]> git.proxmox.com Git - mirror_frr.git/blob - bgpd/bgp_zebra.c
ospf6d : Transformation changes for ospf6 vrf support.
[mirror_frr.git] / bgpd / bgp_zebra.c
1 /* zebra client
2 * Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "stream.h"
25 #include "network.h"
26 #include "prefix.h"
27 #include "log.h"
28 #include "sockunion.h"
29 #include "zclient.h"
30 #include "routemap.h"
31 #include "thread.h"
32 #include "queue.h"
33 #include "memory.h"
34 #include "lib/json.h"
35 #include "lib/bfd.h"
36 #include "filter.h"
37 #include "mpls.h"
38 #include "vxlan.h"
39 #include "pbr.h"
40
41 #include "bgpd/bgpd.h"
42 #include "bgpd/bgp_route.h"
43 #include "bgpd/bgp_attr.h"
44 #include "bgpd/bgp_nexthop.h"
45 #include "bgpd/bgp_zebra.h"
46 #include "bgpd/bgp_fsm.h"
47 #include "bgpd/bgp_debug.h"
48 #include "bgpd/bgp_errors.h"
49 #include "bgpd/bgp_mpath.h"
50 #include "bgpd/bgp_nexthop.h"
51 #include "bgpd/bgp_nht.h"
52 #include "bgpd/bgp_bfd.h"
53 #include "bgpd/bgp_label.h"
54 #ifdef ENABLE_BGP_VNC
55 #include "bgpd/rfapi/rfapi_backend.h"
56 #include "bgpd/rfapi/vnc_export_bgp.h"
57 #endif
58 #include "bgpd/bgp_evpn.h"
59 #include "bgpd/bgp_mplsvpn.h"
60 #include "bgpd/bgp_labelpool.h"
61 #include "bgpd/bgp_pbr.h"
62 #include "bgpd/bgp_evpn_private.h"
63 #include "bgpd/bgp_evpn_mh.h"
64 #include "bgpd/bgp_mac.h"
65
66 /* All information about zebra. */
67 struct zclient *zclient = NULL;
68
69 /* Can we install into zebra? */
70 static inline bool bgp_install_info_to_zebra(struct bgp *bgp)
71 {
72 if (zclient->sock <= 0)
73 return false;
74
75 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
76 zlog_debug(
77 "%s: No zebra instance to talk to, not installing information",
78 __func__);
79 return false;
80 }
81
82 return true;
83 }
84
85 int zclient_num_connects;
86
87 /* Router-id update message from zebra. */
88 static int bgp_router_id_update(ZAPI_CALLBACK_ARGS)
89 {
90 struct prefix router_id;
91
92 zebra_router_id_update_read(zclient->ibuf, &router_id);
93
94 if (BGP_DEBUG(zebra, ZEBRA)) {
95 char buf[PREFIX2STR_BUFFER];
96 prefix2str(&router_id, buf, sizeof(buf));
97 zlog_debug("Rx Router Id update VRF %u Id %s", vrf_id, buf);
98 }
99
100 bgp_router_id_zebra_bump(vrf_id, &router_id);
101 return 0;
102 }
103
104 /* Nexthop update message from zebra. */
105 static int bgp_read_nexthop_update(ZAPI_CALLBACK_ARGS)
106 {
107 bgp_parse_nexthop_update(cmd, vrf_id);
108 return 0;
109 }
110
111 static int bgp_read_import_check_update(ZAPI_CALLBACK_ARGS)
112 {
113 bgp_parse_nexthop_update(cmd, vrf_id);
114 return 0;
115 }
116
117 /* Set or clear interface on which unnumbered neighbor is configured. This
118 * would in turn cause BGP to initiate or turn off IPv6 RAs on this
119 * interface.
120 */
121 static void bgp_update_interface_nbrs(struct bgp *bgp, struct interface *ifp,
122 struct interface *upd_ifp)
123 {
124 struct listnode *node, *nnode;
125 struct peer *peer;
126
127 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
128 if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)) {
129 if (upd_ifp) {
130 peer->ifp = upd_ifp;
131 bgp_zebra_initiate_radv(bgp, peer);
132 } else {
133 bgp_zebra_terminate_radv(bgp, peer);
134 peer->ifp = upd_ifp;
135 }
136 }
137 }
138 }
139
140 static int bgp_read_fec_update(int command, struct zclient *zclient,
141 zebra_size_t length)
142 {
143 bgp_parse_fec_update();
144 return 0;
145 }
146
147 static void bgp_start_interface_nbrs(struct bgp *bgp, struct interface *ifp)
148 {
149 struct listnode *node, *nnode;
150 struct peer *peer;
151
152 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
153 if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)
154 && peer->status != Established) {
155 if (peer_active(peer))
156 BGP_EVENT_ADD(peer, BGP_Stop);
157 BGP_EVENT_ADD(peer, BGP_Start);
158 }
159 }
160 }
161
162 static void bgp_nbr_connected_add(struct bgp *bgp, struct nbr_connected *ifc)
163 {
164 struct listnode *node;
165 struct connected *connected;
166 struct interface *ifp;
167 struct prefix *p;
168
169 /* Kick-off the FSM for any relevant peers only if there is a
170 * valid local address on the interface.
171 */
172 ifp = ifc->ifp;
173 for (ALL_LIST_ELEMENTS_RO(ifp->connected, node, connected)) {
174 p = connected->address;
175 if (p->family == AF_INET6
176 && IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
177 break;
178 }
179 if (!connected)
180 return;
181
182 bgp_start_interface_nbrs(bgp, ifp);
183 }
184
185 static void bgp_nbr_connected_delete(struct bgp *bgp, struct nbr_connected *ifc,
186 int del)
187 {
188 struct listnode *node, *nnode;
189 struct peer *peer;
190 struct interface *ifp;
191
192 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
193 if (peer->conf_if
194 && (strcmp(peer->conf_if, ifc->ifp->name) == 0)) {
195 peer->last_reset = PEER_DOWN_NBR_ADDR_DEL;
196 BGP_EVENT_ADD(peer, BGP_Stop);
197 }
198 }
199 /* Free neighbor also, if we're asked to. */
200 if (del) {
201 ifp = ifc->ifp;
202 listnode_delete(ifp->nbr_connected, ifc);
203 nbr_connected_free(ifc);
204 }
205 }
206
207 static int bgp_ifp_destroy(struct interface *ifp)
208 {
209 struct bgp *bgp;
210
211 bgp = bgp_lookup_by_vrf_id(ifp->vrf_id);
212
213 if (BGP_DEBUG(zebra, ZEBRA))
214 zlog_debug("Rx Intf del VRF %u IF %s", ifp->vrf_id, ifp->name);
215
216 if (bgp)
217 bgp_update_interface_nbrs(bgp, ifp, NULL);
218
219 bgp_mac_del_mac_entry(ifp);
220
221 return 0;
222 }
223
224 static int bgp_ifp_up(struct interface *ifp)
225 {
226 struct connected *c;
227 struct nbr_connected *nc;
228 struct listnode *node, *nnode;
229 struct bgp *bgp;
230
231 bgp = bgp_lookup_by_vrf_id(ifp->vrf_id);
232
233 bgp_mac_add_mac_entry(ifp);
234
235 if (BGP_DEBUG(zebra, ZEBRA))
236 zlog_debug("Rx Intf up VRF %u IF %s", ifp->vrf_id, ifp->name);
237
238 if (!bgp)
239 return 0;
240
241 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
242 bgp_connected_add(bgp, c);
243
244 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
245 bgp_nbr_connected_add(bgp, nc);
246
247 return 0;
248 }
249
250 static int bgp_ifp_down(struct interface *ifp)
251 {
252 struct connected *c;
253 struct nbr_connected *nc;
254 struct listnode *node, *nnode;
255 struct bgp *bgp;
256 struct peer *peer;
257
258 bgp = bgp_lookup_by_vrf_id(ifp->vrf_id);
259
260 bgp_mac_del_mac_entry(ifp);
261
262 if (BGP_DEBUG(zebra, ZEBRA))
263 zlog_debug("Rx Intf down VRF %u IF %s", ifp->vrf_id, ifp->name);
264
265 if (!bgp)
266 return 0;
267
268 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
269 bgp_connected_delete(bgp, c);
270
271 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
272 bgp_nbr_connected_delete(bgp, nc, 1);
273
274 /* Fast external-failover */
275 if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
276
277 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
278 #if defined(HAVE_CUMULUS)
279 /* Take down directly connected EBGP peers as well as
280 * 1-hop BFD
281 * tracked (directly connected) IBGP peers.
282 */
283 if ((peer->ttl != BGP_DEFAULT_TTL)
284 && (peer->gtsm_hops != BGP_GTSM_HOPS_CONNECTED)
285 && (!peer->bfd_info
286 || bgp_bfd_is_peer_multihop(peer)))
287 #else
288 /* Take down directly connected EBGP peers */
289 if ((peer->ttl != BGP_DEFAULT_TTL)
290 && (peer->gtsm_hops != BGP_GTSM_HOPS_CONNECTED))
291 #endif
292 continue;
293
294 if (ifp == peer->nexthop.ifp) {
295 BGP_EVENT_ADD(peer, BGP_Stop);
296 peer->last_reset = PEER_DOWN_IF_DOWN;
297 }
298 }
299 }
300
301 return 0;
302 }
303
304 static int bgp_interface_address_add(ZAPI_CALLBACK_ARGS)
305 {
306 struct connected *ifc;
307 struct bgp *bgp;
308
309 bgp = bgp_lookup_by_vrf_id(vrf_id);
310
311 ifc = zebra_interface_address_read(cmd, zclient->ibuf, vrf_id);
312
313 if (ifc == NULL)
314 return 0;
315
316 if (bgp_debug_zebra(ifc->address)) {
317 char buf[PREFIX2STR_BUFFER];
318 prefix2str(ifc->address, buf, sizeof(buf));
319 zlog_debug("Rx Intf address add VRF %u IF %s addr %s", vrf_id,
320 ifc->ifp->name, buf);
321 }
322
323 if (!bgp)
324 return 0;
325
326 if (if_is_operative(ifc->ifp)) {
327 bgp_connected_add(bgp, ifc);
328
329 /* If we have learnt of any neighbors on this interface,
330 * check to kick off any BGP interface-based neighbors,
331 * but only if this is a link-local address.
332 */
333 if (IN6_IS_ADDR_LINKLOCAL(&ifc->address->u.prefix6)
334 && !list_isempty(ifc->ifp->nbr_connected))
335 bgp_start_interface_nbrs(bgp, ifc->ifp);
336 }
337
338 return 0;
339 }
340
341 static int bgp_interface_address_delete(ZAPI_CALLBACK_ARGS)
342 {
343 struct connected *ifc;
344 struct bgp *bgp;
345
346 bgp = bgp_lookup_by_vrf_id(vrf_id);
347
348 ifc = zebra_interface_address_read(cmd, zclient->ibuf, vrf_id);
349
350 if (ifc == NULL)
351 return 0;
352
353 if (bgp_debug_zebra(ifc->address)) {
354 char buf[PREFIX2STR_BUFFER];
355 prefix2str(ifc->address, buf, sizeof(buf));
356 zlog_debug("Rx Intf address del VRF %u IF %s addr %s", vrf_id,
357 ifc->ifp->name, buf);
358 }
359
360 if (bgp && if_is_operative(ifc->ifp)) {
361 bgp_connected_delete(bgp, ifc);
362 }
363
364 connected_free(&ifc);
365
366 return 0;
367 }
368
369 static int bgp_interface_nbr_address_add(ZAPI_CALLBACK_ARGS)
370 {
371 struct nbr_connected *ifc = NULL;
372 struct bgp *bgp;
373
374 ifc = zebra_interface_nbr_address_read(cmd, zclient->ibuf, vrf_id);
375
376 if (ifc == NULL)
377 return 0;
378
379 if (bgp_debug_zebra(ifc->address)) {
380 char buf[PREFIX2STR_BUFFER];
381 prefix2str(ifc->address, buf, sizeof(buf));
382 zlog_debug("Rx Intf neighbor add VRF %u IF %s addr %s", vrf_id,
383 ifc->ifp->name, buf);
384 }
385
386 if (if_is_operative(ifc->ifp)) {
387 bgp = bgp_lookup_by_vrf_id(vrf_id);
388 if (bgp)
389 bgp_nbr_connected_add(bgp, ifc);
390 }
391
392 return 0;
393 }
394
395 static int bgp_interface_nbr_address_delete(ZAPI_CALLBACK_ARGS)
396 {
397 struct nbr_connected *ifc = NULL;
398 struct bgp *bgp;
399
400 ifc = zebra_interface_nbr_address_read(cmd, zclient->ibuf, vrf_id);
401
402 if (ifc == NULL)
403 return 0;
404
405 if (bgp_debug_zebra(ifc->address)) {
406 char buf[PREFIX2STR_BUFFER];
407 prefix2str(ifc->address, buf, sizeof(buf));
408 zlog_debug("Rx Intf neighbor del VRF %u IF %s addr %s", vrf_id,
409 ifc->ifp->name, buf);
410 }
411
412 if (if_is_operative(ifc->ifp)) {
413 bgp = bgp_lookup_by_vrf_id(vrf_id);
414 if (bgp)
415 bgp_nbr_connected_delete(bgp, ifc, 0);
416 }
417
418 nbr_connected_free(ifc);
419
420 return 0;
421 }
422
423 /* VRF update for an interface. */
424 static int bgp_interface_vrf_update(ZAPI_CALLBACK_ARGS)
425 {
426 struct interface *ifp;
427 vrf_id_t new_vrf_id;
428 struct connected *c;
429 struct nbr_connected *nc;
430 struct listnode *node, *nnode;
431 struct bgp *bgp;
432 struct peer *peer;
433
434 ifp = zebra_interface_vrf_update_read(zclient->ibuf, vrf_id,
435 &new_vrf_id);
436 if (!ifp)
437 return 0;
438
439 if (BGP_DEBUG(zebra, ZEBRA) && ifp)
440 zlog_debug("Rx Intf VRF change VRF %u IF %s NewVRF %u", vrf_id,
441 ifp->name, new_vrf_id);
442
443 bgp = bgp_lookup_by_vrf_id(vrf_id);
444
445 if (bgp) {
446 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
447 bgp_connected_delete(bgp, c);
448
449 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
450 bgp_nbr_connected_delete(bgp, nc, 1);
451
452 /* Fast external-failover */
453 if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
454 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
455 if ((peer->ttl != BGP_DEFAULT_TTL)
456 && (peer->gtsm_hops
457 != BGP_GTSM_HOPS_CONNECTED))
458 continue;
459
460 if (ifp == peer->nexthop.ifp)
461 BGP_EVENT_ADD(peer, BGP_Stop);
462 }
463 }
464 }
465
466 if_update_to_new_vrf(ifp, new_vrf_id);
467
468 bgp = bgp_lookup_by_vrf_id(new_vrf_id);
469 if (!bgp)
470 return 0;
471
472 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
473 bgp_connected_add(bgp, c);
474
475 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
476 bgp_nbr_connected_add(bgp, nc);
477 return 0;
478 }
479
480 /* Zebra route add and delete treatment. */
481 static int zebra_read_route(ZAPI_CALLBACK_ARGS)
482 {
483 enum nexthop_types_t nhtype;
484 struct zapi_route api;
485 union g_addr nexthop;
486 ifindex_t ifindex;
487 int add, i;
488 struct bgp *bgp;
489
490 bgp = bgp_lookup_by_vrf_id(vrf_id);
491 if (!bgp)
492 return 0;
493
494 if (zapi_route_decode(zclient->ibuf, &api) < 0)
495 return -1;
496
497 /* we completely ignore srcdest routes for now. */
498 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_SRCPFX))
499 return 0;
500
501 /* ignore link-local address. */
502 if (api.prefix.family == AF_INET6
503 && IN6_IS_ADDR_LINKLOCAL(&api.prefix.u.prefix6))
504 return 0;
505
506 nexthop = api.nexthops[0].gate;
507 ifindex = api.nexthops[0].ifindex;
508 nhtype = api.nexthops[0].type;
509
510 add = (cmd == ZEBRA_REDISTRIBUTE_ROUTE_ADD);
511 if (add) {
512 /*
513 * The ADD message is actually an UPDATE and there is no
514 * explicit DEL
515 * for a prior redistributed route, if any. So, perform an
516 * implicit
517 * DEL processing for the same redistributed route from any
518 * other
519 * source type.
