]> git.proxmox.com Git - mirror_frr.git/blob - bgpd/bgp_zebra.c
77b8a8ab969628d61addd3d8f55c54de9ac2c381
[mirror_frr.git] / bgpd / bgp_zebra.c
1 /* zebra client
2 * Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "stream.h"
25 #include "network.h"
26 #include "prefix.h"
27 #include "log.h"
28 #include "sockunion.h"
29 #include "zclient.h"
30 #include "routemap.h"
31 #include "thread.h"
32 #include "queue.h"
33 #include "memory.h"
34 #include "lib/json.h"
35 #include "lib/bfd.h"
36 #include "lib/route_opaque.h"
37 #include "filter.h"
38 #include "mpls.h"
39 #include "vxlan.h"
40 #include "pbr.h"
41
42 #include "bgpd/bgpd.h"
43 #include "bgpd/bgp_route.h"
44 #include "bgpd/bgp_attr.h"
45 #include "bgpd/bgp_aspath.h"
46 #include "bgpd/bgp_nexthop.h"
47 #include "bgpd/bgp_zebra.h"
48 #include "bgpd/bgp_fsm.h"
49 #include "bgpd/bgp_debug.h"
50 #include "bgpd/bgp_errors.h"
51 #include "bgpd/bgp_mpath.h"
52 #include "bgpd/bgp_nexthop.h"
53 #include "bgpd/bgp_nht.h"
54 #include "bgpd/bgp_bfd.h"
55 #include "bgpd/bgp_label.h"
56 #ifdef ENABLE_BGP_VNC
57 #include "bgpd/rfapi/rfapi_backend.h"
58 #include "bgpd/rfapi/vnc_export_bgp.h"
59 #endif
60 #include "bgpd/bgp_evpn.h"
61 #include "bgpd/bgp_mplsvpn.h"
62 #include "bgpd/bgp_labelpool.h"
63 #include "bgpd/bgp_pbr.h"
64 #include "bgpd/bgp_evpn_private.h"
65 #include "bgpd/bgp_evpn_mh.h"
66 #include "bgpd/bgp_mac.h"
67 #include "bgpd/bgp_trace.h"
68 #include "bgpd/bgp_community.h"
69 #include "bgpd/bgp_lcommunity.h"
70
71 /* All information about zebra. */
72 struct zclient *zclient = NULL;
73
74 /* hook to indicate vrf status change for SNMP */
75 DEFINE_HOOK(bgp_vrf_status_changed, (struct bgp *bgp, struct interface *ifp),
76 (bgp, ifp));
77
78 /* Can we install into zebra? */
79 static inline bool bgp_install_info_to_zebra(struct bgp *bgp)
80 {
81 if (zclient->sock <= 0)
82 return false;
83
84 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
85 zlog_debug(
86 "%s: No zebra instance to talk to, not installing information",
87 __func__);
88 return false;
89 }
90
91 return true;
92 }
93
94 int zclient_num_connects;
95
96 /* Router-id update message from zebra. */
97 static int bgp_router_id_update(ZAPI_CALLBACK_ARGS)
98 {
99 struct prefix router_id;
100
101 zebra_router_id_update_read(zclient->ibuf, &router_id);
102
103 if (BGP_DEBUG(zebra, ZEBRA))
104 zlog_debug("Rx Router Id update VRF %u Id %pFX", vrf_id,
105 &router_id);
106
107 bgp_router_id_zebra_bump(vrf_id, &router_id);
108 return 0;
109 }
110
111 /* Nexthop update message from zebra. */
112 static int bgp_read_nexthop_update(ZAPI_CALLBACK_ARGS)
113 {
114 bgp_parse_nexthop_update(cmd, vrf_id);
115 return 0;
116 }
117
118 /* Set or clear interface on which unnumbered neighbor is configured. This
119 * would in turn cause BGP to initiate or turn off IPv6 RAs on this
120 * interface.
121 */
122 static void bgp_update_interface_nbrs(struct bgp *bgp, struct interface *ifp,
123 struct interface *upd_ifp)
124 {
125 struct listnode *node, *nnode;
126 struct peer *peer;
127
128 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
129 if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)) {
130 if (upd_ifp) {
131 peer->ifp = upd_ifp;
132 bgp_zebra_initiate_radv(bgp, peer);
133 } else {
134 bgp_zebra_terminate_radv(bgp, peer);
135 peer->ifp = upd_ifp;
136 }
137 }
138 }
139 }
140
141 static int bgp_read_fec_update(ZAPI_CALLBACK_ARGS)
142 {
143 bgp_parse_fec_update();
144 return 0;
145 }
146
147 static void bgp_start_interface_nbrs(struct bgp *bgp, struct interface *ifp)
148 {
149 struct listnode *node, *nnode;
150 struct peer *peer;
151
152 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
153 if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)
154 && !peer_established(peer)) {
155 if (peer_active(peer))
156 BGP_EVENT_ADD(peer, BGP_Stop);
157 BGP_EVENT_ADD(peer, BGP_Start);
158 }
159 }
160 }
161
162 static void bgp_nbr_connected_add(struct bgp *bgp, struct nbr_connected *ifc)
163 {
164 struct listnode *node;
165 struct connected *connected;
166 struct interface *ifp;
167 struct prefix *p;
168
169 /* Kick-off the FSM for any relevant peers only if there is a
170 * valid local address on the interface.
171 */
172 ifp = ifc->ifp;
173 for (ALL_LIST_ELEMENTS_RO(ifp->connected, node, connected)) {
174 p = connected->address;
175 if (p->family == AF_INET6
176 && IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
177 break;
178 }
179 if (!connected)
180 return;
181
182 bgp_start_interface_nbrs(bgp, ifp);
183 }
184
185 static void bgp_nbr_connected_delete(struct bgp *bgp, struct nbr_connected *ifc,
186 int del)
187 {
188 struct listnode *node, *nnode;
189 struct peer *peer;
190 struct interface *ifp;
191
192 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
193 if (peer->conf_if
194 && (strcmp(peer->conf_if, ifc->ifp->name) == 0)) {
195 peer->last_reset = PEER_DOWN_NBR_ADDR_DEL;
196 BGP_EVENT_ADD(peer, BGP_Stop);
197 }
198 }
199 /* Free neighbor also, if we're asked to. */
200 if (del) {
201 ifp = ifc->ifp;
202 listnode_delete(ifp->nbr_connected, ifc);
203 nbr_connected_free(ifc);
204 }
205 }
206
207 static int bgp_ifp_destroy(struct interface *ifp)
208 {
209 struct bgp *bgp;
210
211 bgp = ifp->vrf->info;
212
213 if (BGP_DEBUG(zebra, ZEBRA))
214 zlog_debug("Rx Intf del VRF %u IF %s", ifp->vrf->vrf_id,
215 ifp->name);
216
217 if (bgp) {
218 bgp_update_interface_nbrs(bgp, ifp, NULL);
219 hook_call(bgp_vrf_status_changed, bgp, ifp);
220 }
221
222 bgp_mac_del_mac_entry(ifp);
223
224 return 0;
225 }
226
227 static int bgp_ifp_up(struct interface *ifp)
228 {
229 struct connected *c;
230 struct nbr_connected *nc;
231 struct listnode *node, *nnode;
232 struct bgp *bgp;
233
234 bgp = ifp->vrf->info;
235
236 bgp_mac_add_mac_entry(ifp);
237
238 if (BGP_DEBUG(zebra, ZEBRA))
239 zlog_debug("Rx Intf up VRF %u IF %s", ifp->vrf->vrf_id,
240 ifp->name);
241
242 if (!bgp)
243 return 0;
244
245 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
246 bgp_connected_add(bgp, c);
247
248 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
249 bgp_nbr_connected_add(bgp, nc);
250
251 hook_call(bgp_vrf_status_changed, bgp, ifp);
252 bgp_nht_ifp_up(ifp);
253
254 return 0;
255 }
256
257 static int bgp_ifp_down(struct interface *ifp)
258 {
259 struct connected *c;
260 struct nbr_connected *nc;
261 struct listnode *node, *nnode;
262 struct bgp *bgp;
263 struct peer *peer;
264
265 bgp = ifp->vrf->info;
266
267 bgp_mac_del_mac_entry(ifp);
268
269 if (BGP_DEBUG(zebra, ZEBRA))
270 zlog_debug("Rx Intf down VRF %u IF %s", ifp->vrf->vrf_id,
271 ifp->name);
272
273 if (!bgp)
274 return 0;
275
276 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
277 bgp_connected_delete(bgp, c);
278
279 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
280 bgp_nbr_connected_delete(bgp, nc, 1);
281
282 /* Fast external-failover */
283 if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
284
285 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
286 /* Take down directly connected peers. */
287 if ((peer->ttl != BGP_DEFAULT_TTL)
288 && (peer->gtsm_hops != BGP_GTSM_HOPS_CONNECTED))
289 continue;
290
291 if (ifp == peer->nexthop.ifp) {
292 BGP_EVENT_ADD(peer, BGP_Stop);
293 peer->last_reset = PEER_DOWN_IF_DOWN;
294 }
295 }
296 }
297
298 hook_call(bgp_vrf_status_changed, bgp, ifp);
299 bgp_nht_ifp_down(ifp);
300
301 return 0;
302 }
303
304 static int bgp_interface_address_add(ZAPI_CALLBACK_ARGS)
305 {
306 struct connected *ifc;
307 struct bgp *bgp;
308
309 bgp = bgp_lookup_by_vrf_id(vrf_id);
310
311 ifc = zebra_interface_address_read(cmd, zclient->ibuf, vrf_id);
312
313 if (ifc == NULL)
314 return 0;
315
316 if (bgp_debug_zebra(ifc->address))
317 zlog_debug("Rx Intf address add VRF %u IF %s addr %pFX", vrf_id,
318 ifc->ifp->name, ifc->address);
319
320 if (!bgp)
321 return 0;
322
323 if (if_is_operative(ifc->ifp)) {
324 bgp_connected_add(bgp, ifc);
325
326 /* If we have learnt of any neighbors on this interface,
327 * check to kick off any BGP interface-based neighbors,
328 * but only if this is a link-local address.
329 */
330 if (IN6_IS_ADDR_LINKLOCAL(&ifc->address->u.prefix6)
331 && !list_isempty(ifc->ifp->nbr_connected))
332 bgp_start_interface_nbrs(bgp, ifc->ifp);
333 }
334
335 return 0;
336 }
337
338 static int bgp_interface_address_delete(ZAPI_CALLBACK_ARGS)
339 {
340 struct listnode *node, *nnode;
341 struct connected *ifc;
342 struct peer *peer;
343 struct bgp *bgp;
344 struct prefix *addr;
345
346 bgp = bgp_lookup_by_vrf_id(vrf_id);
347
348 ifc = zebra_interface_address_read(cmd, zclient->ibuf, vrf_id);
349
350 if (ifc == NULL)
351 return 0;
352
353 if (bgp_debug_zebra(ifc->address))
354 zlog_debug("Rx Intf address del VRF %u IF %s addr %pFX", vrf_id,
355 ifc->ifp->name, ifc->address);
356
357 if (bgp && if_is_operative(ifc->ifp)) {
358 bgp_connected_delete(bgp, ifc);
359 }
360
361 addr = ifc->address;
362
363 if (bgp) {
364 /*
365 * When we are using the v6 global as part of the peering
366 * nexthops and we are removing it, then we need to
367 * clear the peer data saved for that nexthop and
368 * cause a re-announcement of the route. Since
369 * we do not want the peering to bounce.
370 */
371 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
372 afi_t afi;
373 safi_t safi;
374
375 if (addr->family == AF_INET)
376 continue;
377
378 if (!IN6_IS_ADDR_LINKLOCAL(&addr->u.prefix6)
379 && memcmp(&peer->nexthop.v6_global,
380 &addr->u.prefix6, 16)
381 == 0) {
382 memset(&peer->nexthop.v6_global, 0, 16);
383 FOREACH_AFI_SAFI (afi, safi)
384 bgp_announce_route(peer, afi, safi,
385 true);
386 }
387 }
388 }
389
390 connected_free(&ifc);
391
392 return 0;
393 }
394
395 static int bgp_interface_nbr_address_add(ZAPI_CALLBACK_ARGS)
396 {
397 struct nbr_connected *ifc = NULL;
398 struct bgp *bgp;
399
400 ifc = zebra_interface_nbr_address_read(cmd, zclient->ibuf, vrf_id);
401
402 if (ifc == NULL)
403 return 0;
404
405 if (bgp_debug_zebra(ifc->address))
406 zlog_debug("Rx Intf neighbor add VRF %u IF %s addr %pFX",
407 vrf_id, ifc->ifp->name, ifc->address);
408
409 if (if_is_operative(ifc->ifp)) {
410 bgp = bgp_lookup_by_vrf_id(vrf_id);
411 if (bgp)
412 bgp_nbr_connected_add(bgp, ifc);
413 }
414
415 return 0;
416 }
417
418 static int bgp_interface_nbr_address_delete(ZAPI_CALLBACK_ARGS)
419 {
420 struct nbr_connected *ifc = NULL;
421 struct bgp *bgp;
422
423 ifc = zebra_interface_nbr_address_read(cmd, zclient->ibuf, vrf_id);
424
425 if (ifc == NULL)
426 return 0;
427
428 if (bgp_debug_zebra(ifc->address))
429 zlog_debug("Rx Intf neighbor del VRF %u IF %s addr %pFX",
430 vrf_id, ifc->ifp->name, ifc->address);
431
432 if (if_is_operative(ifc->ifp)) {
433 bgp = bgp_lookup_by_vrf_id(vrf_id);
434 if (bgp)
435 bgp_nbr_connected_delete(bgp, ifc, 0);
436 }
437
438 nbr_connected_free(ifc);
439
440 return 0;
441 }
442
443 /* VRF update for an interface. */
444 static int bgp_interface_vrf_update(ZAPI_CALLBACK_ARGS)
445 {
446 struct interface *ifp;
447 vrf_id_t new_vrf_id;
448 struct connected *c;
449 struct nbr_connected *nc;
450 struct listnode *node, *nnode;
451 struct bgp *bgp;
452 struct peer *peer;
453
454 ifp = zebra_interface_vrf_update_read(zclient->ibuf, vrf_id,
455 &new_vrf_id);
456 if (!ifp)
457 return 0;
458
459 if (BGP_DEBUG(zebra, ZEBRA) && ifp)
460 zlog_debug("Rx Intf VRF change VRF %u IF %s NewVRF %u", vrf_id,
461 ifp->name, new_vrf_id);
462
463 bgp = bgp_lookup_by_vrf_id(vrf_id);
464
465 if (bgp) {
466 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
467 bgp_connected_delete(bgp, c);
468
469 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
470 bgp_nbr_connected_delete(bgp, nc, 1);
471
472 /* Fast external-failover */
473 if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
474 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
475 if ((peer->ttl != BGP_DEFAULT_TTL)
476 && (peer->gtsm_hops
477 != BGP_GTSM_HOPS_CONNECTED))
478 continue;
479
480 if (ifp == peer->nexthop.ifp)
481 BGP_EVENT_ADD(peer, BGP_Stop);
482 }
483 }
484 }
485
486 if_update_to_new_vrf(ifp, new_vrf_id);
487
488 bgp = bgp_lookup_by_vrf_id(new_vrf_id);
489 if (!bgp)
490 return 0;
491
492 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
493 bgp_connected_add(bgp, c);
494
495 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
496 bgp_nbr_connected_add(bgp, nc);
497
498 hook_call(bgp_vrf_status_changed, bgp, ifp);
499 return 0;
500 }
501
502 /* Zebra route add and delete treatment. */
503 static int zebra_read_route(ZAPI_CALLBACK_ARGS)
504 {
505 enum nexthop_types_t nhtype;
506 enum blackhole_type bhtype = BLACKHOLE_UNSPEC;
507 struct zapi_route api;
508 union g_addr nexthop = {};
509 ifindex_t ifindex;
510 int add, i;
511 struct bgp *bgp;
512
513 bgp = bgp_lookup_by_vrf_id(vrf_id);
514 if (!bgp)
515 return 0;
516
517 if (zapi_route_decode(zclient->ibuf, &api) < 0)
518 return -1;
519
520 /* we completely ignore srcdest routes for now. */
521 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_SRCPFX))
522 return 0;
523
524 /* ignore link-local address. */
525 if (api.prefix.family == AF_INET6
526 && IN6_IS_ADDR_LINKLOCAL(&api.prefix.u.prefix6))
527 return 0;
528
529 ifindex = api.nexthops[0].ifindex;
530 nhtype = api.nexthops[0].type;
531
532 /* api_nh structure has union of gate and bh_type */
533 if (nhtype == NEXTHOP_TYPE_BLACKHOLE) {
534 /* bh_type is only applicable if NEXTHOP_TYPE_BLACKHOLE*/
535 bhtype = api.nexthops[0].bh_type;
536 } else
537 nexthop = api.nexthops[0].gate;
538
539 add = (cmd == ZEBRA_REDISTRIBUTE_ROUTE_ADD);
540 if (add) {
541 /*
542 * The ADD message is actually an UPDATE and there is no
543 * explicit DEL
544 * for a prior redistributed route, if any. So, perform an
545 * implicit
546 * DEL processing for the same redistributed route from any
547 * other
548 * source type.
