]> git.proxmox.com Git - mirror_frr.git/blob - bgpd/bgp_zebra.c
1c0553344b0db6d80fecba25ca1d10a6dfce3fd3
[mirror_frr.git] / bgpd / bgp_zebra.c
1 /* zebra client
2 * Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "stream.h"
25 #include "network.h"
26 #include "prefix.h"
27 #include "log.h"
28 #include "sockunion.h"
29 #include "zclient.h"
30 #include "routemap.h"
31 #include "thread.h"
32 #include "queue.h"
33 #include "memory.h"
34 #include "lib/json.h"
35 #include "lib/bfd.h"
36 #include "filter.h"
37 #include "mpls.h"
38 #include "vxlan.h"
39
40 #include "bgpd/bgpd.h"
41 #include "bgpd/bgp_route.h"
42 #include "bgpd/bgp_attr.h"
43 #include "bgpd/bgp_nexthop.h"
44 #include "bgpd/bgp_zebra.h"
45 #include "bgpd/bgp_fsm.h"
46 #include "bgpd/bgp_debug.h"
47 #include "bgpd/bgp_errors.h"
48 #include "bgpd/bgp_mpath.h"
49 #include "bgpd/bgp_nexthop.h"
50 #include "bgpd/bgp_nht.h"
51 #include "bgpd/bgp_bfd.h"
52 #include "bgpd/bgp_label.h"
53 #if ENABLE_BGP_VNC
54 #include "bgpd/rfapi/rfapi_backend.h"
55 #include "bgpd/rfapi/vnc_export_bgp.h"
56 #endif
57 #include "bgpd/bgp_evpn.h"
58 #include "bgpd/bgp_mplsvpn.h"
59 #include "bgpd/bgp_labelpool.h"
60 #include "bgpd/bgp_pbr.h"
61
62 /* All information about zebra. */
63 struct zclient *zclient = NULL;
64
65 /* Can we install into zebra? */
66 static inline int bgp_install_info_to_zebra(struct bgp *bgp)
67 {
68 if (zclient->sock <= 0)
69 return 0;
70
71 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
72 return 0;
73
74 return 1;
75 }
76
77 int zclient_num_connects;
78
79 /* Router-id update message from zebra. */
80 static int bgp_router_id_update(int command, struct zclient *zclient,
81 zebra_size_t length, vrf_id_t vrf_id)
82 {
83 struct prefix router_id;
84
85 zebra_router_id_update_read(zclient->ibuf, &router_id);
86
87 if (BGP_DEBUG(zebra, ZEBRA)) {
88 char buf[PREFIX2STR_BUFFER];
89 prefix2str(&router_id, buf, sizeof(buf));
90 zlog_debug("Rx Router Id update VRF %u Id %s", vrf_id, buf);
91 }
92
93 bgp_router_id_zebra_bump(vrf_id, &router_id);
94 return 0;
95 }
96
97 /* Nexthop update message from zebra. */
98 static int bgp_read_nexthop_update(int command, struct zclient *zclient,
99 zebra_size_t length, vrf_id_t vrf_id)
100 {
101 bgp_parse_nexthop_update(command, vrf_id);
102 return 0;
103 }
104
105 static int bgp_read_import_check_update(int command, struct zclient *zclient,
106 zebra_size_t length, vrf_id_t vrf_id)
107 {
108 bgp_parse_nexthop_update(command, vrf_id);
109 return 0;
110 }
111
112 /* Set or clear interface on which unnumbered neighbor is configured. This
113 * would in turn cause BGP to initiate or turn off IPv6 RAs on this
114 * interface.
115 */
116 static void bgp_update_interface_nbrs(struct bgp *bgp, struct interface *ifp,
117 struct interface *upd_ifp)
118 {
119 struct listnode *node, *nnode;
120 struct peer *peer;
121
122 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
123 if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)) {
124 if (upd_ifp) {
125 peer->ifp = upd_ifp;
126 bgp_zebra_initiate_radv(bgp, peer);
127 } else {
128 bgp_zebra_terminate_radv(bgp, peer);
129 peer->ifp = upd_ifp;
130 }
131 }
132 }
133 }
134
135 static int bgp_read_fec_update(int command, struct zclient *zclient,
136 zebra_size_t length)
137 {
138 bgp_parse_fec_update();
139 return 0;
140 }
141
142 static void bgp_start_interface_nbrs(struct bgp *bgp, struct interface *ifp)
143 {
144 struct listnode *node, *nnode;
145 struct peer *peer;
146
147 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
148 if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)
149 && peer->status != Established) {
150 if (peer_active(peer))
151 BGP_EVENT_ADD(peer, BGP_Stop);
152 BGP_EVENT_ADD(peer, BGP_Start);
153 }
154 }
155 }
156
157 static void bgp_nbr_connected_add(struct bgp *bgp, struct nbr_connected *ifc)
158 {
159 struct listnode *node;
160 struct connected *connected;
161 struct interface *ifp;
162 struct prefix *p;
163
164 /* Kick-off the FSM for any relevant peers only if there is a
165 * valid local address on the interface.
166 */
167 ifp = ifc->ifp;
168 for (ALL_LIST_ELEMENTS_RO(ifp->connected, node, connected)) {
169 p = connected->address;
170 if (p->family == AF_INET6
171 && IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
172 break;
173 }
174 if (!connected)
175 return;
176
177 bgp_start_interface_nbrs(bgp, ifp);
178 }
179
180 static void bgp_nbr_connected_delete(struct bgp *bgp, struct nbr_connected *ifc,
181 int del)
182 {
183 struct listnode *node, *nnode;
184 struct peer *peer;
185 struct interface *ifp;
186
187 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
188 if (peer->conf_if
189 && (strcmp(peer->conf_if, ifc->ifp->name) == 0)) {
190 peer->last_reset = PEER_DOWN_NBR_ADDR_DEL;
191 BGP_EVENT_ADD(peer, BGP_Stop);
192 }
193 }
194 /* Free neighbor also, if we're asked to. */
195 if (del) {
196 ifp = ifc->ifp;
197 listnode_delete(ifp->nbr_connected, ifc);
198 nbr_connected_free(ifc);
199 }
200 }
201
202 /* Inteface addition message from zebra. */
203 static int bgp_interface_add(int command, struct zclient *zclient,
204 zebra_size_t length, vrf_id_t vrf_id)
205 {
206 struct interface *ifp;
207 struct bgp *bgp;
208
209 ifp = zebra_interface_add_read(zclient->ibuf, vrf_id);
210 if (!ifp) // unexpected
211 return 0;
212
213 if (BGP_DEBUG(zebra, ZEBRA) && ifp)
214 zlog_debug("Rx Intf add VRF %u IF %s", vrf_id, ifp->name);
215
216 bgp = bgp_lookup_by_vrf_id(vrf_id);
217 if (!bgp)
218 return 0;
219
220 bgp_update_interface_nbrs(bgp, ifp, ifp);
221 return 0;
222 }
223
224 static int bgp_interface_delete(int command, struct zclient *zclient,
225 zebra_size_t length, vrf_id_t vrf_id)
226 {
227 struct stream *s;
228 struct interface *ifp;
229 struct bgp *bgp;
230
231 bgp = bgp_lookup_by_vrf_id(vrf_id);
232
233 s = zclient->ibuf;
234 ifp = zebra_interface_state_read(s, vrf_id);
235 if (!ifp) /* This may happen if we've just unregistered for a VRF. */
236 return 0;
237
238 if (BGP_DEBUG(zebra, ZEBRA))
239 zlog_debug("Rx Intf del VRF %u IF %s", vrf_id, ifp->name);
240
241 if (bgp)
242 bgp_update_interface_nbrs(bgp, ifp, NULL);
243
244 if_set_index(ifp, IFINDEX_INTERNAL);
245 return 0;
246 }
247
248 static int bgp_interface_up(int command, struct zclient *zclient,
249 zebra_size_t length, vrf_id_t vrf_id)
250 {
251 struct stream *s;
252 struct interface *ifp;
253 struct connected *c;
254 struct nbr_connected *nc;
255 struct listnode *node, *nnode;
256 struct bgp *bgp;
257
258 bgp = bgp_lookup_by_vrf_id(vrf_id);
259
260 s = zclient->ibuf;
261 ifp = zebra_interface_state_read(s, vrf_id);
262
263 if (!ifp)
264 return 0;
265
266 if (BGP_DEBUG(zebra, ZEBRA))
267 zlog_debug("Rx Intf up VRF %u IF %s", vrf_id, ifp->name);
268
269 if (!bgp)
270 return 0;
271
272 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
273 bgp_connected_add(bgp, c);
274
275 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
276 bgp_nbr_connected_add(bgp, nc);
277
278 return 0;
279 }
280
281 static int bgp_interface_down(int command, struct zclient *zclient,
282 zebra_size_t length, vrf_id_t vrf_id)
283 {
284 struct stream *s;
285 struct interface *ifp;
286 struct connected *c;
287 struct nbr_connected *nc;
288 struct listnode *node, *nnode;
289 struct bgp *bgp;
290 struct peer *peer;
291
292 bgp = bgp_lookup_by_vrf_id(vrf_id);
293
294 s = zclient->ibuf;
295 ifp = zebra_interface_state_read(s, vrf_id);
296 if (!ifp)
297 return 0;
298
299 if (BGP_DEBUG(zebra, ZEBRA))
300 zlog_debug("Rx Intf down VRF %u IF %s", vrf_id, ifp->name);
301
302 if (!bgp)
303 return 0;
304
305 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
306 bgp_connected_delete(bgp, c);
307
308 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
309 bgp_nbr_connected_delete(bgp, nc, 1);
310
311 /* Fast external-failover */
312 if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
313
314 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
315 #if defined(HAVE_CUMULUS)
316 /* Take down directly connected EBGP peers as well as
317 * 1-hop BFD
318 * tracked (directly connected) IBGP peers.
319 */
320 if ((peer->ttl != 1) && (peer->gtsm_hops != 1)
321 && (!peer->bfd_info
322 || bgp_bfd_is_peer_multihop(peer)))
323 #else
324 /* Take down directly connected EBGP peers */
325 if ((peer->ttl != 1) && (peer->gtsm_hops != 1))
326 #endif
327 continue;
328
329 if (ifp == peer->nexthop.ifp) {
330 BGP_EVENT_ADD(peer, BGP_Stop);
331 peer->last_reset = PEER_DOWN_IF_DOWN;
332 }
333 }
334 }
335
336 return 0;
337 }
338
339 static int bgp_interface_address_add(int command, struct zclient *zclient,
340 zebra_size_t length, vrf_id_t vrf_id)
341 {
342 struct connected *ifc;
343 struct bgp *bgp;
344
345 bgp = bgp_lookup_by_vrf_id(vrf_id);
346
347 ifc = zebra_interface_address_read(command, zclient->ibuf, vrf_id);
348
349 if (ifc == NULL)
350 return 0;
351
352 if (bgp_debug_zebra(ifc->address)) {
353 char buf[PREFIX2STR_BUFFER];
354 prefix2str(ifc->address, buf, sizeof(buf));
355 zlog_debug("Rx Intf address add VRF %u IF %s addr %s", vrf_id,
356 ifc->ifp->name, buf);
357 }
358
359 if (!bgp)
360 return 0;
361
362 if (if_is_operative(ifc->ifp)) {
363 bgp_connected_add(bgp, ifc);
364
365 /* If we have learnt of any neighbors on this interface,
366 * check to kick off any BGP interface-based neighbors,
367 * but only if this is a link-local address.