520 */
521 for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
522 if (i != api.type)
523 bgp_redistribute_delete(bgp, &api.prefix, i,
524 api.instance);
525 }
526
527 /* Now perform the add/update. */
528 bgp_redistribute_add(bgp, &api.prefix, &nexthop, ifindex,
529 nhtype, api.metric, api.type, api.instance,
530 api.tag);
531 } else {
532 bgp_redistribute_delete(bgp, &api.prefix, api.type,
533 api.instance);
534 }
535
536 if (bgp_debug_zebra(&api.prefix)) {
537 char buf[2][PREFIX_STRLEN];
538
539 prefix2str(&api.prefix, buf[0], sizeof(buf[0]));
540 if (add) {
541 inet_ntop(api.prefix.family, &nexthop, buf[1],
542 sizeof(buf[1]));
543 zlog_debug(
544 "Rx route ADD VRF %u %s[%d] %s nexthop %s (type %d if %u) metric %u tag %" ROUTE_TAG_PRI,
545 vrf_id, zebra_route_string(api.type),
546 api.instance, buf[0], buf[1], nhtype,
547 ifindex, api.metric, api.tag);
548 } else {
549 zlog_debug(
550 "Rx route DEL VRF %u %s[%d] %s",
551 vrf_id, zebra_route_string(api.type),
552 api.instance, buf[0]);
553 }
554 }
555
556 return 0;
557 }
558
559 struct interface *if_lookup_by_ipv4(struct in_addr *addr, vrf_id_t vrf_id)
560 {
561 struct vrf *vrf;
562 struct listnode *cnode;
563 struct interface *ifp;
564 struct connected *connected;
565 struct prefix_ipv4 p;
566 struct prefix *cp;
567
568 vrf = vrf_lookup_by_id(vrf_id);
569 if (!vrf)
570 return NULL;
571
572 p.family = AF_INET;
573 p.prefix = *addr;
574 p.prefixlen = IPV4_MAX_BITLEN;
575
576 FOR_ALL_INTERFACES (vrf, ifp) {
577 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
578 cp = connected->address;
579
580 if (cp->family == AF_INET)
581 if (prefix_match(cp, (struct prefix *)&p))
582 return ifp;
583 }
584 }
585 return NULL;
586 }
587
588 struct interface *if_lookup_by_ipv4_exact(struct in_addr *addr, vrf_id_t vrf_id)
589 {
590 struct vrf *vrf;
591 struct listnode *cnode;
592 struct interface *ifp;
593 struct connected *connected;
594 struct prefix *cp;
595
596 vrf = vrf_lookup_by_id(vrf_id);
597 if (!vrf)
598 return NULL;
599
600 FOR_ALL_INTERFACES (vrf, ifp) {
601 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
602 cp = connected->address;
603
604 if (cp->family == AF_INET)
605 if (IPV4_ADDR_SAME(&cp->u.prefix4, addr))
606 return ifp;
607 }
608 }
609 return NULL;
610 }
611
612 struct interface *if_lookup_by_ipv6(struct in6_addr *addr, ifindex_t ifindex,
613 vrf_id_t vrf_id)
614 {
615 struct vrf *vrf;
616 struct listnode *cnode;
617 struct interface *ifp;
618 struct connected *connected;
619 struct prefix_ipv6 p;
620 struct prefix *cp;
621
622 vrf = vrf_lookup_by_id(vrf_id);
623 if (!vrf)
624 return NULL;
625
626 p.family = AF_INET6;
627 p.prefix = *addr;
628 p.prefixlen = IPV6_MAX_BITLEN;
629
630 FOR_ALL_INTERFACES (vrf, ifp) {
631 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
632 cp = connected->address;
633
634 if (cp->family == AF_INET6)
635 if (prefix_match(cp, (struct prefix *)&p)) {
636 if (IN6_IS_ADDR_LINKLOCAL(
637 &cp->u.prefix6)) {
638 if (ifindex == ifp->ifindex)
639 return ifp;
640 } else
641 return ifp;
642 }
643 }
644 }
645 return NULL;
646 }
647
648 struct interface *if_lookup_by_ipv6_exact(struct in6_addr *addr,
649 ifindex_t ifindex, vrf_id_t vrf_id)
650 {
651 struct vrf *vrf;
652 struct listnode *cnode;
653 struct interface *ifp;
654 struct connected *connected;
655 struct prefix *cp;
656
657 vrf = vrf_lookup_by_id(vrf_id);
658 if (!vrf)
659 return NULL;
660
661 FOR_ALL_INTERFACES (vrf, ifp) {
662 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
663 cp = connected->address;
664
665 if (cp->family == AF_INET6)
666 if (IPV6_ADDR_SAME(&cp->u.prefix6, addr)) {
667 if (IN6_IS_ADDR_LINKLOCAL(
668 &cp->u.prefix6)) {
669 if (ifindex == ifp->ifindex)
670 return ifp;
671 } else
672 return ifp;
673 }
674 }
675 }
676 return NULL;
677 }
678
679 static int if_get_ipv6_global(struct interface *ifp, struct in6_addr *addr)
680 {
681 struct listnode *cnode;
682 struct connected *connected;
683 struct prefix *cp;
684
685 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
686 cp = connected->address;
687
688 if (cp->family == AF_INET6)
689 if (!IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
690 memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
691 return 1;
692 }
693 }
694 return 0;
695 }
696
697 static int if_get_ipv6_local(struct interface *ifp, struct in6_addr *addr)
698 {
699 struct listnode *cnode;
700 struct connected *connected;
701 struct prefix *cp;
702
703 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
704 cp = connected->address;
705
706 if (cp->family == AF_INET6)
707 if (IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
708 memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
709 return 1;
710 }
711 }
712 return 0;
713 }
714
715 static int if_get_ipv4_address(struct interface *ifp, struct in_addr *addr)
716 {
717 struct listnode *cnode;
718 struct connected *connected;
719 struct prefix *cp;
720
721 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
722 cp = connected->address;
723 if ((cp->family == AF_INET)
724 && !ipv4_martian(&(cp->u.prefix4))) {
725 *addr = cp->u.prefix4;
726 return 1;
727 }
728 }
729 return 0;
730 }
731
732
733 bool bgp_zebra_nexthop_set(union sockunion *local, union sockunion *remote,
734 struct bgp_nexthop *nexthop, struct peer *peer)
735 {
736 int ret = 0;
737 struct interface *ifp = NULL;
738
739 memset(nexthop, 0, sizeof(struct bgp_nexthop));
740
741 if (!local)
742 return false;
743 if (!remote)
744 return false;
745
746 if (local->sa.sa_family == AF_INET) {
747 nexthop->v4 = local->sin.sin_addr;
748 if (peer->update_if)
749 ifp = if_lookup_by_name(peer->update_if,
750 peer->bgp->vrf_id);
751 else
752 ifp = if_lookup_by_ipv4_exact(&local->sin.sin_addr,
753 peer->bgp->vrf_id);
754 }
755 if (local->sa.sa_family == AF_INET6) {
756 memcpy(&nexthop->v6_global, &local->sin6.sin6_addr, IPV6_MAX_BYTELEN);
757 if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
758 if (peer->conf_if || peer->ifname)
759 ifp = if_lookup_by_name(peer->conf_if
760 ? peer->conf_if
761 : peer->ifname,
762 peer->bgp->vrf_id);
763 } else if (peer->update_if)
764 ifp = if_lookup_by_name(peer->update_if,
765 peer->bgp->vrf_id);
766 else
767 ifp = if_lookup_by_ipv6_exact(&local->sin6.sin6_addr,
768 local->sin6.sin6_scope_id,
769 peer->bgp->vrf_id);
770 }
771
772 if (!ifp) {
773 /*
774 * BGP views do not currently get proper data
775 * from zebra( when attached ) to be able to
776 * properly resolve nexthops, so give this
777 * instance type a pass.
778 */
779 if (peer->bgp->inst_type == BGP_INSTANCE_TYPE_VIEW)
780 return true;
781 /*
782 * If we have no interface data but we have established
783 * some connection w/ zebra than something has gone
784 * terribly terribly wrong here, so say this failed
785 * If we do not any zebra connection then not
786 * having a ifp pointer is ok.
787 */
788 return zclient_num_connects ? false : true;
789 }
790
791 nexthop->ifp = ifp;
792
793 /* IPv4 connection, fetch and store IPv6 local address(es) if any. */
794 if (local->sa.sa_family == AF_INET) {
795 /* IPv6 nexthop*/
796 ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
797
798 if (!ret) {
799 /* There is no global nexthop. Use link-local address as
800 * both the
801 * global and link-local nexthop. In this scenario, the
802 * expectation
803 * for interop is that the network admin would use a
804 * route-map to
805 * specify the global IPv6 nexthop.
806 */
807 if_get_ipv6_local(ifp, &nexthop->v6_global);
808 memcpy(&nexthop->v6_local, &nexthop->v6_global,
809 IPV6_MAX_BYTELEN);
810 } else
811 if_get_ipv6_local(ifp, &nexthop->v6_local);
812
813 if (if_lookup_by_ipv4(&remote->sin.sin_addr, peer->bgp->vrf_id))
814 peer->shared_network = 1;
815 else
816 peer->shared_network = 0;
817 }
818
819 /* IPv6 connection, fetch and store IPv4 local address if any. */
820 if (local->sa.sa_family == AF_INET6) {
821 struct interface *direct = NULL;
822
823 /* IPv4 nexthop. */
824 ret = if_get_ipv4_address(ifp, &nexthop->v4);
825 if (!ret && peer->local_id.s_addr != INADDR_ANY)
826 nexthop->v4 = peer->local_id;
827
828 /* Global address*/
829 if (!IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
830 memcpy(&nexthop->v6_global, &local->sin6.sin6_addr,
831 IPV6_MAX_BYTELEN);
832
833 /* If directory connected set link-local address. */
834 direct = if_lookup_by_ipv6(&remote->sin6.sin6_addr,
835 remote->sin6.sin6_scope_id,
836 peer->bgp->vrf_id);
837 if (direct)
838 if_get_ipv6_local(ifp, &nexthop->v6_local);
839 } else
840 /* Link-local address. */
841 {
842 ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
843
844 /* If there is no global address. Set link-local
845 address as
846 global. I know this break RFC specification... */
847 /* In this scenario, the expectation for interop is that
848 * the
849 * network admin would use a route-map to specify the
850 * global
851 * IPv6 nexthop.
852 */
853 if (!ret)
854 memcpy(&nexthop->v6_global,
855 &local->sin6.sin6_addr,
856 IPV6_MAX_BYTELEN);
857 /* Always set the link-local address */
858 memcpy(&nexthop->v6_local, &local->sin6.sin6_addr,
859 IPV6_MAX_BYTELEN);
860 }
861
862 if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)
863 || if_lookup_by_ipv6(&remote->sin6.sin6_addr,
864 remote->sin6.sin6_scope_id,
865 peer->bgp->vrf_id))
866 peer->shared_network = 1;
867 else
868 peer->shared_network = 0;
869 }
870
871 /* KAME stack specific treatment. */
872 #ifdef KAME
873 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_global)
874 && IN6_LINKLOCAL_IFINDEX(nexthop->v6_global)) {
875 SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_global, 0);
876 }
877 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_local)
878 && IN6_LINKLOCAL_IFINDEX(nexthop->v6_local)) {
879 SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_local, 0);
880 }
881 #endif /* KAME */
882
883 /* If we have identified the local interface, there is no error for now.
