struct prefix *cp;
653
654 vrf = vrf_lookup_by_id(vrf_id);
655 if (!vrf)
656 return NULL;
657
658 FOR_ALL_INTERFACES (vrf, ifp) {
659 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
660 cp = connected->address;
661
662 if (cp->family == AF_INET6)
663 if (IPV6_ADDR_SAME(&cp->u.prefix6, addr)) {
664 if (IN6_IS_ADDR_LINKLOCAL(
665 &cp->u.prefix6)) {
666 if (ifindex == ifp->ifindex)
667 return ifp;
668 } else
669 return ifp;
670 }
671 }
672 }
673 return NULL;
674 }
675
676 static int if_get_ipv6_global(struct interface *ifp, struct in6_addr *addr)
677 {
678 struct listnode *cnode;
679 struct connected *connected;
680 struct prefix *cp;
681
682 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
683 cp = connected->address;
684
685 if (cp->family == AF_INET6)
686 if (!IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
687 memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
688 return 1;
689 }
690 }
691 return 0;
692 }
693
694 static int if_get_ipv6_local(struct interface *ifp, struct in6_addr *addr)
695 {
696 struct listnode *cnode;
697 struct connected *connected;
698 struct prefix *cp;
699
700 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
701 cp = connected->address;
702
703 if (cp->family == AF_INET6)
704 if (IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
705 memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
706 return 1;
707 }
708 }
709 return 0;
710 }
711
712 static int if_get_ipv4_address(struct interface *ifp, struct in_addr *addr)
713 {
714 struct listnode *cnode;
715 struct connected *connected;
716 struct prefix *cp;
717
718 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
719 cp = connected->address;
720 if ((cp->family == AF_INET)
721 && !ipv4_martian(&(cp->u.prefix4))) {
722 *addr = cp->u.prefix4;
723 return 1;
724 }
725 }
726 return 0;
727 }
728
729
730 bool bgp_zebra_nexthop_set(union sockunion *local, union sockunion *remote,
731 struct bgp_nexthop *nexthop, struct peer *peer)
732 {
733 int ret = 0;
734 struct interface *ifp = NULL;
735
736 memset(nexthop, 0, sizeof(struct bgp_nexthop));
737
738 if (!local)
739 return false;
740 if (!remote)
741 return false;
742
743 if (local->sa.sa_family == AF_INET) {
744 nexthop->v4 = local->sin.sin_addr;
745 if (peer->update_if)
746 ifp = if_lookup_by_name(peer->update_if,
747 peer->bgp->vrf_id);
748 else
749 ifp = if_lookup_by_ipv4_exact(&local->sin.sin_addr,
750 peer->bgp->vrf_id);
751 }
752 if (local->sa.sa_family == AF_INET6) {
753 memcpy(&nexthop->v6_global, &local->sin6.sin6_addr, IPV6_MAX_BYTELEN);
754 if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
755 if (peer->conf_if || peer->ifname)
756 ifp = if_lookup_by_name(peer->conf_if
757 ? peer->conf_if
758 : peer->ifname,
759 peer->bgp->vrf_id);
760 } else if (peer->update_if)
761 ifp = if_lookup_by_name(peer->update_if,
762 peer->bgp->vrf_id);
763 else
764 ifp = if_lookup_by_ipv6_exact(&local->sin6.sin6_addr,
765 local->sin6.sin6_scope_id,
766 peer->bgp->vrf_id);
767 }
768
769 if (!ifp) {
770 /*
771 * BGP views do not currently get proper data
772 * from zebra( when attached ) to be able to
773 * properly resolve nexthops, so give this
774 * instance type a pass.
775 */
776 if (peer->bgp->inst_type == BGP_INSTANCE_TYPE_VIEW)
777 return true;
778 /*
779 * If we have no interface data but we have established
780 * some connection w/ zebra than something has gone
781 * terribly terribly wrong here, so say this failed
782 * If we do not any zebra connection then not
783 * having a ifp pointer is ok.
784 */
785 return zclient_num_connects ? false : true;
786 }
787
788 nexthop->ifp = ifp;
789
790 /* IPv4 connection, fetch and store IPv6 local address(es) if any. */
791 if (local->sa.sa_family == AF_INET) {
792 /* IPv6 nexthop*/
793 ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
794
795 if (!ret) {
796 /* There is no global nexthop. Use link-local address as
797 * both the
798 * global and link-local nexthop. In this scenario, the
799 * expectation
800 * for interop is that the network admin would use a
801 * route-map to
802 * specify the global IPv6 nexthop.
803 */
804 if_get_ipv6_local(ifp, &nexthop->v6_global);
805 memcpy(&nexthop->v6_local, &nexthop->v6_global,
806 IPV6_MAX_BYTELEN);
807 } else
808 if_get_ipv6_local(ifp, &nexthop->v6_local);
809
810 if (if_lookup_by_ipv4(&remote->sin.sin_addr, peer->bgp->vrf_id))
811 peer->shared_network = 1;
812 else
813 peer->shared_network = 0;
814 }
815
816 /* IPv6 connection, fetch and store IPv4 local address if any. */
817 if (local->sa.sa_family == AF_INET6) {
818 struct interface *direct = NULL;
819
820 /* IPv4 nexthop. */
821 ret = if_get_ipv4_address(ifp, &nexthop->v4);
822 if (!ret && peer->local_id.s_addr != INADDR_ANY)
823 nexthop->v4 = peer->local_id;
824
825 /* Global address*/
826 if (!IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
827 memcpy(&nexthop->v6_global, &local->sin6.sin6_addr,
828 IPV6_MAX_BYTELEN);
829
830 /* If directory connected set link-local address. */
831 direct = if_lookup_by_ipv6(&remote->sin6.sin6_addr,
832 remote->sin6.sin6_scope_id,
833 peer->bgp->vrf_id);
834 if (direct)
835 if_get_ipv6_local(ifp, &nexthop->v6_local);
836 } else
837 /* Link-local address. */
838 {
839 ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
840
841 /* If there is no global address. Set link-local
842 address as
843 global. I know this break RFC specification... */
844 /* In this scenario, the expectation for interop is that
845 * the
846 * network admin would use a route-map to specify the
847 * global
848 * IPv6 nexthop.
849 */
850 if (!ret)
851 memcpy(&nexthop->v6_global,
852 &local->sin6.sin6_addr,
853 IPV6_MAX_BYTELEN);
854 /* Always set the link-local address */
855 memcpy(&nexthop->v6_local, &local->sin6.sin6_addr,
856 IPV6_MAX_BYTELEN);
857 }
858
859 if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)
860 || if_lookup_by_ipv6(&remote->sin6.sin6_addr,
861 remote->sin6.sin6_scope_id,
862 peer->bgp->vrf_id))
863 peer->shared_network = 1;
864 else
865 peer->shared_network = 0;
866 }
867
868 /* KAME stack specific treatment. */
869 #ifdef KAME
870 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_global)
871 && IN6_LINKLOCAL_IFINDEX(nexthop->v6_global)) {
872 SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_global, 0);
873 }
874 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_local)
875 && IN6_LINKLOCAL_IFINDEX(nexthop->v6_local)) {
876 SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_local, 0);
877 }
878 #endif /* KAME */
879
880 /* If we have identified the local interface, there is no error for now.
881 */
882 return true;
883 }
884
885 static struct in6_addr *
886 bgp_path_info_to_ipv6_nexthop(struct bgp_path_info *path, ifindex_t *ifindex)
887 {
888 struct in6_addr *nexthop = NULL;
889
890 /* Only global address nexthop exists. */
891 if (path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL
892 || path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_VPNV6_GLOBAL) {
893 nexthop = &path->attr->mp_nexthop_global;
894 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
895 *ifindex = path->attr->nh_ifindex;
896 }
897
898 /* If both global and link-local address present. */
899 if (path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL
900 || path->attr->mp_nexthop_len
901 == BGP_ATTR_NHLEN_VPNV6_GLOBAL_AND_LL) {
902 /* Check if route-map is set to prefer global over link-local */
903 if (path->attr->mp_nexthop_prefer_global) {
904 nexthop = &path->attr->mp_nexthop_global;
905 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
906 *ifindex = path->attr->nh_ifindex;
907 } else {
908 /* Workaround for Cisco's nexthop bug. */
909 if (IN6_IS_ADDR_UNSPECIFIED(
910 &path->attr->mp_nexthop_global)
911 && path->peer->su_remote->sa.sa_family
912 == AF_INET6) {
913 nexthop =
914 &path->peer->su_remote->sin6.sin6_addr;
915 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
916 *ifindex = path->peer->nexthop.ifp
917 ->ifindex;
918 } else {
919 nexthop = &path->attr->mp_nexthop_local;
920 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
921 *ifindex = path->attr->nh_lla_ifindex;
922 }
923 }
924 }
925
926 return nexthop;
927 }
928
929 static int bgp_table_map_apply(struct route_map *map, struct prefix *p,
930 struct bgp_path_info *path)
931 {
932 route_map_result_t ret;
933
934 ret = route_map_apply(map, p, RMAP_BGP, path);
935 bgp_attr_flush(path->attr);
936
937 if (ret != RMAP_DENYMATCH)
938 return 1;
939
940 if (bgp_debug_zebra(p)) {
941 if (p->family == AF_INET) {
942 char buf[2][INET_ADDRSTRLEN];
943 zlog_debug(
944 "Zebra rmap deny: IPv4 route %s/%d nexthop %s",
945 inet_ntop(AF_INET, &p->u.prefix4, buf[0],
946 sizeof(buf[0])),
947 p->prefixlen,
948 inet_ntop(AF_INET, &path->attr->nexthop, buf[1],
949 sizeof(buf[1])));
950 }
951 if (p->family == AF_INET6) {
952 char buf[2][INET6_ADDRSTRLEN];
953 ifindex_t ifindex;
954 struct in6_addr *nexthop;
955
956 nexthop = bgp_path_info_to_ipv6_nexthop(path, &ifindex);
957 zlog_debug(
958 "Zebra rmap deny: IPv6 route %s/%d nexthop %s",
959 inet_ntop(AF_INET6, &p->u.prefix6, buf[0],
960 sizeof(buf[0])),
961 p->prefixlen,
962 inet_ntop(AF_INET6, nexthop,
963 buf[1], sizeof(buf[1])));
964 }
965 }
966 return 0;
967 }
968
969 static struct thread *bgp_tm_thread_connect;
970 static bool bgp_tm_status_connected;
971 static bool bgp_tm_chunk_obtained;
972 #define BGP_FLOWSPEC_TABLE_CHUNK 100000
973 static uint32_t bgp_tm_min, bgp_tm_max, bgp_tm_chunk_size;
974 struct bgp *bgp_tm_bgp;
975
976 static int bgp_zebra_tm_connect(struct thread *t)
977 {
978 struct zclient *zclient;
979 int delay = 10, ret = 0;
980
981 zclient = THREAD_ARG(t);
982 if (bgp_tm_status_connected && zclient->sock > 0)
983 delay = 60;
984 else {
985 bgp_tm_status_connected = false;
986 ret = tm_table_manager_connect(zclient);
987 }
988 if (ret < 0) {
989 zlog_info("Error connecting to table manager!");
990 bgp_tm_status_connected = false;
991 } else {
992 if (!bgp_tm_status_connected)
993 zlog_debug("Connecting to table manager. Success");
994 bgp_tm_status_connected = true;
995 if (!bgp_tm_chunk_obtained) {
996 if (bgp_zebra_get_table_range(bgp_tm_chunk_size,
997 &bgp_tm_min,
998 &bgp_tm_max) >= 0) {
999 bgp_tm_chunk_obtained = true;
1000 /* parse non installed entries */
1001 bgp_zebra_announce_table(bgp_tm_bgp, AFI_IP, SAFI_FLOWSPEC);
1002 }
1003 }
1004 }
1005 thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
1006 &bgp_tm_thread_connect);
1007 return 0;
1008 }
1009
1010 bool bgp_zebra_tm_chunk_obtained(void)
1011 {
1012 return bgp_tm_chunk_obtained;
1013 }
1014
1015 uint32_t bgp_zebra_tm_get_id(void)
1016 {
1017 static int table_id;
1018
1019 if (!bgp_tm_chunk_obtained)
1020 return ++table_id;
1021 return bgp_tm_min++;
1022 }
1023
1024 void bgp_zebra_init_tm_connect(struct bgp *bgp)
1025 {
1026 int delay = 1;
1027
1028 /* if already set, do nothing
1029 */
1030 if (bgp_tm_thread_connect != NULL)
1031 return;
1032 bgp_tm_status_connected = false;
1033 bgp_tm_chunk_obtained = false;
1034 bgp_tm_min = bgp_tm_max = 0;
1035 bgp_tm_chunk_size = BGP_FLOWSPEC_TABLE_CHUNK;
1036 bgp_tm_bgp = bgp;
1037 thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
1038 &bgp_tm_thread_connect);
1039 }
1040
1041 int bgp_zebra_get_table_range(uint32_t chunk_size,
1042 uint32_t *start, uint32_t *end)
1043 {
1044 int ret;
1045
1046 if (!bgp_tm_status_connected)
1047 return -1;
1048 ret = tm_get_table_chunk(zclient, chunk_size, start, end);
1049 if (ret < 0) {
1050 flog_err(EC_BGP_TABLE_CHUNK,
1051 "BGP: Error getting table chunk %u", chunk_size);
1052 return -1;
1053 }
1054 zlog_info("BGP: Table Manager returns range from chunk %u is [%u %u]",
1055 chunk_size, *start, *end);
1056 return 0;
1057 }
1058
1059 static int update_ipv4nh_for_route_install(int nh_othervrf,
1060 struct bgp *nh_bgp,
1061 struct in_addr *nexthop,
1062 struct attr *attr,
1063 bool is_evpn,
1064 struct zapi_nexthop *api_nh)
1065 {
1066 api_nh->gate.ipv4 = *nexthop;
1067 api_nh->vrf_id = nh_bgp->vrf_id;
1068
1069 /* Need to set fields appropriately for EVPN routes imported into
1070 * a VRF (which are programmed as onlink on l3-vni SVI) as well as
1071 * connected routes leaked into a VRF.