549 */
550 for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
551 if (i != api.type)
552 bgp_redistribute_delete(bgp, &api.prefix, i,
553 api.instance);
554 }
555
556 /* Now perform the add/update. */
557 bgp_redistribute_add(bgp, &api.prefix, &nexthop, ifindex,
558 nhtype, bhtype, api.distance, api.metric,
559 api.type, api.instance, api.tag);
560 } else {
561 bgp_redistribute_delete(bgp, &api.prefix, api.type,
562 api.instance);
563 }
564
565 if (bgp_debug_zebra(&api.prefix)) {
566 char buf[PREFIX_STRLEN];
567
568 if (add) {
569 inet_ntop(api.prefix.family, &nexthop, buf,
570 sizeof(buf));
571 zlog_debug(
572 "Rx route ADD VRF %u %s[%d] %pFX nexthop %s (type %d if %u) metric %u distance %u tag %" ROUTE_TAG_PRI,
573 vrf_id, zebra_route_string(api.type),
574 api.instance, &api.prefix, buf, nhtype, ifindex,
575 api.metric, api.distance, api.tag);
576 } else {
577 zlog_debug("Rx route DEL VRF %u %s[%d] %pFX", vrf_id,
578 zebra_route_string(api.type), api.instance,
579 &api.prefix);
580 }
581 }
582
583 return 0;
584 }
585
586 struct interface *if_lookup_by_ipv4(struct in_addr *addr, vrf_id_t vrf_id)
587 {
588 struct vrf *vrf;
589 struct listnode *cnode;
590 struct interface *ifp;
591 struct connected *connected;
592 struct prefix_ipv4 p;
593 struct prefix *cp;
594
595 vrf = vrf_lookup_by_id(vrf_id);
596 if (!vrf)
597 return NULL;
598
599 p.family = AF_INET;
600 p.prefix = *addr;
601 p.prefixlen = IPV4_MAX_BITLEN;
602
603 FOR_ALL_INTERFACES (vrf, ifp) {
604 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
605 cp = connected->address;
606
607 if (cp->family == AF_INET)
608 if (prefix_match(cp, (struct prefix *)&p))
609 return ifp;
610 }
611 }
612 return NULL;
613 }
614
615 struct interface *if_lookup_by_ipv4_exact(struct in_addr *addr, vrf_id_t vrf_id)
616 {
617 struct vrf *vrf;
618 struct listnode *cnode;
619 struct interface *ifp;
620 struct connected *connected;
621 struct prefix *cp;
622
623 vrf = vrf_lookup_by_id(vrf_id);
624 if (!vrf)
625 return NULL;
626
627 FOR_ALL_INTERFACES (vrf, ifp) {
628 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
629 cp = connected->address;
630
631 if (cp->family == AF_INET)
632 if (IPV4_ADDR_SAME(&cp->u.prefix4, addr))
633 return ifp;
634 }
635 }
636 return NULL;
637 }
638
639 struct interface *if_lookup_by_ipv6(struct in6_addr *addr, ifindex_t ifindex,
640 vrf_id_t vrf_id)
641 {
642 struct vrf *vrf;
643 struct listnode *cnode;
644 struct interface *ifp;
645 struct connected *connected;
646 struct prefix_ipv6 p;
647 struct prefix *cp;
648
649 vrf = vrf_lookup_by_id(vrf_id);
650 if (!vrf)
651 return NULL;
652
653 p.family = AF_INET6;
654 p.prefix = *addr;
655 p.prefixlen = IPV6_MAX_BITLEN;
656
657 FOR_ALL_INTERFACES (vrf, ifp) {
658 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
659 cp = connected->address;
660
661 if (cp->family == AF_INET6)
662 if (prefix_match(cp, (struct prefix *)&p)) {
663 if (IN6_IS_ADDR_LINKLOCAL(
664 &cp->u.prefix6)) {
665 if (ifindex == ifp->ifindex)
666 return ifp;
667 } else
668 return ifp;
669 }
670 }
671 }
672 return NULL;
673 }
674
675 struct interface *if_lookup_by_ipv6_exact(struct in6_addr *addr,
676 ifindex_t ifindex, vrf_id_t vrf_id)
677 {
678 struct vrf *vrf;
679 struct listnode *cnode;
680 struct interface *ifp;
681 struct connected *connected;
682 struct prefix *cp;
683
684 vrf = vrf_lookup_by_id(vrf_id);
685 if (!vrf)
686 return NULL;
687
688 FOR_ALL_INTERFACES (vrf, ifp) {
689 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
690 cp = connected->address;
691
692 if (cp->family == AF_INET6)
693 if (IPV6_ADDR_SAME(&cp->u.prefix6, addr)) {
694 if (IN6_IS_ADDR_LINKLOCAL(
695 &cp->u.prefix6)) {
696 if (ifindex == ifp->ifindex)
697 return ifp;
698 } else
699 return ifp;
700 }
701 }
702 }
703 return NULL;
704 }
705
706 static int if_get_ipv6_global(struct interface *ifp, struct in6_addr *addr)
707 {
708 struct listnode *cnode;
709 struct connected *connected;
710 struct prefix *cp;
711
712 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
713 cp = connected->address;
714
715 if (cp->family == AF_INET6)
716 if (!IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
717 memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
718 return 1;
719 }
720 }
721 return 0;
722 }
723
724 static bool if_get_ipv6_local(struct interface *ifp, struct in6_addr *addr)
725 {
726 struct listnode *cnode;
727 struct connected *connected;
728 struct prefix *cp;
729
730 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
731 cp = connected->address;
732
733 if (cp->family == AF_INET6)
734 if (IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
735 memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
736 return true;
737 }
738 }
739 return false;
740 }
741
742 static int if_get_ipv4_address(struct interface *ifp, struct in_addr *addr)
743 {
744 struct listnode *cnode;
745 struct connected *connected;
746 struct prefix *cp;
747
748 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
749 cp = connected->address;
750 if ((cp->family == AF_INET)
751 && !ipv4_martian(&(cp->u.prefix4))) {
752 *addr = cp->u.prefix4;
753 return 1;
754 }
755 }
756 return 0;
757 }
758
759
760 bool bgp_zebra_nexthop_set(union sockunion *local, union sockunion *remote,
761 struct bgp_nexthop *nexthop, struct peer *peer)
762 {
763 int ret = 0;
764 struct interface *ifp = NULL;
765 bool v6_ll_avail = true;
766
767 memset(nexthop, 0, sizeof(struct bgp_nexthop));
768
769 if (!local)
770 return false;
771 if (!remote)
772 return false;
773
774 if (local->sa.sa_family == AF_INET) {
775 nexthop->v4 = local->sin.sin_addr;
776 if (peer->update_if)
777 ifp = if_lookup_by_name(peer->update_if,
778 peer->bgp->vrf_id);
779 else
780 ifp = if_lookup_by_ipv4_exact(&local->sin.sin_addr,
781 peer->bgp->vrf_id);
782 }
783 if (local->sa.sa_family == AF_INET6) {
784 memcpy(&nexthop->v6_global, &local->sin6.sin6_addr, IPV6_MAX_BYTELEN);
785 if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
786 if (peer->conf_if || peer->ifname)
787 ifp = if_lookup_by_name(peer->conf_if
788 ? peer->conf_if
789 : peer->ifname,
790 peer->bgp->vrf_id);
791 else if (peer->update_if)
792 ifp = if_lookup_by_name(peer->update_if,
793 peer->bgp->vrf_id);
794 } else if (peer->update_if)
795 ifp = if_lookup_by_name(peer->update_if,
796 peer->bgp->vrf_id);
797 else
798 ifp = if_lookup_by_ipv6_exact(&local->sin6.sin6_addr,
799 local->sin6.sin6_scope_id,
800 peer->bgp->vrf_id);
801 }
802
803 if (!ifp) {
804 /*
805 * BGP views do not currently get proper data
806 * from zebra( when attached ) to be able to
807 * properly resolve nexthops, so give this
808 * instance type a pass.
809 */
810 if (peer->bgp->inst_type == BGP_INSTANCE_TYPE_VIEW)
811 return true;
812 /*
813 * If we have no interface data but we have established
814 * some connection w/ zebra than something has gone
815 * terribly terribly wrong here, so say this failed
816 * If we do not any zebra connection then not
817 * having a ifp pointer is ok.
818 */
819 return zclient_num_connects ? false : true;
820 }
821
822 nexthop->ifp = ifp;
823
824 /* IPv4 connection, fetch and store IPv6 local address(es) if any. */
825 if (local->sa.sa_family == AF_INET) {
826 /* IPv6 nexthop*/
827 ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
828
829 if (!ret) {
830 /* There is no global nexthop. Use link-local address as
831 * both the
832 * global and link-local nexthop. In this scenario, the
833 * expectation
834 * for interop is that the network admin would use a
835 * route-map to
836 * specify the global IPv6 nexthop.
837 */
838 v6_ll_avail =
839 if_get_ipv6_local(ifp, &nexthop->v6_global);
840 memcpy(&nexthop->v6_local, &nexthop->v6_global,
841 IPV6_MAX_BYTELEN);
842 } else
843 v6_ll_avail =
844 if_get_ipv6_local(ifp, &nexthop->v6_local);
845
846 /*
847 * If we are a v4 connection and we are not doing unnumbered
848 * not having a v6 LL address is ok
849 */
850 if (!v6_ll_avail && !peer->conf_if)
851 v6_ll_avail = true;
852 if (if_lookup_by_ipv4(&remote->sin.sin_addr, peer->bgp->vrf_id))
853 peer->shared_network = 1;
854 else
855 peer->shared_network = 0;
856 }
857
858 /* IPv6 connection, fetch and store IPv4 local address if any. */
859 if (local->sa.sa_family == AF_INET6) {
860 struct interface *direct = NULL;
861
862 /* IPv4 nexthop. */
863 ret = if_get_ipv4_address(ifp, &nexthop->v4);
864 if (!ret && peer->local_id.s_addr != INADDR_ANY)
865 nexthop->v4 = peer->local_id;
866
867 /* Global address*/
868 if (!IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
869 memcpy(&nexthop->v6_global, &local->sin6.sin6_addr,
870 IPV6_MAX_BYTELEN);
871
872 /* If directory connected set link-local address. */
873 direct = if_lookup_by_ipv6(&remote->sin6.sin6_addr,
874 remote->sin6.sin6_scope_id,
875 peer->bgp->vrf_id);
876 if (direct)
877 v6_ll_avail = if_get_ipv6_local(
878 ifp, &nexthop->v6_local);
879 /*
880 * It's fine to not have a v6 LL when using
881 * update-source loopback/vrf
882 */
883 if (!v6_ll_avail && if_is_loopback(ifp))
884 v6_ll_avail = true;
885 else {
886 flog_warn(
887 EC_BGP_NO_LL_ADDRESS_AVAILABLE,
888 "Interface: %s does not have a v6 LL address associated with it, waiting until one is created for it",
889 ifp->name);
890 }
891 } else
892 /* Link-local address. */
893 {
894 ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
895
896 /* If there is no global address. Set link-local
897 address as
898 global. I know this break RFC specification... */
899 /* In this scenario, the expectation for interop is that
900 * the
901 * network admin would use a route-map to specify the
902 * global
903 * IPv6 nexthop.
904 */
905 if (!ret)
906 memcpy(&nexthop->v6_global,
907 &local->sin6.sin6_addr,
908 IPV6_MAX_BYTELEN);
909 /* Always set the link-local address */
910 memcpy(&nexthop->v6_local, &local->sin6.sin6_addr,
911 IPV6_MAX_BYTELEN);
912 }
913
914 if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)
915 || if_lookup_by_ipv6(&remote->sin6.sin6_addr,
916 remote->sin6.sin6_scope_id,
917 peer->bgp->vrf_id))
918 peer->shared_network = 1;
919 else
920 peer->shared_network = 0;
921 }
922
923 /* KAME stack specific treatment. */
924 #ifdef KAME
925 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_global)
926 && IN6_LINKLOCAL_IFINDEX(nexthop->v6_global)) {
927 SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_global, 0);
928 }
929 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_local)
930 && IN6_LINKLOCAL_IFINDEX(nexthop->v6_local)) {
931 SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_local, 0);
932 }
933 #endif /* KAME */
934
935 /* If we have identified the local interface, there is no error for now.