884 */
885 return true;
886 }
887
888 static struct in6_addr *
889 bgp_path_info_to_ipv6_nexthop(struct bgp_path_info *path, ifindex_t *ifindex)
890 {
891 struct in6_addr *nexthop = NULL;
892
893 /* Only global address nexthop exists. */
894 if (path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL
895 || path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_VPNV6_GLOBAL) {
896 nexthop = &path->attr->mp_nexthop_global;
897 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
898 *ifindex = path->attr->nh_ifindex;
899 }
900
901 /* If both global and link-local address present. */
902 if (path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL
903 || path->attr->mp_nexthop_len
904 == BGP_ATTR_NHLEN_VPNV6_GLOBAL_AND_LL) {
905 /* Check if route-map is set to prefer global over link-local */
906 if (path->attr->mp_nexthop_prefer_global) {
907 nexthop = &path->attr->mp_nexthop_global;
908 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
909 *ifindex = path->attr->nh_ifindex;
910 } else {
911 /* Workaround for Cisco's nexthop bug. */
912 if (IN6_IS_ADDR_UNSPECIFIED(
913 &path->attr->mp_nexthop_global)
914 && path->peer->su_remote->sa.sa_family
915 == AF_INET6) {
916 nexthop =
917 &path->peer->su_remote->sin6.sin6_addr;
918 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
919 *ifindex = path->peer->nexthop.ifp
920 ->ifindex;
921 } else {
922 nexthop = &path->attr->mp_nexthop_local;
923 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
924 *ifindex = path->attr->nh_lla_ifindex;
925 }
926 }
927 }
928
929 return nexthop;
930 }
931
932 static bool bgp_table_map_apply(struct route_map *map, const struct prefix *p,
933 struct bgp_path_info *path)
934 {
935 route_map_result_t ret;
936
937 ret = route_map_apply(map, p, RMAP_BGP, path);
938 bgp_attr_flush(path->attr);
939
940 if (ret != RMAP_DENYMATCH)
941 return true;
942
943 if (bgp_debug_zebra(p)) {
944 if (p->family == AF_INET) {
945 char buf[2][INET_ADDRSTRLEN];
946 zlog_debug(
947 "Zebra rmap deny: IPv4 route %pFX nexthop %s",
948 p,
949 inet_ntop(AF_INET, &path->attr->nexthop, buf[1],
950 sizeof(buf[1])));
951 }
952 if (p->family == AF_INET6) {
953 char buf[2][INET6_ADDRSTRLEN];
954 ifindex_t ifindex;
955 struct in6_addr *nexthop;
956
957 nexthop = bgp_path_info_to_ipv6_nexthop(path, &ifindex);
958 zlog_debug(
959 "Zebra rmap deny: IPv6 route %pFX nexthop %s",
960 p,
961 inet_ntop(AF_INET6, nexthop, buf[1],
962 sizeof(buf[1])));
963 }
964 }
965 return false;
966 }
967
968 static struct thread *bgp_tm_thread_connect;
969 static bool bgp_tm_status_connected;
970 static bool bgp_tm_chunk_obtained;
971 #define BGP_FLOWSPEC_TABLE_CHUNK 100000
972 static uint32_t bgp_tm_min, bgp_tm_max, bgp_tm_chunk_size;
973 struct bgp *bgp_tm_bgp;
974
975 static int bgp_zebra_tm_connect(struct thread *t)
976 {
977 struct zclient *zclient;
978 int delay = 10, ret = 0;
979
980 zclient = THREAD_ARG(t);
981 if (bgp_tm_status_connected && zclient->sock > 0)
982 delay = 60;
983 else {
984 bgp_tm_status_connected = false;
985 ret = tm_table_manager_connect(zclient);
986 }
987 if (ret < 0) {
988 zlog_info("Error connecting to table manager!");
989 bgp_tm_status_connected = false;
990 } else {
991 if (!bgp_tm_status_connected)
992 zlog_debug("Connecting to table manager. Success");
993 bgp_tm_status_connected = true;
994 if (!bgp_tm_chunk_obtained) {
995 if (bgp_zebra_get_table_range(bgp_tm_chunk_size,
996 &bgp_tm_min,
997 &bgp_tm_max) >= 0) {
998 bgp_tm_chunk_obtained = true;
999 /* parse non installed entries */
1000 bgp_zebra_announce_table(bgp_tm_bgp, AFI_IP, SAFI_FLOWSPEC);
1001 }
1002 }
1003 }
1004 thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
1005 &bgp_tm_thread_connect);
1006 return 0;
1007 }
1008
1009 bool bgp_zebra_tm_chunk_obtained(void)
1010 {
1011 return bgp_tm_chunk_obtained;
1012 }
1013
1014 uint32_t bgp_zebra_tm_get_id(void)
1015 {
1016 static int table_id;
1017
1018 if (!bgp_tm_chunk_obtained)
1019 return ++table_id;
1020 return bgp_tm_min++;
1021 }
1022
1023 void bgp_zebra_init_tm_connect(struct bgp *bgp)
1024 {
1025 int delay = 1;
1026
1027 /* if already set, do nothing
1028 */
1029 if (bgp_tm_thread_connect != NULL)
1030 return;
1031 bgp_tm_status_connected = false;
1032 bgp_tm_chunk_obtained = false;
1033 bgp_tm_min = bgp_tm_max = 0;
1034 bgp_tm_chunk_size = BGP_FLOWSPEC_TABLE_CHUNK;
1035 bgp_tm_bgp = bgp;
1036 thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
1037 &bgp_tm_thread_connect);
1038 }
1039
1040 int bgp_zebra_get_table_range(uint32_t chunk_size,
1041 uint32_t *start, uint32_t *end)
1042 {
1043 int ret;
1044
1045 if (!bgp_tm_status_connected)
1046 return -1;
1047 ret = tm_get_table_chunk(zclient, chunk_size, start, end);
1048 if (ret < 0) {
1049 flog_err(EC_BGP_TABLE_CHUNK,
1050 "BGP: Error getting table chunk %u", chunk_size);
1051 return -1;
1052 }
1053 zlog_info("BGP: Table Manager returns range from chunk %u is [%u %u]",
1054 chunk_size, *start, *end);
1055 return 0;
1056 }
1057
1058 static bool update_ipv4nh_for_route_install(int nh_othervrf, struct bgp *nh_bgp,
1059 struct in_addr *nexthop,
1060 struct attr *attr, bool is_evpn,
1061 struct zapi_nexthop *api_nh)
1062 {
1063 api_nh->gate.ipv4 = *nexthop;
1064 api_nh->vrf_id = nh_bgp->vrf_id;
1065
1066 /* Need to set fields appropriately for EVPN routes imported into
1067 * a VRF (which are programmed as onlink on l3-vni SVI) as well as
1068 * connected routes leaked into a VRF.
1069 */
1070 if (is_evpn) {
1071 api_nh->type = NEXTHOP_TYPE_IPV4_IFINDEX;
1072 SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_ONLINK);
1073 api_nh->ifindex = nh_bgp->l3vni_svi_ifindex;
1074 } else if (nh_othervrf &&
1075 api_nh->gate.ipv4.s_addr == INADDR_ANY) {
1076 api_nh->type = NEXTHOP_TYPE_IFINDEX;
1077 api_nh->ifindex = attr->nh_ifindex;
1078 } else
1079 api_nh->type = NEXTHOP_TYPE_IPV4;
1080
1081 return true;
1082 }
1083
1084 static bool update_ipv6nh_for_route_install(int nh_othervrf, struct bgp *nh_bgp,
1085 struct in6_addr *nexthop,
1086 ifindex_t ifindex,
1087 struct bgp_path_info *pi,
1088 struct bgp_path_info *best_pi,
1089 bool is_evpn,
1090 struct zapi_nexthop *api_nh)
1091 {
1092 struct attr *attr;
1093
1094 attr = pi->attr;
1095 api_nh->vrf_id = nh_bgp->vrf_id;
1096
1097 if (is_evpn) {
1098 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1099 SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_ONLINK);
1100 api_nh->ifindex = nh_bgp->l3vni_svi_ifindex;
1101 } else if (nh_othervrf) {
1102 if (IN6_IS_ADDR_UNSPECIFIED(nexthop)) {
1103 api_nh->type = NEXTHOP_TYPE_IFINDEX;
1104 api_nh->ifindex = attr->nh_ifindex;
1105 } else if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
1106 if (ifindex == 0)
1107 return false;
1108 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1109 api_nh->ifindex = ifindex;
1110 } else {
1111 api_nh->type = NEXTHOP_TYPE_IPV6;
1112 api_nh->ifindex = 0;
1113 }
1114 } else {
1115 if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
1116 if (pi == best_pi
1117 && attr->mp_nexthop_len
1118 == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL)
1119 if (pi->peer->nexthop.ifp)
1120 ifindex =
1121 pi->peer->nexthop.ifp->ifindex;
1122 if (!ifindex) {
1123 if (pi->peer->conf_if)
1124 ifindex = pi->peer->ifp->ifindex;
1125 else if (pi->peer->ifname)
1126 ifindex = ifname2ifindex(
1127 pi->peer->ifname,
1128 pi->peer->bgp->vrf_id);
1129 else if (pi->peer->nexthop.ifp)
1130 ifindex =
1131 pi->peer->nexthop.ifp->ifindex;
1132 }
1133
1134 if (ifindex == 0)
1135 return false;
1136 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1137 api_nh->ifindex = ifindex;
1138 } else {
1139 api_nh->type = NEXTHOP_TYPE_IPV6;
1140 api_nh->ifindex = 0;
1141 }
1142 }
1143 if (nexthop)
1144 api_nh->gate.ipv6 = *nexthop;
1145
1146 return true;
1147 }
1148
1149 static bool bgp_zebra_use_nhop_weighted(struct bgp *bgp, struct attr *attr,
1150 uint64_t tot_bw, uint32_t *nh_weight)
1151 {
1152 uint32_t bw;
1153 uint64_t tmp;
1154
1155 bw = attr->link_bw;
1156 /* zero link-bandwidth and link-bandwidth not present are treated
1157 * as the same situation.
1158 */
1159 if (!bw) {
1160 /* the only situations should be if we're either told
1161 * to skip or use default weight.
1162 */
1163 if (bgp->lb_handling == BGP_LINK_BW_SKIP_MISSING)
1164 return false;
1165 *nh_weight = BGP_ZEBRA_DEFAULT_NHOP_WEIGHT;
1166 } else {
1167 tmp = (uint64_t)bw * 100;
1168 *nh_weight = ((uint32_t)(tmp / tot_bw));
1169 }
1170
1171 return true;
1172 }
1173
1174 void bgp_zebra_announce(struct bgp_dest *dest, const struct prefix *p,
1175 struct bgp_path_info *info, struct bgp *bgp, afi_t afi,
1176 safi_t safi)
1177 {
1178 struct zapi_route api = { 0 };
1179 struct zapi_nexthop *api_nh;
1180 int nh_family;
1181 unsigned int valid_nh_count = 0;
1182 int has_valid_label = 0;
1183 uint8_t distance;
1184 struct peer *peer;
1185 struct bgp_path_info *mpinfo;
1186 uint32_t metric;
1187 struct attr local_attr;
1188 struct bgp_path_info local_info;
1189 struct bgp_path_info *mpinfo_cp = &local_info;
1190 route_tag_t tag;
1191 mpls_label_t label;
1192 int nh_othervrf = 0;
1193 char buf_prefix[PREFIX_STRLEN]; /* filled in if we are debugging */
1194 bool is_evpn;
1195 int nh_updated;
1196 bool do_wt_ecmp;
1197 uint64_t cum_bw = 0;
1198
1199 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1200 * know of this instance.
1201 */
1202 if (!bgp_install_info_to_zebra(bgp))
1203 return;
1204
1205 if (bgp->main_zebra_update_hold)
1206 return;
1207
1208 if (bgp_debug_zebra(p))
1209 prefix2str(p, buf_prefix, sizeof(buf_prefix));
1210
1211 if (safi == SAFI_FLOWSPEC) {
1212 bgp_pbr_update_entry(bgp, bgp_dest_get_prefix(dest), info, afi,
1213 safi, true);
1214 return;
1215 }
1216
1217 /*
1218 * vrf leaking support (will have only one nexthop)
1219 */
1220 if (info->extra && info->extra->bgp_orig)
1221 nh_othervrf = 1;
1222
1223 /* Make Zebra API structure. */
1224 api.vrf_id = bgp->vrf_id;
1225 api.type = ZEBRA_ROUTE_BGP;
1226 api.safi = safi;
1227 api.prefix = *p;
1228 SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
1229
1230 peer = info->peer;
1231
1232 if (info->type == ZEBRA_ROUTE_BGP
1233 && info->sub_type == BGP_ROUTE_IMPORTED) {
1234
1235 /* Obtain peer from parent */
1236 if (info->extra && info->extra->parent)
1237 peer = ((struct bgp_path_info *)(info->extra->parent))
1238 ->peer;
1239 }
1240
1241 tag = info->attr->tag;
1242
1243 /* If the route's source is EVPN, flag as such. */
1244 is_evpn = is_route_parent_evpn(info);
1245 if (is_evpn)
1246 SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
1247
1248 if (peer->sort == BGP_PEER_IBGP || peer->sort == BGP_PEER_CONFED
1249 || info->sub_type == BGP_ROUTE_AGGREGATE) {
1250 SET_FLAG(api.flags, ZEBRA_FLAG_IBGP);
1251 SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
1252 }
1253
1254 if ((peer->sort == BGP_PEER_EBGP && peer->ttl != BGP_DEFAULT_TTL)
1255 || CHECK_FLAG(peer->flags, PEER_FLAG_DISABLE_CONNECTED_CHECK)
1256 || CHECK_FLAG(bgp->flags, BGP_FLAG_DISABLE_NH_CONNECTED_CHK))
1257
1258 SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
1259
1260 if (info->attr->rmap_table_id) {
1261 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
1262 api.tableid = info->attr->rmap_table_id;
1263 }
1264
1265 if (CHECK_FLAG(info->attr->flag, ATTR_FLAG_BIT(BGP_ATTR_SRTE_COLOR)))
1266 SET_FLAG(api.message, ZAPI_MESSAGE_SRTE);
1267
1268 /* Metric is currently based on the best-path only */
1269 metric = info->attr->med;
1270
1271 /* Determine if we're doing weighted ECMP or not */
1272 do_wt_ecmp = bgp_path_info_mpath_chkwtd(bgp, info);
1273 if (do_wt_ecmp)
1274 cum_bw = bgp_path_info_mpath_cumbw(info);
1275
1276 for (mpinfo = info; mpinfo; mpinfo = bgp_path_info_mpath_next(mpinfo)) {
1277 uint32_t nh_weight;
1278
1279 if (valid_nh_count >= multipath_num)
1280 break;
1281
1282 *mpinfo_cp = *mpinfo;
1283 nh_weight = 0;
1284
1285 /* Get nexthop address-family */
1286 if (p->family == AF_INET
1287 && !BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr))
1288 nh_family = AF_INET;
1289 else if (p->family == AF_INET6
1290 || (p->family == AF_INET
1291 && BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr)))
1292 nh_family = AF_INET6;
1293 else
1294 continue;
1295
1296 /* If processing for weighted ECMP, determine the next hop's
1297 * weight. Based on user setting, we may skip the next hop
1298 * in some situations.
1299 */
1300 if (do_wt_ecmp) {
1301 if (!bgp_zebra_use_nhop_weighted(bgp, mpinfo->attr,
1302 cum_bw, &nh_weight))
1303 continue;
1304 }
1305 api_nh = &api.nexthops[valid_nh_count];
1306
1307 if (CHECK_FLAG(info->attr->flag,
1308 ATTR_FLAG_BIT(BGP_ATTR_SRTE_COLOR)))
1309 api_nh->srte_color = info->attr->srte_color;
1310
1311 if (nh_family == AF_INET) {
1312 if (bgp_debug_zebra(&api.prefix)) {
1313 if (mpinfo->extra) {
1314 zlog_debug(
1315 "%s: p=%s, bgp_is_valid_label: %d",
1316 __func__, buf_prefix,
1317 bgp_is_valid_label(
1318 &mpinfo->extra
1319 ->label[0]));
1320 } else {
1321 zlog_debug(
1322 "%s: p=%s, extra is NULL, no label",
1323 __func__, buf_prefix);
1324 }
1325 }
1326
1327 if (bgp->table_map[afi][safi].name) {
1328 /* Copy info and attributes, so the route-map
1329 apply doesn't modify the BGP route info. */
1330 local_attr = *mpinfo->attr;
1331 mpinfo_cp->attr = &local_attr;
1332 }
1333
1334 if (bgp->table_map[afi][safi].name) {
1335 if (!bgp_table_map_apply(
1336 bgp->table_map[afi][safi].map, p,
1337 mpinfo_cp))
1338 continue;
1339
1340 /* metric/tag is only allowed to be
1341 * overridden on 1st nexthop */
1342 if (mpinfo == info) {
1343 metric = mpinfo_cp->attr->med;
1344 tag = mpinfo_cp->attr->tag;
1345 }
1346 }
1347
1348 nh_updated = update_ipv4nh_for_route_install(
1349 nh_othervrf,
1350 nh_othervrf ?
1351 info->extra->bgp_orig : bgp,
1352 &mpinfo_cp->attr->nexthop,
1353 mpinfo_cp->attr, is_evpn, api_nh);
1354 } else {
1355 ifindex_t ifindex = IFINDEX_INTERNAL;
1356 struct in6_addr *nexthop;
1357
1358 if (bgp->table_map[afi][safi].name) {
1359 /* Copy info and attributes, so the route-map
1360 apply doesn't modify the BGP route info. */
1361 local_attr = *mpinfo->attr;
1362 mpinfo_cp->attr = &local_attr;
1363 }
1364
1365 if (bgp->table_map[afi][safi].name) {
1366 /* Copy info and attributes, so the route-map
1367 apply doesn't modify the BGP route info. */
1368 local_attr = *mpinfo->attr;
1369 mpinfo_cp->attr = &local_attr;
1370
1371 if (!bgp_table_map_apply(
1372 bgp->table_map[afi][safi].map, p,
1373 mpinfo_cp))
1374 continue;
1375
1376 /* metric/tag is only allowed to be
1377 * overridden on 1st nexthop */
1378 if (mpinfo == info) {
1379 metric = mpinfo_cp->attr->med;
1380 tag = mpinfo_cp->attr->tag;
1381 }
1382 }
1383 nexthop = bgp_path_info_to_ipv6_nexthop(mpinfo_cp,
1384 &ifindex);
1385 nh_updated = update_ipv6nh_for_route_install(
1386 nh_othervrf, nh_othervrf ?