368 */
369 if (IN6_IS_ADDR_LINKLOCAL(&ifc->address->u.prefix6)
370 && !list_isempty(ifc->ifp->nbr_connected))
371 bgp_start_interface_nbrs(bgp, ifc->ifp);
372 }
373
374 return 0;
375 }
376
377 static int bgp_interface_address_delete(int command, struct zclient *zclient,
378 zebra_size_t length, vrf_id_t vrf_id)
379 {
380 struct connected *ifc;
381 struct bgp *bgp;
382
383 bgp = bgp_lookup_by_vrf_id(vrf_id);
384
385 ifc = zebra_interface_address_read(command, zclient->ibuf, vrf_id);
386
387 if (ifc == NULL)
388 return 0;
389
390 if (bgp_debug_zebra(ifc->address)) {
391 char buf[PREFIX2STR_BUFFER];
392 prefix2str(ifc->address, buf, sizeof(buf));
393 zlog_debug("Rx Intf address del VRF %u IF %s addr %s", vrf_id,
394 ifc->ifp->name, buf);
395 }
396
397 if (bgp && if_is_operative(ifc->ifp)) {
398 bgp_connected_delete(bgp, ifc);
399 }
400
401 connected_free(ifc);
402
403 return 0;
404 }
405
406 static int bgp_interface_nbr_address_add(int command, struct zclient *zclient,
407 zebra_size_t length, vrf_id_t vrf_id)
408 {
409 struct nbr_connected *ifc = NULL;
410 struct bgp *bgp;
411
412 ifc = zebra_interface_nbr_address_read(command, zclient->ibuf, vrf_id);
413
414 if (ifc == NULL)
415 return 0;
416
417 if (bgp_debug_zebra(ifc->address)) {
418 char buf[PREFIX2STR_BUFFER];
419 prefix2str(ifc->address, buf, sizeof(buf));
420 zlog_debug("Rx Intf neighbor add VRF %u IF %s addr %s", vrf_id,
421 ifc->ifp->name, buf);
422 }
423
424 if (if_is_operative(ifc->ifp)) {
425 bgp = bgp_lookup_by_vrf_id(vrf_id);
426 if (bgp)
427 bgp_nbr_connected_add(bgp, ifc);
428 }
429
430 return 0;
431 }
432
433 static int bgp_interface_nbr_address_delete(int command,
434 struct zclient *zclient,
435 zebra_size_t length,
436 vrf_id_t vrf_id)
437 {
438 struct nbr_connected *ifc = NULL;
439 struct bgp *bgp;
440
441 ifc = zebra_interface_nbr_address_read(command, zclient->ibuf, vrf_id);
442
443 if (ifc == NULL)
444 return 0;
445
446 if (bgp_debug_zebra(ifc->address)) {
447 char buf[PREFIX2STR_BUFFER];
448 prefix2str(ifc->address, buf, sizeof(buf));
449 zlog_debug("Rx Intf neighbor del VRF %u IF %s addr %s", vrf_id,
450 ifc->ifp->name, buf);
451 }
452
453 if (if_is_operative(ifc->ifp)) {
454 bgp = bgp_lookup_by_vrf_id(vrf_id);
455 if (bgp)
456 bgp_nbr_connected_delete(bgp, ifc, 0);
457 }
458
459 nbr_connected_free(ifc);
460
461 return 0;
462 }
463
464 /* VRF update for an interface. */
465 static int bgp_interface_vrf_update(int command, struct zclient *zclient,
466 zebra_size_t length, vrf_id_t vrf_id)
467 {
468 struct interface *ifp;
469 vrf_id_t new_vrf_id;
470 struct connected *c;
471 struct nbr_connected *nc;
472 struct listnode *node, *nnode;
473 struct bgp *bgp;
474 struct peer *peer;
475
476 ifp = zebra_interface_vrf_update_read(zclient->ibuf, vrf_id,
477 &new_vrf_id);
478 if (!ifp)
479 return 0;
480
481 if (BGP_DEBUG(zebra, ZEBRA) && ifp)
482 zlog_debug("Rx Intf VRF change VRF %u IF %s NewVRF %u", vrf_id,
483 ifp->name, new_vrf_id);
484
485 bgp = bgp_lookup_by_vrf_id(vrf_id);
486
487 if (bgp) {
488 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
489 bgp_connected_delete(bgp, c);
490
491 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
492 bgp_nbr_connected_delete(bgp, nc, 1);
493
494 /* Fast external-failover */
495 if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
496 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
497 if ((peer->ttl != 1) && (peer->gtsm_hops != 1))
498 continue;
499
500 if (ifp == peer->nexthop.ifp)
501 BGP_EVENT_ADD(peer, BGP_Stop);
502 }
503 }
504 }
505
506 if_update_to_new_vrf(ifp, new_vrf_id);
507
508 bgp = bgp_lookup_by_vrf_id(new_vrf_id);
509 if (!bgp)
510 return 0;
511
512 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
513 bgp_connected_add(bgp, c);
514
515 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
516 bgp_nbr_connected_add(bgp, nc);
517 return 0;
518 }
519
520 /* Zebra route add and delete treatment. */
521 static int zebra_read_route(int command, struct zclient *zclient,
522 zebra_size_t length, vrf_id_t vrf_id)
523 {
524 enum nexthop_types_t nhtype;
525 struct zapi_route api;
526 union g_addr nexthop;
527 ifindex_t ifindex;
528 int add, i;
529 struct bgp *bgp;
530
531 bgp = bgp_lookup_by_vrf_id(vrf_id);
532 if (!bgp)
533 return 0;
534
535 if (zapi_route_decode(zclient->ibuf, &api) < 0)
536 return -1;
537
538 /* we completely ignore srcdest routes for now. */
539 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_SRCPFX))
540 return 0;
541
542 /* ignore link-local address. */
543 if (api.prefix.family == AF_INET6
544 && IN6_IS_ADDR_LINKLOCAL(&api.prefix.u.prefix6))
545 return 0;
546
547 nexthop = api.nexthops[0].gate;
548 ifindex = api.nexthops[0].ifindex;
549 nhtype = api.nexthops[0].type;
550
551 add = (command == ZEBRA_REDISTRIBUTE_ROUTE_ADD);
552 if (add) {
553 /*
554 * The ADD message is actually an UPDATE and there is no
555 * explicit DEL
556 * for a prior redistributed route, if any. So, perform an
557 * implicit
558 * DEL processing for the same redistributed route from any
559 * other
560 * source type.
561 */
562 for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
563 if (i != api.type)
564 bgp_redistribute_delete(bgp, &api.prefix, i,
565 api.instance);
566 }
567
568 /* Now perform the add/update. */
569 bgp_redistribute_add(bgp, &api.prefix, &nexthop, ifindex,
570 nhtype, api.metric, api.type, api.instance,
571 api.tag);
572 } else {
573 bgp_redistribute_delete(bgp, &api.prefix, api.type,
574 api.instance);
575 }
576
577 if (bgp_debug_zebra(&api.prefix)) {
578 char buf[2][PREFIX_STRLEN];
579
580 prefix2str(&api.prefix, buf[0], sizeof(buf[0]));
581 if (add) {
582 inet_ntop(api.prefix.family, &nexthop, buf[1],
583 sizeof(buf[1]));
584 zlog_debug(
585 "Rx route ADD VRF %u %s[%d] %s nexthop %s (type %d if %u) metric %u tag %" ROUTE_TAG_PRI,
586 vrf_id, zebra_route_string(api.type),
587 api.instance, buf[0], buf[1], nhtype,
588 ifindex, api.metric, api.tag);
589 } else {
590 zlog_debug(
591 "Rx route DEL VRF %u %s[%d] %s",
592 vrf_id, zebra_route_string(api.type),
593 api.instance, buf[0]);
594 }
595 }
596
597 return 0;
598 }
599
600 struct interface *if_lookup_by_ipv4(struct in_addr *addr, vrf_id_t vrf_id)
601 {
602 struct vrf *vrf;
603 struct listnode *cnode;
604 struct interface *ifp;
605 struct connected *connected;
606 struct prefix_ipv4 p;
607 struct prefix *cp;
608
609 vrf = vrf_lookup_by_id(vrf_id);
610 if (!vrf)
611 return NULL;
612
613 p.family = AF_INET;
614 p.prefix = *addr;
615 p.prefixlen = IPV4_MAX_BITLEN;
616
617 FOR_ALL_INTERFACES (vrf, ifp) {
618 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
619 cp = connected->address;
620
621 if (cp->family == AF_INET)
622 if (prefix_match(cp, (struct prefix *)&p))
623 return ifp;
624 }
625 }
626 return NULL;
627 }
628
629 struct interface *if_lookup_by_ipv4_exact(struct in_addr *addr, vrf_id_t vrf_id)
630 {
631 struct vrf *vrf;
632 struct listnode *cnode;
633 struct interface *ifp;
634 struct connected *connected;
635 struct prefix *cp;
636
637 vrf = vrf_lookup_by_id(vrf_id);
638 if (!vrf)
639 return NULL;
640
641 FOR_ALL_INTERFACES (vrf, ifp) {
642 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
643 cp = connected->address;
644
645 if (cp->family == AF_INET)
646 if (IPV4_ADDR_SAME(&cp->u.prefix4, addr))
647 return ifp;
648 }
649 }
650 return NULL;
651 }
652
653 struct interface *if_lookup_by_ipv6(struct in6_addr *addr, ifindex_t ifindex,
654 vrf_id_t vrf_id)
655 {
656 struct vrf *vrf;
657 struct listnode *cnode;
658 struct interface *ifp;
659 struct connected *connected;
660 struct prefix_ipv6 p;
661 struct prefix *cp;
662
663 vrf = vrf_lookup_by_id(vrf_id);
664 if (!vrf)
665 return NULL;
666
667 p.family = AF_INET6;
668 p.prefix = *addr;
669 p.prefixlen = IPV6_MAX_BITLEN;
670
671 FOR_ALL_INTERFACES (vrf, ifp) {
672 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
673 cp = connected->address;
674
675 if (cp->family == AF_INET6)
676 if (prefix_match(cp, (struct prefix *)&p)) {
677 if (IN6_IS_ADDR_LINKLOCAL(
678 &cp->u.prefix6)) {
679 if (ifindex == ifp->ifindex)
680 return ifp;
681 } else
682 return ifp;
683 }
684 }
685 }
686 return NULL;
687 }
688
689 struct interface *if_lookup_by_ipv6_exact(struct in6_addr *addr,
690 ifindex_t ifindex, vrf_id_t vrf_id)
691 {
692 struct vrf *vrf;
693 struct listnode *cnode;
694 struct interface *ifp;
695 struct connected *connected;
696 struct prefix *cp;
697
698 vrf = vrf_lookup_by_id(vrf_id);
699 if (!vrf)
700 return NULL;
701
702 FOR_ALL_INTERFACES (vrf, ifp) {
703 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
704 cp = connected->address;
705
706 if (cp->family == AF_INET6)
707 if (IPV6_ADDR_SAME(&cp->u.prefix6, addr)) {
708 if (IN6_IS_ADDR_LINKLOCAL(
709 &cp->u.prefix6)) {
710 if (ifindex == ifp->ifindex)
711 return ifp;
712 } else
713 return ifp;
714 }
715 }
716 }
717 return NULL;
718 }
719
720 static int if_get_ipv6_global(struct interface *ifp, struct in6_addr *addr)
721 {
722 struct listnode *cnode;
723 struct connected *connected;
724 struct prefix *cp;
725
726 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
727 cp = connected->address;
728
729 if (cp->family == AF_INET6)
730 if (!IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
731 memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
732 return 1;
733 }
734 }
735 return 0;
736 }
737
738 static int if_get_ipv6_local(struct interface *ifp, struct in6_addr *addr)
739 {
740 struct listnode *cnode;
741 struct connected *connected;
742 struct prefix *cp;
743
744 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
745 cp = connected->address;
746
747 if (cp->family == AF_INET6)
748 if (IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
749 memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
750 return 1;
751 }
752 }
753 return 0;
754 }
755
756 static int if_get_ipv4_address(struct interface *ifp, struct in_addr *addr)
757 {
758 struct listnode *cnode;
759 struct connected *connected;
760 struct prefix *cp;
761
762 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
763 cp = connected->address;
764 if ((cp->family == AF_INET)
765 && !ipv4_martian(&(cp->u.prefix4))) {
766 *addr = cp->u.prefix4;
767 return 1;
768 }
769 }
770 return 0;
771 }
772
773
774 bool bgp_zebra_nexthop_set(union sockunion *local, union sockunion *remote,
775 struct bgp_nexthop *nexthop, struct peer *peer)
776 {
777 int ret = 0;
778 struct interface *ifp = NULL;
779
780 memset(nexthop, 0, sizeof(struct bgp_nexthop));
781
782 if (!local)
783 return false;
784 if (!remote)
785 return false;
786
787 if (local->sa.sa_family == AF_INET) {
788 nexthop->v4 = local->sin.sin_addr;
789 if (peer->update_if)
790 ifp = if_lookup_by_name(peer->update_if,
791 peer->bgp->vrf_id);
792 else
793 ifp = if_lookup_by_ipv4_exact(&local->sin.sin_addr,
794 peer->bgp->vrf_id);
795 }
796 if (local->sa.sa_family == AF_INET6) {
797 if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
798 if (peer->conf_if || peer->ifname)
799 ifp = if_lookup_by_name(peer->conf_if
800 ? peer->conf_if
801 : peer->ifname,
802 peer->bgp->vrf_id);
803 } else if (peer->update_if)
804 ifp = if_lookup_by_name(peer->update_if,
805 peer->bgp->vrf_id);
806 else
807 ifp = if_lookup_by_ipv6_exact(&local->sin6.sin6_addr,
808 local->sin6.sin6_scope_id,
809 peer->bgp->vrf_id);
810 }
811
812 if (!ifp) {
813 /*
814 * BGP views do not currently get proper data
815 * from zebra( when attached ) to be able to
816 * properly resolve nexthops, so give this
817 * instance type a pass.
818 */
819 if (peer->bgp->inst_type == BGP_INSTANCE_TYPE_VIEW)
820 return true;
821 /*
822 * If we have no interface data but we have established
823 * some connection w/ zebra than something has gone
824 * terribly terribly wrong here, so say this failed
825 * If we do not any zebra connection then not
826 * having a ifp pointer is ok.