936 */
937 return v6_ll_avail;
938 }
939
940 static struct in6_addr *
941 bgp_path_info_to_ipv6_nexthop(struct bgp_path_info *path, ifindex_t *ifindex)
942 {
943 struct in6_addr *nexthop = NULL;
944
945 /* Only global address nexthop exists. */
946 if (path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL
947 || path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_VPNV6_GLOBAL) {
948 nexthop = &path->attr->mp_nexthop_global;
949 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
950 *ifindex = path->attr->nh_ifindex;
951 }
952
953 /* If both global and link-local address present. */
954 if (path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL
955 || path->attr->mp_nexthop_len
956 == BGP_ATTR_NHLEN_VPNV6_GLOBAL_AND_LL) {
957 /* Check if route-map is set to prefer global over link-local */
958 if (path->attr->mp_nexthop_prefer_global) {
959 nexthop = &path->attr->mp_nexthop_global;
960 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
961 *ifindex = path->attr->nh_ifindex;
962 } else {
963 /* Workaround for Cisco's nexthop bug. */
964 if (IN6_IS_ADDR_UNSPECIFIED(
965 &path->attr->mp_nexthop_global)
966 && path->peer->su_remote
967 && path->peer->su_remote->sa.sa_family
968 == AF_INET6) {
969 nexthop =
970 &path->peer->su_remote->sin6.sin6_addr;
971 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
972 *ifindex = path->peer->nexthop.ifp
973 ->ifindex;
974 } else {
975 nexthop = &path->attr->mp_nexthop_local;
976 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
977 *ifindex = path->attr->nh_lla_ifindex;
978 }
979 }
980 }
981
982 return nexthop;
983 }
984
985 static bool bgp_table_map_apply(struct route_map *map, const struct prefix *p,
986 struct bgp_path_info *path)
987 {
988 route_map_result_t ret;
989
990 ret = route_map_apply(map, p, path);
991 bgp_attr_flush(path->attr);
992
993 if (ret != RMAP_DENYMATCH)
994 return true;
995
996 if (bgp_debug_zebra(p)) {
997 if (p->family == AF_INET) {
998 zlog_debug(
999 "Zebra rmap deny: IPv4 route %pFX nexthop %pI4",
1000 p, &path->attr->nexthop);
1001 }
1002 if (p->family == AF_INET6) {
1003 char buf[2][INET6_ADDRSTRLEN];
1004 ifindex_t ifindex;
1005 struct in6_addr *nexthop;
1006
1007 nexthop = bgp_path_info_to_ipv6_nexthop(path, &ifindex);
1008 zlog_debug(
1009 "Zebra rmap deny: IPv6 route %pFX nexthop %s",
1010 p,
1011 nexthop ? inet_ntop(AF_INET6, nexthop, buf[1],
1012 sizeof(buf[1]))
1013 : inet_ntop(AF_INET,
1014 &path->attr->nexthop,
1015 buf[1], sizeof(buf[1])));
1016 }
1017 }
1018 return false;
1019 }
1020
1021 static struct thread *bgp_tm_thread_connect;
1022 static bool bgp_tm_status_connected;
1023 static bool bgp_tm_chunk_obtained;
1024 #define BGP_FLOWSPEC_TABLE_CHUNK 100000
1025 static uint32_t bgp_tm_min, bgp_tm_max, bgp_tm_chunk_size;
1026 struct bgp *bgp_tm_bgp;
1027
1028 static void bgp_zebra_tm_connect(struct thread *t)
1029 {
1030 struct zclient *zclient;
1031 int delay = 10, ret = 0;
1032
1033 zclient = THREAD_ARG(t);
1034 if (bgp_tm_status_connected && zclient->sock > 0)
1035 delay = 60;
1036 else {
1037 bgp_tm_status_connected = false;
1038 ret = tm_table_manager_connect(zclient);
1039 }
1040 if (ret < 0) {
1041 zlog_info("Error connecting to table manager!");
1042 bgp_tm_status_connected = false;
1043 } else {
1044 if (!bgp_tm_status_connected)
1045 zlog_debug("Connecting to table manager. Success");
1046 bgp_tm_status_connected = true;
1047 if (!bgp_tm_chunk_obtained) {
1048 if (bgp_zebra_get_table_range(bgp_tm_chunk_size,
1049 &bgp_tm_min,
1050 &bgp_tm_max) >= 0) {
1051 bgp_tm_chunk_obtained = true;
1052 /* parse non installed entries */
1053 bgp_zebra_announce_table(bgp_tm_bgp, AFI_IP, SAFI_FLOWSPEC);
1054 }
1055 }
1056 }
1057 thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
1058 &bgp_tm_thread_connect);
1059 }
1060
1061 bool bgp_zebra_tm_chunk_obtained(void)
1062 {
1063 return bgp_tm_chunk_obtained;
1064 }
1065
1066 uint32_t bgp_zebra_tm_get_id(void)
1067 {
1068 static int table_id;
1069
1070 if (!bgp_tm_chunk_obtained)
1071 return ++table_id;
1072 return bgp_tm_min++;
1073 }
1074
1075 void bgp_zebra_init_tm_connect(struct bgp *bgp)
1076 {
1077 int delay = 1;
1078
1079 /* if already set, do nothing
1080 */
1081 if (bgp_tm_thread_connect != NULL)
1082 return;
1083 bgp_tm_status_connected = false;
1084 bgp_tm_chunk_obtained = false;
1085 bgp_tm_min = bgp_tm_max = 0;
1086 bgp_tm_chunk_size = BGP_FLOWSPEC_TABLE_CHUNK;
1087 bgp_tm_bgp = bgp;
1088 thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
1089 &bgp_tm_thread_connect);
1090 }
1091
1092 int bgp_zebra_get_table_range(uint32_t chunk_size,
1093 uint32_t *start, uint32_t *end)
1094 {
1095 int ret;
1096
1097 if (!bgp_tm_status_connected)
1098 return -1;
1099 ret = tm_get_table_chunk(zclient, chunk_size, start, end);
1100 if (ret < 0) {
1101 flog_err(EC_BGP_TABLE_CHUNK,
1102 "BGP: Error getting table chunk %u", chunk_size);
1103 return -1;
1104 }
1105 zlog_info("BGP: Table Manager returns range from chunk %u is [%u %u]",
1106 chunk_size, *start, *end);
1107 return 0;
1108 }
1109
1110 static bool update_ipv4nh_for_route_install(int nh_othervrf, struct bgp *nh_bgp,
1111 struct in_addr *nexthop,
1112 struct attr *attr, bool is_evpn,
1113 struct zapi_nexthop *api_nh)
1114 {
1115 api_nh->gate.ipv4 = *nexthop;
1116 api_nh->vrf_id = nh_bgp->vrf_id;
1117
1118 /* Need to set fields appropriately for EVPN routes imported into
1119 * a VRF (which are programmed as onlink on l3-vni SVI) as well as
1120 * connected routes leaked into a VRF.
1121 */
1122 if (attr->nh_type == NEXTHOP_TYPE_BLACKHOLE) {
1123 api_nh->type = attr->nh_type;
1124 api_nh->bh_type = attr->bh_type;
1125 } else if (is_evpn) {
1126 /*
1127 * If the nexthop is EVPN overlay index gateway IP,
1128 * treat the nexthop as NEXTHOP_TYPE_IPV4
1129 * Else, mark the nexthop as onlink.
1130 */
1131 if (attr->evpn_overlay.type == OVERLAY_INDEX_GATEWAY_IP)
1132 api_nh->type = NEXTHOP_TYPE_IPV4;
1133 else {
1134 api_nh->type = NEXTHOP_TYPE_IPV4_IFINDEX;
1135 SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_ONLINK);
1136 api_nh->ifindex = nh_bgp->l3vni_svi_ifindex;
1137 }
1138 } else if (nh_othervrf && api_nh->gate.ipv4.s_addr == INADDR_ANY) {
1139 api_nh->type = NEXTHOP_TYPE_IFINDEX;
1140 api_nh->ifindex = attr->nh_ifindex;
1141 } else
1142 api_nh->type = NEXTHOP_TYPE_IPV4;
1143
1144 return true;
1145 }
1146
1147 static bool update_ipv6nh_for_route_install(int nh_othervrf, struct bgp *nh_bgp,
1148 struct in6_addr *nexthop,
1149 ifindex_t ifindex,
1150 struct bgp_path_info *pi,
1151 struct bgp_path_info *best_pi,
1152 bool is_evpn,
1153 struct zapi_nexthop *api_nh)
1154 {
1155 struct attr *attr;
1156
1157 attr = pi->attr;
1158 api_nh->vrf_id = nh_bgp->vrf_id;
1159
1160 if (attr->nh_type == NEXTHOP_TYPE_BLACKHOLE) {
1161 api_nh->type = attr->nh_type;
1162 api_nh->bh_type = attr->bh_type;
1163 } else if (is_evpn) {
1164 /*
1165 * If the nexthop is EVPN overlay index gateway IP,
1166 * treat the nexthop as NEXTHOP_TYPE_IPV4
1167 * Else, mark the nexthop as onlink.
1168 */
1169 if (attr->evpn_overlay.type == OVERLAY_INDEX_GATEWAY_IP)
1170 api_nh->type = NEXTHOP_TYPE_IPV6;
1171 else {
1172 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1173 SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_ONLINK);
1174 api_nh->ifindex = nh_bgp->l3vni_svi_ifindex;
1175 }
1176 } else if (nh_othervrf) {
1177 if (IN6_IS_ADDR_UNSPECIFIED(nexthop)) {
1178 api_nh->type = NEXTHOP_TYPE_IFINDEX;
1179 api_nh->ifindex = attr->nh_ifindex;
1180 } else if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
1181 if (ifindex == 0)
1182 return false;
1183 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1184 api_nh->ifindex = ifindex;
1185 } else {
1186 api_nh->type = NEXTHOP_TYPE_IPV6;
1187 api_nh->ifindex = 0;
1188 }
1189 } else {
1190 if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
1191 if (pi == best_pi
1192 && attr->mp_nexthop_len
1193 == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL)
1194 if (pi->peer->nexthop.ifp)
1195 ifindex =
1196 pi->peer->nexthop.ifp->ifindex;
1197 if (!ifindex) {
1198 if (pi->peer->conf_if)
1199 ifindex = pi->peer->ifp->ifindex;
1200 else if (pi->peer->ifname)
1201 ifindex = ifname2ifindex(
1202 pi->peer->ifname,
1203 pi->peer->bgp->vrf_id);
1204 else if (pi->peer->nexthop.ifp)
1205 ifindex =
1206 pi->peer->nexthop.ifp->ifindex;
1207 }
1208
1209 if (ifindex == 0)
1210 return false;
1211 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1212 api_nh->ifindex = ifindex;
1213 } else {
1214 api_nh->type = NEXTHOP_TYPE_IPV6;
1215 api_nh->ifindex = 0;
1216 }
1217 }
1218 /* api_nh structure has union of gate and bh_type */
1219 if (nexthop && api_nh->type != NEXTHOP_TYPE_BLACKHOLE)
1220 api_nh->gate.ipv6 = *nexthop;
1221
1222 return true;
1223 }
1224
1225 static bool bgp_zebra_use_nhop_weighted(struct bgp *bgp, struct attr *attr,
1226 uint64_t tot_bw, uint32_t *nh_weight)
1227 {
1228 uint32_t bw;
1229 uint64_t tmp;
1230
1231 bw = attr->link_bw;
1232 /* zero link-bandwidth and link-bandwidth not present are treated
1233 * as the same situation.
1234 */
1235 if (!bw) {
1236 /* the only situations should be if we're either told
1237 * to skip or use default weight.
1238 */
1239 if (bgp->lb_handling == BGP_LINK_BW_SKIP_MISSING)
1240 return false;
1241 *nh_weight = BGP_ZEBRA_DEFAULT_NHOP_WEIGHT;
1242 } else {
1243 tmp = (uint64_t)bw * 100;
1244 *nh_weight = ((uint32_t)(tmp / tot_bw));
1245 }
1246
1247 return true;
1248 }
1249
1250 void bgp_zebra_announce(struct bgp_dest *dest, const struct prefix *p,
1251 struct bgp_path_info *info, struct bgp *bgp, afi_t afi,
1252 safi_t safi)
1253 {
1254 struct zapi_route api = { 0 };
1255 struct zapi_nexthop *api_nh;
1256 int nh_family;
1257 unsigned int valid_nh_count = 0;
1258 bool allow_recursion = false;
1259 uint8_t distance;
1260 struct peer *peer;
1261 struct bgp_path_info *mpinfo;
1262 struct bgp *bgp_orig;
1263 uint32_t metric;
1264 struct attr local_attr;
1265 struct bgp_path_info local_info;
1266 struct bgp_path_info *mpinfo_cp = &local_info;
1267 route_tag_t tag;
1268 mpls_label_t label;
1269 struct bgp_sid_info *sid_info;
1270 int nh_othervrf = 0;
1271 bool is_evpn;
1272 bool nh_updated = false;
1273 bool do_wt_ecmp;
1274 uint64_t cum_bw = 0;
1275 uint32_t nhg_id = 0;
1276 bool is_add;
1277
1278 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1279 * know of this instance.