1387 info->extra->bgp_orig : bgp,
1388 nexthop, ifindex,
1389 mpinfo, info, is_evpn, api_nh);
1390 }
1391
1392 /* Did we get proper nexthop info to update zebra? */
1393 if (!nh_updated)
1394 continue;
1395
1396 if (mpinfo->extra
1397 && bgp_is_valid_label(&mpinfo->extra->label[0])
1398 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)) {
1399 has_valid_label = 1;
1400 label = label_pton(&mpinfo->extra->label[0]);
1401
1402 SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_LABEL);
1403
1404 api_nh->label_num = 1;
1405 api_nh->labels[0] = label;
1406 }
1407 memcpy(&api_nh->rmac, &(mpinfo->attr->rmac),
1408 sizeof(struct ethaddr));
1409 api_nh->weight = nh_weight;
1410
1411 valid_nh_count++;
1412 }
1413
1414 /*
1415 * When we create an aggregate route we must also
1416 * install a Null0 route in the RIB, so overwrite
1417 * what was written into api with a blackhole route
1418 */
1419 if (info->sub_type == BGP_ROUTE_AGGREGATE)
1420 zapi_route_set_blackhole(&api, BLACKHOLE_NULL);
1421 else
1422 api.nexthop_num = valid_nh_count;
1423
1424 SET_FLAG(api.message, ZAPI_MESSAGE_METRIC);
1425 api.metric = metric;
1426
1427 if (tag) {
1428 SET_FLAG(api.message, ZAPI_MESSAGE_TAG);
1429 api.tag = tag;
1430 }
1431
1432 distance = bgp_distance_apply(p, info, afi, safi, bgp);
1433 if (distance) {
1434 SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
1435 api.distance = distance;
1436 }
1437
1438 if (bgp_debug_zebra(p)) {
1439 char prefix_buf[PREFIX_STRLEN];
1440 char nh_buf[INET6_ADDRSTRLEN];
1441 char eth_buf[ETHER_ADDR_STRLEN + 7] = {'\0'};
1442 char buf1[ETHER_ADDR_STRLEN];
1443 char label_buf[20];
1444 int i;
1445
1446 prefix2str(&api.prefix, prefix_buf, sizeof(prefix_buf));
1447 zlog_debug("Tx route %s VRF %u %s metric %u tag %" ROUTE_TAG_PRI
1448 " count %d",
1449 valid_nh_count ? "add" : "delete", bgp->vrf_id,
1450 prefix_buf, api.metric, api.tag, api.nexthop_num);
1451 for (i = 0; i < api.nexthop_num; i++) {
1452 api_nh = &api.nexthops[i];
1453
1454 switch (api_nh->type) {
1455 case NEXTHOP_TYPE_IFINDEX:
1456 nh_buf[0] = '\0';
1457 break;
1458 case NEXTHOP_TYPE_IPV4:
1459 case NEXTHOP_TYPE_IPV4_IFINDEX:
1460 nh_family = AF_INET;
1461 inet_ntop(nh_family, &api_nh->gate, nh_buf,
1462 sizeof(nh_buf));
1463 break;
1464 case NEXTHOP_TYPE_IPV6:
1465 case NEXTHOP_TYPE_IPV6_IFINDEX:
1466 nh_family = AF_INET6;
1467 inet_ntop(nh_family, &api_nh->gate, nh_buf,
1468 sizeof(nh_buf));
1469 break;
1470 case NEXTHOP_TYPE_BLACKHOLE:
1471 strlcpy(nh_buf, "blackhole", sizeof(nh_buf));
1472 break;
1473 default:
1474 /* Note: add new nexthop case */
1475 assert(0);
1476 break;
1477 }
1478
1479 label_buf[0] = '\0';
1480 eth_buf[0] = '\0';
1481 if (has_valid_label
1482 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE))
1483 snprintf(label_buf, sizeof(label_buf),
1484 "label %u", api_nh->labels[0]);
1485 if (CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)
1486 && !is_zero_mac(&api_nh->rmac))
1487 snprintf(eth_buf, sizeof(eth_buf), " RMAC %s",
1488 prefix_mac2str(&api_nh->rmac,
1489 buf1, sizeof(buf1)));
1490 zlog_debug(" nhop [%d]: %s if %u VRF %u wt %u %s %s",
1491 i + 1, nh_buf, api_nh->ifindex,
1492 api_nh->vrf_id, api_nh->weight,
1493 label_buf, eth_buf);
1494 }
1495 }
1496
1497 if (bgp_debug_zebra(p)) {
1498 int recursion_flag = 0;
1499
1500 if (CHECK_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION))
1501 recursion_flag = 1;
1502
1503 zlog_debug("%s: %s: announcing to zebra (recursion %sset)",
1504 __func__, buf_prefix,
1505 (recursion_flag ? "" : "NOT "));
1506 }
1507 zclient_route_send(valid_nh_count ? ZEBRA_ROUTE_ADD
1508 : ZEBRA_ROUTE_DELETE,
1509 zclient, &api);
1510 }
1511
1512 /* Announce all routes of a table to zebra */
1513 void bgp_zebra_announce_table(struct bgp *bgp, afi_t afi, safi_t safi)
1514 {
1515 struct bgp_dest *dest;
1516 struct bgp_table *table;
1517 struct bgp_path_info *pi;
1518
1519 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1520 * know of this instance.
1521 */
1522 if (!bgp_install_info_to_zebra(bgp))
1523 return;
1524
1525 table = bgp->rib[afi][safi];
1526 if (!table)
1527 return;
1528
1529 for (dest = bgp_table_top(table); dest; dest = bgp_route_next(dest))
1530 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next)
1531 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED) &&
1532
1533 (pi->type == ZEBRA_ROUTE_BGP
1534 && (pi->sub_type == BGP_ROUTE_NORMAL
1535 || pi->sub_type == BGP_ROUTE_IMPORTED)))
1536
1537 bgp_zebra_announce(dest,
1538 bgp_dest_get_prefix(dest),
1539 pi, bgp, afi, safi);
1540 }
1541
1542 /* Announce routes of any bgp subtype of a table to zebra */
1543 void bgp_zebra_announce_table_all_subtypes(struct bgp *bgp, afi_t afi,
1544 safi_t safi)
1545 {
1546 struct bgp_dest *dest;
1547 struct bgp_table *table;
1548 struct bgp_path_info *pi;
1549
1550 if (!bgp_install_info_to_zebra(bgp))
1551 return;
1552
1553 table = bgp->rib[afi][safi];
1554 if (!table)
1555 return;
1556
1557 for (dest = bgp_table_top(table); dest; dest = bgp_route_next(dest))
1558 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next)
1559 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED) &&
1560 pi->type == ZEBRA_ROUTE_BGP)
1561 bgp_zebra_announce(dest,
1562 bgp_dest_get_prefix(dest),
1563 pi, bgp, afi, safi);
1564 }
1565
1566 void bgp_zebra_withdraw(const struct prefix *p, struct bgp_path_info *info,
1567 struct bgp *bgp, safi_t safi)
1568 {
1569 struct zapi_route api;
1570 struct peer *peer;
1571
1572 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1573 * know of this instance.
1574 */
1575 if (!bgp_install_info_to_zebra(bgp))
1576 return;
1577
1578 if (safi == SAFI_FLOWSPEC) {
1579 peer = info->peer;
1580 bgp_pbr_update_entry(peer->bgp, p, info, AFI_IP, safi, false);
1581 return;
1582 }
1583
1584 memset(&api, 0, sizeof(api));
1585 api.vrf_id = bgp->vrf_id;
1586 api.type = ZEBRA_ROUTE_BGP;
1587 api.safi = safi;
1588 api.prefix = *p;
1589
1590 if (info->attr->rmap_table_id) {
1591 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
1592 api.tableid = info->attr->rmap_table_id;
1593 }
1594
1595 /* If the route's source is EVPN, flag as such. */
1596 if (is_route_parent_evpn(info))
1597 SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
1598
1599 if (bgp_debug_zebra(p)) {
1600 char buf[PREFIX_STRLEN];
1601
1602 prefix2str(&api.prefix, buf, sizeof(buf));
1603 zlog_debug("Tx route delete VRF %u %s", bgp->vrf_id, buf);
1604 }
1605
1606 zclient_route_send(ZEBRA_ROUTE_DELETE, zclient, &api);
1607 }
1608
1609 /* Withdraw all entries in a BGP instances RIB table from Zebra */
1610 void bgp_zebra_withdraw_table_all_subtypes(struct bgp *bgp, afi_t afi, safi_t safi)
1611 {
1612 struct bgp_dest *dest;
1613 struct bgp_table *table;
1614 struct bgp_path_info *pi;
1615
1616 if (!bgp_install_info_to_zebra(bgp))
1617 return;
1618
1619 table = bgp->rib[afi][safi];
1620 if (!table)
1621 return;
1622
1623 for (dest = bgp_table_top(table); dest; dest = bgp_route_next(dest)) {
1624 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next) {
1625 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED)
1626 && (pi->type == ZEBRA_ROUTE_BGP))
1627 bgp_zebra_withdraw(bgp_dest_get_prefix(dest),
1628 pi, bgp, safi);
1629 }
1630 }
1631 }
1632
1633 struct bgp_redist *bgp_redist_lookup(struct bgp *bgp, afi_t afi, uint8_t type,
1634 unsigned short instance)
1635 {
1636 struct list *red_list;
1637 struct listnode *node;
1638 struct bgp_redist *red;
1639
1640 red_list = bgp->redist[afi][type];
1641 if (!red_list)
1642 return (NULL);
1643
1644 for (ALL_LIST_ELEMENTS_RO(red_list, node, red))
1645 if (red->instance == instance)
1646 return red;
1647
1648 return NULL;
1649 }
1650
1651 struct bgp_redist *bgp_redist_add(struct bgp *bgp, afi_t afi, uint8_t type,
1652 unsigned short instance)
1653 {
1654 struct list *red_list;
1655 struct bgp_redist *red;
1656
1657 red = bgp_redist_lookup(bgp, afi, type, instance);
1658 if (red)
1659 return red;
1660
1661 if (!bgp->redist[afi][type])
1662 bgp->redist[afi][type] = list_new();
1663
1664 red_list = bgp->redist[afi][type];
1665 red = XCALLOC(MTYPE_BGP_REDIST, sizeof(struct bgp_redist));
1666 red->instance = instance;
1667
1668 listnode_add(red_list, red);
1669
1670 return red;
1671 }
1672
1673 static void bgp_redist_del(struct bgp *bgp, afi_t afi, uint8_t type,
1674 unsigned short instance)
1675 {
1676 struct bgp_redist *red;
1677
1678 red = bgp_redist_lookup(bgp, afi, type, instance);
1679
1680 if (red) {
1681 listnode_delete(bgp->redist[afi][type], red);
1682 XFREE(MTYPE_BGP_REDIST, red);
1683 if (!bgp->redist[afi][type]->count)
1684 list_delete(&bgp->redist[afi][type]);
1685 }
1686 }
1687
1688 /* Other routes redistribution into BGP. */
1689 int bgp_redistribute_set(struct bgp *bgp, afi_t afi, int type,
1690 unsigned short instance, bool changed)
1691 {
1692 /* If redistribute options are changed call
1693 * bgp_redistribute_unreg() to reset the option and withdraw
1694 * the routes
1695 */
1696 if (changed)
1697 bgp_redistribute_unreg(bgp, afi, type, instance);
1698
1699 /* Return if already redistribute flag is set. */
1700 if (instance) {
1701 if (redist_check_instance(&zclient->mi_redist[afi][type],
1702 instance))
1703 return CMD_WARNING;
1704
1705 redist_add_instance(&zclient->mi_redist[afi][type], instance);
1706 } else {
1707 if (vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
1708 return CMD_WARNING;
1709
1710 #ifdef ENABLE_BGP_VNC
1711 if (EVPN_ENABLED(bgp) && type == ZEBRA_ROUTE_VNC_DIRECT) {
1712 vnc_export_bgp_enable(
1713 bgp, afi); /* only enables if mode bits cfg'd */
1714 }
1715 #endif
1716
1717 vrf_bitmap_set(zclient->redist[afi][type], bgp->vrf_id);
1718 }
1719
1720 /*
1721 * Don't try to register if we're not connected to Zebra or Zebra
1722 * doesn't know of this instance.
1723 *
1724 * When we come up later well resend if needed.
1725 */
1726 if (!bgp_install_info_to_zebra(bgp))
1727 return CMD_SUCCESS;
1728
1729 if (BGP_DEBUG(zebra, ZEBRA))
1730 zlog_debug("Tx redistribute add VRF %u afi %d %s %d",
1731 bgp->vrf_id, afi, zebra_route_string(type),
1732 instance);
1733
1734 /* Send distribute add message to zebra. */
1735 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
1736 instance, bgp->vrf_id);
1737
1738 return CMD_SUCCESS;
1739 }
1740
1741 int bgp_redistribute_resend(struct bgp *bgp, afi_t afi, int type,
1742 unsigned short instance)
1743 {
1744 /* Don't try to send if we're not connected to Zebra or Zebra doesn't
1745 * know of this instance.
1746 */
1747 if (!bgp_install_info_to_zebra(bgp))
1748 return -1;
1749
1750 if (BGP_DEBUG(zebra, ZEBRA))
1751 zlog_debug("Tx redistribute del/add VRF %u afi %d %s %d",
1752 bgp->vrf_id, afi, zebra_route_string(type),
1753 instance);
1754
1755 /* Send distribute add message to zebra. */
1756 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi, type,
1757 instance, bgp->vrf_id);
1758 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
1759 instance, bgp->vrf_id);
1760
1761 return 0;
1762 }
1763
1764 /* Redistribute with route-map specification. */
1765 bool bgp_redistribute_rmap_set(struct bgp_redist *red, const char *name,
1766 struct route_map *route_map)
1767 {
1768 if (red->rmap.name && (strcmp(red->rmap.name, name) == 0))
1769 return false;
1770
1771 XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
1772 /* Decrement the count for existing routemap and
1773 * increment the count for new route map.