827 */
828 return zclient_num_connects ? false : true;
829 }
830
831 nexthop->ifp = ifp;
832
833 /* IPv4 connection, fetch and store IPv6 local address(es) if any. */
834 if (local->sa.sa_family == AF_INET) {
835 /* IPv6 nexthop*/
836 ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
837
838 if (!ret) {
839 /* There is no global nexthop. Use link-local address as
840 * both the
841 * global and link-local nexthop. In this scenario, the
842 * expectation
843 * for interop is that the network admin would use a
844 * route-map to
845 * specify the global IPv6 nexthop.
846 */
847 if_get_ipv6_local(ifp, &nexthop->v6_global);
848 memcpy(&nexthop->v6_local, &nexthop->v6_global,
849 IPV6_MAX_BYTELEN);
850 } else
851 if_get_ipv6_local(ifp, &nexthop->v6_local);
852
853 if (if_lookup_by_ipv4(&remote->sin.sin_addr, peer->bgp->vrf_id))
854 peer->shared_network = 1;
855 else
856 peer->shared_network = 0;
857 }
858
859 /* IPv6 connection, fetch and store IPv4 local address if any. */
860 if (local->sa.sa_family == AF_INET6) {
861 struct interface *direct = NULL;
862
863 /* IPv4 nexthop. */
864 ret = if_get_ipv4_address(ifp, &nexthop->v4);
865 if (!ret && peer->local_id.s_addr)
866 nexthop->v4 = peer->local_id;
867
868 /* Global address*/
869 if (!IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
870 memcpy(&nexthop->v6_global, &local->sin6.sin6_addr,
871 IPV6_MAX_BYTELEN);
872
873 /* If directory connected set link-local address. */
874 direct = if_lookup_by_ipv6(&remote->sin6.sin6_addr,
875 remote->sin6.sin6_scope_id,
876 peer->bgp->vrf_id);
877 if (direct)
878 if_get_ipv6_local(ifp, &nexthop->v6_local);
879 } else
880 /* Link-local address. */
881 {
882 ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
883
884 /* If there is no global address. Set link-local
885 address as
886 global. I know this break RFC specification... */
887 /* In this scenario, the expectation for interop is that
888 * the
889 * network admin would use a route-map to specify the
890 * global
891 * IPv6 nexthop.
892 */
893 if (!ret)
894 memcpy(&nexthop->v6_global,
895 &local->sin6.sin6_addr,
896 IPV6_MAX_BYTELEN);
897 /* Always set the link-local address */
898 memcpy(&nexthop->v6_local, &local->sin6.sin6_addr,
899 IPV6_MAX_BYTELEN);
900 }
901
902 if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)
903 || if_lookup_by_ipv6(&remote->sin6.sin6_addr,
904 remote->sin6.sin6_scope_id,
905 peer->bgp->vrf_id))
906 peer->shared_network = 1;
907 else
908 peer->shared_network = 0;
909 }
910
911 /* KAME stack specific treatment. */
912 #ifdef KAME
913 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_global)
914 && IN6_LINKLOCAL_IFINDEX(nexthop->v6_global)) {
915 SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_global, 0);
916 }
917 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_local)
918 && IN6_LINKLOCAL_IFINDEX(nexthop->v6_local)) {
919 SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_local, 0);
920 }
921 #endif /* KAME */
922
923 /* If we have identified the local interface, there is no error for now.
924 */
925 return true;
926 }
927
928 static struct in6_addr *
929 bgp_path_info_to_ipv6_nexthop(struct bgp_path_info *info, ifindex_t *ifindex)
930 {
931 struct in6_addr *nexthop = NULL;
932
933 /* Only global address nexthop exists. */
934 if (info->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL) {
935 nexthop = &info->attr->mp_nexthop_global;
936 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
937 *ifindex = info->attr->nh_ifindex;
938
939 }
940
941 /* If both global and link-local address present. */
942 if (info->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL) {
943 /* Check if route-map is set to prefer global over link-local */
944 if (info->attr->mp_nexthop_prefer_global) {
945 nexthop = &info->attr->mp_nexthop_global;
946 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
947 *ifindex = info->attr->nh_ifindex;
948 } else {
949 /* Workaround for Cisco's nexthop bug. */
950 if (IN6_IS_ADDR_UNSPECIFIED(
951 &info->attr->mp_nexthop_global)
952 && info->peer->su_remote->sa.sa_family
953 == AF_INET6) {
954 nexthop =
955 &info->peer->su_remote->sin6.sin6_addr;
956 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
957 *ifindex = info->peer->nexthop.ifp
958 ->ifindex;
959 } else {
960 nexthop = &info->attr->mp_nexthop_local;
961 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
962 *ifindex = info->attr->nh_lla_ifindex;
963 }
964 }
965 }
966
967 return nexthop;
968 }
969
970 static int bgp_table_map_apply(struct route_map *map, struct prefix *p,
971 struct bgp_path_info *info)
972 {
973 route_map_result_t ret;
974
975 ret = route_map_apply(map, p, RMAP_BGP, info);
976 bgp_attr_flush(info->attr);
977
978 if (ret != RMAP_DENYMATCH)
979 return 1;
980
981 if (bgp_debug_zebra(p)) {
982 if (p->family == AF_INET) {
983 char buf[2][INET_ADDRSTRLEN];
984 zlog_debug(
985 "Zebra rmap deny: IPv4 route %s/%d nexthop %s",
986 inet_ntop(AF_INET, &p->u.prefix4, buf[0],
987 sizeof(buf[0])),
988 p->prefixlen,
989 inet_ntop(AF_INET, &info->attr->nexthop, buf[1],
990 sizeof(buf[1])));
991 }
992 if (p->family == AF_INET6) {
993 char buf[2][INET6_ADDRSTRLEN];
994 ifindex_t ifindex;
995 struct in6_addr *nexthop;
996
997 nexthop = bgp_path_info_to_ipv6_nexthop(info, &ifindex);
998 zlog_debug(
999 "Zebra rmap deny: IPv6 route %s/%d nexthop %s",
1000 inet_ntop(AF_INET6, &p->u.prefix6, buf[0],
1001 sizeof(buf[0])),
1002 p->prefixlen,
1003 inet_ntop(AF_INET6, nexthop,
1004 buf[1], sizeof(buf[1])));
1005 }
1006 }
1007 return 0;
1008 }
1009
1010 static struct thread *bgp_tm_thread_connect;
1011 static bool bgp_tm_status_connected;
1012 static bool bgp_tm_chunk_obtained;
1013 #define BGP_FLOWSPEC_TABLE_CHUNK 100000
1014 static uint32_t bgp_tm_min, bgp_tm_max, bgp_tm_chunk_size;
1015 struct bgp *bgp_tm_bgp;
1016
1017 static int bgp_zebra_tm_connect(struct thread *t)
1018 {
1019 struct zclient *zclient;
1020 int delay = 10, ret = 0;
1021
1022 zclient = THREAD_ARG(t);
1023 if (bgp_tm_status_connected && zclient->sock > 0)
1024 delay = 60;
1025 else {
1026 bgp_tm_status_connected = false;
1027 ret = tm_table_manager_connect(zclient);
1028 }
1029 if (ret < 0) {
1030 zlog_info("Error connecting to table manager!");
1031 bgp_tm_status_connected = false;
1032 } else {
1033 if (!bgp_tm_status_connected)
1034 zlog_debug("Connecting to table manager. Success");
1035 bgp_tm_status_connected = true;
1036 if (!bgp_tm_chunk_obtained) {
1037 if (bgp_zebra_get_table_range(bgp_tm_chunk_size,
1038 &bgp_tm_min,
1039 &bgp_tm_max) >= 0) {
1040 bgp_tm_chunk_obtained = true;
1041 /* parse non installed entries */
1042 bgp_zebra_announce_table(bgp_tm_bgp, AFI_IP, SAFI_FLOWSPEC);
1043 }
1044 }
1045 }
1046 thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
1047 &bgp_tm_thread_connect);
1048 return 0;
1049 }
1050
1051 bool bgp_zebra_tm_chunk_obtained(void)
1052 {
1053 return bgp_tm_chunk_obtained;
1054 }
1055
1056 uint32_t bgp_zebra_tm_get_id(void)
1057 {
1058 static int table_id;
1059
1060 if (!bgp_tm_chunk_obtained)
1061 return ++table_id;
1062 return bgp_tm_min++;
1063 }
1064
1065 void bgp_zebra_init_tm_connect(struct bgp *bgp)
1066 {
1067 int delay = 1;
1068
1069 /* if already set, do nothing
1070 */
1071 if (bgp_tm_thread_connect != NULL)
1072 return;
1073 bgp_tm_status_connected = false;
1074 bgp_tm_chunk_obtained = false;
1075 bgp_tm_min = bgp_tm_max = 0;
1076 bgp_tm_chunk_size = BGP_FLOWSPEC_TABLE_CHUNK;
1077 bgp_tm_bgp = bgp;
1078 thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
1079 &bgp_tm_thread_connect);
1080 }
1081
1082 int bgp_zebra_get_table_range(uint32_t chunk_size,
1083 uint32_t *start, uint32_t *end)
1084 {
1085 int ret;
1086
1087 if (!bgp_tm_status_connected)
1088 return -1;
1089 ret = tm_get_table_chunk(zclient, chunk_size, start, end);
1090 if (ret < 0) {
1091 flog_err(EC_BGP_TABLE_CHUNK,
1092 "BGP: Error getting table chunk %u", chunk_size);
1093 return -1;
1094 }
1095 zlog_info("BGP: Table Manager returns range from chunk %u is [%u %u]",
1096 chunk_size, *start, *end);
1097 return 0;
1098 }
1099
1100 static int update_ipv4nh_for_route_install(int nh_othervrf,
1101 struct in_addr *nexthop,
1102 struct attr *attr,
1103 bool is_evpn,
1104 struct zapi_nexthop *api_nh)
1105 {
1106 api_nh->gate.ipv4 = *nexthop;
1107
1108 /* Need to set fields appropriately for EVPN routes imported into
1109 * a VRF (which are programmed as onlink on l3-vni SVI) as well as
1110 * connected routes leaked into a VRF.
1111 */
1112 if (is_evpn)
1113 api_nh->type = NEXTHOP_TYPE_IPV4_IFINDEX;
1114 else if (nh_othervrf &&
1115 api_nh->gate.ipv4.s_addr == INADDR_ANY) {
1116 api_nh->type = NEXTHOP_TYPE_IFINDEX;
1117 api_nh->ifindex = attr->nh_ifindex;
1118 } else
1119 api_nh->type = NEXTHOP_TYPE_IPV4;
1120
1121 return 1;
1122 }
1123
1124 static int
1125 update_ipv6nh_for_route_install(int nh_othervrf, struct in6_addr *nexthop,
1126 ifindex_t ifindex, struct bgp_path_info *ri,
1127 struct bgp_path_info *best_ri, bool is_evpn,
1128 struct zapi_nexthop *api_nh)
1129 {
1130 struct attr *attr;
1131
1132 attr = ri->attr;
1133
1134 if (is_evpn)
1135 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1136 else if (nh_othervrf) {
1137 if (IN6_IS_ADDR_UNSPECIFIED(nexthop)) {
1138 api_nh->type = NEXTHOP_TYPE_IFINDEX;
1139 api_nh->ifindex = attr->nh_ifindex;
1140 } else if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
1141 if (ifindex == 0)
1142 return 0;
1143 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1144 api_nh->ifindex = ifindex;
1145 } else {
1146 api_nh->type = NEXTHOP_TYPE_IPV6;
1147 api_nh->ifindex = 0;
1148 }
1149 } else {
1150 if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
1151 if (ri == best_ri &&
1152 attr->mp_nexthop_len
1153 == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL)
1154 if (ri->peer->nexthop.ifp)
1155 ifindex = ri->peer->nexthop.ifp
1156 ->ifindex;
1157 if (!ifindex) {
1158 if (ri->peer->conf_if)
1159 ifindex = ri->peer->ifp->ifindex;
1160 else if (ri->peer->ifname)
1161 ifindex = ifname2ifindex(
1162 ri->peer->ifname,
1163 ri->peer->bgp->vrf_id);
1164 else if (ri->peer->nexthop.ifp)
1165 ifindex = ri->peer->nexthop.ifp
1166 ->ifindex;
1167 }
1168
1169 if (ifindex == 0)
1170 return 0;
1171 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1172 api_nh->ifindex = ifindex;
1173 } else {
1174 api_nh->type = NEXTHOP_TYPE_IPV6;
1175 api_nh->ifindex = 0;
1176 }
1177 }
1178 api_nh->gate.ipv6 = *nexthop;
1179
1180 return 1;
1181 }
1182
1183 void bgp_zebra_announce(struct bgp_node *rn, struct prefix *p,
1184 struct bgp_path_info *info, struct bgp *bgp, afi_t afi,
1185 safi_t safi)
1186 {
1187 struct zapi_route api;
1188 struct zapi_nexthop *api_nh;
1189 int nh_family;
1190 unsigned int valid_nh_count = 0;
1191 int has_valid_label = 0;
1192 uint8_t distance;
1193 struct peer *peer;
1194 struct bgp_path_info *mpinfo;
1195 uint32_t metric;
1196 struct attr local_attr;
1197 struct bgp_path_info local_info;
1198 struct bgp_path_info *mpinfo_cp = &local_info;
1199 route_tag_t tag;
1200 mpls_label_t label;
1201 int nh_othervrf = 0;
1202 char buf_prefix[PREFIX_STRLEN]; /* filled in if we are debugging */
1203 bool is_evpn;
1204 int nh_updated;
1205
1206 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1207 * know of this instance.