1280 */
1281 if (!bgp_install_info_to_zebra(bgp))
1282 return;
1283
1284 if (bgp->main_zebra_update_hold)
1285 return;
1286
1287 if (safi == SAFI_FLOWSPEC) {
1288 bgp_pbr_update_entry(bgp, bgp_dest_get_prefix(dest), info, afi,
1289 safi, true);
1290 return;
1291 }
1292
1293 /*
1294 * vrf leaking support (will have only one nexthop)
1295 */
1296 if (info->extra && info->extra->bgp_orig)
1297 nh_othervrf = 1;
1298
1299 /* Make Zebra API structure. */
1300 api.vrf_id = bgp->vrf_id;
1301 api.type = ZEBRA_ROUTE_BGP;
1302 api.safi = safi;
1303 api.prefix = *p;
1304 SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
1305
1306 peer = info->peer;
1307
1308 if (info->type == ZEBRA_ROUTE_BGP
1309 && info->sub_type == BGP_ROUTE_IMPORTED) {
1310
1311 /* Obtain peer from parent */
1312 if (info->extra && info->extra->parent)
1313 peer = ((struct bgp_path_info *)(info->extra->parent))
1314 ->peer;
1315 }
1316
1317 tag = info->attr->tag;
1318
1319 /* If the route's source is EVPN, flag as such. */
1320 is_evpn = is_route_parent_evpn(info);
1321 if (is_evpn)
1322 SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
1323
1324 if (peer->sort == BGP_PEER_IBGP || peer->sort == BGP_PEER_CONFED
1325 || info->sub_type == BGP_ROUTE_AGGREGATE) {
1326 SET_FLAG(api.flags, ZEBRA_FLAG_IBGP);
1327 SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
1328 }
1329
1330 if ((peer->sort == BGP_PEER_EBGP && peer->ttl != BGP_DEFAULT_TTL)
1331 || CHECK_FLAG(peer->flags, PEER_FLAG_DISABLE_CONNECTED_CHECK)
1332 || CHECK_FLAG(bgp->flags, BGP_FLAG_DISABLE_NH_CONNECTED_CHK))
1333
1334 allow_recursion = true;
1335
1336 if (info->attr->rmap_table_id) {
1337 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
1338 api.tableid = info->attr->rmap_table_id;
1339 }
1340
1341 if (CHECK_FLAG(info->attr->flag, ATTR_FLAG_BIT(BGP_ATTR_SRTE_COLOR)))
1342 SET_FLAG(api.message, ZAPI_MESSAGE_SRTE);
1343
1344 /* Metric is currently based on the best-path only */
1345 metric = info->attr->med;
1346
1347 /* Determine if we're doing weighted ECMP or not */
1348 do_wt_ecmp = bgp_path_info_mpath_chkwtd(bgp, info);
1349 if (do_wt_ecmp)
1350 cum_bw = bgp_path_info_mpath_cumbw(info);
1351
1352 /* EVPN MAC-IP routes are installed with a L3 NHG id */
1353 if (bgp_evpn_path_es_use_nhg(bgp, info, &nhg_id)) {
1354 mpinfo = NULL;
1355 api.nhgid = nhg_id;
1356 if (nhg_id)
1357 SET_FLAG(api.message, ZAPI_MESSAGE_NHG);
1358 } else {
1359 mpinfo = info;
1360 }
1361
1362 for (; mpinfo; mpinfo = bgp_path_info_mpath_next(mpinfo)) {
1363 uint32_t nh_weight;
1364
1365 if (valid_nh_count >= multipath_num)
1366 break;
1367
1368 *mpinfo_cp = *mpinfo;
1369 nh_weight = 0;
1370
1371 /* Get nexthop address-family */
1372 if (p->family == AF_INET
1373 && !BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr))
1374 nh_family = AF_INET;
1375 else if (p->family == AF_INET6
1376 || (p->family == AF_INET
1377 && BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr)))
1378 nh_family = AF_INET6;
1379 else
1380 continue;
1381
1382 /* If processing for weighted ECMP, determine the next hop's
1383 * weight. Based on user setting, we may skip the next hop
1384 * in some situations.
1385 */
1386 if (do_wt_ecmp) {
1387 if (!bgp_zebra_use_nhop_weighted(bgp, mpinfo->attr,
1388 cum_bw, &nh_weight))
1389 continue;
1390 }
1391 api_nh = &api.nexthops[valid_nh_count];
1392
1393 if (CHECK_FLAG(info->attr->flag,
1394 ATTR_FLAG_BIT(BGP_ATTR_SRTE_COLOR)))
1395 api_nh->srte_color = info->attr->srte_color;
1396
1397 if (bgp_debug_zebra(&api.prefix)) {
1398 if (mpinfo->extra) {
1399 zlog_debug("%s: p=%pFX, bgp_is_valid_label: %d",
1400 __func__, p,
1401 bgp_is_valid_label(
1402 &mpinfo->extra->label[0]));
1403 } else {
1404 zlog_debug(
1405 "%s: p=%pFX, extra is NULL, no label",
1406 __func__, p);
1407 }
1408 }
1409
1410 if (bgp->table_map[afi][safi].name) {
1411 /* Copy info and attributes, so the route-map
1412 apply doesn't modify the BGP route info. */
1413 local_attr = *mpinfo->attr;
1414 mpinfo_cp->attr = &local_attr;
1415 if (!bgp_table_map_apply(bgp->table_map[afi][safi].map,
1416 p, mpinfo_cp))
1417 continue;
1418
1419 /* metric/tag is only allowed to be
1420 * overridden on 1st nexthop */
1421 if (mpinfo == info) {
1422 metric = mpinfo_cp->attr->med;
1423 tag = mpinfo_cp->attr->tag;
1424 }
1425 }
1426
1427 BGP_ORIGINAL_UPDATE(bgp_orig, mpinfo, bgp);
1428
1429 if (nh_family == AF_INET) {
1430 nh_updated = update_ipv4nh_for_route_install(
1431 nh_othervrf, bgp_orig,
1432 &mpinfo_cp->attr->nexthop, mpinfo_cp->attr,
1433 is_evpn, api_nh);
1434 } else {
1435 ifindex_t ifindex = IFINDEX_INTERNAL;
1436 struct in6_addr *nexthop;
1437
1438 nexthop = bgp_path_info_to_ipv6_nexthop(mpinfo_cp,
1439 &ifindex);
1440
1441 if (!nexthop)
1442 nh_updated = update_ipv4nh_for_route_install(
1443 nh_othervrf, bgp_orig,
1444 &mpinfo_cp->attr->nexthop,
1445 mpinfo_cp->attr, is_evpn, api_nh);
1446 else
1447 nh_updated = update_ipv6nh_for_route_install(
1448 nh_othervrf, bgp_orig, nexthop, ifindex,
1449 mpinfo, info, is_evpn, api_nh);
1450 }
1451
1452 /* Did we get proper nexthop info to update zebra? */
1453 if (!nh_updated)
1454 continue;
1455
1456 /* Allow recursion if it is a multipath group with both
1457 * eBGP and iBGP paths.
1458 */
1459 if (!allow_recursion
1460 && CHECK_FLAG(bgp->flags, BGP_FLAG_PEERTYPE_MULTIPATH_RELAX)
1461 && (mpinfo->peer->sort == BGP_PEER_IBGP
1462 || mpinfo->peer->sort == BGP_PEER_CONFED))
1463 allow_recursion = true;
1464
1465 if (mpinfo->extra
1466 && bgp_is_valid_label(&mpinfo->extra->label[0])
1467 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)) {
1468 label = label_pton(&mpinfo->extra->label[0]);
1469
1470 SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_LABEL);
1471
1472 api_nh->label_num = 1;
1473 api_nh->labels[0] = label;
1474 }
1475
1476 if (is_evpn
1477 && mpinfo->attr->evpn_overlay.type
1478 != OVERLAY_INDEX_GATEWAY_IP)
1479 memcpy(&api_nh->rmac, &(mpinfo->attr->rmac),
1480 sizeof(struct ethaddr));
1481
1482 api_nh->weight = nh_weight;
1483
1484 if (mpinfo->extra && !sid_zero(&mpinfo->extra->sid[0].sid)
1485 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)) {
1486 sid_info = &mpinfo->extra->sid[0];
1487
1488 memcpy(&api_nh->seg6_segs, &sid_info->sid,
1489 sizeof(api_nh->seg6_segs));
1490
1491 if (sid_info->transposition_len != 0) {
1492 if (!bgp_is_valid_label(
1493 &mpinfo->extra->label[0]))
1494 continue;
1495
1496 label = label_pton(&mpinfo->extra->label[0]);
1497 transpose_sid(&api_nh->seg6_segs, label,
1498 sid_info->transposition_offset,
1499 sid_info->transposition_len);
1500 }
1501
1502 SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_SEG6);
1503 }
1504
1505 valid_nh_count++;
1506 }
1507
1508 is_add = (valid_nh_count || nhg_id) ? true : false;
1509
1510 if (is_add && CHECK_FLAG(bm->flags, BM_FLAG_SEND_EXTRA_DATA_TO_ZEBRA)) {
1511 struct bgp_zebra_opaque bzo = {};
1512 const char *reason =
1513 bgp_path_selection_reason2str(dest->reason);
1514
1515 strlcpy(bzo.aspath, info->attr->aspath->str,
1516 sizeof(bzo.aspath));
1517
1518 if (info->attr->flag & ATTR_FLAG_BIT(BGP_ATTR_COMMUNITIES))
1519 strlcpy(bzo.community,
1520 bgp_attr_get_community(info->attr)->str,
1521 sizeof(bzo.community));
1522
1523 if (info->attr->flag
1524 & ATTR_FLAG_BIT(BGP_ATTR_LARGE_COMMUNITIES))
1525 strlcpy(bzo.lcommunity,
1526 bgp_attr_get_lcommunity(info->attr)->str,
1527 sizeof(bzo.lcommunity));
1528
1529 strlcpy(bzo.selection_reason, reason,
1530 sizeof(bzo.selection_reason));
1531
1532 SET_FLAG(api.message, ZAPI_MESSAGE_OPAQUE);
1533 api.opaque.length = MIN(sizeof(struct bgp_zebra_opaque),
1534 ZAPI_MESSAGE_OPAQUE_LENGTH);
1535 memcpy(api.opaque.data, &bzo, api.opaque.length);
1536 }
1537
1538 if (allow_recursion)
1539 SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
1540
1541 /*
1542 * When we create an aggregate route we must also
1543 * install a Null0 route in the RIB, so overwrite
1544 * what was written into api with a blackhole route
1545 */
1546 if (info->sub_type == BGP_ROUTE_AGGREGATE)
1547 zapi_route_set_blackhole(&api, BLACKHOLE_NULL);
1548 else
1549 api.nexthop_num = valid_nh_count;
1550
1551 SET_FLAG(api.message, ZAPI_MESSAGE_METRIC);
1552 api.metric = metric;
1553
1554 if (tag) {
1555 SET_FLAG(api.message, ZAPI_MESSAGE_TAG);
1556 api.tag = tag;
1557 }
1558
1559 distance = bgp_distance_apply(p, info, afi, safi, bgp);
1560 if (distance) {
1561 SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
1562 api.distance = distance;
1563 }
1564
1565 if (bgp_debug_zebra(p)) {
1566 char nh_buf[INET6_ADDRSTRLEN];
1567 char eth_buf[ETHER_ADDR_STRLEN + 7] = {'\0'};
1568 char buf1[ETHER_ADDR_STRLEN];
1569 char label_buf[20];
1570 char sid_buf[20];
1571 char segs_buf[256];
1572 int i;
1573
1574 zlog_debug(
1575 "Tx route %s VRF %u %pFX metric %u tag %" ROUTE_TAG_PRI
1576 " count %d nhg %d",
1577 valid_nh_count ? "add" : "delete", bgp->vrf_id,
1578 &api.prefix, api.metric, api.tag, api.nexthop_num,
1579 nhg_id);
1580 for (i = 0; i < api.nexthop_num; i++) {
1581 api_nh = &api.nexthops[i];
1582
1583 switch (api_nh->type) {
1584 case NEXTHOP_TYPE_IFINDEX:
1585 nh_buf[0] = '\0';
1586 break;
1587 case NEXTHOP_TYPE_IPV4:
1588 case NEXTHOP_TYPE_IPV4_IFINDEX:
1589 nh_family = AF_INET;
1590 inet_ntop(nh_family, &api_nh->gate, nh_buf,
1591 sizeof(nh_buf));
1592 break;
1593 case NEXTHOP_TYPE_IPV6:
1594 case NEXTHOP_TYPE_IPV6_IFINDEX:
1595 nh_family = AF_INET6;
1596 inet_ntop(nh_family, &api_nh->gate, nh_buf,
1597 sizeof(nh_buf));
1598 break;
1599 case NEXTHOP_TYPE_BLACKHOLE:
1600 strlcpy(nh_buf, "blackhole", sizeof(nh_buf));
1601 break;
1602 default:
1603 /* Note: add new nexthop case */
1604 assert(0);
1605 break;
1606 }
1607
1608 label_buf[0] = '\0';
1609 eth_buf[0] = '\0';
1610 segs_buf[0] = '\0';
1611 if (CHECK_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_LABEL)
1612 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE))
1613 snprintf(label_buf, sizeof(label_buf),
1614 "label %u", api_nh->labels[0]);
1615 if (CHECK_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_SEG6)
1616 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)) {
1617 inet_ntop(AF_INET6, &api_nh->seg6_segs,
1618 sid_buf, sizeof(sid_buf));
1619 snprintf(segs_buf, sizeof(segs_buf), "segs %s",
1620 sid_buf);
1621 }
1622 if (CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)
1623 && !is_zero_mac(&api_nh->rmac))
1624 snprintf(eth_buf, sizeof(eth_buf), " RMAC %s",
1625 prefix_mac2str(&api_nh->rmac,
1626 buf1, sizeof(buf1)));
1627 zlog_debug(" nhop [%d]: %s if %u VRF %u wt %u %s %s %s",
1628 i + 1, nh_buf, api_nh->ifindex,
1629 api_nh->vrf_id, api_nh->weight,
1630 label_buf, segs_buf, eth_buf);
1631 }
1632
1633 int recursion_flag = 0;
1634
1635 if (CHECK_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION))
1636 recursion_flag = 1;
1637
1638 zlog_debug("%s: %pFX: announcing to zebra (recursion %sset)",
1639 __func__, p, (recursion_flag ? "" : "NOT "));
1640 }
1641 zclient_route_send(is_add ? ZEBRA_ROUTE_ADD : ZEBRA_ROUTE_DELETE,
1642 zclient, &api);
1643 }
1644
1645 /* Announce all routes of a table to zebra */
1646 void bgp_zebra_announce_table(struct bgp *bgp, afi_t afi, safi_t safi)
1647 {
1648 struct bgp_dest *dest;
1649 struct bgp_table *table;
1650 struct bgp_path_info *pi;
1651
1652 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1653 * know of this instance.
1654 */
1655 if (!bgp_install_info_to_zebra(bgp))
1656 return;
1657
1658 table = bgp->rib[afi][safi];
1659 if (!table)
1660 return;
1661
1662 for (dest = bgp_table_top(table); dest; dest = bgp_route_next(dest))
1663 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next)
1664 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED) &&
1665
1666 (pi->type == ZEBRA_ROUTE_BGP
1667 && (pi->sub_type == BGP_ROUTE_NORMAL
1668 || pi->sub_type == BGP_ROUTE_IMPORTED)))
1669
1670 bgp_zebra_announce(dest,
1671 bgp_dest_get_prefix(dest),
1672 pi, bgp, afi, safi);
1673 }
1674
1675 /* Announce routes of any bgp subtype of a table to zebra */
1676 void bgp_zebra_announce_table_all_subtypes(struct bgp *bgp, afi_t afi,
1677 safi_t safi)
1678 {
1679 struct bgp_dest *dest;
1680 struct bgp_table *table;
1681 struct bgp_path_info *pi;
1682
1683 if (!bgp_install_info_to_zebra(bgp))
1684 return;
1685
1686 table = bgp->rib[afi][safi];
1687 if (!table)
1688 return;
1689
1690 for (dest = bgp_table_top(table); dest; dest = bgp_route_next(dest))
1691 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next)
1692 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED) &&
1693 pi->type == ZEBRA_ROUTE_BGP)
1694 bgp_zebra_announce(dest,
1695 bgp_dest_get_prefix(dest),
1696 pi, bgp, afi, safi);
1697 }
1698
1699 void bgp_zebra_withdraw(const struct prefix *p, struct bgp_path_info *info,
1700 struct bgp *bgp, safi_t safi)
1701 {
1702 struct zapi_route api;
1703 struct peer *peer;
1704
1705 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1706 * know of this instance.