1774 */
1775 route_map_counter_decrement(red->rmap.map);
1776 red->rmap.name = XSTRDUP(MTYPE_ROUTE_MAP_NAME, name);
1777 red->rmap.map = route_map;
1778 route_map_counter_increment(red->rmap.map);
1779
1780 return true;
1781 }
1782
1783 /* Redistribute with metric specification. */
1784 bool bgp_redistribute_metric_set(struct bgp *bgp, struct bgp_redist *red,
1785 afi_t afi, int type, uint32_t metric)
1786 {
1787 struct bgp_dest *dest;
1788 struct bgp_path_info *pi;
1789
1790 if (red->redist_metric_flag && red->redist_metric == metric)
1791 return false;
1792
1793 red->redist_metric_flag = 1;
1794 red->redist_metric = metric;
1795
1796 for (dest = bgp_table_top(bgp->rib[afi][SAFI_UNICAST]); dest;
1797 dest = bgp_route_next(dest)) {
1798 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next) {
1799 if (pi->sub_type == BGP_ROUTE_REDISTRIBUTE
1800 && pi->type == type
1801 && pi->instance == red->instance) {
1802 struct attr *old_attr;
1803 struct attr new_attr;
1804
1805 new_attr = *pi->attr;
1806 new_attr.med = red->redist_metric;
1807 old_attr = pi->attr;
1808 pi->attr = bgp_attr_intern(&new_attr);
1809 bgp_attr_unintern(&old_attr);
1810
1811 bgp_path_info_set_flag(dest, pi,
1812 BGP_PATH_ATTR_CHANGED);
1813 bgp_process(bgp, dest, afi, SAFI_UNICAST);
1814 }
1815 }
1816 }
1817
1818 return true;
1819 }
1820
1821 /* Unset redistribution. */
1822 int bgp_redistribute_unreg(struct bgp *bgp, afi_t afi, int type,
1823 unsigned short instance)
1824 {
1825 struct bgp_redist *red;
1826
1827 red = bgp_redist_lookup(bgp, afi, type, instance);
1828 if (!red)
1829 return CMD_SUCCESS;
1830
1831 /* Return if zebra connection is disabled. */
1832 if (instance) {
1833 if (!redist_check_instance(&zclient->mi_redist[afi][type],
1834 instance))
1835 return CMD_WARNING;
1836 redist_del_instance(&zclient->mi_redist[afi][type], instance);
1837 } else {
1838 if (!vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
1839 return CMD_WARNING;
1840 vrf_bitmap_unset(zclient->redist[afi][type], bgp->vrf_id);
1841 }
1842
1843
1844 if (bgp_install_info_to_zebra(bgp)) {
1845 /* Send distribute delete message to zebra. */
1846 if (BGP_DEBUG(zebra, ZEBRA))
1847 zlog_debug("Tx redistribute del VRF %u afi %d %s %d",
1848 bgp->vrf_id, afi, zebra_route_string(type),
1849 instance);
1850 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi,
1851 type, instance, bgp->vrf_id);
1852 }
1853
1854 /* Withdraw redistributed routes from current BGP's routing table. */
1855 bgp_redistribute_withdraw(bgp, afi, type, instance);
1856
1857 return CMD_SUCCESS;
1858 }
1859
1860 /* Unset redistribution. */
1861 int bgp_redistribute_unset(struct bgp *bgp, afi_t afi, int type,
1862 unsigned short instance)
1863 {
1864 struct bgp_redist *red;
1865
1866 /*
1867 * vnc and vpn->vrf checks must be before red check because
1868 * they operate within bgpd irrespective of zebra connection
1869 * status. red lookup fails if there is no zebra connection.
1870 */
1871 #ifdef ENABLE_BGP_VNC
1872 if (EVPN_ENABLED(bgp) && type == ZEBRA_ROUTE_VNC_DIRECT) {
1873 vnc_export_bgp_disable(bgp, afi);
1874 }
1875 #endif
1876
1877 red = bgp_redist_lookup(bgp, afi, type, instance);
1878 if (!red)
1879 return CMD_SUCCESS;
1880
1881 bgp_redistribute_unreg(bgp, afi, type, instance);
1882
1883 /* Unset route-map. */
1884 XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
1885 route_map_counter_decrement(red->rmap.map);
1886 red->rmap.map = NULL;
1887
1888 /* Unset metric. */
1889 red->redist_metric_flag = 0;
1890 red->redist_metric = 0;
1891
1892 bgp_redist_del(bgp, afi, type, instance);
1893
1894 return CMD_SUCCESS;
1895 }
1896
1897 void bgp_redistribute_redo(struct bgp *bgp)
1898 {
1899 afi_t afi;
1900 int i;
1901 struct list *red_list;
1902 struct listnode *node;
1903 struct bgp_redist *red;
1904
1905 for (afi = AFI_IP; afi < AFI_MAX; afi++) {
1906 for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
1907
1908 red_list = bgp->redist[afi][i];
1909 if (!red_list)
1910 continue;
1911
1912 for (ALL_LIST_ELEMENTS_RO(red_list, node, red)) {
1913 bgp_redistribute_resend(bgp, afi, i,
1914 red->instance);
1915 }
1916 }
1917 }
1918 }
1919
1920 /* Unset redistribute vrf bitmap during triggers like
1921 restart networking or delete VRFs */
1922 void bgp_unset_redist_vrf_bitmaps(struct bgp *bgp, vrf_id_t old_vrf_id)
1923 {
1924 int i;
1925 afi_t afi;
1926
1927 for (afi = AFI_IP; afi < AFI_MAX; afi++)
1928 for (i = 0; i < ZEBRA_ROUTE_MAX; i++)
1929 if (vrf_bitmap_check(zclient->redist[afi][i],
1930 old_vrf_id))
1931 vrf_bitmap_unset(zclient->redist[afi][i],
1932 old_vrf_id);
1933 return;
1934 }
1935
1936 void bgp_zclient_reset(void)
1937 {
1938 zclient_reset(zclient);
1939 }
1940
1941 /* Register this instance with Zebra. Invoked upon connect (for
1942 * default instance) and when other VRFs are learnt (or created and
1943 * already learnt).
1944 */
1945 void bgp_zebra_instance_register(struct bgp *bgp)
1946 {
1947 /* Don't try to register if we're not connected to Zebra */
1948 if (!zclient || zclient->sock < 0)
1949 return;
1950
1951 if (BGP_DEBUG(zebra, ZEBRA))
1952 zlog_debug("Registering VRF %u", bgp->vrf_id);
1953
1954 /* Register for router-id, interfaces, redistributed routes. */
1955 zclient_send_reg_requests(zclient, bgp->vrf_id);
1956
1957 /* For EVPN instance, register to learn about VNIs, if appropriate. */
1958 if (bgp->advertise_all_vni)
1959 bgp_zebra_advertise_all_vni(bgp, 1);
1960
1961 bgp_nht_register_nexthops(bgp);
1962 }
1963
1964 /* Deregister this instance with Zebra. Invoked upon the instance
1965 * being deleted (default or VRF) and it is already registered.
1966 */
1967 void bgp_zebra_instance_deregister(struct bgp *bgp)
1968 {
1969 /* Don't try to deregister if we're not connected to Zebra */
1970 if (zclient->sock < 0)
1971 return;
1972
1973 if (BGP_DEBUG(zebra, ZEBRA))
1974 zlog_debug("Deregistering VRF %u", bgp->vrf_id);
1975
1976 /* For EVPN instance, unregister learning about VNIs, if appropriate. */
1977 if (bgp->advertise_all_vni)
1978 bgp_zebra_advertise_all_vni(bgp, 0);
1979
1980 /* Deregister for router-id, interfaces, redistributed routes. */
1981 zclient_send_dereg_requests(zclient, bgp->vrf_id);
1982 }
1983
1984 void bgp_zebra_initiate_radv(struct bgp *bgp, struct peer *peer)
1985 {
1986 int ra_interval = BGP_UNNUM_DEFAULT_RA_INTERVAL;
1987
1988 /* Don't try to initiate if we're not connected to Zebra */
1989 if (zclient->sock < 0)
1990 return;
1991
1992 if (BGP_DEBUG(zebra, ZEBRA))
1993 zlog_debug("%u: Initiating RA for peer %s", bgp->vrf_id,
1994 peer->host);
1995
1996 /*
1997 * If unnumbered peer (peer->ifp) call thru zapi to start RAs.
1998 * If we don't have an ifp pointer, call function to find the
1999 * ifps for a numbered enhe peer to turn RAs on.
2000 */
2001 peer->ifp ? zclient_send_interface_radv_req(zclient, bgp->vrf_id,
2002 peer->ifp, 1, ra_interval)
2003 : bgp_nht_reg_enhe_cap_intfs(peer);
2004 }
2005
2006 void bgp_zebra_terminate_radv(struct bgp *bgp, struct peer *peer)
2007 {
2008 /* Don't try to terminate if we're not connected to Zebra */
2009 if (zclient->sock < 0)
2010 return;
2011
2012 if (BGP_DEBUG(zebra, ZEBRA))
2013 zlog_debug("%u: Terminating RA for peer %s", bgp->vrf_id,
2014 peer->host);
2015
2016 /*
2017 * If unnumbered peer (peer->ifp) call thru zapi to stop RAs.
2018 * If we don't have an ifp pointer, call function to find the
2019 * ifps for a numbered enhe peer to turn RAs off.
2020 */
2021 peer->ifp ? zclient_send_interface_radv_req(zclient, bgp->vrf_id,
2022 peer->ifp, 0, 0)
2023 : bgp_nht_dereg_enhe_cap_intfs(peer);
2024 }
2025
2026 int bgp_zebra_advertise_subnet(struct bgp *bgp, int advertise, vni_t vni)
2027 {
2028 struct stream *s = NULL;
2029
2030 /* Check socket. */
2031 if (!zclient || zclient->sock < 0)
2032 return 0;
2033
2034 /* Don't try to register if Zebra doesn't know of this instance. */
2035 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
2036 if (BGP_DEBUG(zebra, ZEBRA))
2037 zlog_debug(
2038 "%s: No zebra instance to talk to, cannot advertise subnet",
2039 __func__);
2040 return 0;
2041 }
2042
2043 s = zclient->obuf;
2044 stream_reset(s);
2045
2046 zclient_create_header(s, ZEBRA_ADVERTISE_SUBNET, bgp->vrf_id);
2047 stream_putc(s, advertise);
2048 stream_put3(s, vni);
2049 stream_putw_at(s, 0, stream_get_endp(s));
2050
2051 return zclient_send_message(zclient);
2052 }
2053
2054 int bgp_zebra_advertise_svi_macip(struct bgp *bgp, int advertise, vni_t vni)
2055 {
2056 struct stream *s = NULL;
2057
2058 /* Check socket. */
2059 if (!zclient || zclient->sock < 0)
2060 return 0;
2061
2062 /* Don't try to register if Zebra doesn't know of this instance. */
2063 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
2064 return 0;
2065
2066 s = zclient->obuf;
2067 stream_reset(s);
2068
2069 zclient_create_header(s, ZEBRA_ADVERTISE_SVI_MACIP, bgp->vrf_id);
2070 stream_putc(s, advertise);
2071 stream_putl(s, vni);
2072 stream_putw_at(s, 0, stream_get_endp(s));
2073
2074 return zclient_send_message(zclient);
2075 }
2076
2077 int bgp_zebra_advertise_gw_macip(struct bgp *bgp, int advertise, vni_t vni)
2078 {
2079 struct stream *s = NULL;
2080
2081 /* Check socket. */
2082 if (!zclient || zclient->sock < 0)
2083 return 0;
2084
2085 /* Don't try to register if Zebra doesn't know of this instance. */
2086 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
2087 if (BGP_DEBUG(zebra, ZEBRA))
2088 zlog_debug(
2089 "%s: No zebra instance to talk to, not installing gw_macip",
2090 __func__);
2091 return 0;
2092 }
2093
2094 s = zclient->obuf;
2095 stream_reset(s);
2096
2097 zclient_create_header(s, ZEBRA_ADVERTISE_DEFAULT_GW, bgp->vrf_id);
2098 stream_putc(s, advertise);
2099 stream_putl(s, vni);
2100 stream_putw_at(s, 0, stream_get_endp(s));
2101
2102 return zclient_send_message(zclient);
2103 }
2104
2105 int bgp_zebra_vxlan_flood_control(struct bgp *bgp,
2106 enum vxlan_flood_control flood_ctrl)
2107 {
2108 struct stream *s;
2109
2110 /* Check socket. */
2111 if (!zclient || zclient->sock < 0)
2112 return 0;
2113
2114 /* Don't try to register if Zebra doesn't know of this instance. */
2115 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
2116 if (BGP_DEBUG(zebra, ZEBRA))
2117 zlog_debug(
2118 "%s: No zebra instance to talk to, not installing all vni",
2119 __func__);
2120 return 0;
2121 }
2122
2123 s = zclient->obuf;
2124 stream_reset(s);
2125
2126 zclient_create_header(s, ZEBRA_VXLAN_FLOOD_CONTROL, bgp->vrf_id);
2127 stream_putc(s, flood_ctrl);
2128 stream_putw_at(s, 0, stream_get_endp(s));
2129
2130 return zclient_send_message(zclient);
2131 }
2132
2133 int bgp_zebra_advertise_all_vni(struct bgp *bgp, int advertise)
2134 {
2135 struct stream *s;
2136
2137 /* Check socket. */
2138 if (!zclient || zclient->sock < 0)
2139 return 0;
2140
2141 /* Don't try to register if Zebra doesn't know of this instance. */
2142 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
2143 return 0;
2144
2145 s = zclient->obuf;
2146 stream_reset(s);
2147
2148 zclient_create_header(s, ZEBRA_ADVERTISE_ALL_VNI, bgp->vrf_id);
2149 stream_putc(s, advertise);
2150 /* Also inform current BUM handling setting. This is really
2151 * relevant only when 'advertise' is set.
2152 */
2153 stream_putc(s, bgp->vxlan_flood_ctrl);
2154 stream_putw_at(s, 0, stream_get_endp(s));
2155
2156 return zclient_send_message(zclient);
2157 }
2158
2159 int bgp_zebra_dup_addr_detection(struct bgp *bgp)
2160 {
2161 struct stream *s;
2162
2163 /* Check socket. */
2164 if (!zclient || zclient->sock < 0)
2165 return 0;
2166
2167 /* Don't try to register if Zebra doesn't know of this instance. */
2168 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
2169 return 0;
2170
2171 if (BGP_DEBUG(zebra, ZEBRA))
2172 zlog_debug("dup addr detect %s max_moves %u time %u freeze %s freeze_time %u",
2173 bgp->evpn_info->dup_addr_detect ?
2174 "enable" : "disable",
2175 bgp->evpn_info->dad_max_moves,
2176 bgp->evpn_info->dad_time,
2177 bgp->evpn_info->dad_freeze ?