1072 */
1073 if (is_evpn) {
1074 api_nh->type = NEXTHOP_TYPE_IPV4_IFINDEX;
1075 SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_ONLINK);
1076 api_nh->ifindex = nh_bgp->l3vni_svi_ifindex;
1077 } else if (nh_othervrf &&
1078 api_nh->gate.ipv4.s_addr == INADDR_ANY) {
1079 api_nh->type = NEXTHOP_TYPE_IFINDEX;
1080 api_nh->ifindex = attr->nh_ifindex;
1081 } else
1082 api_nh->type = NEXTHOP_TYPE_IPV4;
1083
1084 return 1;
1085 }
1086
1087 static int
1088 update_ipv6nh_for_route_install(int nh_othervrf, struct bgp *nh_bgp,
1089 struct in6_addr *nexthop,
1090 ifindex_t ifindex, struct bgp_path_info *pi,
1091 struct bgp_path_info *best_pi, bool is_evpn,
1092 struct zapi_nexthop *api_nh)
1093 {
1094 struct attr *attr;
1095
1096 attr = pi->attr;
1097 api_nh->vrf_id = nh_bgp->vrf_id;
1098
1099 if (is_evpn) {
1100 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1101 SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_ONLINK);
1102 api_nh->ifindex = nh_bgp->l3vni_svi_ifindex;
1103 } else if (nh_othervrf) {
1104 if (IN6_IS_ADDR_UNSPECIFIED(nexthop)) {
1105 api_nh->type = NEXTHOP_TYPE_IFINDEX;
1106 api_nh->ifindex = attr->nh_ifindex;
1107 } else if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
1108 if (ifindex == 0)
1109 return 0;
1110 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1111 api_nh->ifindex = ifindex;
1112 } else {
1113 api_nh->type = NEXTHOP_TYPE_IPV6;
1114 api_nh->ifindex = 0;
1115 }
1116 } else {
1117 if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
1118 if (pi == best_pi
1119 && attr->mp_nexthop_len
1120 == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL)
1121 if (pi->peer->nexthop.ifp)
1122 ifindex =
1123 pi->peer->nexthop.ifp->ifindex;
1124 if (!ifindex) {
1125 if (pi->peer->conf_if)
1126 ifindex = pi->peer->ifp->ifindex;
1127 else if (pi->peer->ifname)
1128 ifindex = ifname2ifindex(
1129 pi->peer->ifname,
1130 pi->peer->bgp->vrf_id);
1131 else if (pi->peer->nexthop.ifp)
1132 ifindex =
1133 pi->peer->nexthop.ifp->ifindex;
1134 }
1135
1136 if (ifindex == 0)
1137 return 0;
1138 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1139 api_nh->ifindex = ifindex;
1140 } else {
1141 api_nh->type = NEXTHOP_TYPE_IPV6;
1142 api_nh->ifindex = 0;
1143 }
1144 }
1145 api_nh->gate.ipv6 = *nexthop;
1146
1147 return 1;
1148 }
1149
1150 void bgp_zebra_announce(struct bgp_node *rn, struct prefix *p,
1151 struct bgp_path_info *info, struct bgp *bgp, afi_t afi,
1152 safi_t safi)
1153 {
1154 struct zapi_route api;
1155 struct zapi_nexthop *api_nh;
1156 int nh_family;
1157 unsigned int valid_nh_count = 0;
1158 int has_valid_label = 0;
1159 uint8_t distance;
1160 struct peer *peer;
1161 struct bgp_path_info *mpinfo;
1162 uint32_t metric;
1163 struct attr local_attr;
1164 struct bgp_path_info local_info;
1165 struct bgp_path_info *mpinfo_cp = &local_info;
1166 route_tag_t tag;
1167 mpls_label_t label;
1168 int nh_othervrf = 0;
1169 char buf_prefix[PREFIX_STRLEN]; /* filled in if we are debugging */
1170 bool is_evpn;
1171 int nh_updated;
1172
1173 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1174 * know of this instance.
1175 */
1176 if (!bgp_install_info_to_zebra(bgp))
1177 return;
1178
1179 if (bgp->main_zebra_update_hold)
1180 return;
1181
1182 if (bgp_debug_zebra(p))
1183 prefix2str(p, buf_prefix, sizeof(buf_prefix));
1184
1185 if (safi == SAFI_FLOWSPEC) {
1186 bgp_pbr_update_entry(bgp, &rn->p, info, afi, safi, true);
1187 return;
1188 }
1189
1190 /*
1191 * vrf leaking support (will have only one nexthop)
1192 */
1193 if (info->extra && info->extra->bgp_orig)
1194 nh_othervrf = 1;
1195
1196 /* Make Zebra API structure. */
1197 memset(&api, 0, sizeof(api));
1198 api.vrf_id = bgp->vrf_id;
1199 api.type = ZEBRA_ROUTE_BGP;
1200 api.safi = safi;
1201 api.prefix = *p;
1202 SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
1203
1204 peer = info->peer;
1205
1206 if (info->type == ZEBRA_ROUTE_BGP
1207 && info->sub_type == BGP_ROUTE_IMPORTED) {
1208
1209 /* Obtain peer from parent */
1210 if (info->extra && info->extra->parent)
1211 peer = ((struct bgp_path_info *)(info->extra->parent))
1212 ->peer;
1213 }
1214
1215 tag = info->attr->tag;
1216
1217 /* If the route's source is EVPN, flag as such. */
1218 is_evpn = is_route_parent_evpn(info);
1219 if (is_evpn)
1220 SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
1221
1222 if (peer->sort == BGP_PEER_IBGP || peer->sort == BGP_PEER_CONFED
1223 || info->sub_type == BGP_ROUTE_AGGREGATE) {
1224 SET_FLAG(api.flags, ZEBRA_FLAG_IBGP);
1225 SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
1226 }
1227
1228 if ((peer->sort == BGP_PEER_EBGP && peer->ttl != BGP_DEFAULT_TTL)
1229 || CHECK_FLAG(peer->flags, PEER_FLAG_DISABLE_CONNECTED_CHECK)
1230 || CHECK_FLAG(bgp->flags, BGP_FLAG_DISABLE_NH_CONNECTED_CHK))
1231
1232 SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
1233
1234 if (info->attr->rmap_table_id) {
1235 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
1236 api.tableid = info->attr->rmap_table_id;
1237 }
1238
1239 /* Metric is currently based on the best-path only */
1240 metric = info->attr->med;
1241 for (mpinfo = info; mpinfo; mpinfo = bgp_path_info_mpath_next(mpinfo)) {
1242 if (valid_nh_count >= multipath_num)
1243 break;
1244
1245 *mpinfo_cp = *mpinfo;
1246
1247 /* Get nexthop address-family */
1248 if (p->family == AF_INET
1249 && !BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr))
1250 nh_family = AF_INET;
1251 else if (p->family == AF_INET6
1252 || (p->family == AF_INET
1253 && BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr)))
1254 nh_family = AF_INET6;
1255 else
1256 continue;
1257
1258 api_nh = &api.nexthops[valid_nh_count];
1259 if (nh_family == AF_INET) {
1260 if (bgp_debug_zebra(&api.prefix)) {
1261 if (mpinfo->extra) {
1262 zlog_debug(
1263 "%s: p=%s, bgp_is_valid_label: %d",
1264 __func__, buf_prefix,
1265 bgp_is_valid_label(
1266 &mpinfo->extra
1267 ->label[0]));
1268 } else {
1269 zlog_debug(
1270 "%s: p=%s, extra is NULL, no label",
1271 __func__, buf_prefix);
1272 }
1273 }
1274
1275 if (bgp->table_map[afi][safi].name) {
1276 /* Copy info and attributes, so the route-map
1277 apply doesn't modify the BGP route info. */
1278 local_attr = *mpinfo->attr;
1279 mpinfo_cp->attr = &local_attr;
1280 }
1281
1282 if (bgp->table_map[afi][safi].name) {
1283 if (!bgp_table_map_apply(
1284 bgp->table_map[afi][safi].map, p,
1285 mpinfo_cp))
1286 continue;
1287
1288 /* metric/tag is only allowed to be
1289 * overridden on 1st nexthop */
1290 if (mpinfo == info) {
1291 metric = mpinfo_cp->attr->med;
1292 tag = mpinfo_cp->attr->tag;
1293 }
1294 }
1295
1296 nh_updated = update_ipv4nh_for_route_install(
1297 nh_othervrf,
1298 nh_othervrf ?
1299 info->extra->bgp_orig : bgp,
1300 &mpinfo_cp->attr->nexthop,
1301 mpinfo_cp->attr, is_evpn, api_nh);
1302 } else {
1303 ifindex_t ifindex = IFINDEX_INTERNAL;
1304 struct in6_addr *nexthop;
1305
1306 if (bgp->table_map[afi][safi].name) {
1307 /* Copy info and attributes, so the route-map
1308 apply doesn't modify the BGP route info. */
1309 local_attr = *mpinfo->attr;
1310 mpinfo_cp->attr = &local_attr;
1311 }
1312
1313 if (bgp->table_map[afi][safi].name) {
1314 /* Copy info and attributes, so the route-map
1315 apply doesn't modify the BGP route info. */
1316 local_attr = *mpinfo->attr;
1317 mpinfo_cp->attr = &local_attr;
1318
1319 if (!bgp_table_map_apply(
1320 bgp->table_map[afi][safi].map, p,
1321 mpinfo_cp))
1322 continue;
1323
1324 /* metric/tag is only allowed to be
1325 * overridden on 1st nexthop */
1326 if (mpinfo == info) {
1327 metric = mpinfo_cp->attr->med;
1328 tag = mpinfo_cp->attr->tag;
1329 }
1330 }
1331 nexthop = bgp_path_info_to_ipv6_nexthop(mpinfo_cp,
1332 &ifindex);
1333 nh_updated = update_ipv6nh_for_route_install(
1334 nh_othervrf, nh_othervrf ?