1707 */
1708 if (!bgp_install_info_to_zebra(bgp))
1709 return;
1710
1711 if (safi == SAFI_FLOWSPEC) {
1712 peer = info->peer;
1713 bgp_pbr_update_entry(peer->bgp, p, info, AFI_IP, safi, false);
1714 return;
1715 }
1716
1717 memset(&api, 0, sizeof(api));
1718 api.vrf_id = bgp->vrf_id;
1719 api.type = ZEBRA_ROUTE_BGP;
1720 api.safi = safi;
1721 api.prefix = *p;
1722
1723 if (info->attr->rmap_table_id) {
1724 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
1725 api.tableid = info->attr->rmap_table_id;
1726 }
1727
1728 /* If the route's source is EVPN, flag as such. */
1729 if (is_route_parent_evpn(info))
1730 SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
1731
1732 if (bgp_debug_zebra(p))
1733 zlog_debug("Tx route delete VRF %u %pFX", bgp->vrf_id,
1734 &api.prefix);
1735
1736 zclient_route_send(ZEBRA_ROUTE_DELETE, zclient, &api);
1737 }
1738
1739 /* Withdraw all entries in a BGP instances RIB table from Zebra */
1740 void bgp_zebra_withdraw_table_all_subtypes(struct bgp *bgp, afi_t afi, safi_t safi)
1741 {
1742 struct bgp_dest *dest;
1743 struct bgp_table *table;
1744 struct bgp_path_info *pi;
1745
1746 if (!bgp_install_info_to_zebra(bgp))
1747 return;
1748
1749 table = bgp->rib[afi][safi];
1750 if (!table)
1751 return;
1752
1753 for (dest = bgp_table_top(table); dest; dest = bgp_route_next(dest)) {
1754 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next) {
1755 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED)
1756 && (pi->type == ZEBRA_ROUTE_BGP))
1757 bgp_zebra_withdraw(bgp_dest_get_prefix(dest),
1758 pi, bgp, safi);
1759 }
1760 }
1761 }
1762
1763 struct bgp_redist *bgp_redist_lookup(struct bgp *bgp, afi_t afi, uint8_t type,
1764 unsigned short instance)
1765 {
1766 struct list *red_list;
1767 struct listnode *node;
1768 struct bgp_redist *red;
1769
1770 red_list = bgp->redist[afi][type];
1771 if (!red_list)
1772 return (NULL);
1773
1774 for (ALL_LIST_ELEMENTS_RO(red_list, node, red))
1775 if (red->instance == instance)
1776 return red;
1777
1778 return NULL;
1779 }
1780
1781 struct bgp_redist *bgp_redist_add(struct bgp *bgp, afi_t afi, uint8_t type,
1782 unsigned short instance)
1783 {
1784 struct list *red_list;
1785 struct bgp_redist *red;
1786
1787 red = bgp_redist_lookup(bgp, afi, type, instance);
1788 if (red)
1789 return red;
1790
1791 if (!bgp->redist[afi][type])
1792 bgp->redist[afi][type] = list_new();
1793
1794 red_list = bgp->redist[afi][type];
1795 red = XCALLOC(MTYPE_BGP_REDIST, sizeof(struct bgp_redist));
1796 red->instance = instance;
1797
1798 listnode_add(red_list, red);
1799
1800 return red;
1801 }
1802
1803 static void bgp_redist_del(struct bgp *bgp, afi_t afi, uint8_t type,
1804 unsigned short instance)
1805 {
1806 struct bgp_redist *red;
1807
1808 red = bgp_redist_lookup(bgp, afi, type, instance);
1809
1810 if (red) {
1811 listnode_delete(bgp->redist[afi][type], red);
1812 XFREE(MTYPE_BGP_REDIST, red);
1813 if (!bgp->redist[afi][type]->count)
1814 list_delete(&bgp->redist[afi][type]);
1815 }
1816 }
1817
1818 /* Other routes redistribution into BGP. */
1819 int bgp_redistribute_set(struct bgp *bgp, afi_t afi, int type,
1820 unsigned short instance, bool changed)
1821 {
1822 /* If redistribute options are changed call
1823 * bgp_redistribute_unreg() to reset the option and withdraw
1824 * the routes
1825 */
1826 if (changed)
1827 bgp_redistribute_unreg(bgp, afi, type, instance);
1828
1829 /* Return if already redistribute flag is set. */
1830 if (instance) {
1831 if (redist_check_instance(&zclient->mi_redist[afi][type],
1832 instance))
1833 return CMD_WARNING;
1834
1835 redist_add_instance(&zclient->mi_redist[afi][type], instance);
1836 } else {
1837 if (vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
1838 return CMD_WARNING;
1839
1840 #ifdef ENABLE_BGP_VNC
1841 if (EVPN_ENABLED(bgp) && type == ZEBRA_ROUTE_VNC_DIRECT) {
1842 vnc_export_bgp_enable(
1843 bgp, afi); /* only enables if mode bits cfg'd */
1844 }
1845 #endif
1846
1847 vrf_bitmap_set(zclient->redist[afi][type], bgp->vrf_id);
1848 }
1849
1850 /*
1851 * Don't try to register if we're not connected to Zebra or Zebra
1852 * doesn't know of this instance.
1853 *
1854 * When we come up later well resend if needed.
1855 */
1856 if (!bgp_install_info_to_zebra(bgp))
1857 return CMD_SUCCESS;
1858
1859 if (BGP_DEBUG(zebra, ZEBRA))
1860 zlog_debug("Tx redistribute add VRF %u afi %d %s %d",
1861 bgp->vrf_id, afi, zebra_route_string(type),
1862 instance);
1863
1864 /* Send distribute add message to zebra. */
1865 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
1866 instance, bgp->vrf_id);
1867
1868 return CMD_SUCCESS;
1869 }
1870
1871 int bgp_redistribute_resend(struct bgp *bgp, afi_t afi, int type,
1872 unsigned short instance)
1873 {
1874 /* Don't try to send if we're not connected to Zebra or Zebra doesn't
1875 * know of this instance.
1876 */
1877 if (!bgp_install_info_to_zebra(bgp))
1878 return -1;
1879
1880 if (BGP_DEBUG(zebra, ZEBRA))
1881 zlog_debug("Tx redistribute del/add VRF %u afi %d %s %d",
1882 bgp->vrf_id, afi, zebra_route_string(type),
1883 instance);
1884
1885 /* Send distribute add message to zebra. */
1886 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi, type,
1887 instance, bgp->vrf_id);
1888 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
1889 instance, bgp->vrf_id);
1890
1891 return 0;
1892 }
1893
1894 /* Redistribute with route-map specification. */
1895 bool bgp_redistribute_rmap_set(struct bgp_redist *red, const char *name,
1896 struct route_map *route_map)
1897 {
1898 if (red->rmap.name && (strcmp(red->rmap.name, name) == 0))
1899 return false;
1900
1901 XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
1902 /* Decrement the count for existing routemap and
1903 * increment the count for new route map.
1904 */
1905 route_map_counter_decrement(red->rmap.map);
1906 red->rmap.name = XSTRDUP(MTYPE_ROUTE_MAP_NAME, name);
1907 red->rmap.map = route_map;
1908 route_map_counter_increment(red->rmap.map);
1909
1910 return true;
1911 }
1912
1913 /* Redistribute with metric specification. */
1914 bool bgp_redistribute_metric_set(struct bgp *bgp, struct bgp_redist *red,
1915 afi_t afi, int type, uint32_t metric)
1916 {
1917 struct bgp_dest *dest;
1918 struct bgp_path_info *pi;
1919
1920 if (red->redist_metric_flag && red->redist_metric == metric)
1921 return false;
1922
1923 red->redist_metric_flag = 1;
1924 red->redist_metric = metric;
1925
1926 for (dest = bgp_table_top(bgp->rib[afi][SAFI_UNICAST]); dest;
1927 dest = bgp_route_next(dest)) {
1928 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next) {
1929 if (pi->sub_type == BGP_ROUTE_REDISTRIBUTE
1930 && pi->type == type
1931 && pi->instance == red->instance) {
1932 struct attr *old_attr;
1933 struct attr new_attr;
1934
1935 new_attr = *pi->attr;
1936 new_attr.med = red->redist_metric;
1937 old_attr = pi->attr;
1938 pi->attr = bgp_attr_intern(&new_attr);
1939 bgp_attr_unintern(&old_attr);
1940
1941 bgp_path_info_set_flag(dest, pi,
1942 BGP_PATH_ATTR_CHANGED);
1943 bgp_process(bgp, dest, afi, SAFI_UNICAST);
1944 }
1945 }
1946 }
1947
1948 return true;
1949 }
1950
1951 /* Unset redistribution. */
1952 int bgp_redistribute_unreg(struct bgp *bgp, afi_t afi, int type,
1953 unsigned short instance)
1954 {
1955 struct bgp_redist *red;
1956
1957 red = bgp_redist_lookup(bgp, afi, type, instance);
1958 if (!red)
1959 return CMD_SUCCESS;
1960
1961 /* Return if zebra connection is disabled. */
1962 if (instance) {
1963 if (!redist_check_instance(&zclient->mi_redist[afi][type],
1964 instance))
1965 return CMD_WARNING;
1966 redist_del_instance(&zclient->mi_redist[afi][type], instance);
1967 } else {
1968 if (!vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
1969 return CMD_WARNING;
1970 vrf_bitmap_unset(zclient->redist[afi][type], bgp->vrf_id);
1971 }
1972
1973 if (bgp_install_info_to_zebra(bgp)) {
1974 /* Send distribute delete message to zebra. */
1975 if (BGP_DEBUG(zebra, ZEBRA))
1976 zlog_debug("Tx redistribute del VRF %u afi %d %s %d",
1977 bgp->vrf_id, afi, zebra_route_string(type),
1978 instance);
1979 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi,
1980 type, instance, bgp->vrf_id);
1981 }
1982
1983 /* Withdraw redistributed routes from current BGP's routing table. */
1984 bgp_redistribute_withdraw(bgp, afi, type, instance);
1985
1986 return CMD_SUCCESS;
1987 }
1988
1989 /* Unset redistribution. */
1990 int bgp_redistribute_unset(struct bgp *bgp, afi_t afi, int type,
1991 unsigned short instance)
1992 {
1993 struct bgp_redist *red;
1994
1995 /*
1996 * vnc and vpn->vrf checks must be before red check because
1997 * they operate within bgpd irrespective of zebra connection
1998 * status. red lookup fails if there is no zebra connection.
1999 */
2000 #ifdef ENABLE_BGP_VNC
2001 if (EVPN_ENABLED(bgp) && type == ZEBRA_ROUTE_VNC_DIRECT) {
2002 vnc_export_bgp_disable(bgp, afi);
2003 }
2004 #endif
2005
2006 red = bgp_redist_lookup(bgp, afi, type, instance);
2007 if (!red)
2008 return CMD_SUCCESS;
2009
2010 bgp_redistribute_unreg(bgp, afi, type, instance);
2011
2012 /* Unset route-map. */
2013 XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
2014 route_map_counter_decrement(red->rmap.map);
2015 red->rmap.map = NULL;
2016
2017 /* Unset metric. */
2018 red->redist_metric_flag = 0;
2019 red->redist_metric = 0;
2020
2021 bgp_redist_del(bgp, afi, type, instance);
2022
2023 return CMD_SUCCESS;
2024 }
2025
2026 void bgp_redistribute_redo(struct bgp *bgp)
2027 {
2028 afi_t afi;
2029 int i;
2030 struct list *red_list;
2031 struct listnode *node;
2032 struct bgp_redist *red;
2033
2034 for (afi = AFI_IP; afi < AFI_MAX; afi++) {
2035 for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
2036
2037 red_list = bgp->redist[afi][i];
2038 if (!red_list)
2039 continue;
2040
2041 for (ALL_LIST_ELEMENTS_RO(red_list, node, red)) {
2042 bgp_redistribute_resend(bgp, afi, i,
2043 red->instance);
2044 }
2045 }
2046 }
2047 }
2048
2049 void bgp_zclient_reset(void)
2050 {
2051 zclient_reset(zclient);
2052 }
2053
2054 /* Register this instance with Zebra. Invoked upon connect (for
2055 * default instance) and when other VRFs are learnt (or created and
2056 * already learnt).
2057 */
2058 void bgp_zebra_instance_register(struct bgp *bgp)
2059 {
2060 /* Don't try to register if we're not connected to Zebra */
2061 if (!zclient || zclient->sock < 0)
2062 return;
2063
2064 if (BGP_DEBUG(zebra, ZEBRA))
2065 zlog_debug("Registering VRF %u", bgp->vrf_id);
2066
2067 /* Register for router-id, interfaces, redistributed routes. */
2068 zclient_send_reg_requests(zclient, bgp->vrf_id);
2069
2070 /* For EVPN instance, register to learn about VNIs, if appropriate. */
2071 if (bgp->advertise_all_vni)
2072 bgp_zebra_advertise_all_vni(bgp, 1);
2073
2074 bgp_nht_register_nexthops(bgp);
2075 }
2076
2077 /* Deregister this instance with Zebra. Invoked upon the instance
2078 * being deleted (default or VRF) and it is already registered.
2079 */
2080 void bgp_zebra_instance_deregister(struct bgp *bgp)
2081 {
2082 /* Don't try to deregister if we're not connected to Zebra */
2083 if (zclient->sock < 0)
2084 return;
2085
2086 if (BGP_DEBUG(zebra, ZEBRA))
2087 zlog_debug("Deregistering VRF %u", bgp->vrf_id);
2088
2089 /* For EVPN instance, unregister learning about VNIs, if appropriate. */
2090 if (bgp->advertise_all_vni)
2091 bgp_zebra_advertise_all_vni(bgp, 0);
2092
2093 /* Deregister for router-id, interfaces, redistributed routes. */
2094 zclient_send_dereg_requests(zclient, bgp->vrf_id);
2095 }
2096
2097 void bgp_zebra_initiate_radv(struct bgp *bgp, struct peer *peer)
2098 {
2099 uint32_t ra_interval = BGP_UNNUM_DEFAULT_RA_INTERVAL;
2100
2101 /* Don't try to initiate if we're not connected to Zebra */
2102 if (zclient->sock < 0)
2103 return;
2104
2105 if (BGP_DEBUG(zebra, ZEBRA))
2106 zlog_debug("%u: Initiating RA for peer %s", bgp->vrf_id,
2107 peer->host);
2108
2109 /*
2110 * If unnumbered peer (peer->ifp) call thru zapi to start RAs.