1208 */
1209 if (!bgp_install_info_to_zebra(bgp))
1210 return;
1211
1212 if (bgp->main_zebra_update_hold)
1213 return;
1214
1215 if (bgp_debug_zebra(p))
1216 prefix2str(p, buf_prefix, sizeof(buf_prefix));
1217
1218 if (safi == SAFI_FLOWSPEC)
1219 return bgp_pbr_update_entry(bgp, &rn->p,
1220 info, afi, safi, true);
1221
1222 /*
1223 * vrf leaking support (will have only one nexthop)
1224 */
1225 if (info->extra && info->extra->bgp_orig)
1226 nh_othervrf = 1;
1227
1228 /* Make Zebra API structure. */
1229 memset(&api, 0, sizeof(api));
1230 api.vrf_id = bgp->vrf_id;
1231 api.type = ZEBRA_ROUTE_BGP;
1232 api.safi = safi;
1233 api.prefix = *p;
1234 SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
1235
1236 peer = info->peer;
1237
1238 if (info->type == ZEBRA_ROUTE_BGP
1239 && info->sub_type == BGP_ROUTE_IMPORTED) {
1240
1241 /* Obtain peer from parent */
1242 if (info->extra && info->extra->parent)
1243 peer = ((struct bgp_path_info *)(info->extra->parent))
1244 ->peer;
1245 }
1246
1247 tag = info->attr->tag;
1248
1249 /* If the route's source is EVPN, flag as such. */
1250 is_evpn = is_route_parent_evpn(info);
1251 if (is_evpn)
1252 SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
1253
1254 if (peer->sort == BGP_PEER_IBGP || peer->sort == BGP_PEER_CONFED
1255 || info->sub_type == BGP_ROUTE_AGGREGATE) {
1256 SET_FLAG(api.flags, ZEBRA_FLAG_IBGP);
1257 SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
1258 }
1259
1260 if ((peer->sort == BGP_PEER_EBGP && peer->ttl != 1)
1261 || CHECK_FLAG(peer->flags, PEER_FLAG_DISABLE_CONNECTED_CHECK)
1262 || bgp_flag_check(bgp, BGP_FLAG_DISABLE_NH_CONNECTED_CHK))
1263
1264 SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
1265
1266 /* Metric is currently based on the best-path only */
1267 metric = info->attr->med;
1268 for (mpinfo = info; mpinfo; mpinfo = bgp_path_info_mpath_next(mpinfo)) {
1269 if (valid_nh_count >= multipath_num)
1270 break;
1271
1272 *mpinfo_cp = *mpinfo;
1273
1274 /* Get nexthop address-family */
1275 if (p->family == AF_INET
1276 && !BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr))
1277 nh_family = AF_INET;
1278 else if (p->family == AF_INET6
1279 || (p->family == AF_INET
1280 && BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr)))
1281 nh_family = AF_INET6;
1282 else
1283 continue;
1284
1285 api_nh = &api.nexthops[valid_nh_count];
1286 api_nh->vrf_id = nh_othervrf ? info->extra->bgp_orig->vrf_id
1287 : bgp->vrf_id;
1288 if (nh_family == AF_INET) {
1289 if (bgp_debug_zebra(&api.prefix)) {
1290 if (mpinfo->extra) {
1291 zlog_debug(
1292 "%s: p=%s, bgp_is_valid_label: %d",
1293 __func__, buf_prefix,
1294 bgp_is_valid_label(
1295 &mpinfo->extra
1296 ->label[0]));
1297 } else {
1298 zlog_debug(
1299 "%s: p=%s, extra is NULL, no label",
1300 __func__, buf_prefix);
1301 }
1302 }
1303
1304 if (bgp->table_map[afi][safi].name) {
1305 /* Copy info and attributes, so the route-map
1306 apply doesn't modify the BGP route info. */
1307 local_attr = *mpinfo->attr;
1308 mpinfo_cp->attr = &local_attr;
1309 }
1310
1311 if (bgp->table_map[afi][safi].name) {
1312 if (!bgp_table_map_apply(
1313 bgp->table_map[afi][safi].map, p,
1314 mpinfo_cp))
1315 continue;
1316
1317 /* metric/tag is only allowed to be
1318 * overridden on 1st nexthop */
1319 if (mpinfo == info) {
1320 metric = mpinfo_cp->attr->med;
1321 tag = mpinfo_cp->attr->tag;
1322 }
1323 }
1324
1325 nh_updated = update_ipv4nh_for_route_install(
1326 nh_othervrf,
1327 &mpinfo_cp->attr->nexthop,
1328 mpinfo_cp->attr, is_evpn, api_nh);
1329 } else {
1330 ifindex_t ifindex = IFINDEX_INTERNAL;
1331 struct in6_addr *nexthop;
1332
1333 if (bgp->table_map[afi][safi].name) {
1334 /* Copy info and attributes, so the route-map
1335 apply doesn't modify the BGP route info. */
1336 local_attr = *mpinfo->attr;
1337 mpinfo_cp->attr = &local_attr;
1338 }
1339
1340 if (bgp->table_map[afi][safi].name) {
1341 /* Copy info and attributes, so the route-map
1342 apply doesn't modify the BGP route info. */
1343 local_attr = *mpinfo->attr;
1344 mpinfo_cp->attr = &local_attr;
1345
1346 if (!bgp_table_map_apply(
1347 bgp->table_map[afi][safi].map, p,
1348 mpinfo_cp))
1349 continue;
1350
1351 /* metric/tag is only allowed to be
1352 * overridden on 1st nexthop */
1353 if (mpinfo == info) {
1354 metric = mpinfo_cp->attr->med;
1355 tag = mpinfo_cp->attr->tag;
1356 }
1357 }
1358 nexthop = bgp_path_info_to_ipv6_nexthop(mpinfo_cp,
1359 &ifindex);
1360 nh_updated = update_ipv6nh_for_route_install(
1361 nh_othervrf, nexthop, ifindex,
1362 mpinfo, info, is_evpn, api_nh);
1363 }
1364
1365 /* Did we get proper nexthop info to update zebra? */
1366 if (!nh_updated)
1367 continue;
1368
1369 if (mpinfo->extra
1370 && bgp_is_valid_label(&mpinfo->extra->label[0])
1371 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)) {
1372 has_valid_label = 1;
1373 label = label_pton(&mpinfo->extra->label[0]);
1374
1375 api_nh->label_num = 1;
1376 api_nh->labels[0] = label;
1377 }
1378 memcpy(&api_nh->rmac, &(mpinfo->attr->rmac),
1379 sizeof(struct ethaddr));
1380 valid_nh_count++;
1381 }
1382
1383
1384 /* if this is a evpn route we don't have to include the label */
1385 if (has_valid_label && !(CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)))
1386 SET_FLAG(api.message, ZAPI_MESSAGE_LABEL);
1387
1388 /*
1389 * When we create an aggregate route we must also
1390 * install a Null0 route in the RIB, so overwrite
1391 * what was written into api with a blackhole route
1392 */
1393 if (info->sub_type == BGP_ROUTE_AGGREGATE)
1394 zapi_route_set_blackhole(&api, BLACKHOLE_NULL);
1395 else
1396 api.nexthop_num = valid_nh_count;
1397
1398 SET_FLAG(api.message, ZAPI_MESSAGE_METRIC);
1399 api.metric = metric;
1400
1401 if (tag) {
1402 SET_FLAG(api.message, ZAPI_MESSAGE_TAG);
1403 api.tag = tag;
1404 }
1405
1406 distance = bgp_distance_apply(p, info, afi, safi, bgp);
1407 if (distance) {
1408 SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
1409 api.distance = distance;
1410 }
1411
1412 if (bgp_debug_zebra(p)) {
1413 char prefix_buf[PREFIX_STRLEN];
1414 char nh_buf[INET6_ADDRSTRLEN];
1415 char label_buf[20];
1416 int i;
1417
1418 prefix2str(&api.prefix, prefix_buf, sizeof(prefix_buf));
1419 zlog_debug("Tx route %s VRF %u %s metric %u tag %" ROUTE_TAG_PRI
1420 " count %d",
1421 valid_nh_count ? "add" : "delete", bgp->vrf_id,
1422 prefix_buf, api.metric, api.tag, api.nexthop_num);
1423 for (i = 0; i < api.nexthop_num; i++) {
1424 api_nh = &api.nexthops[i];
1425
1426 if (api_nh->type == NEXTHOP_TYPE_IFINDEX)
1427 nh_buf[0] = '\0';
1428 else {
1429 if (api_nh->type == NEXTHOP_TYPE_IPV4)
1430 nh_family = AF_INET;
1431 else
1432 nh_family = AF_INET6;
1433 inet_ntop(nh_family, &api_nh->gate, nh_buf,
1434 sizeof(nh_buf));
1435 }
1436
1437 label_buf[0] = '\0';
1438 if (has_valid_label
1439 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE))
1440 sprintf(label_buf, "label %u",
1441 api_nh->labels[0]);
1442 zlog_debug(" nhop [%d]: %s if %u VRF %u %s",
1443 i + 1, nh_buf, api_nh->ifindex,
1444 api_nh->vrf_id, label_buf);
1445 }
1446 }
1447
1448 if (bgp_debug_zebra(p)) {
1449 int recursion_flag = 0;
1450
1451 if (CHECK_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION))
1452 recursion_flag = 1;
1453
1454 zlog_debug("%s: %s: announcing to zebra (recursion %sset)",
1455 __func__, buf_prefix,
1456 (recursion_flag ? "" : "NOT "));
1457 }
1458 zclient_route_send(valid_nh_count ? ZEBRA_ROUTE_ADD
1459 : ZEBRA_ROUTE_DELETE,
1460 zclient, &api);
1461 }
1462
1463 /* Announce all routes of a table to zebra */
1464 void bgp_zebra_announce_table(struct bgp *bgp, afi_t afi, safi_t safi)
1465 {
1466 struct bgp_node *rn;
1467 struct bgp_table *table;
1468 struct bgp_path_info *ri;
1469
1470 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1471 * know of this instance.
1472 */
1473 if (!bgp_install_info_to_zebra(bgp))
1474 return;
1475
1476 table = bgp->rib[afi][safi];
1477 if (!table)
1478 return;
1479
1480 for (rn = bgp_table_top(table); rn; rn = bgp_route_next(rn))
1481 for (ri = rn->info; ri; ri = ri->next)
1482 if (CHECK_FLAG(ri->flags, BGP_PATH_SELECTED) &&
1483
1484 (ri->type == ZEBRA_ROUTE_BGP
1485 && (ri->sub_type == BGP_ROUTE_NORMAL
1486 || ri->sub_type == BGP_ROUTE_IMPORTED)))
1487
1488 bgp_zebra_announce(rn, &rn->p, ri, bgp, afi,
1489 safi);
1490 }
1491
1492 void bgp_zebra_withdraw(struct prefix *p, struct bgp_path_info *info,
1493 struct bgp *bgp, safi_t safi)
1494 {
1495 struct zapi_route api;
1496 struct peer *peer;
1497
1498 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1499 * know of this instance.