1335 info->extra->bgp_orig : bgp,
1336 nexthop, ifindex,
1337 mpinfo, info, is_evpn, api_nh);
1338 }
1339
1340 /* Did we get proper nexthop info to update zebra? */
1341 if (!nh_updated)
1342 continue;
1343
1344 if (mpinfo->extra
1345 && bgp_is_valid_label(&mpinfo->extra->label[0])
1346 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)) {
1347 has_valid_label = 1;
1348 label = label_pton(&mpinfo->extra->label[0]);
1349
1350 SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_LABEL);
1351
1352 api_nh->label_num = 1;
1353 api_nh->labels[0] = label;
1354 }
1355 memcpy(&api_nh->rmac, &(mpinfo->attr->rmac),
1356 sizeof(struct ethaddr));
1357 valid_nh_count++;
1358 }
1359
1360 /*
1361 * When we create an aggregate route we must also
1362 * install a Null0 route in the RIB, so overwrite
1363 * what was written into api with a blackhole route
1364 */
1365 if (info->sub_type == BGP_ROUTE_AGGREGATE)
1366 zapi_route_set_blackhole(&api, BLACKHOLE_NULL);
1367 else
1368 api.nexthop_num = valid_nh_count;
1369
1370 SET_FLAG(api.message, ZAPI_MESSAGE_METRIC);
1371 api.metric = metric;
1372
1373 if (tag) {
1374 SET_FLAG(api.message, ZAPI_MESSAGE_TAG);
1375 api.tag = tag;
1376 }
1377
1378 distance = bgp_distance_apply(p, info, afi, safi, bgp);
1379 if (distance) {
1380 SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
1381 api.distance = distance;
1382 }
1383
1384 if (bgp_debug_zebra(p)) {
1385 char prefix_buf[PREFIX_STRLEN];
1386 char nh_buf[INET6_ADDRSTRLEN];
1387 char eth_buf[ETHER_ADDR_STRLEN + 7] = {'\0'};
1388 char buf1[ETHER_ADDR_STRLEN];
1389 char label_buf[20];
1390 int i;
1391
1392 prefix2str(&api.prefix, prefix_buf, sizeof(prefix_buf));
1393 zlog_debug("Tx route %s VRF %u %s metric %u tag %" ROUTE_TAG_PRI
1394 " count %d",
1395 valid_nh_count ? "add" : "delete", bgp->vrf_id,
1396 prefix_buf, api.metric, api.tag, api.nexthop_num);
1397 for (i = 0; i < api.nexthop_num; i++) {
1398 api_nh = &api.nexthops[i];
1399
1400 switch (api_nh->type) {
1401 case NEXTHOP_TYPE_IFINDEX:
1402 nh_buf[0] = '\0';
1403 break;
1404 case NEXTHOP_TYPE_IPV4:
1405 case NEXTHOP_TYPE_IPV4_IFINDEX:
1406 nh_family = AF_INET;
1407 inet_ntop(nh_family, &api_nh->gate, nh_buf,
1408 sizeof(nh_buf));
1409 break;
1410 case NEXTHOP_TYPE_IPV6:
1411 case NEXTHOP_TYPE_IPV6_IFINDEX:
1412 nh_family = AF_INET6;
1413 inet_ntop(nh_family, &api_nh->gate, nh_buf,
1414 sizeof(nh_buf));
1415 break;
1416 case NEXTHOP_TYPE_BLACKHOLE:
1417 strlcpy(nh_buf, "blackhole", sizeof(nh_buf));
1418 break;
1419 default:
1420 /* Note: add new nexthop case */
1421 assert(0);
1422 break;
1423 }
1424
1425 label_buf[0] = '\0';
1426 eth_buf[0] = '\0';
1427 if (has_valid_label
1428 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE))
1429 snprintf(label_buf, sizeof(label_buf),
1430 "label %u", api_nh->labels[0]);
1431 if (CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)
1432 && !is_zero_mac(&api_nh->rmac))
1433 snprintf(eth_buf, sizeof(eth_buf), " RMAC %s",
1434 prefix_mac2str(&api_nh->rmac,
1435 buf1, sizeof(buf1)));
1436 zlog_debug(" nhop [%d]: %s if %u VRF %u %s %s",
1437 i + 1, nh_buf, api_nh->ifindex,
1438 api_nh->vrf_id, label_buf, eth_buf);
1439 }
1440 }
1441
1442 if (bgp_debug_zebra(p)) {
1443 int recursion_flag = 0;
1444
1445 if (CHECK_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION))
1446 recursion_flag = 1;
1447
1448 zlog_debug("%s: %s: announcing to zebra (recursion %sset)",
1449 __func__, buf_prefix,
1450 (recursion_flag ? "" : "NOT "));
1451 }
1452 zclient_route_send(valid_nh_count ? ZEBRA_ROUTE_ADD
1453 : ZEBRA_ROUTE_DELETE,
1454 zclient, &api);
1455 }
1456
1457 /* Announce all routes of a table to zebra */
1458 void bgp_zebra_announce_table(struct bgp *bgp, afi_t afi, safi_t safi)
1459 {
1460 struct bgp_node *rn;
1461 struct bgp_table *table;
1462 struct bgp_path_info *pi;
1463
1464 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1465 * know of this instance.
1466 */
1467 if (!bgp_install_info_to_zebra(bgp))
1468 return;
1469
1470 table = bgp->rib[afi][safi];
1471 if (!table)
1472 return;
1473
1474 for (rn = bgp_table_top(table); rn; rn = bgp_route_next(rn))
1475 for (pi = bgp_node_get_bgp_path_info(rn); pi; pi = pi->next)
1476 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED) &&
1477
1478 (pi->type == ZEBRA_ROUTE_BGP
1479 && (pi->sub_type == BGP_ROUTE_NORMAL
1480 || pi->sub_type == BGP_ROUTE_IMPORTED)))
1481
1482 bgp_zebra_announce(rn, &rn->p, pi, bgp, afi,
1483 safi);
1484 }
1485
1486 void bgp_zebra_withdraw(struct prefix *p, struct bgp_path_info *info,
1487 struct bgp *bgp, safi_t safi)
1488 {
1489 struct zapi_route api;
1490 struct peer *peer;
1491
1492 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1493 * know of this instance.
1494 */
1495 if (!bgp_install_info_to_zebra(bgp))
1496 return;
1497
1498 if (safi == SAFI_FLOWSPEC) {
1499 peer = info->peer;
1500 bgp_pbr_update_entry(peer->bgp, p, info, AFI_IP, safi, false);
1501 return;
1502 }
1503
1504 memset(&api, 0, sizeof(api));
1505 api.vrf_id = bgp->vrf_id;
1506 api.type = ZEBRA_ROUTE_BGP;
1507 api.safi = safi;
1508 api.prefix = *p;
1509
1510 if (info->attr->rmap_table_id) {
1511 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
1512 api.tableid = info->attr->rmap_table_id;
1513 }
1514
1515 /* If the route's source is EVPN, flag as such. */
1516 if (is_route_parent_evpn(info))
1517 SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
1518
1519 if (bgp_debug_zebra(p)) {
1520 char buf[PREFIX_STRLEN];
1521
1522 prefix2str(&api.prefix, buf, sizeof(buf));
1523 zlog_debug("Tx route delete VRF %u %s", bgp->vrf_id, buf);
1524 }
1525
1526 zclient_route_send(ZEBRA_ROUTE_DELETE, zclient, &api);
1527 }
1528
1529 struct bgp_redist *bgp_redist_lookup(struct bgp *bgp, afi_t afi, uint8_t type,
1530 unsigned short instance)
1531 {
1532 struct list *red_list;
1533 struct listnode *node;
1534 struct bgp_redist *red;
1535
1536 red_list = bgp->redist[afi][type];
1537 if (!red_list)
1538 return (NULL);
1539
1540 for (ALL_LIST_ELEMENTS_RO(red_list, node, red))
1541 if (red->instance == instance)
1542 return red;
1543
1544 return NULL;
1545 }
1546
1547 struct bgp_redist *bgp_redist_add(struct bgp *bgp, afi_t afi, uint8_t type,
1548 unsigned short instance)
1549 {
1550 struct list *red_list;
1551 struct bgp_redist *red;
1552
1553 red = bgp_redist_lookup(bgp, afi, type, instance);
1554 if (red)
1555 return red;
1556
1557 if (!bgp->redist[afi][type])
1558 bgp->redist[afi][type] = list_new();
1559
1560 red_list = bgp->redist[afi][type];
1561 red = XCALLOC(MTYPE_BGP_REDIST, sizeof(struct bgp_redist));
1562 red->instance = instance;
1563
1564 listnode_add(red_list, red);
1565
1566 return red;
1567 }
1568
1569 static void bgp_redist_del(struct bgp *bgp, afi_t afi, uint8_t type,
1570 unsigned short instance)
1571 {
1572 struct bgp_redist *red;
1573
1574 red = bgp_redist_lookup(bgp, afi, type, instance);
1575
1576 if (red) {
1577 listnode_delete(bgp->redist[afi][type], red);
1578 XFREE(MTYPE_BGP_REDIST, red);
1579 if (!bgp->redist[afi][type]->count)
1580 list_delete(&bgp->redist[afi][type]);
1581 }
1582 }
1583
1584 /* Other routes redistribution into BGP. */
1585 int bgp_redistribute_set(struct bgp *bgp, afi_t afi, int type,
1586 unsigned short instance, bool changed)
1587 {
1588 /* If redistribute options are changed call
1589 * bgp_redistribute_unreg() to reset the option and withdraw
1590 * the routes
1591 */
1592 if (changed)
1593 bgp_redistribute_unreg(bgp, afi, type, instance);
1594
1595 /* Return if already redistribute flag is set. */
1596 if (instance) {
1597 if (redist_check_instance(&zclient->mi_redist[afi][type],
1598 instance))
1599 return CMD_WARNING;
1600
1601 redist_add_instance(&zclient->mi_redist[afi][type], instance);
1602 } else {
1603 if (vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
1604 return CMD_WARNING;
1605
1606 #if ENABLE_BGP_VNC
1607 if (EVPN_ENABLED(bgp) && type == ZEBRA_ROUTE_VNC_DIRECT) {
1608 vnc_export_bgp_enable(
1609 bgp, afi); /* only enables if mode bits cfg'd */
1610 }
1611 #endif
1612
1613 vrf_bitmap_set(zclient->redist[afi][type], bgp->vrf_id);
1614 }
1615
1616 /*
1617 * Don't try to register if we're not connected to Zebra or Zebra
1618 * doesn't know of this instance.
1619 *
1620 * When we come up later well resend if needed.
1621 */
1622 if (!bgp_install_info_to_zebra(bgp))
1623 return CMD_SUCCESS;
1624
1625 if (BGP_DEBUG(zebra, ZEBRA))
1626 zlog_debug("Tx redistribute add VRF %u afi %d %s %d",
1627 bgp->vrf_id, afi, zebra_route_string(type),
1628 instance);
1629
1630 /* Send distribute add message to zebra. */
1631 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
1632 instance, bgp->vrf_id);
1633
1634 return CMD_SUCCESS;
1635 }
1636
1637 int bgp_redistribute_resend(struct bgp *bgp, afi_t afi, int type,
1638 unsigned short instance)
1639 {
1640 /* Don't try to send if we're not connected to Zebra or Zebra doesn't
1641 * know of this instance.