2111 * If we don't have an ifp pointer, call function to find the
2112 * ifps for a numbered enhe peer to turn RAs on.
2113 */
2114 peer->ifp ? zclient_send_interface_radv_req(zclient, bgp->vrf_id,
2115 peer->ifp, 1, ra_interval)
2116 : bgp_nht_reg_enhe_cap_intfs(peer);
2117 }
2118
2119 void bgp_zebra_terminate_radv(struct bgp *bgp, struct peer *peer)
2120 {
2121 /* Don't try to terminate if we're not connected to Zebra */
2122 if (zclient->sock < 0)
2123 return;
2124
2125 if (BGP_DEBUG(zebra, ZEBRA))
2126 zlog_debug("%u: Terminating RA for peer %s", bgp->vrf_id,
2127 peer->host);
2128
2129 /*
2130 * If unnumbered peer (peer->ifp) call thru zapi to stop RAs.
2131 * If we don't have an ifp pointer, call function to find the
2132 * ifps for a numbered enhe peer to turn RAs off.
2133 */
2134 peer->ifp ? zclient_send_interface_radv_req(zclient, bgp->vrf_id,
2135 peer->ifp, 0, 0)
2136 : bgp_nht_dereg_enhe_cap_intfs(peer);
2137 }
2138
2139 int bgp_zebra_advertise_subnet(struct bgp *bgp, int advertise, vni_t vni)
2140 {
2141 struct stream *s = NULL;
2142
2143 /* Check socket. */
2144 if (!zclient || zclient->sock < 0)
2145 return 0;
2146
2147 /* Don't try to register if Zebra doesn't know of this instance. */
2148 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
2149 if (BGP_DEBUG(zebra, ZEBRA))
2150 zlog_debug(
2151 "%s: No zebra instance to talk to, cannot advertise subnet",
2152 __func__);
2153 return 0;
2154 }
2155
2156 s = zclient->obuf;
2157 stream_reset(s);
2158
2159 zclient_create_header(s, ZEBRA_ADVERTISE_SUBNET, bgp->vrf_id);
2160 stream_putc(s, advertise);
2161 stream_put3(s, vni);
2162 stream_putw_at(s, 0, stream_get_endp(s));
2163
2164 return zclient_send_message(zclient);
2165 }
2166
2167 int bgp_zebra_advertise_svi_macip(struct bgp *bgp, int advertise, vni_t vni)
2168 {
2169 struct stream *s = NULL;
2170
2171 /* Check socket. */
2172 if (!zclient || zclient->sock < 0)
2173 return 0;
2174
2175 /* Don't try to register if Zebra doesn't know of this instance. */
2176 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
2177 return 0;
2178
2179 s = zclient->obuf;
2180 stream_reset(s);
2181
2182 zclient_create_header(s, ZEBRA_ADVERTISE_SVI_MACIP, bgp->vrf_id);
2183 stream_putc(s, advertise);
2184 stream_putl(s, vni);
2185 stream_putw_at(s, 0, stream_get_endp(s));
2186
2187 return zclient_send_message(zclient);
2188 }
2189
2190 int bgp_zebra_advertise_gw_macip(struct bgp *bgp, int advertise, vni_t vni)
2191 {
2192 struct stream *s = NULL;
2193
2194 /* Check socket. */
2195 if (!zclient || zclient->sock < 0)
2196 return 0;
2197
2198 /* Don't try to register if Zebra doesn't know of this instance. */
2199 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
2200 if (BGP_DEBUG(zebra, ZEBRA))
2201 zlog_debug(
2202 "%s: No zebra instance to talk to, not installing gw_macip",
2203 __func__);
2204 return 0;
2205 }
2206
2207 s = zclient->obuf;
2208 stream_reset(s);
2209
2210 zclient_create_header(s, ZEBRA_ADVERTISE_DEFAULT_GW, bgp->vrf_id);
2211 stream_putc(s, advertise);
2212 stream_putl(s, vni);
2213 stream_putw_at(s, 0, stream_get_endp(s));
2214
2215 return zclient_send_message(zclient);
2216 }
2217
2218 int bgp_zebra_vxlan_flood_control(struct bgp *bgp,
2219 enum vxlan_flood_control flood_ctrl)
2220 {
2221 struct stream *s;
2222
2223 /* Check socket. */
2224 if (!zclient || zclient->sock < 0)
2225 return 0;
2226
2227 /* Don't try to register if Zebra doesn't know of this instance. */
2228 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
2229 if (BGP_DEBUG(zebra, ZEBRA))
2230 zlog_debug(
2231 "%s: No zebra instance to talk to, not installing all vni",
2232 __func__);
2233 return 0;
2234 }
2235
2236 s = zclient->obuf;
2237 stream_reset(s);
2238
2239 zclient_create_header(s, ZEBRA_VXLAN_FLOOD_CONTROL, bgp->vrf_id);
2240 stream_putc(s, flood_ctrl);
2241 stream_putw_at(s, 0, stream_get_endp(s));
2242
2243 return zclient_send_message(zclient);
2244 }
2245
2246 int bgp_zebra_advertise_all_vni(struct bgp *bgp, int advertise)
2247 {
2248 struct stream *s;
2249
2250 /* Check socket. */
2251 if (!zclient || zclient->sock < 0)
2252 return 0;
2253
2254 /* Don't try to register if Zebra doesn't know of this instance. */
2255 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
2256 return 0;
2257
2258 s = zclient->obuf;
2259 stream_reset(s);
2260
2261 zclient_create_header(s, ZEBRA_ADVERTISE_ALL_VNI, bgp->vrf_id);
2262 stream_putc(s, advertise);
2263 /* Also inform current BUM handling setting. This is really
2264 * relevant only when 'advertise' is set.
2265 */
2266 stream_putc(s, bgp->vxlan_flood_ctrl);
2267 stream_putw_at(s, 0, stream_get_endp(s));
2268
2269 return zclient_send_message(zclient);
2270 }
2271
2272 int bgp_zebra_dup_addr_detection(struct bgp *bgp)
2273 {
2274 struct stream *s;
2275
2276 /* Check socket. */
2277 if (!zclient || zclient->sock < 0)
2278 return 0;
2279
2280 /* Don't try to register if Zebra doesn't know of this instance. */
2281 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
2282 return 0;
2283
2284 if (BGP_DEBUG(zebra, ZEBRA))
2285 zlog_debug("dup addr detect %s max_moves %u time %u freeze %s freeze_time %u",
2286 bgp->evpn_info->dup_addr_detect ?
2287 "enable" : "disable",
2288 bgp->evpn_info->dad_max_moves,
2289 bgp->evpn_info->dad_time,
2290 bgp->evpn_info->dad_freeze ?
2291 "enable" : "disable",
2292 bgp->evpn_info->dad_freeze_time);
2293
2294 s = zclient->obuf;
2295 stream_reset(s);
2296 zclient_create_header(s, ZEBRA_DUPLICATE_ADDR_DETECTION,
2297 bgp->vrf_id);
2298 stream_putl(s, bgp->evpn_info->dup_addr_detect);
2299 stream_putl(s, bgp->evpn_info->dad_time);
2300 stream_putl(s, bgp->evpn_info->dad_max_moves);
2301 stream_putl(s, bgp->evpn_info->dad_freeze);
2302 stream_putl(s, bgp->evpn_info->dad_freeze_time);
2303 stream_putw_at(s, 0, stream_get_endp(s));
2304
2305 return zclient_send_message(zclient);
2306 }
2307
2308 static int rule_notify_owner(ZAPI_CALLBACK_ARGS)
2309 {
2310 uint32_t seqno, priority, unique;
2311 enum zapi_rule_notify_owner note;
2312 struct bgp_pbr_action *bgp_pbra;
2313 struct bgp_pbr_rule *bgp_pbr = NULL;
2314 char ifname[INTERFACE_NAMSIZ + 1];
2315
2316 if (!zapi_rule_notify_decode(zclient->ibuf, &seqno, &priority, &unique,
2317 ifname, &note))
2318 return -1;
2319
2320 bgp_pbra = bgp_pbr_action_rule_lookup(vrf_id, unique);
2321 if (!bgp_pbra) {
2322 /* look in bgp pbr rule */
2323 bgp_pbr = bgp_pbr_rule_lookup(vrf_id, unique);
2324 if (!bgp_pbr && note != ZAPI_RULE_REMOVED) {
2325 if (BGP_DEBUG(zebra, ZEBRA))
2326 zlog_debug("%s: Fail to look BGP rule (%u)",
2327 __func__, unique);
2328 return 0;
2329 }
2330 }
2331
2332 switch (note) {
2333 case ZAPI_RULE_FAIL_INSTALL:
2334 if (BGP_DEBUG(zebra, ZEBRA))
2335 zlog_debug("%s: Received RULE_FAIL_INSTALL", __func__);
2336 if (bgp_pbra) {
2337 bgp_pbra->installed = false;
2338 bgp_pbra->install_in_progress = false;
2339 } else {
2340 bgp_pbr->installed = false;
2341 bgp_pbr->install_in_progress = false;
2342 }
2343 break;
2344 case ZAPI_RULE_INSTALLED:
2345 if (bgp_pbra) {
2346 bgp_pbra->installed = true;
2347 bgp_pbra->install_in_progress = false;
2348 } else {
2349 struct bgp_path_info *path;
2350 struct bgp_path_info_extra *extra;
2351
2352 bgp_pbr->installed = true;
2353 bgp_pbr->install_in_progress = false;
2354 bgp_pbr->action->refcnt++;
2355 /* link bgp_info to bgp_pbr */
2356 path = (struct bgp_path_info *)bgp_pbr->path;
2357 extra = bgp_path_info_extra_get(path);
2358 listnode_add_force(&extra->bgp_fs_iprule,
2359 bgp_pbr);
2360 }
2361 if (BGP_DEBUG(zebra, ZEBRA))
2362 zlog_debug("%s: Received RULE_INSTALLED", __func__);
2363 break;
2364 case ZAPI_RULE_FAIL_REMOVE:
2365 case ZAPI_RULE_REMOVED:
2366 if (BGP_DEBUG(zebra, ZEBRA))
2367 zlog_debug("%s: Received RULE REMOVED", __func__);
2368 break;
2369 }
2370
2371 return 0;
2372 }
2373
2374 static int ipset_notify_owner(ZAPI_CALLBACK_ARGS)
2375 {
2376 uint32_t unique;
2377 enum zapi_ipset_notify_owner note;
2378 struct bgp_pbr_match *bgp_pbim;
2379
2380 if (!zapi_ipset_notify_decode(zclient->ibuf,
2381 &unique,
2382 &note))
2383 return -1;
2384
2385 bgp_pbim = bgp_pbr_match_ipset_lookup(vrf_id, unique);
2386 if (!bgp_pbim) {
2387 if (BGP_DEBUG(zebra, ZEBRA))
2388 zlog_debug("%s: Fail to look BGP match ( %u, ID %u)",
2389 __func__, note, unique);
2390 return 0;
2391 }
2392
2393 switch (note) {
2394 case ZAPI_IPSET_FAIL_INSTALL:
2395 if (BGP_DEBUG(zebra, ZEBRA))
2396 zlog_debug("%s: Received IPSET_FAIL_INSTALL", __func__);
2397 bgp_pbim->installed = false;
2398 bgp_pbim->install_in_progress = false;
2399 break;
2400 case ZAPI_IPSET_INSTALLED:
2401 bgp_pbim->installed = true;
2402 bgp_pbim->install_in_progress = false;
2403 if (BGP_DEBUG(zebra, ZEBRA))
2404 zlog_debug("%s: Received IPSET_INSTALLED", __func__);
2405 break;
2406 case ZAPI_IPSET_FAIL_REMOVE:
2407 case ZAPI_IPSET_REMOVED:
2408 if (BGP_DEBUG(zebra, ZEBRA))
2409 zlog_debug("%s: Received IPSET REMOVED", __func__);
2410 break;
2411 }
2412
2413 return 0;
2414 }
2415
2416 static int ipset_entry_notify_owner(ZAPI_CALLBACK_ARGS)
2417 {
2418 uint32_t unique;
2419 char ipset_name[ZEBRA_IPSET_NAME_SIZE];
2420 enum zapi_ipset_entry_notify_owner note;
2421 struct bgp_pbr_match_entry *bgp_pbime;
2422
2423 if (!zapi_ipset_entry_notify_decode(
2424 zclient->ibuf,
2425 &unique,
2426 ipset_name,
2427 &note))
2428 return -1;
2429 bgp_pbime = bgp_pbr_match_ipset_entry_lookup(vrf_id,
2430 ipset_name,
2431 unique);
2432 if (!bgp_pbime) {
2433 if (BGP_DEBUG(zebra, ZEBRA))
2434 zlog_debug(
2435 "%s: Fail to look BGP match entry (%u, ID %u)",
2436 __func__, note, unique);
2437 return 0;
2438 }
2439
2440 switch (note) {
2441 case ZAPI_IPSET_ENTRY_FAIL_INSTALL:
2442 if (BGP_DEBUG(zebra, ZEBRA))
2443 zlog_debug("%s: Received IPSET_ENTRY_FAIL_INSTALL",
2444 __func__);
2445 bgp_pbime->installed = false;
2446 bgp_pbime->install_in_progress = false;
2447 break;
2448 case ZAPI_IPSET_ENTRY_INSTALLED:
2449 {
2450 struct bgp_path_info *path;
2451 struct bgp_path_info_extra *extra;
2452
2453 bgp_pbime->installed = true;
2454 bgp_pbime->install_in_progress = false;
2455 if (BGP_DEBUG(zebra, ZEBRA))
2456 zlog_debug("%s: Received IPSET_ENTRY_INSTALLED",
2457 __func__);
2458 /* link bgp_path_info to bpme */