1500 */
1501 if (!bgp_install_info_to_zebra(bgp))
1502 return;
1503
1504 if (safi == SAFI_FLOWSPEC) {
1505 peer = info->peer;
1506 return bgp_pbr_update_entry(peer->bgp, p,
1507 info, AFI_IP, safi, false);
1508 }
1509
1510 memset(&api, 0, sizeof(api));
1511 api.vrf_id = bgp->vrf_id;
1512 api.type = ZEBRA_ROUTE_BGP;
1513 api.safi = safi;
1514 api.prefix = *p;
1515
1516 /* If the route's source is EVPN, flag as such. */
1517 if (is_route_parent_evpn(info))
1518 SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
1519
1520 if (bgp_debug_zebra(p)) {
1521 char buf[PREFIX_STRLEN];
1522
1523 prefix2str(&api.prefix, buf, sizeof(buf));
1524 zlog_debug("Tx route delete VRF %u %s", bgp->vrf_id, buf);
1525 }
1526
1527 zclient_route_send(ZEBRA_ROUTE_DELETE, zclient, &api);
1528 }
1529
1530 struct bgp_redist *bgp_redist_lookup(struct bgp *bgp, afi_t afi, uint8_t type,
1531 unsigned short instance)
1532 {
1533 struct list *red_list;
1534 struct listnode *node;
1535 struct bgp_redist *red;
1536
1537 red_list = bgp->redist[afi][type];
1538 if (!red_list)
1539 return (NULL);
1540
1541 for (ALL_LIST_ELEMENTS_RO(red_list, node, red))
1542 if (red->instance == instance)
1543 return red;
1544
1545 return NULL;
1546 }
1547
1548 struct bgp_redist *bgp_redist_add(struct bgp *bgp, afi_t afi, uint8_t type,
1549 unsigned short instance)
1550 {
1551 struct list *red_list;
1552 struct bgp_redist *red;
1553
1554 red = bgp_redist_lookup(bgp, afi, type, instance);
1555 if (red)
1556 return red;
1557
1558 if (!bgp->redist[afi][type])
1559 bgp->redist[afi][type] = list_new();
1560
1561 red_list = bgp->redist[afi][type];
1562 red = (struct bgp_redist *)XCALLOC(MTYPE_BGP_REDIST,
1563 sizeof(struct bgp_redist));
1564 red->instance = instance;
1565
1566 listnode_add(red_list, red);
1567
1568 return red;
1569 }
1570
1571 static void bgp_redist_del(struct bgp *bgp, afi_t afi, uint8_t type,
1572 unsigned short instance)
1573 {
1574 struct bgp_redist *red;
1575
1576 red = bgp_redist_lookup(bgp, afi, type, instance);
1577
1578 if (red) {
1579 listnode_delete(bgp->redist[afi][type], red);
1580 XFREE(MTYPE_BGP_REDIST, red);
1581 if (!bgp->redist[afi][type]->count)
1582 list_delete(&bgp->redist[afi][type]);
1583 }
1584 }
1585
1586 /* Other routes redistribution into BGP. */
1587 int bgp_redistribute_set(struct bgp *bgp, afi_t afi, int type,
1588 unsigned short instance, bool changed)
1589 {
1590 /* If redistribute options are changed call
1591 * bgp_redistribute_unreg() to reset the option and withdraw
1592 * the routes
1593 */
1594 if (changed)
1595 bgp_redistribute_unreg(bgp, afi, type, instance);
1596
1597 /* Return if already redistribute flag is set. */
1598 if (instance) {
1599 if (redist_check_instance(&zclient->mi_redist[afi][type],
1600 instance))
1601 return CMD_WARNING;
1602
1603 redist_add_instance(&zclient->mi_redist[afi][type], instance);
1604 } else {
1605 if (vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
1606 return CMD_WARNING;
1607
1608 #if ENABLE_BGP_VNC
1609 if (bgp->vrf_id == VRF_DEFAULT
1610 && type == ZEBRA_ROUTE_VNC_DIRECT) {
1611 vnc_export_bgp_enable(
1612 bgp, afi); /* only enables if mode bits cfg'd */
1613 }
1614 #endif
1615
1616 vrf_bitmap_set(zclient->redist[afi][type], bgp->vrf_id);
1617 }
1618
1619 /*
1620 * Don't try to register if we're not connected to Zebra or Zebra
1621 * doesn't know of this instance.
1622 *
1623 * When we come up later well resend if needed.
1624 */
1625 if (!bgp_install_info_to_zebra(bgp))
1626 return CMD_SUCCESS;
1627
1628 if (BGP_DEBUG(zebra, ZEBRA))
1629 zlog_debug("Tx redistribute add VRF %u afi %d %s %d",
1630 bgp->vrf_id, afi, zebra_route_string(type),
1631 instance);
1632
1633 /* Send distribute add message to zebra. */
1634 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
1635 instance, bgp->vrf_id);
1636
1637 return CMD_SUCCESS;
1638 }
1639
1640 int bgp_redistribute_resend(struct bgp *bgp, afi_t afi, int type,
1641 unsigned short instance)
1642 {
1643 /* Don't try to send if we're not connected to Zebra or Zebra doesn't
1644 * know of this instance.
1645 */
1646 if (!bgp_install_info_to_zebra(bgp))
1647 return -1;
1648
1649 if (BGP_DEBUG(zebra, ZEBRA))
1650 zlog_debug("Tx redistribute del/add VRF %u afi %d %s %d",
1651 bgp->vrf_id, afi, zebra_route_string(type),
1652 instance);
1653
1654 /* Send distribute add message to zebra. */
1655 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi, type,
1656 instance, bgp->vrf_id);
1657 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
1658 instance, bgp->vrf_id);
1659
1660 return 0;
1661 }
1662
1663 /* Redistribute with route-map specification. */
1664 int bgp_redistribute_rmap_set(struct bgp_redist *red, const char *name)
1665 {
1666 if (red->rmap.name && (strcmp(red->rmap.name, name) == 0))
1667 return 0;
1668
1669 if (red->rmap.name)
1670 XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
1671 red->rmap.name = XSTRDUP(MTYPE_ROUTE_MAP_NAME, name);
1672 red->rmap.map = route_map_lookup_by_name(name);
1673
1674 return 1;
1675 }
1676
1677 /* Redistribute with metric specification. */
1678 int bgp_redistribute_metric_set(struct bgp *bgp, struct bgp_redist *red,
1679 afi_t afi, int type, uint32_t metric)
1680 {
1681 struct bgp_node *rn;
1682 struct bgp_path_info *ri;
1683
1684 if (red->redist_metric_flag && red->redist_metric == metric)
1685 return 0;
1686
1687 red->redist_metric_flag = 1;
1688 red->redist_metric = metric;
1689
1690 for (rn = bgp_table_top(bgp->rib[afi][SAFI_UNICAST]); rn;
1691 rn = bgp_route_next(rn)) {
1692 for (ri = rn->info; ri; ri = ri->next) {
1693 if (ri->sub_type == BGP_ROUTE_REDISTRIBUTE
1694 && ri->type == type
1695 && ri->instance == red->instance) {
1696 struct attr *old_attr;
1697 struct attr new_attr;
1698
1699 bgp_attr_dup(&new_attr, ri->attr);
1700 new_attr.med = red->redist_metric;
1701 old_attr = ri->attr;
1702 ri->attr = bgp_attr_intern(&new_attr);
1703 bgp_attr_unintern(&old_attr);
1704
1705 bgp_path_info_set_flag(rn, ri,
1706 BGP_PATH_ATTR_CHANGED);
1707 bgp_process(bgp, rn, afi, SAFI_UNICAST);
1708 }
1709 }
1710 }
1711
1712 return 1;
1713 }
1714
1715 /* Unset redistribution. */
1716 int bgp_redistribute_unreg(struct bgp *bgp, afi_t afi, int type,
1717 unsigned short instance)
1718 {
1719 struct bgp_redist *red;
1720
1721 red = bgp_redist_lookup(bgp, afi, type, instance);
1722 if (!red)
1723 return CMD_SUCCESS;
1724
1725 /* Return if zebra connection is disabled. */
1726 if (instance) {
1727 if (!redist_check_instance(&zclient->mi_redist[afi][type],
1728 instance))
1729 return CMD_WARNING;
1730 redist_del_instance(&zclient->mi_redist[afi][type], instance);
1731 } else {
1732 if (!vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
1733 return CMD_WARNING;
1734 vrf_bitmap_unset(zclient->redist[afi][type], bgp->vrf_id);
1735 }
1736
1737
1738 if (bgp_install_info_to_zebra(bgp)) {
1739 /* Send distribute delete message to zebra. */
1740 if (BGP_DEBUG(zebra, ZEBRA))
1741 zlog_debug("Tx redistribute del VRF %u afi %d %s %d",
1742 bgp->vrf_id, afi, zebra_route_string(type),
1743 instance);
1744 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi,
1745 type, instance, bgp->vrf_id);
1746 }
1747
1748 /* Withdraw redistributed routes from current BGP's routing table. */
1749 bgp_redistribute_withdraw(bgp, afi, type, instance);
1750
1751 return CMD_SUCCESS;
1752 }
1753
1754 /* Unset redistribution. */
1755 int bgp_redistribute_unset(struct bgp *bgp, afi_t afi, int type,
1756 unsigned short instance)
1757 {
1758 struct bgp_redist *red;
1759
1760 /*
1761 * vnc and vpn->vrf checks must be before red check because
1762 * they operate within bgpd irrespective of zebra connection
1763 * status. red lookup fails if there is no zebra connection.
1764 */
1765 #if ENABLE_BGP_VNC
1766 if (bgp->vrf_id == VRF_DEFAULT && type == ZEBRA_ROUTE_VNC_DIRECT) {
1767 vnc_export_bgp_disable(bgp, afi);
1768 }
1769 #endif
1770
1771 red = bgp_redist_lookup(bgp, afi, type, instance);
1772 if (!red)
1773 return CMD_SUCCESS;
1774
1775 bgp_redistribute_unreg(bgp, afi, type, instance);
1776
1777 /* Unset route-map. */
1778 if (red->rmap.name)
1779 XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
1780 red->rmap.name = NULL;
1781 red->rmap.map = NULL;
1782
1783 /* Unset metric. */
1784 red->redist_metric_flag = 0;
1785 red->redist_metric = 0;
1786
1787 bgp_redist_del(bgp, afi, type, instance);
1788
1789 return CMD_SUCCESS;
1790 }
1791
1792 /* Update redistribute vrf bitmap during triggers like
1793 restart networking or delete/add VRFs */
1794 void bgp_update_redist_vrf_bitmaps(struct bgp *bgp, vrf_id_t old_vrf_id)
1795 {
1796 int i;
1797 afi_t afi;
1798
1799 for (afi = AFI_IP; afi < AFI_MAX; afi++)
1800 for (i = 0; i < ZEBRA_ROUTE_MAX; i++)
1801 if ((old_vrf_id == VRF_UNKNOWN)
1802 || vrf_bitmap_check(zclient->redist[afi][i],
1803 old_vrf_id)) {
1804 vrf_bitmap_unset(zclient->redist[afi][i],
1805 old_vrf_id);
1806 vrf_bitmap_set(zclient->redist[afi][i],
1807 bgp->vrf_id);
1808 }
1809 return;
1810 }
1811
1812 void bgp_zclient_reset(void)
1813 {
1814 zclient_reset(zclient);
1815 }
1816
1817 /* Register this instance with Zebra. Invoked upon connect (for
1818 * default instance) and when other VRFs are learnt (or created and
1819 * already learnt).
1820 */
1821 void bgp_zebra_instance_register(struct bgp *bgp)
1822 {
1823 /* Don't try to register if we're not connected to Zebra */
1824 if (!zclient || zclient->sock < 0)
1825 return;
1826
1827 if (BGP_DEBUG(zebra, ZEBRA))
1828 zlog_debug("Registering VRF %u", bgp->vrf_id);
1829
1830 /* Register for router-id, interfaces, redistributed routes. */
1831 zclient_send_reg_requests(zclient, bgp->vrf_id);
1832
1833 /* For default instance, register to learn about VNIs, if appropriate.
1834 */
1835 if (bgp->inst_type == BGP_INSTANCE_TYPE_DEFAULT && is_evpn_enabled())
1836 bgp_zebra_advertise_all_vni(bgp, 1);
1837 }
1838
1839 /* Deregister this instance with Zebra. Invoked upon the instance
1840 * being deleted (default or VRF) and it is already registered.
1841 */
1842 void bgp_zebra_instance_deregister(struct bgp *bgp)
1843 {
1844 /* Don't try to deregister if we're not connected to Zebra */
1845 if (zclient->sock < 0)
1846 return;
1847
1848 if (BGP_DEBUG(zebra, ZEBRA))
1849 zlog_debug("Deregistering VRF %u", bgp->vrf_id);
1850
1851 /* For default instance, unregister learning about VNIs, if appropriate.