1642 */
1643 if (!bgp_install_info_to_zebra(bgp))
1644 return -1;
1645
1646 if (BGP_DEBUG(zebra, ZEBRA))
1647 zlog_debug("Tx redistribute del/add VRF %u afi %d %s %d",
1648 bgp->vrf_id, afi, zebra_route_string(type),
1649 instance);
1650
1651 /* Send distribute add message to zebra. */
1652 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi, type,
1653 instance, bgp->vrf_id);
1654 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
1655 instance, bgp->vrf_id);
1656
1657 return 0;
1658 }
1659
1660 /* Redistribute with route-map specification. */
1661 int bgp_redistribute_rmap_set(struct bgp_redist *red, const char *name,
1662 struct route_map *route_map)
1663 {
1664 if (red->rmap.name && (strcmp(red->rmap.name, name) == 0))
1665 return 0;
1666
1667 XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
1668 /* Decrement the count for existing routemap and
1669 * increment the count for new route map.
1670 */
1671 route_map_counter_decrement(red->rmap.map);
1672 red->rmap.name = XSTRDUP(MTYPE_ROUTE_MAP_NAME, name);
1673 red->rmap.map = route_map;
1674 route_map_counter_increment(red->rmap.map);
1675
1676 return 1;
1677 }
1678
1679 /* Redistribute with metric specification. */
1680 int bgp_redistribute_metric_set(struct bgp *bgp, struct bgp_redist *red,
1681 afi_t afi, int type, uint32_t metric)
1682 {
1683 struct bgp_node *rn;
1684 struct bgp_path_info *pi;
1685
1686 if (red->redist_metric_flag && red->redist_metric == metric)
1687 return 0;
1688
1689 red->redist_metric_flag = 1;
1690 red->redist_metric = metric;
1691
1692 for (rn = bgp_table_top(bgp->rib[afi][SAFI_UNICAST]); rn;
1693 rn = bgp_route_next(rn)) {
1694 for (pi = bgp_node_get_bgp_path_info(rn); pi; pi = pi->next) {
1695 if (pi->sub_type == BGP_ROUTE_REDISTRIBUTE
1696 && pi->type == type
1697 && pi->instance == red->instance) {
1698 struct attr *old_attr;
1699 struct attr new_attr;
1700
1701 new_attr = *pi->attr;
1702 new_attr.med = red->redist_metric;
1703 old_attr = pi->attr;
1704 pi->attr = bgp_attr_intern(&new_attr);
1705 bgp_attr_unintern(&old_attr);
1706
1707 bgp_path_info_set_flag(rn, pi,
1708 BGP_PATH_ATTR_CHANGED);
1709 bgp_process(bgp, rn, afi, SAFI_UNICAST);
1710 }
1711 }
1712 }
1713
1714 return 1;
1715 }
1716
1717 /* Unset redistribution. */
1718 int bgp_redistribute_unreg(struct bgp *bgp, afi_t afi, int type,
1719 unsigned short instance)
1720 {
1721 struct bgp_redist *red;
1722
1723 red = bgp_redist_lookup(bgp, afi, type, instance);
1724 if (!red)
1725 return CMD_SUCCESS;
1726
1727 /* Return if zebra connection is disabled. */
1728 if (instance) {
1729 if (!redist_check_instance(&zclient->mi_redist[afi][type],
1730 instance))
1731 return CMD_WARNING;
1732 redist_del_instance(&zclient->mi_redist[afi][type], instance);
1733 } else {
1734 if (!vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
1735 return CMD_WARNING;
1736 vrf_bitmap_unset(zclient->redist[afi][type], bgp->vrf_id);
1737 }
1738
1739
1740 if (bgp_install_info_to_zebra(bgp)) {
1741 /* Send distribute delete message to zebra. */
1742 if (BGP_DEBUG(zebra, ZEBRA))
1743 zlog_debug("Tx redistribute del VRF %u afi %d %s %d",
1744 bgp->vrf_id, afi, zebra_route_string(type),
1745 instance);
1746 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi,
1747 type, instance, bgp->vrf_id);
1748 }
1749
1750 /* Withdraw redistributed routes from current BGP's routing table. */
1751 bgp_redistribute_withdraw(bgp, afi, type, instance);
1752
1753 return CMD_SUCCESS;
1754 }
1755
1756 /* Unset redistribution. */
1757 int bgp_redistribute_unset(struct bgp *bgp, afi_t afi, int type,
1758 unsigned short instance)
1759 {
1760 struct bgp_redist *red;
1761
1762 /*
1763 * vnc and vpn->vrf checks must be before red check because
1764 * they operate within bgpd irrespective of zebra connection
1765 * status. red lookup fails if there is no zebra connection.
1766 */
1767 #if ENABLE_BGP_VNC
1768 if (EVPN_ENABLED(bgp) && type == ZEBRA_ROUTE_VNC_DIRECT) {
1769 vnc_export_bgp_disable(bgp, afi);
1770 }
1771 #endif
1772
1773 red = bgp_redist_lookup(bgp, afi, type, instance);
1774 if (!red)
1775 return CMD_SUCCESS;
1776
1777 bgp_redistribute_unreg(bgp, afi, type, instance);
1778
1779 /* Unset route-map. */
1780 XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
1781 route_map_counter_decrement(red->rmap.map);
1782 red->rmap.map = NULL;
1783
1784 /* Unset metric. */
1785 red->redist_metric_flag = 0;
1786 red->redist_metric = 0;
1787
1788 bgp_redist_del(bgp, afi, type, instance);
1789
1790 return CMD_SUCCESS;
1791 }
1792
1793 void bgp_redistribute_redo(struct bgp *bgp)
1794 {
1795 afi_t afi;
1796 int i;
1797 struct list *red_list;
1798 struct listnode *node;
1799 struct bgp_redist *red;
1800
1801 for (afi = AFI_IP; afi < AFI_MAX; afi++) {
1802 for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
1803
1804 red_list = bgp->redist[afi][i];
1805 if (!red_list)
1806 continue;
1807
1808 for (ALL_LIST_ELEMENTS_RO(red_list, node, red)) {
1809 bgp_redistribute_resend(bgp, afi, i,
1810 red->instance);
1811 }
1812 }
1813 }
1814 }
1815
1816 /* Unset redistribute vrf bitmap during triggers like
1817 restart networking or delete VRFs */
1818 void bgp_unset_redist_vrf_bitmaps(struct bgp *bgp, vrf_id_t old_vrf_id)
1819 {
1820 int i;
1821 afi_t afi;
1822
1823 for (afi = AFI_IP; afi < AFI_MAX; afi++)
1824 for (i = 0; i < ZEBRA_ROUTE_MAX; i++)
1825 if (vrf_bitmap_check(zclient->redist[afi][i],
1826 old_vrf_id))
1827 vrf_bitmap_unset(zclient->redist[afi][i],
1828 old_vrf_id);
1829 return;
1830 }
1831
1832 void bgp_zclient_reset(void)
1833 {
1834 zclient_reset(zclient);
1835 }
1836
1837 /* Register this instance with Zebra. Invoked upon connect (for
1838 * default instance) and when other VRFs are learnt (or created and
1839 * already learnt).
1840 */
1841 void bgp_zebra_instance_register(struct bgp *bgp)
1842 {
1843 /* Don't try to register if we're not connected to Zebra */
1844 if (!zclient || zclient->sock < 0)
1845 return;
1846
1847 if (BGP_DEBUG(zebra, ZEBRA))
1848 zlog_debug("Registering VRF %u", bgp->vrf_id);
1849
1850 /* Register for router-id, interfaces, redistributed routes. */
1851 zclient_send_reg_requests(zclient, bgp->vrf_id);
1852
1853 /* For EVPN instance, register to learn about VNIs, if appropriate. */
1854 if (bgp->advertise_all_vni)
1855 bgp_zebra_advertise_all_vni(bgp, 1);
1856
1857 bgp_nht_register_nexthops(bgp);
1858 }
1859
1860 /* Deregister this instance with Zebra. Invoked upon the instance
1861 * being deleted (default or VRF) and it is already registered.
1862 */
1863 void bgp_zebra_instance_deregister(struct bgp *bgp)
1864 {
1865 /* Don't try to deregister if we're not connected to Zebra */
1866 if (zclient->sock < 0)
1867 return;
1868
1869 if (BGP_DEBUG(zebra, ZEBRA))
1870 zlog_debug("Deregistering VRF %u", bgp->vrf_id);
1871
1872 /* For EVPN instance, unregister learning about VNIs, if appropriate. */
1873 if (bgp->advertise_all_vni)
1874 bgp_zebra_advertise_all_vni(bgp, 0);
1875
1876 /* Deregister for router-id, interfaces, redistributed routes. */
1877 zclient_send_dereg_requests(zclient, bgp->vrf_id);
1878 }
1879
1880 void bgp_zebra_initiate_radv(struct bgp *bgp, struct peer *peer)
1881 {
1882 int ra_interval = BGP_UNNUM_DEFAULT_RA_INTERVAL;
1883
1884 /* Don't try to initiate if we're not connected to Zebra */
1885 if (zclient->sock < 0)
1886 return;
1887
1888 if (BGP_DEBUG(zebra, ZEBRA))
1889 zlog_debug("%u: Initiating RA for peer %s", bgp->vrf_id,
1890 peer->host);
1891
1892 zclient_send_interface_radv_req(zclient, bgp->vrf_id, peer->ifp, 1,
1893 ra_interval);
1894 }
1895
1896 void bgp_zebra_terminate_radv(struct bgp *bgp, struct peer *peer)
1897 {
1898 /* Don't try to terminate if we're not connected to Zebra */
1899 if (zclient->sock < 0)
1900 return;
1901
1902 if (BGP_DEBUG(zebra, ZEBRA))
1903 zlog_debug("%u: Terminating RA for peer %s", bgp->vrf_id,
1904 peer->host);
1905
1906 zclient_send_interface_radv_req(zclient, bgp->vrf_id, peer->ifp, 0, 0);
1907 }
1908
1909 int bgp_zebra_advertise_subnet(struct bgp *bgp, int advertise, vni_t vni)
1910 {
1911 struct stream *s = NULL;
1912
1913 /* Check socket. */
1914 if (!zclient || zclient->sock < 0)
1915 return 0;
1916
1917 /* Don't try to register if Zebra doesn't know of this instance. */
1918 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
1919 if (BGP_DEBUG(zebra, ZEBRA))
1920 zlog_debug("%s: No zebra instance to talk to, cannot advertise subnet",
1921 __PRETTY_FUNCTION__);
1922 return 0;
1923 }
1924
1925 s = zclient->obuf;
1926 stream_reset(s);
1927
1928 zclient_create_header(s, ZEBRA_ADVERTISE_SUBNET, bgp->vrf_id);
1929 stream_putc(s, advertise);
1930 stream_put3(s, vni);
1931 stream_putw_at(s, 0, stream_get_endp(s));
1932
1933 return zclient_send_message(zclient);
1934 }
1935
1936 int bgp_zebra_advertise_svi_macip(struct bgp *bgp, int advertise, vni_t vni)
1937 {
1938 struct stream *s = NULL;
1939
1940 /* Check socket. */
1941 if (!zclient || zclient->sock < 0)
1942 return 0;
1943
1944 /* Don't try to register if Zebra doesn't know of this instance. */
1945 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
1946 return 0;
1947
1948 s = zclient->obuf;
1949 stream_reset(s);
1950
1951 zclient_create_header(s, ZEBRA_ADVERTISE_SVI_MACIP, bgp->vrf_id);
1952 stream_putc(s, advertise);
1953 stream_putl(s, vni);
1954 stream_putw_at(s, 0, stream_get_endp(s));
1955
1956 return zclient_send_message(zclient);
1957 }
1958
1959 int bgp_zebra_advertise_gw_macip(struct bgp *bgp, int advertise, vni_t vni)
1960 {
1961 struct stream *s = NULL;
1962
1963 /* Check socket. */
1964 if (!zclient || zclient->sock < 0)
1965 return 0;
1966
1967 /* Don't try to register if Zebra doesn't know of this instance. */
1968 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
1969 if (BGP_DEBUG(zebra, ZEBRA))
1970 zlog_debug("%s: No zebra instance to talk to, not installing gw_macip",
1971 __PRETTY_FUNCTION__);
1972 return 0;
1973 }
1974
1975 s = zclient->obuf;
1976 stream_reset(s);
1977
1978 zclient_create_header(s, ZEBRA_ADVERTISE_DEFAULT_GW, bgp->vrf_id);
1979 stream_putc(s, advertise);
1980 stream_putl(s, vni);
1981 stream_putw_at(s, 0, stream_get_endp(s));
1982
1983 return zclient_send_message(zclient);
1984 }
1985
1986 int bgp_zebra_vxlan_flood_control(struct bgp *bgp,
1987 enum vxlan_flood_control flood_ctrl)
1988 {
1989 struct stream *s;
1990
1991 /* Check socket. */
1992 if (!zclient || zclient->sock < 0)
1993 return 0;
1994
1995 /* Don't try to register if Zebra doesn't know of this instance. */
1996 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
1997 if (BGP_DEBUG(zebra, ZEBRA))
1998 zlog_debug("%s: No zebra instance to talk to, not installing all vni",
1999 __PRETTY_FUNCTION__);
2000 return 0;
2001 }
2002
2003 s = zclient->obuf;
2004 stream_reset(s);
2005
2006 zclient_create_header(s, ZEBRA_VXLAN_FLOOD_CONTROL, bgp->vrf_id);
2007 stream_putc(s, flood_ctrl);
2008 stream_putw_at(s, 0, stream_get_endp(s));
2009
2010 return zclient_send_message(zclient);
2011 }
2012
2013 int bgp_zebra_advertise_all_vni(struct bgp *bgp, int advertise)
2014 {
2015 struct stream *s;
2016
2017 /* Check socket. */
2018 if (!zclient || zclient->sock < 0)
2019 return 0;
2020
2021 /* Don't try to register if Zebra doesn't know of this instance. */
2022 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
2023 return 0;
2024
2025 s = zclient->obuf;
2026 stream_reset(s);
2027
2028 zclient_create_header(s, ZEBRA_ADVERTISE_ALL_VNI, bgp->vrf_id);
2029 stream_putc(s, advertise);
2030 /* Also inform current BUM handling setting. This is really
2031 * relevant only when 'advertise' is set.