2178 "enable" : "disable",
2179 bgp->evpn_info->dad_freeze_time);
2180
2181 s = zclient->obuf;
2182 stream_reset(s);
2183 zclient_create_header(s, ZEBRA_DUPLICATE_ADDR_DETECTION,
2184 bgp->vrf_id);
2185 stream_putl(s, bgp->evpn_info->dup_addr_detect);
2186 stream_putl(s, bgp->evpn_info->dad_time);
2187 stream_putl(s, bgp->evpn_info->dad_max_moves);
2188 stream_putl(s, bgp->evpn_info->dad_freeze);
2189 stream_putl(s, bgp->evpn_info->dad_freeze_time);
2190 stream_putw_at(s, 0, stream_get_endp(s));
2191
2192 return zclient_send_message(zclient);
2193 }
2194
2195 static int rule_notify_owner(ZAPI_CALLBACK_ARGS)
2196 {
2197 uint32_t seqno, priority, unique;
2198 enum zapi_rule_notify_owner note;
2199 struct bgp_pbr_action *bgp_pbra;
2200 struct bgp_pbr_rule *bgp_pbr = NULL;
2201 char ifname[INTERFACE_NAMSIZ + 1];
2202
2203 if (!zapi_rule_notify_decode(zclient->ibuf, &seqno, &priority, &unique,
2204 ifname, &note))
2205 return -1;
2206
2207 bgp_pbra = bgp_pbr_action_rule_lookup(vrf_id, unique);
2208 if (!bgp_pbra) {
2209 /* look in bgp pbr rule */
2210 bgp_pbr = bgp_pbr_rule_lookup(vrf_id, unique);
2211 if (!bgp_pbr && note != ZAPI_RULE_REMOVED) {
2212 if (BGP_DEBUG(zebra, ZEBRA))
2213 zlog_debug("%s: Fail to look BGP rule (%u)",
2214 __func__, unique);
2215 return 0;
2216 }
2217 }
2218
2219 switch (note) {
2220 case ZAPI_RULE_FAIL_INSTALL:
2221 if (BGP_DEBUG(zebra, ZEBRA))
2222 zlog_debug("%s: Received RULE_FAIL_INSTALL", __func__);
2223 if (bgp_pbra) {
2224 bgp_pbra->installed = false;
2225 bgp_pbra->install_in_progress = false;
2226 } else {
2227 bgp_pbr->installed = false;
2228 bgp_pbr->install_in_progress = false;
2229 }
2230 break;
2231 case ZAPI_RULE_INSTALLED:
2232 if (bgp_pbra) {
2233 bgp_pbra->installed = true;
2234 bgp_pbra->install_in_progress = false;
2235 } else {
2236 struct bgp_path_info *path;
2237 struct bgp_path_info_extra *extra;
2238
2239 bgp_pbr->installed = true;
2240 bgp_pbr->install_in_progress = false;
2241 bgp_pbr->action->refcnt++;
2242 /* link bgp_info to bgp_pbr */
2243 path = (struct bgp_path_info *)bgp_pbr->path;
2244 extra = bgp_path_info_extra_get(path);
2245 listnode_add_force(&extra->bgp_fs_iprule,
2246 bgp_pbr);
2247 }
2248 if (BGP_DEBUG(zebra, ZEBRA))
2249 zlog_debug("%s: Received RULE_INSTALLED", __func__);
2250 break;
2251 case ZAPI_RULE_FAIL_REMOVE:
2252 case ZAPI_RULE_REMOVED:
2253 if (BGP_DEBUG(zebra, ZEBRA))
2254 zlog_debug("%s: Received RULE REMOVED", __func__);
2255 break;
2256 }
2257
2258 return 0;
2259 }
2260
2261 static int ipset_notify_owner(ZAPI_CALLBACK_ARGS)
2262 {
2263 uint32_t unique;
2264 enum zapi_ipset_notify_owner note;
2265 struct bgp_pbr_match *bgp_pbim;
2266
2267 if (!zapi_ipset_notify_decode(zclient->ibuf,
2268 &unique,
2269 &note))
2270 return -1;
2271
2272 bgp_pbim = bgp_pbr_match_ipset_lookup(vrf_id, unique);
2273 if (!bgp_pbim) {
2274 if (BGP_DEBUG(zebra, ZEBRA))
2275 zlog_debug("%s: Fail to look BGP match ( %u, ID %u)",
2276 __func__, note, unique);
2277 return 0;
2278 }
2279
2280 switch (note) {
2281 case ZAPI_IPSET_FAIL_INSTALL:
2282 if (BGP_DEBUG(zebra, ZEBRA))
2283 zlog_debug("%s: Received IPSET_FAIL_INSTALL", __func__);
2284 bgp_pbim->installed = false;
2285 bgp_pbim->install_in_progress = false;
2286 break;
2287 case ZAPI_IPSET_INSTALLED:
2288 bgp_pbim->installed = true;
2289 bgp_pbim->install_in_progress = false;
2290 if (BGP_DEBUG(zebra, ZEBRA))
2291 zlog_debug("%s: Received IPSET_INSTALLED", __func__);
2292 break;
2293 case ZAPI_IPSET_FAIL_REMOVE:
2294 case ZAPI_IPSET_REMOVED:
2295 if (BGP_DEBUG(zebra, ZEBRA))
2296 zlog_debug("%s: Received IPSET REMOVED", __func__);
2297 break;
2298 }
2299
2300 return 0;
2301 }
2302
2303 static int ipset_entry_notify_owner(ZAPI_CALLBACK_ARGS)
2304 {
2305 uint32_t unique;
2306 char ipset_name[ZEBRA_IPSET_NAME_SIZE];
2307 enum zapi_ipset_entry_notify_owner note;
2308 struct bgp_pbr_match_entry *bgp_pbime;
2309
2310 if (!zapi_ipset_entry_notify_decode(
2311 zclient->ibuf,
2312 &unique,
2313 ipset_name,
2314 &note))
2315 return -1;
2316 bgp_pbime = bgp_pbr_match_ipset_entry_lookup(vrf_id,
2317 ipset_name,
2318 unique);
2319 if (!bgp_pbime) {
2320 if (BGP_DEBUG(zebra, ZEBRA))
2321 zlog_debug(
2322 "%s: Fail to look BGP match entry (%u, ID %u)",
2323 __func__, note, unique);
2324 return 0;
2325 }
2326
2327 switch (note) {
2328 case ZAPI_IPSET_ENTRY_FAIL_INSTALL:
2329 if (BGP_DEBUG(zebra, ZEBRA))
2330 zlog_debug("%s: Received IPSET_ENTRY_FAIL_INSTALL",
2331 __func__);
2332 bgp_pbime->installed = false;
2333 bgp_pbime->install_in_progress = false;
2334 break;
2335 case ZAPI_IPSET_ENTRY_INSTALLED:
2336 {
2337 struct bgp_path_info *path;
2338 struct bgp_path_info_extra *extra;
2339
2340 bgp_pbime->installed = true;
2341 bgp_pbime->install_in_progress = false;
2342 if (BGP_DEBUG(zebra, ZEBRA))
2343 zlog_debug("%s: Received IPSET_ENTRY_INSTALLED",
2344 __func__);
2345 /* link bgp_path_info to bpme */
2346 path = (struct bgp_path_info *)bgp_pbime->path;
2347 extra = bgp_path_info_extra_get(path);
2348 listnode_add_force(&extra->bgp_fs_pbr, bgp_pbime);
2349 }
2350 break;
2351 case ZAPI_IPSET_ENTRY_FAIL_REMOVE:
2352 case ZAPI_IPSET_ENTRY_REMOVED:
2353 if (BGP_DEBUG(zebra, ZEBRA))
2354 zlog_debug("%s: Received IPSET_ENTRY_REMOVED",
2355 __func__);
2356 break;
2357 }
2358 return 0;
2359 }
2360
2361 static int iptable_notify_owner(ZAPI_CALLBACK_ARGS)
2362 {
2363 uint32_t unique;
2364 enum zapi_iptable_notify_owner note;
2365 struct bgp_pbr_match *bgpm;
2366
2367 if (!zapi_iptable_notify_decode(
2368 zclient->ibuf,
2369 &unique,
2370 &note))
2371 return -1;
2372 bgpm = bgp_pbr_match_iptable_lookup(vrf_id, unique);
2373 if (!bgpm) {
2374 if (BGP_DEBUG(zebra, ZEBRA))
2375 zlog_debug("%s: Fail to look BGP iptable (%u %u)",
2376 __func__, note, unique);
2377 return 0;
2378 }
2379 switch (note) {
2380 case ZAPI_IPTABLE_FAIL_INSTALL:
2381 if (BGP_DEBUG(zebra, ZEBRA))
2382 zlog_debug("%s: Received IPTABLE_FAIL_INSTALL",
2383 __func__);
2384 bgpm->installed_in_iptable = false;
2385 bgpm->install_iptable_in_progress = false;
2386 break;
2387 case ZAPI_IPTABLE_INSTALLED:
2388 bgpm->installed_in_iptable = true;
2389 bgpm->install_iptable_in_progress = false;
2390 if (BGP_DEBUG(zebra, ZEBRA))
2391 zlog_debug("%s: Received IPTABLE_INSTALLED", __func__);
2392 bgpm->action->refcnt++;
2393 break;
2394 case ZAPI_IPTABLE_FAIL_REMOVE:
2395 case ZAPI_IPTABLE_REMOVED:
2396 if (BGP_DEBUG(zebra, ZEBRA))
2397 zlog_debug("%s: Received IPTABLE REMOVED", __func__);
2398 break;
2399 }
2400 return 0;
2401 }
2402
2403 /* this function is used to forge ip rule,
2404 * - either for iptable/ipset using fwmark id
2405 * - or for sample ip rule cmd
2406 */
2407 static void bgp_encode_pbr_rule_action(struct stream *s,
2408 struct bgp_pbr_action *pbra,
2409 struct bgp_pbr_rule *pbr)
2410 {
2411 struct prefix pfx;
2412 uint8_t fam = AF_INET;
2413
2414 if (pbra->nh.type == NEXTHOP_TYPE_IPV6)
2415 fam = AF_INET6;
2416 stream_putl(s, 0); /* seqno unused */
2417 if (pbr)
2418 stream_putl(s, pbr->priority);
2419 else
2420 stream_putl(s, 0);
2421 /* ruleno unused - priority change
2422 * ruleno permits distinguishing various FS PBR entries
2423 * - FS PBR entries based on ipset/iptables
2424 * - FS PBR entries based on iprule
2425 * the latter may contain default routing information injected by FS
2426 */
2427 if (pbr)
2428 stream_putl(s, pbr->unique);
2429 else
2430 stream_putl(s, pbra->unique);
2431 if (pbr && pbr->flags & MATCH_IP_SRC_SET)
2432 memcpy(&pfx, &(pbr->src), sizeof(struct prefix));
2433 else {
2434 memset(&pfx, 0, sizeof(pfx));
2435 pfx.family = fam;
2436 }
2437 stream_putc(s, pfx.family);
2438 stream_putc(s, pfx.prefixlen);
2439 stream_put(s, &pfx.u.prefix, prefix_blen(&pfx));
2440
2441 stream_putw(s, 0); /* src port */
2442
2443 if (pbr && pbr->flags & MATCH_IP_DST_SET)
2444 memcpy(&pfx, &(pbr->dst), sizeof(struct prefix));
2445 else {
2446 memset(&pfx, 0, sizeof(pfx));
2447 pfx.family = fam;
2448 }
2449 stream_putc(s, pfx.family);
2450 stream_putc(s, pfx.prefixlen);
2451 stream_put(s, &pfx.u.prefix, prefix_blen(&pfx));
2452
2453 stream_putw(s, 0); /* dst port */
2454
2455 /* if pbr present, fwmark is not used */
2456 if (pbr)
2457 stream_putl(s, 0);
2458 else
2459 stream_putl(s, pbra->fwmark); /* fwmark */
2460
2461 stream_putl(s, pbra->table_id);
2462
2463 stream_putl(s, 0); /* ifindex unused */
2464 }
2465
2466 static void bgp_encode_pbr_ipset_match(struct stream *s,
2467 struct bgp_pbr_match *pbim)
2468 {
2469 stream_putl(s, pbim->unique);
2470 stream_putl(s, pbim->type);
2471 stream_putc(s, pbim->family);
2472 stream_put(s, pbim->ipset_name,
2473 ZEBRA_IPSET_NAME_SIZE);
2474 }
2475
2476 static void bgp_encode_pbr_ipset_entry_match(struct stream *s,
2477 struct bgp_pbr_match_entry *pbime)
2478 {
2479 stream_putl(s, pbime->unique);
2480 /* check that back pointer is not null */
2481 stream_put(s, pbime->backpointer->ipset_name,
2482 ZEBRA_IPSET_NAME_SIZE);
2483
2484 stream_putc(s, pbime->src.family);
2485 stream_putc(s, pbime->src.prefixlen);
2486 stream_put(s, &pbime->src.u.prefix, prefix_blen(&pbime->src));
2487
2488 stream_putc(s, pbime->dst.family);
2489 stream_putc(s, pbime->dst.prefixlen);
2490 stream_put(s, &pbime->dst.u.prefix, prefix_blen(&pbime->dst));
2491
2492 stream_putw(s, pbime->src_port_min);
2493 stream_putw(s, pbime->src_port_max);
2494 stream_putw(s, pbime->dst_port_min);
2495 stream_putw(s, pbime->dst_port_max);
2496 stream_putc(s, pbime->proto);
2497 }
2498
2499 static void bgp_encode_pbr_iptable_match(struct stream *s,
2500 struct bgp_pbr_action *bpa,
2501 struct bgp_pbr_match *pbm)
2502 {
2503 stream_putl(s, pbm->unique2);
2504
2505 stream_putl(s, pbm->type);
2506
2507 stream_putl(s, pbm->flags);
2508
2509 /* TODO: correlate with what is contained
2510 * into bgp_pbr_action.
2511 * currently only forward supported
2512 */
2513 if (bpa->nh.type == NEXTHOP_TYPE_BLACKHOLE)
2514 stream_putl(s, ZEBRA_IPTABLES_DROP);
2515 else
2516 stream_putl(s, ZEBRA_IPTABLES_FORWARD);
2517 stream_putl(s, bpa->fwmark);
2518 stream_put(s, pbm->ipset_name,
2519 ZEBRA_IPSET_NAME_SIZE);
2520 stream_putc(s, pbm->family);
2521 stream_putw(s, pbm->pkt_len_min);
2522 stream_putw(s, pbm->pkt_len_max);
2523 stream_putw(s, pbm->tcp_flags);
2524 stream_putw(s, pbm->tcp_mask_flags);
2525 stream_putc(s, pbm->dscp_value);
2526 stream_putc(s, pbm->fragment);
2527 stream_putc(s, pbm->protocol);
2528 stream_putw(s, pbm->flow_label);
2529 }
2530
2531 /* BGP has established connection with Zebra. */
2532 static void bgp_zebra_connected(struct zclient *zclient)
2533 {
2534 struct bgp *bgp;
2535
2536 zclient_num_connects++; /* increment even if not responding */
2537
2538 /* At this point, we may or may not have BGP instances configured, but
2539 * we're only interested in the default VRF (others wouldn't have learnt
2540 * the VRF from Zebra yet.)
2541 */
2542 bgp = bgp_get_default();
2543 if (!bgp)
2544 return;
2545
2546 bgp_zebra_instance_register(bgp);
2547
2548 /* Send the client registration */
2549 bfd_client_sendmsg(zclient, ZEBRA_BFD_CLIENT_REGISTER, bgp->vrf_id);
2550
2551 /* tell label pool that zebra is connected */
2552 bgp_lp_event_zebra_up();
2553
2554 /* TODO - What if we have peers and networks configured, do we have to
2555 * kick-start them?