1852 */
1853 if (bgp->inst_type == BGP_INSTANCE_TYPE_DEFAULT && is_evpn_enabled())
1854 bgp_zebra_advertise_all_vni(bgp, 0);
1855
1856 /* Deregister for router-id, interfaces, redistributed routes. */
1857 zclient_send_dereg_requests(zclient, bgp->vrf_id);
1858 }
1859
1860 void bgp_zebra_initiate_radv(struct bgp *bgp, struct peer *peer)
1861 {
1862 int ra_interval = BGP_UNNUM_DEFAULT_RA_INTERVAL;
1863
1864 /* Don't try to initiate if we're not connected to Zebra */
1865 if (zclient->sock < 0)
1866 return;
1867
1868 if (BGP_DEBUG(zebra, ZEBRA))
1869 zlog_debug("%u: Initiating RA for peer %s", bgp->vrf_id,
1870 peer->host);
1871
1872 zclient_send_interface_radv_req(zclient, bgp->vrf_id, peer->ifp, 1,
1873 ra_interval);
1874 }
1875
1876 void bgp_zebra_terminate_radv(struct bgp *bgp, struct peer *peer)
1877 {
1878 /* Don't try to terminate if we're not connected to Zebra */
1879 if (zclient->sock < 0)
1880 return;
1881
1882 if (BGP_DEBUG(zebra, ZEBRA))
1883 zlog_debug("%u: Terminating RA for peer %s", bgp->vrf_id,
1884 peer->host);
1885
1886 zclient_send_interface_radv_req(zclient, bgp->vrf_id, peer->ifp, 0, 0);
1887 }
1888
1889 int bgp_zebra_advertise_subnet(struct bgp *bgp, int advertise, vni_t vni)
1890 {
1891 struct stream *s = NULL;
1892
1893 /* Check socket. */
1894 if (!zclient || zclient->sock < 0)
1895 return 0;
1896
1897 /* Don't try to register if Zebra doesn't know of this instance. */
1898 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
1899 return 0;
1900
1901 s = zclient->obuf;
1902 stream_reset(s);
1903
1904 zclient_create_header(s, ZEBRA_ADVERTISE_SUBNET, bgp->vrf_id);
1905 stream_putc(s, advertise);
1906 stream_put3(s, vni);
1907 stream_putw_at(s, 0, stream_get_endp(s));
1908
1909 return zclient_send_message(zclient);
1910 }
1911
1912 int bgp_zebra_advertise_gw_macip(struct bgp *bgp, int advertise, vni_t vni)
1913 {
1914 struct stream *s = NULL;
1915
1916 /* Check socket. */
1917 if (!zclient || zclient->sock < 0)
1918 return 0;
1919
1920 /* Don't try to register if Zebra doesn't know of this instance. */
1921 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
1922 return 0;
1923
1924 s = zclient->obuf;
1925 stream_reset(s);
1926
1927 zclient_create_header(s, ZEBRA_ADVERTISE_DEFAULT_GW, bgp->vrf_id);
1928 stream_putc(s, advertise);
1929 stream_putl(s, vni);
1930 stream_putw_at(s, 0, stream_get_endp(s));
1931
1932 return zclient_send_message(zclient);
1933 }
1934
1935 int bgp_zebra_advertise_all_vni(struct bgp *bgp, int advertise)
1936 {
1937 struct stream *s;
1938
1939 /* Check socket. */
1940 if (!zclient || zclient->sock < 0)
1941 return 0;
1942
1943 /* Don't try to register if Zebra doesn't know of this instance. */
1944 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
1945 return 0;
1946
1947 s = zclient->obuf;
1948 stream_reset(s);
1949
1950 zclient_create_header(s, ZEBRA_ADVERTISE_ALL_VNI, bgp->vrf_id);
1951 stream_putc(s, advertise);
1952 stream_putw_at(s, 0, stream_get_endp(s));
1953
1954 return zclient_send_message(zclient);
1955 }
1956
1957 static int rule_notify_owner(int command, struct zclient *zclient,
1958 zebra_size_t length, vrf_id_t vrf_id)
1959 {
1960 uint32_t seqno, priority, unique;
1961 enum zapi_rule_notify_owner note;
1962 struct bgp_pbr_action *bgp_pbra;
1963 ifindex_t ifi;
1964
1965 if (!zapi_rule_notify_decode(zclient->ibuf, &seqno, &priority, &unique,
1966 &ifi, &note))
1967 return -1;
1968
1969 bgp_pbra = bgp_pbr_action_rule_lookup(vrf_id, unique);
1970 if (!bgp_pbra) {
1971 if (BGP_DEBUG(zebra, ZEBRA))
1972 zlog_debug("%s: Fail to look BGP rule (%u)",
1973 __PRETTY_FUNCTION__, unique);
1974 return 0;
1975 }
1976
1977 switch (note) {
1978 case ZAPI_RULE_FAIL_INSTALL:
1979 if (BGP_DEBUG(zebra, ZEBRA))
1980 zlog_debug("%s: Received RULE_FAIL_INSTALL",
1981 __PRETTY_FUNCTION__);
1982 bgp_pbra->installed = false;
1983 bgp_pbra->install_in_progress = false;
1984 break;
1985 case ZAPI_RULE_INSTALLED:
1986 bgp_pbra->installed = true;
1987 bgp_pbra->install_in_progress = false;
1988 if (BGP_DEBUG(zebra, ZEBRA))
1989 zlog_debug("%s: Received RULE_INSTALLED",
1990 __PRETTY_FUNCTION__);
1991 break;
1992 case ZAPI_RULE_FAIL_REMOVE:
1993 case ZAPI_RULE_REMOVED:
1994 if (BGP_DEBUG(zebra, ZEBRA))
1995 zlog_debug("%s: Received RULE REMOVED",
1996 __PRETTY_FUNCTION__);
1997 break;
1998 }
1999
2000 return 0;
2001 }
2002
2003 static int ipset_notify_owner(int command, struct zclient *zclient,
2004 zebra_size_t length, vrf_id_t vrf_id)
2005 {
2006 uint32_t unique;
2007 enum zapi_ipset_notify_owner note;
2008 struct bgp_pbr_match *bgp_pbim;
2009
2010 if (!zapi_ipset_notify_decode(zclient->ibuf,
2011 &unique,
2012 &note))
2013 return -1;
2014
2015 bgp_pbim = bgp_pbr_match_ipset_lookup(vrf_id, unique);
2016 if (!bgp_pbim) {
2017 if (BGP_DEBUG(zebra, ZEBRA))
2018 zlog_debug("%s: Fail to look BGP match ( %u, ID %u)",
2019 __PRETTY_FUNCTION__, note, unique);
2020 return 0;
2021 }
2022
2023 switch (note) {
2024 case ZAPI_IPSET_FAIL_INSTALL:
2025 if (BGP_DEBUG(zebra, ZEBRA))
2026 zlog_debug("%s: Received IPSET_FAIL_INSTALL",
2027 __PRETTY_FUNCTION__);
2028 bgp_pbim->installed = false;
2029 bgp_pbim->install_in_progress = false;
2030 break;
2031 case ZAPI_IPSET_INSTALLED:
2032 bgp_pbim->installed = true;
2033 bgp_pbim->install_in_progress = false;
2034 if (BGP_DEBUG(zebra, ZEBRA))
2035 zlog_debug("%s: Received IPSET_INSTALLED",
2036 __PRETTY_FUNCTION__);
2037 break;
2038 case ZAPI_IPSET_FAIL_REMOVE:
2039 case ZAPI_IPSET_REMOVED:
2040 if (BGP_DEBUG(zebra, ZEBRA))
2041 zlog_debug("%s: Received IPSET REMOVED",
2042 __PRETTY_FUNCTION__);
2043 break;
2044 }
2045
2046 return 0;
2047 }
2048
2049 static int ipset_entry_notify_owner(int command, struct zclient *zclient,
2050 zebra_size_t length, vrf_id_t vrf_id)
2051 {
2052 uint32_t unique;
2053 char ipset_name[ZEBRA_IPSET_NAME_SIZE];
2054 enum zapi_ipset_entry_notify_owner note;
2055 struct bgp_pbr_match_entry *bgp_pbime;
2056
2057 if (!zapi_ipset_entry_notify_decode(
2058 zclient->ibuf,
2059 &unique,
2060 ipset_name,
2061 &note))
2062 return -1;
2063 bgp_pbime = bgp_pbr_match_ipset_entry_lookup(vrf_id,
2064 ipset_name,
2065 unique);
2066 if (!bgp_pbime) {
2067 if (BGP_DEBUG(zebra, ZEBRA))
2068 zlog_debug("%s: Fail to look BGP match entry (%u, ID %u)",
2069 __PRETTY_FUNCTION__, note, unique);
2070 return 0;
2071 }
2072
2073 switch (note) {
2074 case ZAPI_IPSET_ENTRY_FAIL_INSTALL:
2075 if (BGP_DEBUG(zebra, ZEBRA))
2076 zlog_debug("%s: Received IPSET_ENTRY_FAIL_INSTALL",
2077 __PRETTY_FUNCTION__);
2078 bgp_pbime->installed = false;
2079 bgp_pbime->install_in_progress = false;
2080 break;
2081 case ZAPI_IPSET_ENTRY_INSTALLED:
2082 {
2083 struct bgp_path_info *path;
2084 struct bgp_path_info_extra *extra;
2085
2086 bgp_pbime->installed = true;
2087 bgp_pbime->install_in_progress = false;
2088 if (BGP_DEBUG(zebra, ZEBRA))
2089 zlog_debug("%s: Received IPSET_ENTRY_INSTALLED",
2090 __PRETTY_FUNCTION__);
2091 /* link bgp_path_info to bpme */
2092 path = (struct bgp_path_info *)bgp_pbime->path;
2093 extra = bgp_path_info_extra_get(path);
2094 if (extra->bgp_fs_pbr == NULL)
2095 extra->bgp_fs_pbr = list_new();
2096 listnode_add(extra->bgp_fs_pbr, bgp_pbime);
2097 }
2098 break;
2099 case ZAPI_IPSET_ENTRY_FAIL_REMOVE:
2100 case ZAPI_IPSET_ENTRY_REMOVED:
2101 if (BGP_DEBUG(zebra, ZEBRA))
2102 zlog_debug("%s: Received IPSET_ENTRY_REMOVED",
2103 __PRETTY_FUNCTION__);
2104 break;
2105 }
2106 return 0;
2107 }
2108
2109 static int iptable_notify_owner(int command, struct zclient *zclient,
2110 zebra_size_t length, vrf_id_t vrf_id)
2111 {
2112 uint32_t unique;
2113 enum zapi_iptable_notify_owner note;
2114 struct bgp_pbr_match *bgpm;
2115
2116 if (!zapi_iptable_notify_decode(
2117 zclient->ibuf,
2118 &unique,
2119 &note))
2120 return -1;
2121 bgpm = bgp_pbr_match_iptable_lookup(vrf_id, unique);
2122 if (!bgpm) {
2123 if (BGP_DEBUG(zebra, ZEBRA))
2124 zlog_debug("%s: Fail to look BGP iptable (%u %u)",
2125 __PRETTY_FUNCTION__, note, unique);
2126 return 0;
2127 }
2128 switch (note) {
2129 case ZAPI_IPTABLE_FAIL_INSTALL:
2130 if (BGP_DEBUG(zebra, ZEBRA))
2131 zlog_debug("%s: Received IPTABLE_FAIL_INSTALL",
2132 __PRETTY_FUNCTION__);
2133 bgpm->installed_in_iptable = false;
2134 bgpm->install_iptable_in_progress = false;
2135 break;
2136 case ZAPI_IPTABLE_INSTALLED:
2137 bgpm->installed_in_iptable = true;
2138 bgpm->install_iptable_in_progress = false;
2139 if (BGP_DEBUG(zebra, ZEBRA))
2140 zlog_debug("%s: Received IPTABLE_INSTALLED",
2141 __PRETTY_FUNCTION__);
2142 bgpm->action->refcnt++;
2143 break;
2144 case ZAPI_IPTABLE_FAIL_REMOVE:
2145 case ZAPI_IPTABLE_REMOVED:
2146 if (BGP_DEBUG(zebra, ZEBRA))
2147 zlog_debug("%s: Received IPTABLE REMOVED",
2148 __PRETTY_FUNCTION__);
2149 break;
2150 }
2151 return 0;
2152 }
2153
2154 static void bgp_encode_pbr_rule_action(struct stream *s,
2155 struct bgp_pbr_action *pbra)
2156 {
2157 struct prefix any;
2158
2159 stream_putl(s, 0); /* seqno unused */
2160 stream_putl(s, 0); /* ruleno unused */
2161
2162 stream_putl(s, pbra->unique);
2163
2164 memset(&any, 0, sizeof(any));
2165 any.family = AF_INET;
2166 stream_putc(s, any.family);
2167 stream_putc(s, any.prefixlen);
2168 stream_put(s, &any.u.prefix, prefix_blen(&any));
2169
2170 stream_putw(s, 0); /* src port */
2171
2172 stream_putc(s, any.family);
2173 stream_putc(s, any.prefixlen);
2174 stream_put(s, &any.u.prefix, prefix_blen(&any));
2175
2176 stream_putw(s, 0); /* dst port */
2177
2178 stream_putl(s, pbra->fwmark); /* fwmark */
2179
2180 stream_putl(s, pbra->table_id);
2181
2182 stream_putl(s, 0); /* ifindex unused */
2183 }
2184
2185 static void bgp_encode_pbr_ipset_match(struct stream *s,
2186 struct bgp_pbr_match *pbim)
2187 {
2188 stream_putl(s, pbim->unique);
2189 stream_putl(s, pbim->type);
2190
2191 stream_put(s, pbim->ipset_name,
2192 ZEBRA_IPSET_NAME_SIZE);
2193 }
2194
2195 static void bgp_encode_pbr_ipset_entry_match(struct stream *s,
2196 struct bgp_pbr_match_entry *pbime)
2197 {
2198 stream_putl(s, pbime->unique);
2199 /* check that back pointer is not null */
2200 stream_put(s, pbime->backpointer->ipset_name,
2201 ZEBRA_IPSET_NAME_SIZE);
2202
2203 stream_putc(s, pbime->src.family);
2204 stream_putc(s, pbime->src.prefixlen);
2205 stream_put(s, &pbime->src.u.prefix, prefix_blen(&pbime->src));
2206
2207 stream_putc(s, pbime->dst.family);
2208 stream_putc(s, pbime->dst.prefixlen);
2209 stream_put(s, &pbime->dst.u.prefix, prefix_blen(&pbime->dst));
2210
2211 stream_putw(s, pbime->src_port_min);
2212 stream_putw(s, pbime->src_port_max);
2213 stream_putw(s, pbime->dst_port_min);
2214 stream_putw(s, pbime->dst_port_max);
2215 stream_putc(s, pbime->proto);
2216 }
2217
2218 static void bgp_encode_pbr_iptable_match(struct stream *s,
2219 struct bgp_pbr_action *bpa,
2220 struct bgp_pbr_match *pbm)
2221 {
2222 stream_putl(s, pbm->unique2);
2223
2224 stream_putl(s, pbm->type);
2225
2226 stream_putl(s, pbm->flags);
2227
2228 /* TODO: correlate with what is contained
2229 * into bgp_pbr_action.