2032 */
2033 stream_putc(s, bgp->vxlan_flood_ctrl);
2034 stream_putw_at(s, 0, stream_get_endp(s));
2035
2036 return zclient_send_message(zclient);
2037 }
2038
2039 int bgp_zebra_dup_addr_detection(struct bgp *bgp)
2040 {
2041 struct stream *s;
2042
2043 /* Check socket. */
2044 if (!zclient || zclient->sock < 0)
2045 return 0;
2046
2047 /* Don't try to register if Zebra doesn't know of this instance. */
2048 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
2049 return 0;
2050
2051 if (BGP_DEBUG(zebra, ZEBRA))
2052 zlog_debug("dup addr detect %s max_moves %u time %u freeze %s freeze_time %u",
2053 bgp->evpn_info->dup_addr_detect ?
2054 "enable" : "disable",
2055 bgp->evpn_info->dad_max_moves,
2056 bgp->evpn_info->dad_time,
2057 bgp->evpn_info->dad_freeze ?
2058 "enable" : "disable",
2059 bgp->evpn_info->dad_freeze_time);
2060
2061 s = zclient->obuf;
2062 stream_reset(s);
2063 zclient_create_header(s, ZEBRA_DUPLICATE_ADDR_DETECTION,
2064 bgp->vrf_id);
2065 stream_putl(s, bgp->evpn_info->dup_addr_detect);
2066 stream_putl(s, bgp->evpn_info->dad_time);
2067 stream_putl(s, bgp->evpn_info->dad_max_moves);
2068 stream_putl(s, bgp->evpn_info->dad_freeze);
2069 stream_putl(s, bgp->evpn_info->dad_freeze_time);
2070 stream_putw_at(s, 0, stream_get_endp(s));
2071
2072 return zclient_send_message(zclient);
2073 }
2074
2075 static int rule_notify_owner(ZAPI_CALLBACK_ARGS)
2076 {
2077 uint32_t seqno, priority, unique;
2078 enum zapi_rule_notify_owner note;
2079 struct bgp_pbr_action *bgp_pbra;
2080 struct bgp_pbr_rule *bgp_pbr = NULL;
2081 ifindex_t ifi;
2082
2083 if (!zapi_rule_notify_decode(zclient->ibuf, &seqno, &priority, &unique,
2084 &ifi, &note))
2085 return -1;
2086
2087 bgp_pbra = bgp_pbr_action_rule_lookup(vrf_id, unique);
2088 if (!bgp_pbra) {
2089 /* look in bgp pbr rule */
2090 bgp_pbr = bgp_pbr_rule_lookup(vrf_id, unique);
2091 if (!bgp_pbr && note != ZAPI_RULE_REMOVED) {
2092 if (BGP_DEBUG(zebra, ZEBRA))
2093 zlog_debug("%s: Fail to look BGP rule (%u)",
2094 __PRETTY_FUNCTION__, unique);
2095 return 0;
2096 }
2097 }
2098
2099 switch (note) {
2100 case ZAPI_RULE_FAIL_INSTALL:
2101 if (BGP_DEBUG(zebra, ZEBRA))
2102 zlog_debug("%s: Received RULE_FAIL_INSTALL",
2103 __PRETTY_FUNCTION__);
2104 if (bgp_pbra) {
2105 bgp_pbra->installed = false;
2106 bgp_pbra->install_in_progress = false;
2107 } else {
2108 bgp_pbr->installed = false;
2109 bgp_pbr->install_in_progress = false;
2110 }
2111 break;
2112 case ZAPI_RULE_INSTALLED:
2113 if (bgp_pbra) {
2114 bgp_pbra->installed = true;
2115 bgp_pbra->install_in_progress = false;
2116 } else {
2117 struct bgp_path_info *path;
2118 struct bgp_path_info_extra *extra;
2119
2120 bgp_pbr->installed = true;
2121 bgp_pbr->install_in_progress = false;
2122 bgp_pbr->action->refcnt++;
2123 /* link bgp_info to bgp_pbr */
2124 path = (struct bgp_path_info *)bgp_pbr->path;
2125 extra = bgp_path_info_extra_get(path);
2126 listnode_add_force(&extra->bgp_fs_iprule,
2127 bgp_pbr);
2128 }
2129 if (BGP_DEBUG(zebra, ZEBRA))
2130 zlog_debug("%s: Received RULE_INSTALLED",
2131 __PRETTY_FUNCTION__);
2132 break;
2133 case ZAPI_RULE_FAIL_REMOVE:
2134 case ZAPI_RULE_REMOVED:
2135 if (BGP_DEBUG(zebra, ZEBRA))
2136 zlog_debug("%s: Received RULE REMOVED",
2137 __PRETTY_FUNCTION__);
2138 break;
2139 }
2140
2141 return 0;
2142 }
2143
2144 static int ipset_notify_owner(ZAPI_CALLBACK_ARGS)
2145 {
2146 uint32_t unique;
2147 enum zapi_ipset_notify_owner note;
2148 struct bgp_pbr_match *bgp_pbim;
2149
2150 if (!zapi_ipset_notify_decode(zclient->ibuf,
2151 &unique,
2152 &note))
2153 return -1;
2154
2155 bgp_pbim = bgp_pbr_match_ipset_lookup(vrf_id, unique);
2156 if (!bgp_pbim) {
2157 if (BGP_DEBUG(zebra, ZEBRA))
2158 zlog_debug("%s: Fail to look BGP match ( %u, ID %u)",
2159 __PRETTY_FUNCTION__, note, unique);
2160 return 0;
2161 }
2162
2163 switch (note) {
2164 case ZAPI_IPSET_FAIL_INSTALL:
2165 if (BGP_DEBUG(zebra, ZEBRA))
2166 zlog_debug("%s: Received IPSET_FAIL_INSTALL",
2167 __PRETTY_FUNCTION__);
2168 bgp_pbim->installed = false;
2169 bgp_pbim->install_in_progress = false;
2170 break;
2171 case ZAPI_IPSET_INSTALLED:
2172 bgp_pbim->installed = true;
2173 bgp_pbim->install_in_progress = false;
2174 if (BGP_DEBUG(zebra, ZEBRA))
2175 zlog_debug("%s: Received IPSET_INSTALLED",
2176 __PRETTY_FUNCTION__);
2177 break;
2178 case ZAPI_IPSET_FAIL_REMOVE:
2179 case ZAPI_IPSET_REMOVED:
2180 if (BGP_DEBUG(zebra, ZEBRA))
2181 zlog_debug("%s: Received IPSET REMOVED",
2182 __PRETTY_FUNCTION__);
2183 break;
2184 }
2185
2186 return 0;
2187 }
2188
2189 static int ipset_entry_notify_owner(ZAPI_CALLBACK_ARGS)
2190 {
2191 uint32_t unique;
2192 char ipset_name[ZEBRA_IPSET_NAME_SIZE];
2193 enum zapi_ipset_entry_notify_owner note;
2194 struct bgp_pbr_match_entry *bgp_pbime;
2195
2196 if (!zapi_ipset_entry_notify_decode(
2197 zclient->ibuf,
2198 &unique,
2199 ipset_name,
2200 &note))
2201 return -1;
2202 bgp_pbime = bgp_pbr_match_ipset_entry_lookup(vrf_id,
2203 ipset_name,
2204 unique);
2205 if (!bgp_pbime) {
2206 if (BGP_DEBUG(zebra, ZEBRA))
2207 zlog_debug("%s: Fail to look BGP match entry (%u, ID %u)",
2208 __PRETTY_FUNCTION__, note, unique);
2209 return 0;
2210 }
2211
2212 switch (note) {
2213 case ZAPI_IPSET_ENTRY_FAIL_INSTALL:
2214 if (BGP_DEBUG(zebra, ZEBRA))
2215 zlog_debug("%s: Received IPSET_ENTRY_FAIL_INSTALL",
2216 __PRETTY_FUNCTION__);
2217 bgp_pbime->installed = false;
2218 bgp_pbime->install_in_progress = false;
2219 break;
2220 case ZAPI_IPSET_ENTRY_INSTALLED:
2221 {
2222 struct bgp_path_info *path;
2223 struct bgp_path_info_extra *extra;
2224
2225 bgp_pbime->installed = true;
2226 bgp_pbime->install_in_progress = false;
2227 if (BGP_DEBUG(zebra, ZEBRA))
2228 zlog_debug("%s: Received IPSET_ENTRY_INSTALLED",
2229 __PRETTY_FUNCTION__);
2230 /* link bgp_path_info to bpme */
2231 path = (struct bgp_path_info *)bgp_pbime->path;
2232 extra = bgp_path_info_extra_get(path);
2233 listnode_add_force(&extra->bgp_fs_pbr, bgp_pbime);
2234 }
2235 break;
2236 case ZAPI_IPSET_ENTRY_FAIL_REMOVE:
2237 case ZAPI_IPSET_ENTRY_REMOVED:
2238 if (BGP_DEBUG(zebra, ZEBRA))
2239 zlog_debug("%s: Received IPSET_ENTRY_REMOVED",
2240 __PRETTY_FUNCTION__);
2241 break;
2242 }
2243 return 0;
2244 }
2245
2246 static int iptable_notify_owner(ZAPI_CALLBACK_ARGS)
2247 {
2248 uint32_t unique;
2249 enum zapi_iptable_notify_owner note;
2250 struct bgp_pbr_match *bgpm;
2251
2252 if (!zapi_iptable_notify_decode(
2253 zclient->ibuf,
2254 &unique,
2255 &note))
2256 return -1;
2257 bgpm = bgp_pbr_match_iptable_lookup(vrf_id, unique);
2258 if (!bgpm) {
2259 if (BGP_DEBUG(zebra, ZEBRA))
2260 zlog_debug("%s: Fail to look BGP iptable (%u %u)",
2261 __PRETTY_FUNCTION__, note, unique);
2262 return 0;
2263 }
2264 switch (note) {
2265 case ZAPI_IPTABLE_FAIL_INSTALL:
2266 if (BGP_DEBUG(zebra, ZEBRA))
2267 zlog_debug("%s: Received IPTABLE_FAIL_INSTALL",
2268 __PRETTY_FUNCTION__);
2269 bgpm->installed_in_iptable = false;
2270 bgpm->install_iptable_in_progress = false;
2271 break;
2272 case ZAPI_IPTABLE_INSTALLED:
2273 bgpm->installed_in_iptable = true;
2274 bgpm->install_iptable_in_progress = false;
2275 if (BGP_DEBUG(zebra, ZEBRA))
2276 zlog_debug("%s: Received IPTABLE_INSTALLED",
2277 __PRETTY_FUNCTION__);
2278 bgpm->action->refcnt++;
2279 break;
2280 case ZAPI_IPTABLE_FAIL_REMOVE:
2281 case ZAPI_IPTABLE_REMOVED:
2282 if (BGP_DEBUG(zebra, ZEBRA))
2283 zlog_debug("%s: Received IPTABLE REMOVED",
2284 __PRETTY_FUNCTION__);
2285 break;
2286 }
2287 return 0;
2288 }
2289
2290 /* this function is used to forge ip rule,
2291 * - either for iptable/ipset using fwmark id
2292 * - or for sample ip rule cmd
2293 */
2294 static void bgp_encode_pbr_rule_action(struct stream *s,
2295 struct bgp_pbr_action *pbra,
2296 struct bgp_pbr_rule *pbr)
2297 {
2298 struct prefix pfx;
2299
2300 stream_putl(s, 0); /* seqno unused */
2301 if (pbr)
2302 stream_putl(s, pbr->priority);
2303 else
2304 stream_putl(s, 0);
2305 /* ruleno unused - priority change
2306 * ruleno permits distinguishing various FS PBR entries
2307 * - FS PBR entries based on ipset/iptables
2308 * - FS PBR entries based on iprule
2309 * the latter may contain default routing information injected by FS
2310 */
2311 if (pbr)
2312 stream_putl(s, pbr->unique);