2556 */
2557 BGP_GR_ROUTER_DETECT_AND_SEND_CAPABILITY_TO_ZEBRA(bgp, bgp->peer);
2558 }
2559
2560 static int bgp_zebra_process_local_es_add(ZAPI_CALLBACK_ARGS)
2561 {
2562 esi_t esi;
2563 struct bgp *bgp = NULL;
2564 struct stream *s = NULL;
2565 char buf[ESI_STR_LEN];
2566 struct in_addr originator_ip;
2567 uint8_t active;
2568
2569 bgp = bgp_lookup_by_vrf_id(vrf_id);
2570 if (!bgp)
2571 return 0;
2572
2573 s = zclient->ibuf;
2574 stream_get(&esi, s, sizeof(esi_t));
2575 originator_ip.s_addr = stream_get_ipv4(s);
2576 active = stream_getc(s);
2577
2578 if (BGP_DEBUG(zebra, ZEBRA))
2579 zlog_debug("Rx add ESI %s originator-ip %s active %u",
2580 esi_to_str(&esi, buf, sizeof(buf)),
2581 inet_ntoa(originator_ip),
2582 active);
2583
2584 bgp_evpn_local_es_add(bgp, &esi, originator_ip, active);
2585
2586 return 0;
2587 }
2588
2589 static int bgp_zebra_process_local_es_del(ZAPI_CALLBACK_ARGS)
2590 {
2591 esi_t esi;
2592 struct bgp *bgp = NULL;
2593 struct stream *s = NULL;
2594 char buf[ESI_STR_LEN];
2595
2596 memset(&esi, 0, sizeof(esi_t));
2597 bgp = bgp_lookup_by_vrf_id(vrf_id);
2598 if (!bgp)
2599 return 0;
2600
2601 s = zclient->ibuf;
2602 stream_get(&esi, s, sizeof(esi_t));
2603
2604 if (BGP_DEBUG(zebra, ZEBRA))
2605 zlog_debug("Rx del ESI %s",
2606 esi_to_str(&esi, buf, sizeof(buf)));
2607
2608 bgp_evpn_local_es_del(bgp, &esi);
2609
2610 return 0;
2611 }
2612
2613 static int bgp_zebra_process_local_es_evi(ZAPI_CALLBACK_ARGS)
2614 {
2615 esi_t esi;
2616 vni_t vni;
2617 struct bgp *bgp;
2618 struct stream *s;
2619 char buf[ESI_STR_LEN];
2620
2621 bgp = bgp_lookup_by_vrf_id(vrf_id);
2622 if (!bgp)
2623 return 0;
2624
2625 s = zclient->ibuf;
2626 stream_get(&esi, s, sizeof(esi_t));
2627 vni = stream_getl(s);
2628
2629 if (BGP_DEBUG(zebra, ZEBRA))
2630 zlog_debug("Rx %s ESI %s VNI %u",
2631 ZEBRA_VNI_ADD ? "add" : "del",
2632 esi_to_str(&esi, buf, sizeof(buf)), vni);
2633
2634 if (cmd == ZEBRA_LOCAL_ES_EVI_ADD)
2635 bgp_evpn_local_es_evi_add(bgp, &esi, vni);
2636 else
2637 bgp_evpn_local_es_evi_del(bgp, &esi, vni);
2638
2639 return 0;
2640 }
2641
2642 static int bgp_zebra_process_local_l3vni(ZAPI_CALLBACK_ARGS)
2643 {
2644 int filter = 0;
2645 char buf[ETHER_ADDR_STRLEN];
2646 vni_t l3vni = 0;
2647 struct ethaddr svi_rmac, vrr_rmac = {.octet = {0} };
2648 struct in_addr originator_ip;
2649 struct stream *s;
2650 ifindex_t svi_ifindex;
2651 bool is_anycast_mac = false;
2652 char buf1[ETHER_ADDR_STRLEN];
2653
2654 memset(&svi_rmac, 0, sizeof(struct ethaddr));
2655 memset(&originator_ip, 0, sizeof(struct in_addr));
2656 s = zclient->ibuf;
2657 l3vni = stream_getl(s);
2658 if (cmd == ZEBRA_L3VNI_ADD) {
2659 stream_get(&svi_rmac, s, sizeof(struct ethaddr));
2660 originator_ip.s_addr = stream_get_ipv4(s);
2661 stream_get(&filter, s, sizeof(int));
2662 svi_ifindex = stream_getl(s);
2663 stream_get(&vrr_rmac, s, sizeof(struct ethaddr));
2664 is_anycast_mac = stream_getl(s);
2665
2666 if (BGP_DEBUG(zebra, ZEBRA))
2667 zlog_debug("Rx L3-VNI ADD VRF %s VNI %u RMAC svi-mac %s vrr-mac %s filter %s svi-if %u",
2668 vrf_id_to_name(vrf_id), l3vni,
2669 prefix_mac2str(&svi_rmac, buf, sizeof(buf)),
2670 prefix_mac2str(&vrr_rmac, buf1,
2671 sizeof(buf1)),
2672 filter ? "prefix-routes-only" : "none",
2673 svi_ifindex);
2674
2675 bgp_evpn_local_l3vni_add(l3vni, vrf_id, &svi_rmac, &vrr_rmac,
2676 originator_ip, filter, svi_ifindex,
2677 is_anycast_mac);
2678 } else {
2679 if (BGP_DEBUG(zebra, ZEBRA))
2680 zlog_debug("Rx L3-VNI DEL VRF %s VNI %u",
2681 vrf_id_to_name(vrf_id), l3vni);
2682
2683 bgp_evpn_local_l3vni_del(l3vni, vrf_id);
2684 }
2685
2686 return 0;
2687 }
2688
2689 static int bgp_zebra_process_local_vni(ZAPI_CALLBACK_ARGS)
2690 {
2691 struct stream *s;
2692 vni_t vni;
2693 struct bgp *bgp;
2694 struct in_addr vtep_ip = {INADDR_ANY};
2695 vrf_id_t tenant_vrf_id = VRF_DEFAULT;
2696 struct in_addr mcast_grp = {INADDR_ANY};
2697
2698 s = zclient->ibuf;
2699 vni = stream_getl(s);
2700 if (cmd == ZEBRA_VNI_ADD) {
2701 vtep_ip.s_addr = stream_get_ipv4(s);
2702 stream_get(&tenant_vrf_id, s, sizeof(vrf_id_t));
2703 mcast_grp.s_addr = stream_get_ipv4(s);
2704 }
2705
2706 bgp = bgp_lookup_by_vrf_id(vrf_id);
2707 if (!bgp)
2708 return 0;
2709
2710 if (BGP_DEBUG(zebra, ZEBRA))
2711 zlog_debug("Rx VNI %s VRF %s VNI %u tenant-vrf %s",
2712 (cmd == ZEBRA_VNI_ADD) ? "add" : "del",
2713 vrf_id_to_name(vrf_id), vni,
2714 vrf_id_to_name(tenant_vrf_id));
2715
2716 if (cmd == ZEBRA_VNI_ADD)
2717 return bgp_evpn_local_vni_add(
2718 bgp, vni,
2719 vtep_ip.s_addr != INADDR_ANY ? vtep_ip : bgp->router_id,
2720 tenant_vrf_id, mcast_grp);
2721 else
2722 return bgp_evpn_local_vni_del(bgp, vni);
2723 }
2724
2725 static int bgp_zebra_process_local_macip(ZAPI_CALLBACK_ARGS)
2726 {
2727 struct stream *s;
2728 vni_t vni;
2729 struct bgp *bgp;
2730 struct ethaddr mac;
2731 struct ipaddr ip;
2732 int ipa_len;
2733 char buf[ETHER_ADDR_STRLEN];
2734 char buf1[INET6_ADDRSTRLEN];
2735 uint8_t flags = 0;
2736 uint32_t seqnum = 0;
2737 int state = 0;
2738 char buf2[ESI_STR_LEN];
2739 esi_t esi;
2740
2741 memset(&ip, 0, sizeof(ip));
2742 s = zclient->ibuf;
2743 vni = stream_getl(s);
2744 stream_get(&mac.octet, s, ETH_ALEN);
2745 ipa_len = stream_getl(s);
2746 if (ipa_len != 0 && ipa_len != IPV4_MAX_BYTELEN
2747 && ipa_len != IPV6_MAX_BYTELEN) {
2748 flog_err(EC_BGP_MACIP_LEN,
2749 "%u:Recv MACIP %s with invalid IP addr length %d",
2750 vrf_id, (cmd == ZEBRA_MACIP_ADD) ? "Add" : "Del",
2751 ipa_len);
2752 return -1;
2753 }
2754
2755 if (ipa_len) {
2756 ip.ipa_type =
2757 (ipa_len == IPV4_MAX_BYTELEN) ? IPADDR_V4 : IPADDR_V6;
2758 stream_get(&ip.ip.addr, s, ipa_len);
2759 }
2760 if (cmd == ZEBRA_MACIP_ADD) {
2761 flags = stream_getc(s);
2762 seqnum = stream_getl(s);
2763 stream_get(&esi, s, sizeof(esi_t));
2764 } else {
2765 state = stream_getl(s);
2766 }
2767
2768 bgp = bgp_lookup_by_vrf_id(vrf_id);
2769 if (!bgp)
2770 return 0;
2771
2772 if (BGP_DEBUG(zebra, ZEBRA))
2773 zlog_debug("%u:Recv MACIP %s f 0x%x MAC %s IP %s VNI %u seq %u state %d ESI %s",
2774 vrf_id, (cmd == ZEBRA_MACIP_ADD) ? "Add" : "Del",
2775 flags, prefix_mac2str(&mac, buf, sizeof(buf)),
2776 ipaddr2str(&ip, buf1, sizeof(buf1)), vni, seqnum,
2777 state, esi_to_str(&esi, buf2, sizeof(buf2)));
2778
2779 if (cmd == ZEBRA_MACIP_ADD)
2780 return bgp_evpn_local_macip_add(bgp, vni, &mac, &ip,
2781 flags, seqnum, &esi);
2782 else
2783 return bgp_evpn_local_macip_del(bgp, vni, &mac, &ip, state);
2784 }
2785
2786 static void bgp_zebra_process_local_ip_prefix(ZAPI_CALLBACK_ARGS)
2787 {
2788 struct stream *s = NULL;
2789 struct bgp *bgp_vrf = NULL;
2790 struct prefix p;
2791 char buf[PREFIX_STRLEN];
2792
2793 memset(&p, 0, sizeof(struct prefix));
2794 s = zclient->ibuf;
2795 stream_get(&p, s, sizeof(struct prefix));
2796
2797 bgp_vrf = bgp_lookup_by_vrf_id(vrf_id);
2798 if (!bgp_vrf)
2799 return;
2800
2801 if (BGP_DEBUG(zebra, ZEBRA))
2802 zlog_debug("Recv prefix %s %s on vrf %s",
2803 prefix2str(&p, buf, sizeof(buf)),
2804 (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) ? "ADD" : "DEL",
2805 vrf_id_to_name(vrf_id));
2806
2807 if (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) {
2808
2809 if (p.family == AF_INET)
2810 bgp_evpn_advertise_type5_route(bgp_vrf, &p, NULL,
2811 AFI_IP, SAFI_UNICAST);
2812 else
2813 bgp_evpn_advertise_type5_route(bgp_vrf, &p, NULL,
2814 AFI_IP6, SAFI_UNICAST);
2815
2816 } else {
2817 if (p.family == AF_INET)
2818 bgp_evpn_withdraw_type5_route(bgp_vrf, &p, AFI_IP,
2819 SAFI_UNICAST);
2820 else
2821 bgp_evpn_withdraw_type5_route(bgp_vrf, &p, AFI_IP6,
2822 SAFI_UNICAST);
2823 }
2824 }
2825
2826 static void bgp_zebra_process_label_chunk(ZAPI_CALLBACK_ARGS)
2827 {
2828 struct stream *s = NULL;
2829 uint8_t response_keep;
2830 uint32_t first;
2831 uint32_t last;
2832 uint8_t proto;
2833 unsigned short instance;
2834
2835 s = zclient->ibuf;
2836 STREAM_GETC(s, proto);
2837 STREAM_GETW(s, instance);
2838 STREAM_GETC(s, response_keep);
2839 STREAM_GETL(s, first);
2840 STREAM_GETL(s, last);
2841
2842 if (zclient->redist_default != proto) {
2843 flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong proto %u",
2844 proto);
2845 return;
2846 }
2847 if (zclient->instance != instance) {
2848 flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong instance %u",
2849 proto);
2850 return;
2851 }
2852
2853 if (first > last ||
2854 first < MPLS_LABEL_UNRESERVED_MIN ||
2855 last > MPLS_LABEL_UNRESERVED_MAX) {
2856
2857 flog_err(EC_BGP_LM_ERROR, "%s: Invalid Label chunk: %u - %u",
2858 __func__, first, last);
2859 return;
2860 }
2861 if (BGP_DEBUG(zebra, ZEBRA)) {
2862 zlog_debug("Label Chunk assign: %u - %u (%u) ",
2863 first, last, response_keep);
2864 }
2865
2866 bgp_lp_event_chunk(response_keep, first, last);
2867
2868 stream_failure: /* for STREAM_GETX */
2869 return;
2870 }
2871
2872 extern struct zebra_privs_t bgpd_privs;
2873
2874 static int bgp_ifp_create(struct interface *ifp)
2875 {
2876 struct bgp *bgp;
2877
2878 if (BGP_DEBUG(zebra, ZEBRA))
2879 zlog_debug("Rx Intf add VRF %u IF %s", ifp->vrf_id, ifp->name);
2880
2881 bgp = bgp_lookup_by_vrf_id(ifp->vrf_id);
2882 if (!bgp)
2883 return 0;
2884
2885 bgp_mac_add_mac_entry(ifp);
2886
2887 bgp_update_interface_nbrs(bgp, ifp, ifp);
2888 return 0;
2889 }
2890
2891 void bgp_zebra_init(struct thread_master *master, unsigned short instance)
2892 {
2893 zclient_num_connects = 0;
2894
2895 if_zapi_callbacks(bgp_ifp_create, bgp_ifp_up,
2896 bgp_ifp_down, bgp_ifp_destroy);
2897
2898 /* Set default values. */
2899 zclient = zclient_new(master, &zclient_options_default);
2900 zclient_init(zclient, ZEBRA_ROUTE_BGP, 0, &bgpd_privs);
2901 zclient->zebra_connected = bgp_zebra_connected;
2902 zclient->router_id_update = bgp_router_id_update;
2903 zclient->interface_address_add = bgp_interface_address_add;
2904 zclient->interface_address_delete = bgp_interface_address_delete;
2905 zclient->interface_nbr_address_add = bgp_interface_nbr_address_add;
2906 zclient->interface_nbr_address_delete =
2907 bgp_interface_nbr_address_delete;
2908 zclient->interface_vrf_update = bgp_interface_vrf_update;
2909 zclient->redistribute_route_add = zebra_read_route;
2910 zclient->redistribute_route_del = zebra_read_route;
2911 zclient->nexthop_update = bgp_read_nexthop_update;
2912 zclient->import_check_update = bgp_read_import_check_update;
2913 zclient->fec_update = bgp_read_fec_update;
2914 zclient->local_es_add = bgp_zebra_process_local_es_add;
2915 zclient->local_es_del = bgp_zebra_process_local_es_del;
2916 zclient->local_vni_add = bgp_zebra_process_local_vni;
2917 zclient->local_es_evi_add = bgp_zebra_process_local_es_evi;
2918 zclient->local_es_evi_del = bgp_zebra_process_local_es_evi;
2919 zclient->local_vni_del = bgp_zebra_process_local_vni;
2920 zclient->local_macip_add = bgp_zebra_process_local_macip;
2921 zclient->local_macip_del = bgp_zebra_process_local_macip;
2922 zclient->local_l3vni_add = bgp_zebra_process_local_l3vni;
2923 zclient->local_l3vni_del = bgp_zebra_process_local_l3vni;
2924 zclient->local_ip_prefix_add = bgp_zebra_process_local_ip_prefix;
2925 zclient->local_ip_prefix_del = bgp_zebra_process_local_ip_prefix;
2926 zclient->label_chunk = bgp_zebra_process_label_chunk;
2927 zclient->rule_notify_owner = rule_notify_owner;
2928 zclient->ipset_notify_owner = ipset_notify_owner;
2929 zclient->ipset_entry_notify_owner = ipset_entry_notify_owner;
2930 zclient->iptable_notify_owner = iptable_notify_owner;
2931 zclient->instance = instance;
2932 }
2933
2934 void bgp_zebra_destroy(void)