2230 * currently only forward supported
2231 */
2232 if (bpa->nh.type == NEXTHOP_TYPE_BLACKHOLE)
2233 stream_putl(s, ZEBRA_IPTABLES_DROP);
2234 else
2235 stream_putl(s, ZEBRA_IPTABLES_FORWARD);
2236 stream_putl(s, bpa->fwmark);
2237 stream_put(s, pbm->ipset_name,
2238 ZEBRA_IPSET_NAME_SIZE);
2239 stream_putw(s, pbm->pkt_len_min);
2240 stream_putw(s, pbm->pkt_len_max);
2241 stream_putw(s, pbm->tcp_flags);
2242 stream_putw(s, pbm->tcp_mask_flags);
2243 stream_putc(s, pbm->dscp_value);
2244 stream_putc(s, pbm->fragment);
2245 }
2246
2247 /* BGP has established connection with Zebra. */
2248 static void bgp_zebra_connected(struct zclient *zclient)
2249 {
2250 struct bgp *bgp;
2251
2252 zclient_num_connects++; /* increment even if not responding */
2253
2254 /* At this point, we may or may not have BGP instances configured, but
2255 * we're only interested in the default VRF (others wouldn't have learnt
2256 * the VRF from Zebra yet.)
2257 */
2258 bgp = bgp_get_default();
2259 if (!bgp)
2260 return;
2261
2262 bgp_zebra_instance_register(bgp);
2263
2264 /* Send the client registration */
2265 bfd_client_sendmsg(zclient, ZEBRA_BFD_CLIENT_REGISTER);
2266
2267 /* tell label pool that zebra is connected */
2268 bgp_lp_event_zebra_up();
2269
2270 /* TODO - What if we have peers and networks configured, do we have to
2271 * kick-start them?
2272 */
2273 }
2274
2275 static int bgp_zebra_process_local_es(int cmd, struct zclient *zclient,
2276 zebra_size_t length, vrf_id_t vrf_id)
2277 {
2278 esi_t esi;
2279 struct bgp *bgp = NULL;
2280 struct stream *s = NULL;
2281 char buf[ESI_STR_LEN];
2282 char buf1[INET6_ADDRSTRLEN];
2283 struct ipaddr originator_ip;
2284
2285 memset(&esi, 0, sizeof(esi_t));
2286 memset(&originator_ip, 0, sizeof(struct ipaddr));
2287
2288 bgp = bgp_lookup_by_vrf_id(vrf_id);
2289 if (!bgp)
2290 return 0;
2291
2292 s = zclient->ibuf;
2293 stream_get(&esi, s, sizeof(esi_t));
2294 stream_get(&originator_ip, s, sizeof(struct ipaddr));
2295
2296 if (BGP_DEBUG(zebra, ZEBRA))
2297 zlog_debug("Rx %s ESI %s originator-ip %s",
2298 (cmd == ZEBRA_LOCAL_ES_ADD) ? "add" : "del",
2299 esi_to_str(&esi, buf, sizeof(buf)),
2300 ipaddr2str(&originator_ip, buf1, sizeof(buf1)));
2301
2302 if (cmd == ZEBRA_LOCAL_ES_ADD)
2303 bgp_evpn_local_es_add(bgp, &esi, &originator_ip);
2304 else
2305 bgp_evpn_local_es_del(bgp, &esi, &originator_ip);
2306 return 0;
2307 }
2308
2309 static int bgp_zebra_process_local_l3vni(int cmd, struct zclient *zclient,
2310 zebra_size_t length, vrf_id_t vrf_id)
2311 {
2312 int filter = 0;
2313 char buf[ETHER_ADDR_STRLEN];
2314 vni_t l3vni = 0;
2315 struct ethaddr rmac;
2316 struct in_addr originator_ip;
2317 struct stream *s;
2318
2319 memset(&rmac, 0, sizeof(struct ethaddr));
2320 memset(&originator_ip, 0, sizeof(struct in_addr));
2321 s = zclient->ibuf;
2322 l3vni = stream_getl(s);
2323 if (cmd == ZEBRA_L3VNI_ADD) {
2324 stream_get(&rmac, s, sizeof(struct ethaddr));
2325 originator_ip.s_addr = stream_get_ipv4(s);
2326 stream_get(&filter, s, sizeof(int));
2327 }
2328
2329 if (BGP_DEBUG(zebra, ZEBRA))
2330 zlog_debug("Rx L3-VNI %s VRF %s VNI %u RMAC %s filter %s",
2331 (cmd == ZEBRA_L3VNI_ADD) ? "add" : "del",
2332 vrf_id_to_name(vrf_id), l3vni,
2333 prefix_mac2str(&rmac, buf, sizeof(buf)),
2334 filter ? "prefix-routes-only" : "none");
2335
2336 if (cmd == ZEBRA_L3VNI_ADD)
2337 bgp_evpn_local_l3vni_add(l3vni, vrf_id, &rmac, originator_ip,
2338 filter);
2339 else
2340 bgp_evpn_local_l3vni_del(l3vni, vrf_id);
2341
2342 return 0;
2343 }
2344
2345 static int bgp_zebra_process_local_vni(int command, struct zclient *zclient,
2346 zebra_size_t length, vrf_id_t vrf_id)
2347 {
2348 struct stream *s;
2349 vni_t vni;
2350 struct bgp *bgp;
2351 struct in_addr vtep_ip = {INADDR_ANY};
2352 vrf_id_t tenant_vrf_id = VRF_DEFAULT;
2353
2354 s = zclient->ibuf;
2355 vni = stream_getl(s);
2356 if (command == ZEBRA_VNI_ADD) {
2357 vtep_ip.s_addr = stream_get_ipv4(s);
2358 stream_get(&tenant_vrf_id, s, sizeof(vrf_id_t));
2359 }
2360
2361 bgp = bgp_lookup_by_vrf_id(vrf_id);
2362 if (!bgp)
2363 return 0;
2364
2365 if (BGP_DEBUG(zebra, ZEBRA))
2366 zlog_debug("Rx VNI %s VRF %s VNI %u tenant-vrf %s",
2367 (command == ZEBRA_VNI_ADD) ? "add" : "del",
2368 vrf_id_to_name(vrf_id), vni,
2369 vrf_id_to_name(tenant_vrf_id));
2370
2371 if (command == ZEBRA_VNI_ADD)
2372 return bgp_evpn_local_vni_add(
2373 bgp, vni, vtep_ip.s_addr ? vtep_ip : bgp->router_id,
2374 tenant_vrf_id);
2375 else
2376 return bgp_evpn_local_vni_del(bgp, vni);
2377 }
2378
2379 static int bgp_zebra_process_local_macip(int command, struct zclient *zclient,
2380 zebra_size_t length, vrf_id_t vrf_id)
2381 {
2382 struct stream *s;
2383 vni_t vni;
2384 struct bgp *bgp;
2385 struct ethaddr mac;
2386 struct ipaddr ip;
2387 int ipa_len;
2388 char buf[ETHER_ADDR_STRLEN];
2389 char buf1[INET6_ADDRSTRLEN];
2390 uint8_t flags = 0;
2391 uint32_t seqnum = 0;
2392
2393 memset(&ip, 0, sizeof(ip));
2394 s = zclient->ibuf;
2395 vni = stream_getl(s);
2396 stream_get(&mac.octet, s, ETH_ALEN);
2397 ipa_len = stream_getl(s);
2398 if (ipa_len != 0 && ipa_len != IPV4_MAX_BYTELEN
2399 && ipa_len != IPV6_MAX_BYTELEN) {
2400 flog_err(EC_BGP_MACIP_LEN,
2401 "%u:Recv MACIP %s with invalid IP addr length %d",
2402 vrf_id, (command == ZEBRA_MACIP_ADD) ? "Add" : "Del",
2403 ipa_len);
2404 return -1;
2405 }
2406
2407 if (ipa_len) {
2408 ip.ipa_type =
2409 (ipa_len == IPV4_MAX_BYTELEN) ? IPADDR_V4 : IPADDR_V6;
2410 stream_get(&ip.ip.addr, s, ipa_len);
2411 }
2412 if (command == ZEBRA_MACIP_ADD) {
2413 flags = stream_getc(s);
2414 seqnum = stream_getl(s);
2415 }
2416
2417 bgp = bgp_lookup_by_vrf_id(vrf_id);
2418 if (!bgp)
2419 return 0;
2420
2421 if (BGP_DEBUG(zebra, ZEBRA))
2422 zlog_debug("%u:Recv MACIP %s flags 0x%x MAC %s IP %s VNI %u seq %u",
2423 vrf_id, (command == ZEBRA_MACIP_ADD) ? "Add" : "Del",
2424 flags, prefix_mac2str(&mac, buf, sizeof(buf)),
2425 ipaddr2str(&ip, buf1, sizeof(buf1)), vni, seqnum);
2426
2427 if (command == ZEBRA_MACIP_ADD)
2428 return bgp_evpn_local_macip_add(bgp, vni, &mac, &ip,
2429 flags, seqnum);
2430 else
2431 return bgp_evpn_local_macip_del(bgp, vni, &mac, &ip);
2432 }
2433
2434 static void bgp_zebra_process_local_ip_prefix(int cmd, struct zclient *zclient,
2435 zebra_size_t length,
2436 vrf_id_t vrf_id)
2437 {
2438 struct stream *s = NULL;
2439 struct bgp *bgp_vrf = NULL;
2440 struct prefix p;
2441 char buf[PREFIX_STRLEN];
2442
2443 memset(&p, 0, sizeof(struct prefix));
2444 s = zclient->ibuf;
2445 stream_get(&p, s, sizeof(struct prefix));
2446
2447 bgp_vrf = bgp_lookup_by_vrf_id(vrf_id);
2448 if (!bgp_vrf)
2449 return;
2450
2451 if (BGP_DEBUG(zebra, ZEBRA))
2452 zlog_debug("Recv prefix %s %s on vrf %s",
2453 prefix2str(&p, buf, sizeof(buf)),
2454 (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) ? "ADD" : "DEL",
2455 vrf_id_to_name(vrf_id));
2456
2457 if (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) {
2458
2459 if (p.family == AF_INET)
2460 return bgp_evpn_advertise_type5_route(
2461 bgp_vrf, &p, NULL, AFI_IP, SAFI_UNICAST);
2462 else
2463 return bgp_evpn_advertise_type5_route(
2464 bgp_vrf, &p, NULL, AFI_IP6, SAFI_UNICAST);
2465
2466 } else {
2467 if (p.family == AF_INET)
2468 return bgp_evpn_withdraw_type5_route(
2469 bgp_vrf, &p, AFI_IP, SAFI_UNICAST);
2470 else
2471 return bgp_evpn_withdraw_type5_route(
2472 bgp_vrf, &p, AFI_IP6, SAFI_UNICAST);
2473 }
2474 }
2475
2476 static void bgp_zebra_process_label_chunk(
2477 int cmd,
2478 struct zclient *zclient,
2479 zebra_size_t length,
2480 vrf_id_t vrf_id)
2481 {
2482 struct stream *s = NULL;
2483 uint8_t response_keep;
2484 uint32_t first;
2485 uint32_t last;
2486 uint8_t proto;
2487 unsigned short instance;
2488
2489 s = zclient->ibuf;
2490 STREAM_GETC(s, proto);
2491 STREAM_GETW(s, instance);
2492 STREAM_GETC(s, response_keep);
2493 STREAM_GETL(s, first);
2494 STREAM_GETL(s, last);
2495
2496 if (zclient->redist_default != proto) {
2497 flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong proto %u",
2498 proto);
2499 return;
2500 }
2501 if (zclient->instance != instance) {
2502 flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong instance %u",
2503 proto);
2504 return;
2505 }
2506
2507 if (first > last ||
2508 first < MPLS_LABEL_UNRESERVED_MIN ||
2509 last > MPLS_LABEL_UNRESERVED_MAX) {
2510
2511 flog_err(EC_BGP_LM_ERROR, "%s: Invalid Label chunk: %u - %u",
2512 __func__, first, last);
2513 return;
2514 }
2515 if (BGP_DEBUG(zebra, ZEBRA)) {
2516 zlog_debug("Label Chunk assign: %u - %u (%u) ",
2517 first, last, response_keep);
2518 }
2519
2520 bgp_lp_event_chunk(response_keep, first, last);
2521
2522 stream_failure: /* for STREAM_GETX */
2523 return;
2524 }
2525
2526 extern struct zebra_privs_t bgpd_privs;
2527
2528 void bgp_zebra_init(struct thread_master *master, unsigned short instance)
2529 {
2530 zclient_num_connects = 0;
2531
2532 /* Set default values. */
2533 zclient = zclient_new_notify(master, &zclient_options_default);