2313 else
2314 stream_putl(s, pbra->unique);
2315 if (pbr && pbr->flags & MATCH_IP_SRC_SET)
2316 memcpy(&pfx, &(pbr->src), sizeof(struct prefix));
2317 else {
2318 memset(&pfx, 0, sizeof(pfx));
2319 pfx.family = AF_INET;
2320 }
2321 stream_putc(s, pfx.family);
2322 stream_putc(s, pfx.prefixlen);
2323 stream_put(s, &pfx.u.prefix, prefix_blen(&pfx));
2324
2325 stream_putw(s, 0); /* src port */
2326
2327 if (pbr && pbr->flags & MATCH_IP_DST_SET)
2328 memcpy(&pfx, &(pbr->dst), sizeof(struct prefix));
2329 else {
2330 memset(&pfx, 0, sizeof(pfx));
2331 pfx.family = AF_INET;
2332 }
2333 stream_putc(s, pfx.family);
2334 stream_putc(s, pfx.prefixlen);
2335 stream_put(s, &pfx.u.prefix, prefix_blen(&pfx));
2336
2337 stream_putw(s, 0); /* dst port */
2338
2339 /* if pbr present, fwmark is not used */
2340 if (pbr)
2341 stream_putl(s, 0);
2342 else
2343 stream_putl(s, pbra->fwmark); /* fwmark */
2344
2345 stream_putl(s, pbra->table_id);
2346
2347 stream_putl(s, 0); /* ifindex unused */
2348 }
2349
2350 static void bgp_encode_pbr_ipset_match(struct stream *s,
2351 struct bgp_pbr_match *pbim)
2352 {
2353 stream_putl(s, pbim->unique);
2354 stream_putl(s, pbim->type);
2355
2356 stream_put(s, pbim->ipset_name,
2357 ZEBRA_IPSET_NAME_SIZE);
2358 }
2359
2360 static void bgp_encode_pbr_ipset_entry_match(struct stream *s,
2361 struct bgp_pbr_match_entry *pbime)
2362 {
2363 stream_putl(s, pbime->unique);
2364 /* check that back pointer is not null */
2365 stream_put(s, pbime->backpointer->ipset_name,
2366 ZEBRA_IPSET_NAME_SIZE);
2367
2368 stream_putc(s, pbime->src.family);
2369 stream_putc(s, pbime->src.prefixlen);
2370 stream_put(s, &pbime->src.u.prefix, prefix_blen(&pbime->src));
2371
2372 stream_putc(s, pbime->dst.family);
2373 stream_putc(s, pbime->dst.prefixlen);
2374 stream_put(s, &pbime->dst.u.prefix, prefix_blen(&pbime->dst));
2375
2376 stream_putw(s, pbime->src_port_min);
2377 stream_putw(s, pbime->src_port_max);
2378 stream_putw(s, pbime->dst_port_min);
2379 stream_putw(s, pbime->dst_port_max);
2380 stream_putc(s, pbime->proto);
2381 }
2382
2383 static void bgp_encode_pbr_iptable_match(struct stream *s,
2384 struct bgp_pbr_action *bpa,
2385 struct bgp_pbr_match *pbm)
2386 {
2387 stream_putl(s, pbm->unique2);
2388
2389 stream_putl(s, pbm->type);
2390
2391 stream_putl(s, pbm->flags);
2392
2393 /* TODO: correlate with what is contained
2394 * into bgp_pbr_action.
2395 * currently only forward supported
2396 */
2397 if (bpa->nh.type == NEXTHOP_TYPE_BLACKHOLE)
2398 stream_putl(s, ZEBRA_IPTABLES_DROP);
2399 else
2400 stream_putl(s, ZEBRA_IPTABLES_FORWARD);
2401 stream_putl(s, bpa->fwmark);
2402 stream_put(s, pbm->ipset_name,
2403 ZEBRA_IPSET_NAME_SIZE);
2404 stream_putw(s, pbm->pkt_len_min);
2405 stream_putw(s, pbm->pkt_len_max);
2406 stream_putw(s, pbm->tcp_flags);
2407 stream_putw(s, pbm->tcp_mask_flags);
2408 stream_putc(s, pbm->dscp_value);
2409 stream_putc(s, pbm->fragment);
2410 stream_putc(s, pbm->protocol);
2411 }
2412
2413 /* BGP has established connection with Zebra. */
2414 static void bgp_zebra_connected(struct zclient *zclient)
2415 {
2416 struct bgp *bgp;
2417
2418 zclient_num_connects++; /* increment even if not responding */
2419
2420 /* At this point, we may or may not have BGP instances configured, but
2421 * we're only interested in the default VRF (others wouldn't have learnt
2422 * the VRF from Zebra yet.)
2423 */
2424 bgp = bgp_get_default();
2425 if (!bgp)
2426 return;
2427
2428 bgp_zebra_instance_register(bgp);
2429
2430 /* Send the client registration */
2431 bfd_client_sendmsg(zclient, ZEBRA_BFD_CLIENT_REGISTER, bgp->vrf_id);
2432
2433 /* tell label pool that zebra is connected */
2434 bgp_lp_event_zebra_up();
2435
2436 /* TODO - What if we have peers and networks configured, do we have to
2437 * kick-start them?
2438 */
2439 BGP_GR_ROUTER_DETECT_AND_SEND_CAPABILITY_TO_ZEBRA(bgp, bgp->peer);
2440 }
2441
2442 static int bgp_zebra_process_local_es(ZAPI_CALLBACK_ARGS)
2443 {
2444 esi_t esi;
2445 struct bgp *bgp = NULL;
2446 struct stream *s = NULL;
2447 char buf[ESI_STR_LEN];
2448 char buf1[INET6_ADDRSTRLEN];
2449 struct ipaddr originator_ip;
2450
2451 memset(&esi, 0, sizeof(esi_t));
2452 memset(&originator_ip, 0, sizeof(struct ipaddr));
2453
2454 bgp = bgp_lookup_by_vrf_id(vrf_id);
2455 if (!bgp)
2456 return 0;
2457
2458 s = zclient->ibuf;
2459 stream_get(&esi, s, sizeof(esi_t));
2460 stream_get(&originator_ip, s, sizeof(struct ipaddr));
2461
2462 if (BGP_DEBUG(zebra, ZEBRA))
2463 zlog_debug("Rx %s ESI %s originator-ip %s",
2464 (cmd == ZEBRA_LOCAL_ES_ADD) ? "add" : "del",
2465 esi_to_str(&esi, buf, sizeof(buf)),
2466 ipaddr2str(&originator_ip, buf1, sizeof(buf1)));
2467
2468 if (cmd == ZEBRA_LOCAL_ES_ADD)
2469 bgp_evpn_local_es_add(bgp, &esi, &originator_ip);
2470 else
2471 bgp_evpn_local_es_del(bgp, &esi, &originator_ip);
2472 return 0;
2473 }
2474
2475 static int bgp_zebra_process_local_l3vni(ZAPI_CALLBACK_ARGS)
2476 {
2477 int filter = 0;
2478 char buf[ETHER_ADDR_STRLEN];
2479 vni_t l3vni = 0;
2480 struct ethaddr svi_rmac, vrr_rmac = {.octet = {0} };
2481 struct in_addr originator_ip;
2482 struct stream *s;
2483 ifindex_t svi_ifindex;
2484 bool is_anycast_mac = false;
2485 char buf1[ETHER_ADDR_STRLEN];
2486
2487 memset(&svi_rmac, 0, sizeof(struct ethaddr));
2488 memset(&originator_ip, 0, sizeof(struct in_addr));
2489 s = zclient->ibuf;
2490 l3vni = stream_getl(s);
2491 if (cmd == ZEBRA_L3VNI_ADD) {
2492 stream_get(&svi_rmac, s, sizeof(struct ethaddr));
2493 originator_ip.s_addr = stream_get_ipv4(s);
2494 stream_get(&filter, s, sizeof(int));
2495 svi_ifindex = stream_getl(s);
2496 stream_get(&vrr_rmac, s, sizeof(struct ethaddr));
2497 is_anycast_mac = stream_getl(s);
2498
2499 if (BGP_DEBUG(zebra, ZEBRA))
2500 zlog_debug("Rx L3-VNI ADD VRF %s VNI %u RMAC svi-mac %s vrr-mac %s filter %s svi-if %u",
2501 vrf_id_to_name(vrf_id), l3vni,
2502 prefix_mac2str(&svi_rmac, buf, sizeof(buf)),
2503 prefix_mac2str(&vrr_rmac, buf1,
2504 sizeof(buf1)),
2505 filter ? "prefix-routes-only" : "none",
2506 svi_ifindex);
2507
2508 bgp_evpn_local_l3vni_add(l3vni, vrf_id, &svi_rmac, &vrr_rmac,
2509 originator_ip, filter, svi_ifindex,
2510 is_anycast_mac);
2511 } else {
2512 if (BGP_DEBUG(zebra, ZEBRA))
2513 zlog_debug("Rx L3-VNI DEL VRF %s VNI %u",
2514 vrf_id_to_name(vrf_id), l3vni);
2515
2516 bgp_evpn_local_l3vni_del(l3vni, vrf_id);
2517 }
2518
2519 return 0;
2520 }
2521
2522 static int bgp_zebra_process_local_vni(ZAPI_CALLBACK_ARGS)
2523 {
2524 struct stream *s;
2525 vni_t vni;
2526 struct bgp *bgp;
2527 struct in_addr vtep_ip = {INADDR_ANY};
2528 vrf_id_t tenant_vrf_id = VRF_DEFAULT;
2529 struct in_addr mcast_grp = {INADDR_ANY};
2530
2531 s = zclient->ibuf;
2532 vni = stream_getl(s);
2533 if (cmd == ZEBRA_VNI_ADD) {
2534 vtep_ip.s_addr = stream_get_ipv4(s);
2535 stream_get(&tenant_vrf_id, s, sizeof(vrf_id_t));
2536 mcast_grp.s_addr = stream_get_ipv4(s);
2537 }
2538
2539 bgp = bgp_lookup_by_vrf_id(vrf_id);
2540 if (!bgp)
2541 return 0;
2542
2543 if (BGP_DEBUG(zebra, ZEBRA))
2544 zlog_debug("Rx VNI %s VRF %s VNI %u tenant-vrf %s",
2545 (cmd == ZEBRA_VNI_ADD) ? "add" : "del",
2546 vrf_id_to_name(vrf_id), vni,
2547 vrf_id_to_name(tenant_vrf_id));
2548
2549 if (cmd == ZEBRA_VNI_ADD)
2550 return bgp_evpn_local_vni_add(
2551 bgp, vni,
2552 vtep_ip.s_addr != INADDR_ANY ? vtep_ip : bgp->router_id,
2553 tenant_vrf_id, mcast_grp);
2554 else
2555 return bgp_evpn_local_vni_del(bgp, vni);
2556 }
2557
2558 static int bgp_zebra_process_local_macip(ZAPI_CALLBACK_ARGS)
2559 {
2560 struct stream *s;
2561 vni_t vni;
2562 struct bgp *bgp;
2563 struct ethaddr mac;
2564 struct ipaddr ip;
2565 int ipa_len;
2566 char buf[ETHER_ADDR_STRLEN];
2567 char buf1[INET6_ADDRSTRLEN];
2568 uint8_t flags = 0;
2569 uint32_t seqnum = 0;
2570 int state = 0;
2571
2572 memset(&ip, 0, sizeof(ip));
2573 s = zclient->ibuf;
2574 vni = stream_getl(s);
2575 stream_get(&mac.octet, s, ETH_ALEN);
2576 ipa_len = stream_getl(s);
2577 if (ipa_len != 0 && ipa_len != IPV4_MAX_BYTELEN
2578 && ipa_len != IPV6_MAX_BYTELEN) {
2579 flog_err(EC_BGP_MACIP_LEN,
2580 "%u:Recv MACIP %s with invalid IP addr length %d",
2581 vrf_id, (cmd == ZEBRA_MACIP_ADD) ? "Add" : "Del",
2582 ipa_len);
2583 return -1;