2459 path = (struct bgp_path_info *)bgp_pbime->path;
2460 extra = bgp_path_info_extra_get(path);
2461 listnode_add_force(&extra->bgp_fs_pbr, bgp_pbime);
2462 }
2463 break;
2464 case ZAPI_IPSET_ENTRY_FAIL_REMOVE:
2465 case ZAPI_IPSET_ENTRY_REMOVED:
2466 if (BGP_DEBUG(zebra, ZEBRA))
2467 zlog_debug("%s: Received IPSET_ENTRY_REMOVED",
2468 __func__);
2469 break;
2470 }
2471 return 0;
2472 }
2473
2474 static int iptable_notify_owner(ZAPI_CALLBACK_ARGS)
2475 {
2476 uint32_t unique;
2477 enum zapi_iptable_notify_owner note;
2478 struct bgp_pbr_match *bgpm;
2479
2480 if (!zapi_iptable_notify_decode(
2481 zclient->ibuf,
2482 &unique,
2483 &note))
2484 return -1;
2485 bgpm = bgp_pbr_match_iptable_lookup(vrf_id, unique);
2486 if (!bgpm) {
2487 if (BGP_DEBUG(zebra, ZEBRA))
2488 zlog_debug("%s: Fail to look BGP iptable (%u %u)",
2489 __func__, note, unique);
2490 return 0;
2491 }
2492 switch (note) {
2493 case ZAPI_IPTABLE_FAIL_INSTALL:
2494 if (BGP_DEBUG(zebra, ZEBRA))
2495 zlog_debug("%s: Received IPTABLE_FAIL_INSTALL",
2496 __func__);
2497 bgpm->installed_in_iptable = false;
2498 bgpm->install_iptable_in_progress = false;
2499 break;
2500 case ZAPI_IPTABLE_INSTALLED:
2501 bgpm->installed_in_iptable = true;
2502 bgpm->install_iptable_in_progress = false;
2503 if (BGP_DEBUG(zebra, ZEBRA))
2504 zlog_debug("%s: Received IPTABLE_INSTALLED", __func__);
2505 bgpm->action->refcnt++;
2506 break;
2507 case ZAPI_IPTABLE_FAIL_REMOVE:
2508 case ZAPI_IPTABLE_REMOVED:
2509 if (BGP_DEBUG(zebra, ZEBRA))
2510 zlog_debug("%s: Received IPTABLE REMOVED", __func__);
2511 break;
2512 }
2513 return 0;
2514 }
2515
2516 /* Process route notification messages from RIB */
2517 static int bgp_zebra_route_notify_owner(int command, struct zclient *zclient,
2518 zebra_size_t length, vrf_id_t vrf_id)
2519 {
2520 struct prefix p;
2521 enum zapi_route_notify_owner note;
2522 uint32_t table_id;
2523 afi_t afi;
2524 safi_t safi;
2525 struct bgp_dest *dest;
2526 struct bgp *bgp;
2527 struct bgp_path_info *pi, *new_select;
2528
2529 if (!zapi_route_notify_decode(zclient->ibuf, &p, &table_id, &note,
2530 &afi, &safi)) {
2531 zlog_err("%s : error in msg decode", __func__);
2532 return -1;
2533 }
2534
2535 /* Get the bgp instance */
2536 bgp = bgp_lookup_by_vrf_id(vrf_id);
2537 if (!bgp) {
2538 flog_err(EC_BGP_INVALID_BGP_INSTANCE,
2539 "%s : bgp instance not found vrf %d", __func__,
2540 vrf_id);
2541 return -1;
2542 }
2543
2544 /* Find the bgp route node */
2545 dest = bgp_afi_node_lookup(bgp->rib[afi][safi], afi, safi, &p,
2546 &bgp->vrf_prd);
2547 if (!dest)
2548 return -1;
2549
2550 switch (note) {
2551 case ZAPI_ROUTE_INSTALLED:
2552 new_select = NULL;
2553 /* Clear the flags so that route can be processed */
2554 UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALL_PENDING);
2555 SET_FLAG(dest->flags, BGP_NODE_FIB_INSTALLED);
2556 if (BGP_DEBUG(zebra, ZEBRA))
2557 zlog_debug("route %pRN : INSTALLED", dest);
2558 /* Find the best route */
2559 for (pi = dest->info; pi; pi = pi->next) {
2560 /* Process aggregate route */
2561 bgp_aggregate_increment(bgp, &p, pi, afi, safi);
2562 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED))
2563 new_select = pi;
2564 }
2565 /* Advertise the route */
2566 if (new_select)
2567 group_announce_route(bgp, afi, safi, dest, new_select);
2568 else {
2569 flog_err(EC_BGP_INVALID_ROUTE,
2570 "selected route %pRN not found", dest);
2571
2572 bgp_dest_unlock_node(dest);
2573 return -1;
2574 }
2575 break;
2576 case ZAPI_ROUTE_REMOVED:
2577 /* Route deleted from dataplane, reset the installed flag
2578 * so that route can be reinstalled when client sends
2579 * route add later
2580 */
2581 UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALLED);
2582 if (BGP_DEBUG(zebra, ZEBRA))
2583 zlog_debug("route %pRN: Removed from Fib", dest);
2584 break;
2585 case ZAPI_ROUTE_FAIL_INSTALL:
2586 new_select = NULL;
2587 if (BGP_DEBUG(zebra, ZEBRA))
2588 zlog_debug("route: %pRN Failed to Install into Fib",
2589 dest);
2590 UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALL_PENDING);
2591 UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALLED);
2592 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next) {
2593 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED))
2594 new_select = pi;
2595 }
2596 if (new_select)
2597 group_announce_route(bgp, afi, safi, dest, new_select);
2598 /* Error will be logged by zebra module */
2599 break;
2600 case ZAPI_ROUTE_BETTER_ADMIN_WON:
2601 if (BGP_DEBUG(zebra, ZEBRA))
2602 zlog_debug("route: %pRN removed due to better admin won",
2603 dest);
2604 new_select = NULL;
2605 UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALL_PENDING);
2606 UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALLED);
2607 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next) {
2608 bgp_aggregate_decrement(bgp, &p, pi, afi, safi);
2609 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED))
2610 new_select = pi;
2611 }
2612 if (new_select)
2613 group_announce_route(bgp, afi, safi, dest, new_select);
2614 /* No action required */
2615 break;
2616 case ZAPI_ROUTE_REMOVE_FAIL:
2617 zlog_warn("%s: Route %pRN failure to remove",
2618 __func__, dest);
2619 break;
2620 }
2621
2622 bgp_dest_unlock_node(dest);
2623 return 0;
2624 }
2625
2626 /* this function is used to forge ip rule,
2627 * - either for iptable/ipset using fwmark id
2628 * - or for sample ip rule cmd
2629 */
2630 static void bgp_encode_pbr_rule_action(struct stream *s,
2631 struct bgp_pbr_action *pbra,
2632 struct bgp_pbr_rule *pbr)
2633 {
2634 struct prefix pfx;
2635 uint8_t fam = AF_INET;
2636 char ifname[INTERFACE_NAMSIZ];
2637
2638 if (pbra->nh.type == NEXTHOP_TYPE_IPV6)
2639 fam = AF_INET6;
2640 stream_putl(s, 0); /* seqno unused */
2641 if (pbr)
2642 stream_putl(s, pbr->priority);
2643 else
2644 stream_putl(s, 0);
2645 /* ruleno unused - priority change
2646 * ruleno permits distinguishing various FS PBR entries
2647 * - FS PBR entries based on ipset/iptables
2648 * - FS PBR entries based on iprule
2649 * the latter may contain default routing information injected by FS
2650 */
2651 if (pbr)
2652 stream_putl(s, pbr->unique);
2653 else
2654 stream_putl(s, pbra->unique);
2655 stream_putc(s, 0); /* ip protocol being used */
2656 if (pbr && pbr->flags & MATCH_IP_SRC_SET)
2657 memcpy(&pfx, &(pbr->src), sizeof(struct prefix));
2658 else {
2659 memset(&pfx, 0, sizeof(pfx));
2660 pfx.family = fam;
2661 }
2662 stream_putc(s, pfx.family);
2663 stream_putc(s, pfx.prefixlen);
2664 stream_put(s, &pfx.u.prefix, prefix_blen(&pfx));
2665
2666 stream_putw(s, 0); /* src port */
2667
2668 if (pbr && pbr->flags & MATCH_IP_DST_SET)
2669 memcpy(&pfx, &(pbr->dst), sizeof(struct prefix));
2670 else {
2671 memset(&pfx, 0, sizeof(pfx));
2672 pfx.family = fam;
2673 }
2674 stream_putc(s, pfx.family);
2675 stream_putc(s, pfx.prefixlen);
2676 stream_put(s, &pfx.u.prefix, prefix_blen(&pfx));
2677
2678 stream_putw(s, 0); /* dst port */
2679 stream_putc(s, 0); /* dsfield */
2680 /* if pbr present, fwmark is not used */
2681 if (pbr)
2682 stream_putl(s, 0);
2683 else
2684 stream_putl(s, pbra->fwmark); /* fwmark */
2685
2686 stream_putl(s, pbra->table_id);
2687
2688 memset(ifname, 0, sizeof(ifname));
2689 stream_put(s, ifname, INTERFACE_NAMSIZ); /* ifname unused */
2690 }
2691
2692 static void bgp_encode_pbr_ipset_match(struct stream *s,
2693 struct bgp_pbr_match *pbim)
2694 {
2695 stream_putl(s, pbim->unique);
2696 stream_putl(s, pbim->type);
2697 stream_putc(s, pbim->family);
2698 stream_put(s, pbim->ipset_name,
2699 ZEBRA_IPSET_NAME_SIZE);
2700 }
2701
2702 static void bgp_encode_pbr_ipset_entry_match(struct stream *s,
2703 struct bgp_pbr_match_entry *pbime)
2704 {
2705 stream_putl(s, pbime->unique);
2706 /* check that back pointer is not null */
2707 stream_put(s, pbime->backpointer->ipset_name,
2708 ZEBRA_IPSET_NAME_SIZE);
2709
2710 stream_putc(s, pbime->src.family);
2711 stream_putc(s, pbime->src.prefixlen);
2712 stream_put(s, &pbime->src.u.prefix, prefix_blen(&pbime->src));
2713
2714 stream_putc(s, pbime->dst.family);
2715 stream_putc(s, pbime->dst.prefixlen);
2716 stream_put(s, &pbime->dst.u.prefix, prefix_blen(&pbime->dst));
2717
2718 stream_putw(s, pbime->src_port_min);
2719 stream_putw(s, pbime->src_port_max);
2720 stream_putw(s, pbime->dst_port_min);
2721 stream_putw(s, pbime->dst_port_max);
2722 stream_putc(s, pbime->proto);
2723 }
2724
2725 static void bgp_encode_pbr_iptable_match(struct stream *s,
2726 struct bgp_pbr_action *bpa,
2727 struct bgp_pbr_match *pbm)
2728 {
2729 stream_putl(s, pbm->unique2);
2730
2731 stream_putl(s, pbm->type);
2732
2733 stream_putl(s, pbm->flags);
2734
2735 /* TODO: correlate with what is contained
2736 * into bgp_pbr_action.
2737 * currently only forward supported
2738 */
2739 if (bpa->nh.type == NEXTHOP_TYPE_BLACKHOLE)
2740 stream_putl(s, ZEBRA_IPTABLES_DROP);
2741 else
2742 stream_putl(s, ZEBRA_IPTABLES_FORWARD);
2743 stream_putl(s, bpa->fwmark);
2744 stream_put(s, pbm->ipset_name,
2745 ZEBRA_IPSET_NAME_SIZE);
2746 stream_putc(s, pbm->family);
2747 stream_putw(s, pbm->pkt_len_min);
2748 stream_putw(s, pbm->pkt_len_max);
2749 stream_putw(s, pbm->tcp_flags);
2750 stream_putw(s, pbm->tcp_mask_flags);
2751 stream_putc(s, pbm->dscp_value);
2752 stream_putc(s, pbm->fragment);
2753 stream_putc(s, pbm->protocol);
2754 stream_putw(s, pbm->flow_label);
2755 }
2756
2757 /* BGP has established connection with Zebra. */
2758 static void bgp_zebra_connected(struct zclient *zclient)
2759 {
2760 struct bgp *bgp;
2761
2762 zclient_num_connects++; /* increment even if not responding */
2763
2764 /* Send the client registration */
2765 bfd_client_sendmsg(zclient, ZEBRA_BFD_CLIENT_REGISTER, VRF_DEFAULT);
2766
2767 /* At this point, we may or may not have BGP instances configured, but
2768 * we're only interested in the default VRF (others wouldn't have learnt
2769 * the VRF from Zebra yet.)
2770 */
2771 bgp = bgp_get_default();
2772 if (!bgp)
2773 return;
2774
2775 bgp_zebra_instance_register(bgp);
2776
2777 /* tell label pool that zebra is connected */
2778 bgp_lp_event_zebra_up();
2779
2780 /* TODO - What if we have peers and networks configured, do we have to
2781 * kick-start them?