2534 zclient_init(zclient, ZEBRA_ROUTE_BGP, 0, &bgpd_privs);
2535 zclient->zebra_connected = bgp_zebra_connected;
2536 zclient->router_id_update = bgp_router_id_update;
2537 zclient->interface_add = bgp_interface_add;
2538 zclient->interface_delete = bgp_interface_delete;
2539 zclient->interface_address_add = bgp_interface_address_add;
2540 zclient->interface_address_delete = bgp_interface_address_delete;
2541 zclient->interface_nbr_address_add = bgp_interface_nbr_address_add;
2542 zclient->interface_nbr_address_delete =
2543 bgp_interface_nbr_address_delete;
2544 zclient->interface_vrf_update = bgp_interface_vrf_update;
2545 zclient->redistribute_route_add = zebra_read_route;
2546 zclient->redistribute_route_del = zebra_read_route;
2547 zclient->interface_up = bgp_interface_up;
2548 zclient->interface_down = bgp_interface_down;
2549 zclient->nexthop_update = bgp_read_nexthop_update;
2550 zclient->import_check_update = bgp_read_import_check_update;
2551 zclient->fec_update = bgp_read_fec_update;
2552 zclient->local_es_add = bgp_zebra_process_local_es;
2553 zclient->local_es_del = bgp_zebra_process_local_es;
2554 zclient->local_vni_add = bgp_zebra_process_local_vni;
2555 zclient->local_vni_del = bgp_zebra_process_local_vni;
2556 zclient->local_macip_add = bgp_zebra_process_local_macip;
2557 zclient->local_macip_del = bgp_zebra_process_local_macip;
2558 zclient->local_l3vni_add = bgp_zebra_process_local_l3vni;
2559 zclient->local_l3vni_del = bgp_zebra_process_local_l3vni;
2560 zclient->local_ip_prefix_add = bgp_zebra_process_local_ip_prefix;
2561 zclient->local_ip_prefix_del = bgp_zebra_process_local_ip_prefix;
2562 zclient->label_chunk = bgp_zebra_process_label_chunk;
2563 zclient->rule_notify_owner = rule_notify_owner;
2564 zclient->ipset_notify_owner = ipset_notify_owner;
2565 zclient->ipset_entry_notify_owner = ipset_entry_notify_owner;
2566 zclient->iptable_notify_owner = iptable_notify_owner;
2567 zclient->instance = instance;
2568 }
2569
2570 void bgp_zebra_destroy(void)
2571 {
2572 if (zclient == NULL)
2573 return;
2574 zclient_stop(zclient);
2575 zclient_free(zclient);
2576 zclient = NULL;
2577 }
2578
2579 int bgp_zebra_num_connects(void)
2580 {
2581 return zclient_num_connects;
2582 }
2583
2584 void bgp_send_pbr_rule_action(struct bgp_pbr_action *pbra, bool install)
2585 {
2586 struct stream *s;
2587
2588 if (pbra->install_in_progress)
2589 return;
2590 if (BGP_DEBUG(zebra, ZEBRA))
2591 zlog_debug("%s: table %d fwmark %d %d",
2592 __PRETTY_FUNCTION__,
2593 pbra->table_id, pbra->fwmark, install);
2594 s = zclient->obuf;
2595 stream_reset(s);
2596
2597 zclient_create_header(s,
2598 install ? ZEBRA_RULE_ADD : ZEBRA_RULE_DELETE,
2599 VRF_DEFAULT);
2600 stream_putl(s, 1); /* send one pbr action */
2601
2602 bgp_encode_pbr_rule_action(s, pbra);
2603
2604 stream_putw_at(s, 0, stream_get_endp(s));
2605 if (!zclient_send_message(zclient) && install)
2606 pbra->install_in_progress = true;
2607 }
2608
2609 void bgp_send_pbr_ipset_match(struct bgp_pbr_match *pbrim, bool install)
2610 {
2611 struct stream *s;
2612
2613 if (pbrim->install_in_progress)
2614 return;
2615 if (BGP_DEBUG(zebra, ZEBRA))
2616 zlog_debug("%s: name %s type %d %d, ID %u",
2617 __PRETTY_FUNCTION__,
2618 pbrim->ipset_name, pbrim->type,
2619 install, pbrim->unique);
2620 s = zclient->obuf;
2621 stream_reset(s);
2622
2623 zclient_create_header(s,
2624 install ? ZEBRA_IPSET_CREATE :
2625 ZEBRA_IPSET_DESTROY,
2626 VRF_DEFAULT);
2627
2628 stream_putl(s, 1); /* send one pbr action */
2629
2630 bgp_encode_pbr_ipset_match(s, pbrim);
2631
2632 stream_putw_at(s, 0, stream_get_endp(s));
2633 if (!zclient_send_message(zclient) && install)
2634 pbrim->install_in_progress = true;
2635 }
2636
2637 void bgp_send_pbr_ipset_entry_match(struct bgp_pbr_match_entry *pbrime,
2638 bool install)
2639 {
2640 struct stream *s;
2641
2642 if (pbrime->install_in_progress)
2643 return;
2644 if (BGP_DEBUG(zebra, ZEBRA))
2645 zlog_debug("%s: name %s %d %d, ID %u", __PRETTY_FUNCTION__,
2646 pbrime->backpointer->ipset_name,
2647 pbrime->unique, install, pbrime->unique);
2648 s = zclient->obuf;
2649 stream_reset(s);
2650
2651 zclient_create_header(s,
2652 install ? ZEBRA_IPSET_ENTRY_ADD :
2653 ZEBRA_IPSET_ENTRY_DELETE,
2654 VRF_DEFAULT);
2655
2656 stream_putl(s, 1); /* send one pbr action */
2657
2658 bgp_encode_pbr_ipset_entry_match(s, pbrime);
2659
2660 stream_putw_at(s, 0, stream_get_endp(s));
2661 if (!zclient_send_message(zclient) && install)
2662 pbrime->install_in_progress = true;
2663 }
2664
2665 static void bgp_encode_pbr_interface_list(struct bgp *bgp, struct stream *s)
2666 {
2667 struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
2668 struct bgp_pbr_interface_head *head;
2669 struct bgp_pbr_interface *pbr_if;
2670 struct interface *ifp;
2671
2672 if (!bgp_pbr_cfg)
2673 return;
2674 head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
2675
2676 RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
2677 ifp = if_lookup_by_name(pbr_if->name, bgp->vrf_id);
2678 if (ifp)
2679 stream_putl(s, ifp->ifindex);
2680 }
2681 }
2682
2683 static int bgp_pbr_get_ifnumber(struct bgp *bgp)
2684 {
2685 struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
2686 struct bgp_pbr_interface_head *head;
2687 struct bgp_pbr_interface *pbr_if;
2688 int cnt = 0;
2689
2690 if (!bgp_pbr_cfg)
2691 return 0;
2692 head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
2693
2694 RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
2695 if (if_lookup_by_name(pbr_if->name, bgp->vrf_id))
2696 cnt++;
2697 }
2698 return cnt;
2699 }
2700
2701 void bgp_send_pbr_iptable(struct bgp_pbr_action *pba,
2702 struct bgp_pbr_match *pbm,
2703 bool install)
2704 {
2705 struct stream *s;
2706 int ret = 0;
2707 int nb_interface;
2708
2709 if (pbm->install_iptable_in_progress)
2710 return;
2711 if (BGP_DEBUG(zebra, ZEBRA))
2712 zlog_debug("%s: name %s type %d mark %d %d, ID %u",
2713 __PRETTY_FUNCTION__, pbm->ipset_name,
2714 pbm->type, pba->fwmark, install,
2715 pbm->unique2);
2716 s = zclient->obuf;
2717 stream_reset(s);
2718
2719 zclient_create_header(s,
2720 install ? ZEBRA_IPTABLE_ADD :
2721 ZEBRA_IPTABLE_DELETE,
2722 VRF_DEFAULT);
2723
2724 bgp_encode_pbr_iptable_match(s, pba, pbm);
2725 nb_interface = bgp_pbr_get_ifnumber(pba->bgp);
2726 stream_putl(s, nb_interface);
2727 if (nb_interface)
2728 bgp_encode_pbr_interface_list(pba->bgp, s);
2729 stream_putw_at(s, 0, stream_get_endp(s));
2730 ret = zclient_send_message(zclient);
2731 if (install) {
2732 if (ret)
2733 pba->refcnt++;
2734 else
2735 pbm->install_iptable_in_progress = true;
2736 }
2737 }
2738
2739 /* inject in table <table_id> a default route to:
2740 * - if nexthop IP is present : to this nexthop
2741 * - if vrf is different from local : to the matching VRF
2742 */
2743 void bgp_zebra_announce_default(struct bgp *bgp, struct nexthop *nh,
2744 afi_t afi, uint32_t table_id, bool announce)
2745 {
2746 struct zapi_nexthop *api_nh;
2747 struct zapi_route api;
2748 struct prefix p;
2749
2750 if (!nh || nh->type != NEXTHOP_TYPE_IPV4
2751 || nh->vrf_id == VRF_UNKNOWN)
2752 return;
2753 memset(&p, 0, sizeof(struct prefix));
2754 /* default route */
2755 if (afi != AFI_IP)
2756 return;
2757 p.family = AF_INET;
2758 memset(&api, 0, sizeof(api));
2759 api.vrf_id = bgp->vrf_id;
2760 api.type = ZEBRA_ROUTE_BGP;
2761 api.safi = SAFI_UNICAST;
2762 api.prefix = p;
2763 api.tableid = table_id;
2764 api.nexthop_num = 1;
2765 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
2766 SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
2767 api_nh = &api.nexthops[0];
2768
2769 /* redirect IP */
2770 if (nh->gate.ipv4.s_addr) {
2771 char buff[PREFIX_STRLEN];
2772
2773 api_nh->vrf_id = nh->vrf_id;
2774 api_nh->gate.ipv4 = nh->gate.ipv4;
2775 api_nh->type = NEXTHOP_TYPE_IPV4;
2776
2777 inet_ntop(AF_INET, &(nh->gate.ipv4), buff, INET_ADDRSTRLEN);
2778 if (BGP_DEBUG(zebra, ZEBRA))
2779 zlog_info("BGP: %s default route to %s table %d (redirect IP)",
2780 announce ? "adding" : "withdrawing",
2781 buff, table_id);
2782 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
2783 : ZEBRA_ROUTE_DELETE,
2784 zclient, &api);
2785 } else if (nh->vrf_id != bgp->vrf_id) {
2786 struct vrf *vrf;
2787 struct interface *ifp;
2788
2789 vrf = vrf_lookup_by_id(nh->vrf_id);
2790 if (!vrf)
2791 return;
2792 /* create default route with interface <VRF>
2793 * with nexthop-vrf <VRF>
2794 */
2795 ifp = if_lookup_by_name_all_vrf(vrf->name);
2796 if (!ifp)
2797 return;
2798 api_nh->vrf_id = nh->vrf_id;
2799 api_nh->type = NEXTHOP_TYPE_IFINDEX;
2800 api_nh->ifindex = ifp->ifindex;
2801 if (BGP_DEBUG(zebra, ZEBRA))
2802 zlog_info("BGP: %s default route to %s table %d (redirect VRF)",
2803 announce ? "adding" : "withdrawing",
2804 vrf->name, table_id);
2805 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
2806 : ZEBRA_ROUTE_DELETE,
2807 zclient, &api);
2808 return;
2809 }
2810 }