2584 }
2585
2586 if (ipa_len) {
2587 ip.ipa_type =
2588 (ipa_len == IPV4_MAX_BYTELEN) ? IPADDR_V4 : IPADDR_V6;
2589 stream_get(&ip.ip.addr, s, ipa_len);
2590 }
2591 if (cmd == ZEBRA_MACIP_ADD) {
2592 flags = stream_getc(s);
2593 seqnum = stream_getl(s);
2594 } else {
2595 state = stream_getl(s);
2596 }
2597
2598 bgp = bgp_lookup_by_vrf_id(vrf_id);
2599 if (!bgp)
2600 return 0;
2601
2602 if (BGP_DEBUG(zebra, ZEBRA))
2603 zlog_debug("%u:Recv MACIP %s flags 0x%x MAC %s IP %s VNI %u seq %u state %d",
2604 vrf_id, (cmd == ZEBRA_MACIP_ADD) ? "Add" : "Del",
2605 flags, prefix_mac2str(&mac, buf, sizeof(buf)),
2606 ipaddr2str(&ip, buf1, sizeof(buf1)), vni, seqnum,
2607 state);
2608
2609 if (cmd == ZEBRA_MACIP_ADD)
2610 return bgp_evpn_local_macip_add(bgp, vni, &mac, &ip,
2611 flags, seqnum);
2612 else
2613 return bgp_evpn_local_macip_del(bgp, vni, &mac, &ip, state);
2614 }
2615
2616 static void bgp_zebra_process_local_ip_prefix(ZAPI_CALLBACK_ARGS)
2617 {
2618 struct stream *s = NULL;
2619 struct bgp *bgp_vrf = NULL;
2620 struct prefix p;
2621 char buf[PREFIX_STRLEN];
2622
2623 memset(&p, 0, sizeof(struct prefix));
2624 s = zclient->ibuf;
2625 stream_get(&p, s, sizeof(struct prefix));
2626
2627 bgp_vrf = bgp_lookup_by_vrf_id(vrf_id);
2628 if (!bgp_vrf)
2629 return;
2630
2631 if (BGP_DEBUG(zebra, ZEBRA))
2632 zlog_debug("Recv prefix %s %s on vrf %s",
2633 prefix2str(&p, buf, sizeof(buf)),
2634 (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) ? "ADD" : "DEL",
2635 vrf_id_to_name(vrf_id));
2636
2637 if (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) {
2638
2639 if (p.family == AF_INET)
2640 bgp_evpn_advertise_type5_route(bgp_vrf, &p, NULL,
2641 AFI_IP, SAFI_UNICAST);
2642 else
2643 bgp_evpn_advertise_type5_route(bgp_vrf, &p, NULL,
2644 AFI_IP6, SAFI_UNICAST);
2645
2646 } else {
2647 if (p.family == AF_INET)
2648 bgp_evpn_withdraw_type5_route(bgp_vrf, &p, AFI_IP,
2649 SAFI_UNICAST);
2650 else
2651 bgp_evpn_withdraw_type5_route(bgp_vrf, &p, AFI_IP6,
2652 SAFI_UNICAST);
2653 }
2654 }
2655
2656 static void bgp_zebra_process_label_chunk(ZAPI_CALLBACK_ARGS)
2657 {
2658 struct stream *s = NULL;
2659 uint8_t response_keep;
2660 uint32_t first;
2661 uint32_t last;
2662 uint8_t proto;
2663 unsigned short instance;
2664
2665 s = zclient->ibuf;
2666 STREAM_GETC(s, proto);
2667 STREAM_GETW(s, instance);
2668 STREAM_GETC(s, response_keep);
2669 STREAM_GETL(s, first);
2670 STREAM_GETL(s, last);
2671
2672 if (zclient->redist_default != proto) {
2673 flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong proto %u",
2674 proto);
2675 return;
2676 }
2677 if (zclient->instance != instance) {
2678 flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong instance %u",
2679 proto);
2680 return;
2681 }
2682
2683 if (first > last ||
2684 first < MPLS_LABEL_UNRESERVED_MIN ||
2685 last > MPLS_LABEL_UNRESERVED_MAX) {
2686
2687 flog_err(EC_BGP_LM_ERROR, "%s: Invalid Label chunk: %u - %u",
2688 __func__, first, last);
2689 return;
2690 }
2691 if (BGP_DEBUG(zebra, ZEBRA)) {
2692 zlog_debug("Label Chunk assign: %u - %u (%u) ",
2693 first, last, response_keep);
2694 }
2695
2696 bgp_lp_event_chunk(response_keep, first, last);
2697
2698 stream_failure: /* for STREAM_GETX */
2699 return;
2700 }
2701
2702 extern struct zebra_privs_t bgpd_privs;
2703
2704 static int bgp_ifp_create(struct interface *ifp)
2705 {
2706 struct bgp *bgp;
2707
2708 if (BGP_DEBUG(zebra, ZEBRA))
2709 zlog_debug("Rx Intf add VRF %u IF %s", ifp->vrf_id, ifp->name);
2710
2711 bgp = bgp_lookup_by_vrf_id(ifp->vrf_id);
2712 if (!bgp)
2713 return 0;
2714
2715 bgp_mac_add_mac_entry(ifp);
2716
2717 bgp_update_interface_nbrs(bgp, ifp, ifp);
2718 return 0;
2719 }
2720
2721 void bgp_zebra_init(struct thread_master *master, unsigned short instance)
2722 {
2723 zclient_num_connects = 0;
2724
2725 if_zapi_callbacks(bgp_ifp_create, bgp_ifp_up,
2726 bgp_ifp_down, bgp_ifp_destroy);
2727
2728 /* Set default values. */
2729 zclient = zclient_new(master, &zclient_options_default);
2730 zclient_init(zclient, ZEBRA_ROUTE_BGP, 0, &bgpd_privs);
2731 zclient->zebra_connected = bgp_zebra_connected;
2732 zclient->router_id_update = bgp_router_id_update;
2733 zclient->interface_address_add = bgp_interface_address_add;
2734 zclient->interface_address_delete = bgp_interface_address_delete;
2735 zclient->interface_nbr_address_add = bgp_interface_nbr_address_add;
2736 zclient->interface_nbr_address_delete =
2737 bgp_interface_nbr_address_delete;
2738 zclient->interface_vrf_update = bgp_interface_vrf_update;
2739 zclient->redistribute_route_add = zebra_read_route;
2740 zclient->redistribute_route_del = zebra_read_route;
2741 zclient->nexthop_update = bgp_read_nexthop_update;
2742 zclient->import_check_update = bgp_read_import_check_update;
2743 zclient->fec_update = bgp_read_fec_update;
2744 zclient->local_es_add = bgp_zebra_process_local_es;
2745 zclient->local_es_del = bgp_zebra_process_local_es;
2746 zclient->local_vni_add = bgp_zebra_process_local_vni;
2747 zclient->local_vni_del = bgp_zebra_process_local_vni;
2748 zclient->local_macip_add = bgp_zebra_process_local_macip;
2749 zclient->local_macip_del = bgp_zebra_process_local_macip;
2750 zclient->local_l3vni_add = bgp_zebra_process_local_l3vni;
2751 zclient->local_l3vni_del = bgp_zebra_process_local_l3vni;
2752 zclient->local_ip_prefix_add = bgp_zebra_process_local_ip_prefix;
2753 zclient->local_ip_prefix_del = bgp_zebra_process_local_ip_prefix;
2754 zclient->label_chunk = bgp_zebra_process_label_chunk;
2755 zclient->rule_notify_owner = rule_notify_owner;
2756 zclient->ipset_notify_owner = ipset_notify_owner;
2757 zclient->ipset_entry_notify_owner = ipset_entry_notify_owner;
2758 zclient->iptable_notify_owner = iptable_notify_owner;
2759 zclient->instance = instance;
2760 }
2761
2762 void bgp_zebra_destroy(void)
2763 {
2764 if (zclient == NULL)
2765 return;
2766 zclient_stop(zclient);
2767 zclient_free(zclient);
2768 zclient = NULL;
2769 }
2770
2771 int bgp_zebra_num_connects(void)
2772 {
2773 return zclient_num_connects;
2774 }
2775
2776 void bgp_send_pbr_rule_action(struct bgp_pbr_action *pbra,
2777 struct bgp_pbr_rule *pbr,
2778 bool install)
2779 {
2780 struct stream *s;
2781
2782 if (pbra->install_in_progress && !pbr)
2783 return;
2784 if (pbr && pbr->install_in_progress)
2785 return;
2786 if (BGP_DEBUG(zebra, ZEBRA)) {
2787 if (pbr)
2788 zlog_debug("%s: table %d (ip rule) %d",
2789 __PRETTY_FUNCTION__,
2790 pbra->table_id, install);
2791 else
2792 zlog_debug("%s: table %d fwmark %d %d",
2793 __PRETTY_FUNCTION__,
2794 pbra->table_id, pbra->fwmark, install);
2795 }
2796 s = zclient->obuf;
2797 stream_reset(s);
2798
2799 zclient_create_header(s,
2800 install ? ZEBRA_RULE_ADD : ZEBRA_RULE_DELETE,
2801 VRF_DEFAULT);
2802 stream_putl(s, 1); /* send one pbr action */
2803
2804 bgp_encode_pbr_rule_action(s, pbra, pbr);
2805
2806 stream_putw_at(s, 0, stream_get_endp(s));
2807 if (!zclient_send_message(zclient) && install) {
2808 if (!pbr)
2809 pbra->install_in_progress = true;
2810 else
2811 pbr->install_in_progress = true;
2812 }
2813 }
2814
2815 void bgp_send_pbr_ipset_match(struct bgp_pbr_match *pbrim, bool install)
2816 {
2817 struct stream *s;
2818
2819 if (pbrim->install_in_progress)
2820 return;
2821 if (BGP_DEBUG(zebra, ZEBRA))
2822 zlog_debug("%s: name %s type %d %d, ID %u",
2823 __PRETTY_FUNCTION__,
2824 pbrim->ipset_name, pbrim->type,
2825 install, pbrim->unique);
2826 s = zclient->obuf;
2827 stream_reset(s);
2828
2829 zclient_create_header(s,
2830 install ? ZEBRA_IPSET_CREATE :
2831 ZEBRA_IPSET_DESTROY,
2832 VRF_DEFAULT);
2833
2834 stream_putl(s, 1); /* send one pbr action */
2835
2836 bgp_encode_pbr_ipset_match(s, pbrim);
2837
2838 stream_putw_at(s, 0, stream_get_endp(s));
2839 if (!zclient_send_message(zclient) && install)
2840 pbrim->install_in_progress = true;
2841 }
2842
2843 void bgp_send_pbr_ipset_entry_match(struct bgp_pbr_match_entry *pbrime,
2844 bool install)
2845 {
2846 struct stream *s;
2847
2848 if (pbrime->install_in_progress)
2849 return;
2850 if (BGP_DEBUG(zebra, ZEBRA))
2851 zlog_debug("%s: name %s %d %d, ID %u", __PRETTY_FUNCTION__,
2852 pbrime->backpointer->ipset_name,
2853 pbrime->unique, install, pbrime->unique);
2854 s = zclient->obuf;