2935 {
2936 if (zclient == NULL)
2937 return;
2938 zclient_stop(zclient);
2939 zclient_free(zclient);
2940 zclient = NULL;
2941 }
2942
2943 int bgp_zebra_num_connects(void)
2944 {
2945 return zclient_num_connects;
2946 }
2947
2948 void bgp_send_pbr_rule_action(struct bgp_pbr_action *pbra,
2949 struct bgp_pbr_rule *pbr,
2950 bool install)
2951 {
2952 struct stream *s;
2953
2954 if (pbra->install_in_progress && !pbr)
2955 return;
2956 if (pbr && pbr->install_in_progress)
2957 return;
2958 if (BGP_DEBUG(zebra, ZEBRA)) {
2959 if (pbr)
2960 zlog_debug("%s: table %d (ip rule) %d", __func__,
2961 pbra->table_id, install);
2962 else
2963 zlog_debug("%s: table %d fwmark %d %d", __func__,
2964 pbra->table_id, pbra->fwmark, install);
2965 }
2966 s = zclient->obuf;
2967 stream_reset(s);
2968
2969 zclient_create_header(s,
2970 install ? ZEBRA_RULE_ADD : ZEBRA_RULE_DELETE,
2971 VRF_DEFAULT);
2972 stream_putl(s, 1); /* send one pbr action */
2973
2974 bgp_encode_pbr_rule_action(s, pbra, pbr);
2975
2976 stream_putw_at(s, 0, stream_get_endp(s));
2977 if (!zclient_send_message(zclient) && install) {
2978 if (!pbr)
2979 pbra->install_in_progress = true;
2980 else
2981 pbr->install_in_progress = true;
2982 }
2983 }
2984
2985 void bgp_send_pbr_ipset_match(struct bgp_pbr_match *pbrim, bool install)
2986 {
2987 struct stream *s;
2988
2989 if (pbrim->install_in_progress)
2990 return;
2991 if (BGP_DEBUG(zebra, ZEBRA))
2992 zlog_debug("%s: name %s type %d %d, ID %u", __func__,
2993 pbrim->ipset_name, pbrim->type, install,
2994 pbrim->unique);
2995 s = zclient->obuf;
2996 stream_reset(s);
2997
2998 zclient_create_header(s,
2999 install ? ZEBRA_IPSET_CREATE :
3000 ZEBRA_IPSET_DESTROY,
3001 VRF_DEFAULT);
3002
3003 stream_putl(s, 1); /* send one pbr action */
3004
3005 bgp_encode_pbr_ipset_match(s, pbrim);
3006
3007 stream_putw_at(s, 0, stream_get_endp(s));
3008 if (!zclient_send_message(zclient) && install)
3009 pbrim->install_in_progress = true;
3010 }
3011
3012 void bgp_send_pbr_ipset_entry_match(struct bgp_pbr_match_entry *pbrime,
3013 bool install)
3014 {
3015 struct stream *s;
3016
3017 if (pbrime->install_in_progress)
3018 return;
3019 if (BGP_DEBUG(zebra, ZEBRA))
3020 zlog_debug("%s: name %s %d %d, ID %u", __func__,
3021 pbrime->backpointer->ipset_name, pbrime->unique,
3022 install, pbrime->unique);
3023 s = zclient->obuf;
3024 stream_reset(s);
3025
3026 zclient_create_header(s,
3027 install ? ZEBRA_IPSET_ENTRY_ADD :
3028 ZEBRA_IPSET_ENTRY_DELETE,
3029 VRF_DEFAULT);
3030
3031 stream_putl(s, 1); /* send one pbr action */
3032
3033 bgp_encode_pbr_ipset_entry_match(s, pbrime);
3034
3035 stream_putw_at(s, 0, stream_get_endp(s));
3036 if (!zclient_send_message(zclient) && install)
3037 pbrime->install_in_progress = true;
3038 }
3039
3040 static void bgp_encode_pbr_interface_list(struct bgp *bgp, struct stream *s,
3041 uint8_t family)
3042 {
3043 struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
3044 struct bgp_pbr_interface_head *head;
3045 struct bgp_pbr_interface *pbr_if;
3046 struct interface *ifp;
3047
3048 if (!bgp_pbr_cfg)
3049 return;
3050 if (family == AF_INET)
3051 head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
3052 else
3053 head = &(bgp_pbr_cfg->ifaces_by_name_ipv6);
3054 RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
3055 ifp = if_lookup_by_name(pbr_if->name, bgp->vrf_id);
3056 if (ifp)
3057 stream_putl(s, ifp->ifindex);
3058 }
3059 }
3060
3061 static int bgp_pbr_get_ifnumber(struct bgp *bgp, uint8_t family)
3062 {
3063 struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
3064 struct bgp_pbr_interface_head *head;
3065 struct bgp_pbr_interface *pbr_if;
3066 int cnt = 0;
3067
3068 if (!bgp_pbr_cfg)
3069 return 0;
3070 if (family == AF_INET)
3071 head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
3072 else
3073 head = &(bgp_pbr_cfg->ifaces_by_name_ipv6);
3074 RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
3075 if (if_lookup_by_name(pbr_if->name, bgp->vrf_id))
3076 cnt++;
3077 }
3078 return cnt;
3079 }
3080
3081 void bgp_send_pbr_iptable(struct bgp_pbr_action *pba,
3082 struct bgp_pbr_match *pbm,
3083 bool install)
3084 {
3085 struct stream *s;
3086 int ret = 0;
3087 int nb_interface;
3088
3089 if (pbm->install_iptable_in_progress)
3090 return;
3091 if (BGP_DEBUG(zebra, ZEBRA))
3092 zlog_debug("%s: name %s type %d mark %d %d, ID %u", __func__,
3093 pbm->ipset_name, pbm->type, pba->fwmark, install,
3094 pbm->unique2);
3095 s = zclient->obuf;
3096 stream_reset(s);
3097
3098 zclient_create_header(s,
3099 install ? ZEBRA_IPTABLE_ADD :
3100 ZEBRA_IPTABLE_DELETE,
3101 VRF_DEFAULT);
3102
3103 bgp_encode_pbr_iptable_match(s, pba, pbm);
3104 nb_interface = bgp_pbr_get_ifnumber(pba->bgp, pbm->family);
3105 stream_putl(s, nb_interface);
3106 if (nb_interface)
3107 bgp_encode_pbr_interface_list(pba->bgp, s, pbm->family);
3108 stream_putw_at(s, 0, stream_get_endp(s));
3109 ret = zclient_send_message(zclient);
3110 if (install) {
3111 if (ret)
3112 pba->refcnt++;
3113 else
3114 pbm->install_iptable_in_progress = true;
3115 }
3116 }
3117
3118 /* inject in table <table_id> a default route to:
3119 * - if nexthop IP is present : to this nexthop
3120 * - if vrf is different from local : to the matching VRF
3121 */
3122 void bgp_zebra_announce_default(struct bgp *bgp, struct nexthop *nh,
3123 afi_t afi, uint32_t table_id, bool announce)
3124 {
3125 struct zapi_nexthop *api_nh;
3126 struct zapi_route api;
3127 struct prefix p;
3128
3129 if (!nh || (nh->type != NEXTHOP_TYPE_IPV4
3130 && nh->type != NEXTHOP_TYPE_IPV6)
3131 || nh->vrf_id == VRF_UNKNOWN)
3132 return;
3133 memset(&p, 0, sizeof(struct prefix));
3134 if (afi != AFI_IP && afi != AFI_IP6)
3135 return;
3136 p.family = afi2family(afi);
3137 memset(&api, 0, sizeof(api));
3138 api.vrf_id = bgp->vrf_id;
3139 api.type = ZEBRA_ROUTE_BGP;
3140 api.safi = SAFI_UNICAST;
3141 api.prefix = p;
3142 api.tableid = table_id;
3143 api.nexthop_num = 1;
3144 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
3145 SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
3146 api_nh = &api.nexthops[0];
3147
3148 api.distance = ZEBRA_EBGP_DISTANCE_DEFAULT;
3149 SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
3150
3151 /* redirect IP */
3152 if (afi == AFI_IP && nh->gate.ipv4.s_addr != INADDR_ANY) {
3153 char buff[PREFIX_STRLEN];
3154
3155 api_nh->vrf_id = nh->vrf_id;
3156 api_nh->gate.ipv4 = nh->gate.ipv4;
3157 api_nh->type = NEXTHOP_TYPE_IPV4;
3158
3159 inet_ntop(AF_INET, &(nh->gate.ipv4), buff, INET_ADDRSTRLEN);
3160 if (BGP_DEBUG(zebra, ZEBRA))
3161 zlog_debug("BGP: %s default route to %s table %d (redirect IP)",
3162 announce ? "adding" : "withdrawing",
3163 buff, table_id);
3164 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
3165 : ZEBRA_ROUTE_DELETE,
3166 zclient, &api);
3167 } else if (afi == AFI_IP6 &&
3168 memcmp(&nh->gate.ipv6,
3169 &in6addr_any, sizeof(struct in6_addr))) {
3170 char buff[PREFIX_STRLEN];
3171
3172 api_nh->vrf_id = nh->vrf_id;
3173 memcpy(&api_nh->gate.ipv6, &nh->gate.ipv6,
3174 sizeof(struct in6_addr));
3175 api_nh->type = NEXTHOP_TYPE_IPV6;
3176
3177 inet_ntop(AF_INET6, &(nh->gate.ipv6), buff, INET_ADDRSTRLEN);
3178 if (BGP_DEBUG(zebra, ZEBRA))
3179 zlog_debug("BGP: %s default route to %s table %d (redirect IP)",
3180 announce ? "adding" : "withdrawing",
3181 buff, table_id);
3182 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
3183 : ZEBRA_ROUTE_DELETE,
3184 zclient, &api);
3185 } else if (nh->vrf_id != bgp->vrf_id) {
3186 struct vrf *vrf;
3187 struct interface *ifp;
3188
3189 vrf = vrf_lookup_by_id(nh->vrf_id);
3190 if (!vrf)
3191 return;
3192 /* create default route with interface <VRF>
3193 * with nexthop-vrf <VRF>
3194 */
3195 ifp = if_lookup_by_name_all_vrf(vrf->name);
3196 if (!ifp)
3197 return;
3198 api_nh->vrf_id = nh->vrf_id;
3199 api_nh->type = NEXTHOP_TYPE_IFINDEX;
3200 api_nh->ifindex = ifp->ifindex;
3201 if (BGP_DEBUG(zebra, ZEBRA))
3202 zlog_info("BGP: %s default route to %s table %d (redirect VRF)",
3203 announce ? "adding" : "withdrawing",
3204 vrf->name, table_id);
3205 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
3206 : ZEBRA_ROUTE_DELETE,
3207 zclient, &api);
3208 return;
3209 }
3210 }
3211
3212 /* Send capabilities to RIB */
3213 int bgp_zebra_send_capabilities(struct bgp *bgp, bool disable)
3214 {
3215 struct zapi_cap api;
3216 int ret = BGP_GR_SUCCESS;
3217
3218 if (zclient == NULL) {
3219 if (BGP_DEBUG(zebra, ZEBRA))
3220 zlog_debug("zclient invalid");
3221 return BGP_GR_FAILURE;
3222 }
3223
3224 /* Check if the client is connected */
3225 if ((zclient->sock < 0) || (zclient->t_connect)) {
3226 if (BGP_DEBUG(zebra, ZEBRA))
3227 zlog_debug("client not connected");
3228 return BGP_GR_FAILURE;
3229 }
3230
3231 /* Check if capability is already sent. If the flag force is set
3232 * send the capability since this can be initial bgp configuration
3233 */
3234 memset(&api, 0, sizeof(struct zapi_cap));
3235 if (disable) {
3236 api.cap = ZEBRA_CLIENT_GR_DISABLE;
3237 api.vrf_id = bgp->vrf_id;
3238 } else {
3239 api.cap = ZEBRA_CLIENT_GR_CAPABILITIES;
3240 api.stale_removal_time = bgp->rib_stale_time;
3241 api.vrf_id = bgp->vrf_id;
3242 }
3243
3244 if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
3245 < 0) {
3246 zlog_err("error sending capability");
3247 ret = BGP_GR_FAILURE;
3248 } else {
3249 if (disable)
3250 bgp->present_zebra_gr_state = ZEBRA_GR_DISABLE;
3251 else
3252 bgp->present_zebra_gr_state = ZEBRA_GR_ENABLE;
3253
3254 if (BGP_DEBUG(zebra, ZEBRA))
3255 zlog_debug("send capabilty success");
3256 ret = BGP_GR_SUCCESS;
3257 }
3258 return ret;
3259 }
3260
3261 /* Send route update pesding or completed status to RIB for the
3262 * specific AFI, SAFI
3263 */
3264 int bgp_zebra_update(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type)
3265 {
3266 struct zapi_cap api = {0};
3267
3268 if (zclient == NULL) {
3269 if (BGP_DEBUG(zebra, ZEBRA))
3270 zlog_debug("zclient == NULL, invalid");
3271 return BGP_GR_FAILURE;
3272 }
3273
3274 /* Check if the client is connected */
3275 if ((zclient->sock < 0) || (zclient->t_connect)) {
3276 if (BGP_DEBUG(zebra, ZEBRA))
3277 zlog_debug("client not connected");
3278 return BGP_GR_FAILURE;
3279 }
3280
3281 api.afi = afi;
3282 api.safi = safi;
3283 api.vrf_id = vrf_id;
3284 api.cap = type;
3285
3286 if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
3287 < 0) {
3288 if (BGP_DEBUG(zebra, ZEBRA))
3289 zlog_debug("error sending capability");
3290 return BGP_GR_FAILURE;
3291 }
3292 return BGP_GR_SUCCESS;
3293 }
3294
3295
3296 /* Send RIB stale timer update */
3297 int bgp_zebra_stale_timer_update(struct bgp *bgp)
3298 {
3299 struct zapi_cap api;
3300
3301 if (zclient == NULL) {
3302 if (BGP_DEBUG(zebra, ZEBRA))
3303 zlog_debug("zclient invalid");
3304 return BGP_GR_FAILURE;
3305 }
3306
3307 /* Check if the client is connected */
3308 if ((zclient->sock < 0) || (zclient->t_connect)) {
3309 if (BGP_DEBUG(zebra, ZEBRA))
3310 zlog_debug("client not connected");
3311 return BGP_GR_FAILURE;
3312 }
3313
3314 memset(&api, 0, sizeof(struct zapi_cap));
3315 api.cap = ZEBRA_CLIENT_RIB_STALE_TIME;
3316 api.stale_removal_time = bgp->rib_stale_time;
3317 api.vrf_id = bgp->vrf_id;
3318 if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
3319 < 0) {
3320 if (BGP_DEBUG(zebra, ZEBRA))
3321 zlog_debug("error sending capability");
3322 return BGP_GR_FAILURE;
3323 }
3324 if (BGP_DEBUG(zebra, ZEBRA))
3325 zlog_debug("send capabilty success");
3326 return BGP_GR_SUCCESS;
3327 }