2855 stream_reset(s);
2856
2857 zclient_create_header(s,
2858 install ? ZEBRA_IPSET_ENTRY_ADD :
2859 ZEBRA_IPSET_ENTRY_DELETE,
2860 VRF_DEFAULT);
2861
2862 stream_putl(s, 1); /* send one pbr action */
2863
2864 bgp_encode_pbr_ipset_entry_match(s, pbrime);
2865
2866 stream_putw_at(s, 0, stream_get_endp(s));
2867 if (!zclient_send_message(zclient) && install)
2868 pbrime->install_in_progress = true;
2869 }
2870
2871 static void bgp_encode_pbr_interface_list(struct bgp *bgp, struct stream *s)
2872 {
2873 struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
2874 struct bgp_pbr_interface_head *head;
2875 struct bgp_pbr_interface *pbr_if;
2876 struct interface *ifp;
2877
2878 if (!bgp_pbr_cfg)
2879 return;
2880 head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
2881
2882 RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
2883 ifp = if_lookup_by_name(pbr_if->name, bgp->vrf_id);
2884 if (ifp)
2885 stream_putl(s, ifp->ifindex);
2886 }
2887 }
2888
2889 static int bgp_pbr_get_ifnumber(struct bgp *bgp)
2890 {
2891 struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
2892 struct bgp_pbr_interface_head *head;
2893 struct bgp_pbr_interface *pbr_if;
2894 int cnt = 0;
2895
2896 if (!bgp_pbr_cfg)
2897 return 0;
2898 head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
2899
2900 RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
2901 if (if_lookup_by_name(pbr_if->name, bgp->vrf_id))
2902 cnt++;
2903 }
2904 return cnt;
2905 }
2906
2907 void bgp_send_pbr_iptable(struct bgp_pbr_action *pba,
2908 struct bgp_pbr_match *pbm,
2909 bool install)
2910 {
2911 struct stream *s;
2912 int ret = 0;
2913 int nb_interface;
2914
2915 if (pbm->install_iptable_in_progress)
2916 return;
2917 if (BGP_DEBUG(zebra, ZEBRA))
2918 zlog_debug("%s: name %s type %d mark %d %d, ID %u",
2919 __PRETTY_FUNCTION__, pbm->ipset_name,
2920 pbm->type, pba->fwmark, install,
2921 pbm->unique2);
2922 s = zclient->obuf;
2923 stream_reset(s);
2924
2925 zclient_create_header(s,
2926 install ? ZEBRA_IPTABLE_ADD :
2927 ZEBRA_IPTABLE_DELETE,
2928 VRF_DEFAULT);
2929
2930 bgp_encode_pbr_iptable_match(s, pba, pbm);
2931 nb_interface = bgp_pbr_get_ifnumber(pba->bgp);
2932 stream_putl(s, nb_interface);
2933 if (nb_interface)
2934 bgp_encode_pbr_interface_list(pba->bgp, s);
2935 stream_putw_at(s, 0, stream_get_endp(s));
2936 ret = zclient_send_message(zclient);
2937 if (install) {
2938 if (ret)
2939 pba->refcnt++;
2940 else
2941 pbm->install_iptable_in_progress = true;
2942 }
2943 }
2944
2945 /* inject in table <table_id> a default route to:
2946 * - if nexthop IP is present : to this nexthop
2947 * - if vrf is different from local : to the matching VRF
2948 */
2949 void bgp_zebra_announce_default(struct bgp *bgp, struct nexthop *nh,
2950 afi_t afi, uint32_t table_id, bool announce)
2951 {
2952 struct zapi_nexthop *api_nh;
2953 struct zapi_route api;
2954 struct prefix p;
2955
2956 if (!nh || nh->type != NEXTHOP_TYPE_IPV4
2957 || nh->vrf_id == VRF_UNKNOWN)
2958 return;
2959 memset(&p, 0, sizeof(struct prefix));
2960 /* default route */
2961 if (afi != AFI_IP)
2962 return;
2963 p.family = AF_INET;
2964 memset(&api, 0, sizeof(api));
2965 api.vrf_id = bgp->vrf_id;
2966 api.type = ZEBRA_ROUTE_BGP;
2967 api.safi = SAFI_UNICAST;
2968 api.prefix = p;
2969 api.tableid = table_id;
2970 api.nexthop_num = 1;
2971 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
2972 SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
2973 api_nh = &api.nexthops[0];
2974
2975 api.distance = ZEBRA_EBGP_DISTANCE_DEFAULT;
2976 SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
2977
2978 /* redirect IP */
2979 if (nh->gate.ipv4.s_addr != INADDR_ANY) {
2980 char buff[PREFIX_STRLEN];
2981
2982 api_nh->vrf_id = nh->vrf_id;
2983 api_nh->gate.ipv4 = nh->gate.ipv4;
2984 api_nh->type = NEXTHOP_TYPE_IPV4;
2985
2986 inet_ntop(AF_INET, &(nh->gate.ipv4), buff, INET_ADDRSTRLEN);
2987 if (BGP_DEBUG(zebra, ZEBRA))
2988 zlog_info("BGP: %s default route to %s table %d (redirect IP)",
2989 announce ? "adding" : "withdrawing",
2990 buff, table_id);
2991 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
2992 : ZEBRA_ROUTE_DELETE,
2993 zclient, &api);
2994 } else if (nh->vrf_id != bgp->vrf_id) {
2995 struct vrf *vrf;
2996 struct interface *ifp;
2997
2998 vrf = vrf_lookup_by_id(nh->vrf_id);
2999 if (!vrf)
3000 return;
3001 /* create default route with interface <VRF>
3002 * with nexthop-vrf <VRF>
3003 */
3004 ifp = if_lookup_by_name_all_vrf(vrf->name);
3005 if (!ifp)
3006 return;
3007 api_nh->vrf_id = nh->vrf_id;
3008 api_nh->type = NEXTHOP_TYPE_IFINDEX;
3009 api_nh->ifindex = ifp->ifindex;
3010 if (BGP_DEBUG(zebra, ZEBRA))
3011 zlog_info("BGP: %s default route to %s table %d (redirect VRF)",
3012 announce ? "adding" : "withdrawing",
3013 vrf->name, table_id);
3014 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
3015 : ZEBRA_ROUTE_DELETE,
3016 zclient, &api);
3017 return;
3018 }
3019 }
3020
3021 /* Send capabilities to RIB */
3022 int bgp_zebra_send_capabilities(struct bgp *bgp, bool disable)
3023 {
3024 struct zapi_cap api;
3025 int ret = BGP_GR_SUCCESS;
3026
3027 if (zclient == NULL) {
3028 if (BGP_DEBUG(zebra, ZEBRA))
3029 zlog_debug("zclient invalid");
3030 return BGP_GR_FAILURE;
3031 }
3032
3033 /* Check if the client is connected */
3034 if ((zclient->sock < 0) || (zclient->t_connect)) {
3035 if (BGP_DEBUG(zebra, ZEBRA))
3036 zlog_debug("client not connected");
3037 return BGP_GR_FAILURE;
3038 }
3039
3040 /* Check if capability is already sent. If the flag force is set
3041 * send the capability since this can be initial bgp configuration
3042 */
3043 memset(&api, 0, sizeof(struct zapi_cap));
3044 if (disable) {
3045 api.cap = ZEBRA_CLIENT_GR_DISABLE;
3046 api.vrf_id = bgp->vrf_id;
3047 } else {
3048 api.cap = ZEBRA_CLIENT_GR_CAPABILITIES;
3049 api.stale_removal_time = bgp->rib_stale_time;
3050 api.vrf_id = bgp->vrf_id;
3051 }
3052
3053 if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
3054 < 0) {
3055 zlog_err("error sending capability");
3056 ret = BGP_GR_FAILURE;
3057 } else {
3058 if (disable)
3059 bgp->present_zebra_gr_state = ZEBRA_GR_DISABLE;
3060 else
3061 bgp->present_zebra_gr_state = ZEBRA_GR_ENABLE;
3062
3063 if (BGP_DEBUG(zebra, ZEBRA))
3064 zlog_debug("send capabilty success");
3065 ret = BGP_GR_SUCCESS;
3066 }
3067 return ret;
3068 }
3069
3070 /* Send route update pesding or completed status to RIB for the
3071 * specific AFI, SAFI
3072 */
3073 int bgp_zebra_update(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type)
3074 {
3075 struct zapi_cap api = {0};
3076
3077 if (zclient == NULL) {
3078 if (BGP_DEBUG(zebra, ZEBRA))
3079 zlog_debug("zclient == NULL, invalid");
3080 return BGP_GR_FAILURE;
3081 }
3082
3083 /* Check if the client is connected */
3084 if ((zclient->sock < 0) || (zclient->t_connect)) {
3085 if (BGP_DEBUG(zebra, ZEBRA))
3086 zlog_debug("client not connected");
3087 return BGP_GR_FAILURE;
3088 }
3089
3090 api.afi = afi;
3091 api.safi = safi;
3092 api.vrf_id = vrf_id;
3093 api.cap = type;
3094
3095 if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
3096 < 0) {
3097 if (BGP_DEBUG(zebra, ZEBRA))
3098 zlog_debug("error sending capability");
3099 return BGP_GR_FAILURE;
3100 }
3101 return BGP_GR_SUCCESS;
3102 }
3103
3104
3105 /* Send RIB stale timer update */
3106 int bgp_zebra_stale_timer_update(struct bgp *bgp)
3107 {
3108 struct zapi_cap api;
3109
3110 if (zclient == NULL) {
3111 if (BGP_DEBUG(zebra, ZEBRA))
3112 zlog_debug("zclient invalid");
3113 return BGP_GR_FAILURE;
3114 }
3115
3116 /* Check if the client is connected */
3117 if ((zclient->sock < 0) || (zclient->t_connect)) {
3118 if (BGP_DEBUG(zebra, ZEBRA))
3119 zlog_debug("client not connected");
3120 return BGP_GR_FAILURE;
3121 }
3122
3123 memset(&api, 0, sizeof(struct zapi_cap));
3124 api.cap = ZEBRA_CLIENT_RIB_STALE_TIME;
3125 api.stale_removal_time = bgp->rib_stale_time;
3126 api.vrf_id = bgp->vrf_id;
3127 if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
3128 < 0) {
3129 if (BGP_DEBUG(zebra, ZEBRA))
3130 zlog_debug("error sending capability");
3131 return BGP_GR_FAILURE;
3132 }
3133 if (BGP_DEBUG(zebra, ZEBRA))
3134 zlog_debug("send capabilty success");
3135 return BGP_GR_SUCCESS;
3136 }