2782 */
2783 BGP_GR_ROUTER_DETECT_AND_SEND_CAPABILITY_TO_ZEBRA(bgp, bgp->peer);
2784 }
2785
2786 static int bgp_zebra_process_local_es_add(ZAPI_CALLBACK_ARGS)
2787 {
2788 esi_t esi;
2789 struct bgp *bgp = NULL;
2790 struct stream *s = NULL;
2791 char buf[ESI_STR_LEN];
2792 struct in_addr originator_ip;
2793 uint8_t active;
2794 uint8_t bypass;
2795 uint16_t df_pref;
2796
2797 bgp = bgp_lookup_by_vrf_id(vrf_id);
2798 if (!bgp)
2799 return 0;
2800
2801 s = zclient->ibuf;
2802 stream_get(&esi, s, sizeof(esi_t));
2803 originator_ip.s_addr = stream_get_ipv4(s);
2804 active = stream_getc(s);
2805 df_pref = stream_getw(s);
2806 bypass = stream_getc(s);
2807
2808 if (BGP_DEBUG(zebra, ZEBRA))
2809 zlog_debug(
2810 "Rx add ESI %s originator-ip %pI4 active %u df_pref %u %s",
2811 esi_to_str(&esi, buf, sizeof(buf)), &originator_ip,
2812 active, df_pref, bypass ? "bypass" : "");
2813
2814 frrtrace(5, frr_bgp, evpn_mh_local_es_add_zrecv, &esi, originator_ip,
2815 active, bypass, df_pref);
2816
2817 bgp_evpn_local_es_add(bgp, &esi, originator_ip, active, df_pref,
2818 !!bypass);
2819
2820 return 0;
2821 }
2822
2823 static int bgp_zebra_process_local_es_del(ZAPI_CALLBACK_ARGS)
2824 {
2825 esi_t esi;
2826 struct bgp *bgp = NULL;
2827 struct stream *s = NULL;
2828 char buf[ESI_STR_LEN];
2829
2830 memset(&esi, 0, sizeof(esi_t));
2831 bgp = bgp_lookup_by_vrf_id(vrf_id);
2832 if (!bgp)
2833 return 0;
2834
2835 s = zclient->ibuf;
2836 stream_get(&esi, s, sizeof(esi_t));
2837
2838 if (BGP_DEBUG(zebra, ZEBRA))
2839 zlog_debug("Rx del ESI %s",
2840 esi_to_str(&esi, buf, sizeof(buf)));
2841
2842 frrtrace(1, frr_bgp, evpn_mh_local_es_del_zrecv, &esi);
2843
2844 bgp_evpn_local_es_del(bgp, &esi);
2845
2846 return 0;
2847 }
2848
2849 static int bgp_zebra_process_local_es_evi(ZAPI_CALLBACK_ARGS)
2850 {
2851 esi_t esi;
2852 vni_t vni;
2853 struct bgp *bgp;
2854 struct stream *s;
2855 char buf[ESI_STR_LEN];
2856
2857 bgp = bgp_lookup_by_vrf_id(vrf_id);
2858 if (!bgp)
2859 return 0;
2860
2861 s = zclient->ibuf;
2862 stream_get(&esi, s, sizeof(esi_t));
2863 vni = stream_getl(s);
2864
2865 if (BGP_DEBUG(zebra, ZEBRA))
2866 zlog_debug("Rx %s ESI %s VNI %u",
2867 (cmd == ZEBRA_VNI_ADD) ? "add" : "del",
2868 esi_to_str(&esi, buf, sizeof(buf)), vni);
2869
2870 if (cmd == ZEBRA_LOCAL_ES_EVI_ADD) {
2871 frrtrace(2, frr_bgp, evpn_mh_local_es_evi_add_zrecv, &esi, vni);
2872
2873 bgp_evpn_local_es_evi_add(bgp, &esi, vni);
2874 } else {
2875 frrtrace(2, frr_bgp, evpn_mh_local_es_evi_del_zrecv, &esi, vni);
2876
2877 bgp_evpn_local_es_evi_del(bgp, &esi, vni);
2878 }
2879
2880 return 0;
2881 }
2882
2883 static int bgp_zebra_process_local_l3vni(ZAPI_CALLBACK_ARGS)
2884 {
2885 int filter = 0;
2886 vni_t l3vni = 0;
2887 struct ethaddr svi_rmac, vrr_rmac = {.octet = {0} };
2888 struct in_addr originator_ip;
2889 struct stream *s;
2890 ifindex_t svi_ifindex;
2891 bool is_anycast_mac = false;
2892
2893 memset(&svi_rmac, 0, sizeof(struct ethaddr));
2894 memset(&originator_ip, 0, sizeof(struct in_addr));
2895 s = zclient->ibuf;
2896 l3vni = stream_getl(s);
2897 if (cmd == ZEBRA_L3VNI_ADD) {
2898 stream_get(&svi_rmac, s, sizeof(struct ethaddr));
2899 originator_ip.s_addr = stream_get_ipv4(s);
2900 stream_get(&filter, s, sizeof(int));
2901 svi_ifindex = stream_getl(s);
2902 stream_get(&vrr_rmac, s, sizeof(struct ethaddr));
2903 is_anycast_mac = stream_getl(s);
2904
2905 if (BGP_DEBUG(zebra, ZEBRA))
2906 zlog_debug(
2907 "Rx L3-VNI ADD VRF %s VNI %u RMAC svi-mac %pEA vrr-mac %pEA filter %s svi-if %u",
2908 vrf_id_to_name(vrf_id), l3vni, &svi_rmac,
2909 &vrr_rmac,
2910 filter ? "prefix-routes-only" : "none",
2911 svi_ifindex);
2912
2913 frrtrace(8, frr_bgp, evpn_local_l3vni_add_zrecv, l3vni, vrf_id,
2914 &svi_rmac, &vrr_rmac, filter, originator_ip,
2915 svi_ifindex, is_anycast_mac);
2916
2917 bgp_evpn_local_l3vni_add(l3vni, vrf_id, &svi_rmac, &vrr_rmac,
2918 originator_ip, filter, svi_ifindex,
2919 is_anycast_mac);
2920 } else {
2921 if (BGP_DEBUG(zebra, ZEBRA))
2922 zlog_debug("Rx L3-VNI DEL VRF %s VNI %u",
2923 vrf_id_to_name(vrf_id), l3vni);
2924
2925 frrtrace(2, frr_bgp, evpn_local_l3vni_del_zrecv, l3vni, vrf_id);
2926
2927 bgp_evpn_local_l3vni_del(l3vni, vrf_id);
2928 }
2929
2930 return 0;
2931 }
2932
2933 static int bgp_zebra_process_local_vni(ZAPI_CALLBACK_ARGS)
2934 {
2935 struct stream *s;
2936 vni_t vni;
2937 struct bgp *bgp;
2938 struct in_addr vtep_ip = {INADDR_ANY};
2939 vrf_id_t tenant_vrf_id = VRF_DEFAULT;
2940 struct in_addr mcast_grp = {INADDR_ANY};
2941 ifindex_t svi_ifindex = 0;
2942
2943 s = zclient->ibuf;
2944 vni = stream_getl(s);
2945 if (cmd == ZEBRA_VNI_ADD) {
2946 vtep_ip.s_addr = stream_get_ipv4(s);
2947 stream_get(&tenant_vrf_id, s, sizeof(vrf_id_t));
2948 mcast_grp.s_addr = stream_get_ipv4(s);
2949 stream_get(&svi_ifindex, s, sizeof(ifindex_t));
2950 }
2951
2952 bgp = bgp_lookup_by_vrf_id(vrf_id);
2953 if (!bgp)
2954 return 0;
2955
2956 if (BGP_DEBUG(zebra, ZEBRA))
2957 zlog_debug(
2958 "Rx VNI %s VRF %s VNI %u tenant-vrf %s SVI ifindex %u",
2959 (cmd == ZEBRA_VNI_ADD) ? "add" : "del",
2960 vrf_id_to_name(vrf_id), vni,
2961 vrf_id_to_name(tenant_vrf_id), svi_ifindex);
2962
2963 if (cmd == ZEBRA_VNI_ADD) {
2964 frrtrace(4, frr_bgp, evpn_local_vni_add_zrecv, vni, vtep_ip,
2965 tenant_vrf_id, mcast_grp);
2966
2967 return bgp_evpn_local_vni_add(
2968 bgp, vni,
2969 vtep_ip.s_addr != INADDR_ANY ? vtep_ip : bgp->router_id,
2970 tenant_vrf_id, mcast_grp, svi_ifindex);
2971 } else {
2972 frrtrace(1, frr_bgp, evpn_local_vni_del_zrecv, vni);
2973
2974 return bgp_evpn_local_vni_del(bgp, vni);
2975 }
2976 }
2977
2978 static int bgp_zebra_process_local_macip(ZAPI_CALLBACK_ARGS)
2979 {
2980 struct stream *s;
2981 vni_t vni;
2982 struct bgp *bgp;
2983 struct ethaddr mac;
2984 struct ipaddr ip;
2985 int ipa_len;
2986 uint8_t flags = 0;
2987 uint32_t seqnum = 0;
2988 int state = 0;
2989 char buf2[ESI_STR_LEN];
2990 esi_t esi;
2991
2992 memset(&ip, 0, sizeof(ip));
2993 s = zclient->ibuf;
2994 vni = stream_getl(s);
2995 stream_get(&mac.octet, s, ETH_ALEN);
2996 ipa_len = stream_getl(s);
2997 if (ipa_len != 0 && ipa_len != IPV4_MAX_BYTELEN
2998 && ipa_len != IPV6_MAX_BYTELEN) {
2999 flog_err(EC_BGP_MACIP_LEN,
3000 "%u:Recv MACIP %s with invalid IP addr length %d",
3001 vrf_id, (cmd == ZEBRA_MACIP_ADD) ? "Add" : "Del",
3002 ipa_len);
3003 return -1;
3004 }
3005
3006 if (ipa_len) {
3007 ip.ipa_type =
3008 (ipa_len == IPV4_MAX_BYTELEN) ? IPADDR_V4 : IPADDR_V6;
3009 stream_get(&ip.ip.addr, s, ipa_len);
3010 }
3011 if (cmd == ZEBRA_MACIP_ADD) {
3012 flags = stream_getc(s);
3013 seqnum = stream_getl(s);
3014 stream_get(&esi, s, sizeof(esi_t));
3015 } else {
3016 state = stream_getl(s);
3017 memset(&esi, 0, sizeof(esi_t));
3018 }
3019
3020 bgp = bgp_lookup_by_vrf_id(vrf_id);
3021 if (!bgp)
3022 return 0;
3023
3024 if (BGP_DEBUG(zebra, ZEBRA))
3025 zlog_debug(
3026 "%u:Recv MACIP %s f 0x%x MAC %pEA IP %pIA VNI %u seq %u state %d ESI %s",
3027 vrf_id, (cmd == ZEBRA_MACIP_ADD) ? "Add" : "Del", flags,
3028 &mac, &ip, vni, seqnum, state,
3029 esi_to_str(&esi, buf2, sizeof(buf2)));
3030
3031 if (cmd == ZEBRA_MACIP_ADD) {
3032 frrtrace(6, frr_bgp, evpn_local_macip_add_zrecv, vni, &mac, &ip,
3033 flags, seqnum, &esi);
3034
3035 return bgp_evpn_local_macip_add(bgp, vni, &mac, &ip,
3036 flags, seqnum, &esi);
3037 } else {
3038 frrtrace(4, frr_bgp, evpn_local_macip_del_zrecv, vni, &mac, &ip,
3039 state);
3040
3041 return bgp_evpn_local_macip_del(bgp, vni, &mac, &ip, state);
3042 }
3043 }
3044
3045 static int bgp_zebra_process_local_ip_prefix(ZAPI_CALLBACK_ARGS)
3046 {
3047 struct stream *s = NULL;
3048 struct bgp *bgp_vrf = NULL;
3049 struct prefix p;
3050
3051 memset(&p, 0, sizeof(struct prefix));
3052 s = zclient->ibuf;
3053 stream_get(&p, s, sizeof(struct prefix));
3054
3055 bgp_vrf = bgp_lookup_by_vrf_id(vrf_id);
3056 if (!bgp_vrf)
3057 return 0;
3058
3059 if (BGP_DEBUG(zebra, ZEBRA))
3060 zlog_debug("Recv prefix %pFX %s on vrf %s", &p,
3061 (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) ? "ADD" : "DEL",
3062 vrf_id_to_name(vrf_id));
3063
3064 if (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) {
3065
3066 if (p.family == AF_INET)
3067 bgp_evpn_advertise_type5_route(bgp_vrf, &p, NULL,
3068 AFI_IP, SAFI_UNICAST);
3069 else
3070 bgp_evpn_advertise_type5_route(bgp_vrf, &p, NULL,
3071 AFI_IP6, SAFI_UNICAST);
3072
3073 } else {
3074 if (p.family == AF_INET)
3075 bgp_evpn_withdraw_type5_route(bgp_vrf, &p, AFI_IP,
3076 SAFI_UNICAST);
3077 else
3078 bgp_evpn_withdraw_type5_route(bgp_vrf, &p, AFI_IP6,
3079 SAFI_UNICAST);
3080 }
3081 return 0;
3082 }
3083
3084 static int bgp_zebra_process_label_chunk(ZAPI_CALLBACK_ARGS)
3085 {
3086 struct stream *s = NULL;
3087 uint8_t response_keep;
3088 uint32_t first;
3089 uint32_t last;
3090 uint8_t proto;
3091 unsigned short instance;
3092
3093 s = zclient->ibuf;
3094 STREAM_GETC(s, proto);
3095 STREAM_GETW(s, instance);
3096 STREAM_GETC(s, response_keep);
3097 STREAM_GETL(s, first);
3098 STREAM_GETL(s, last);
3099
3100 if (zclient->redist_default != proto) {
3101 flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong proto %u",
3102 proto);
3103 return 0;
3104 }
3105 if (zclient->instance != instance) {
3106 flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong instance %u",
3107 proto);
3108 return 0;
3109 }
3110
3111 if (first > last ||
3112 first < MPLS_LABEL_UNRESERVED_MIN ||
3113 last > MPLS_LABEL_UNRESERVED_MAX) {
3114
3115 flog_err(EC_BGP_LM_ERROR, "%s: Invalid Label chunk: %u - %u",
3116 __func__, first, last);
3117 return 0;
3118 }
3119 if (BGP_DEBUG(zebra, ZEBRA)) {
3120 zlog_debug("Label Chunk assign: %u - %u (%u) ",
3121 first, last, response_keep);
3122 }
3123
3124 bgp_lp_event_chunk(response_keep, first, last);
3125
3126 return 0;
3127
3128 stream_failure: /* for STREAM_GETX */
3129 return -1;
3130 }
3131
3132 extern struct zebra_privs_t bgpd_privs;
3133
3134 static int bgp_ifp_create(struct interface *ifp)
3135 {
3136 struct bgp *bgp;
3137
3138 if (BGP_DEBUG(zebra, ZEBRA))
3139 zlog_debug("Rx Intf add VRF %u IF %s", ifp->vrf->vrf_id,
3140 ifp->name);
3141
3142 bgp = ifp->vrf->info;
3143 if (!bgp)
3144 return 0;
3145
3146 bgp_mac_add_mac_entry(ifp);
3147
3148 bgp_update_interface_nbrs(bgp, ifp, ifp);
3149 hook_call(bgp_vrf_status_changed, bgp, ifp);
3150 return 0;
3151 }
3152
3153 static int bgp_zebra_process_srv6_locator_chunk(ZAPI_CALLBACK_ARGS)
3154 {
3155 struct stream *s = NULL;
3156 struct bgp *bgp = bgp_get_default();
3157 struct listnode *node;
3158 struct srv6_locator_chunk *c;
3159 struct srv6_locator_chunk *chunk = srv6_locator_chunk_alloc();
3160
3161 s = zclient->ibuf;
3162 zapi_srv6_locator_chunk_decode(s, chunk);
3163
3164 if (strcmp(bgp->srv6_locator_name, chunk->locator_name) != 0) {
3165 zlog_err("%s: Locator name unmatch %s:%s", __func__,
3166 bgp->srv6_locator_name, chunk->locator_name);
3167 srv6_locator_chunk_free(chunk);
3168 return 0;
3169 }
3170
3171 for (ALL_LIST_ELEMENTS_RO(bgp->srv6_locator_chunks, node, c)) {
3172 if (!prefix_cmp(&c->prefix, &chunk->prefix)) {
3173 srv6_locator_chunk_free(chunk);
3174 return 0;
3175 }
3176 }
3177
3178 listnode_add(bgp->srv6_locator_chunks, chunk);
3179 vpn_leak_postchange_all();
3180 return 0;
3181 }
3182
3183 static int bgp_zebra_process_srv6_locator_add(ZAPI_CALLBACK_ARGS)
3184 {
3185 struct srv6_locator loc = {};
3186 struct bgp *bgp = bgp_get_default();
3187 const char *loc_name = bgp->srv6_locator_name;
3188
3189 if (zapi_srv6_locator_decode(zclient->ibuf, &loc) < 0)
3190 return -1;
3191
3192 if (!bgp || !bgp->srv6_enabled)
3193 return 0;
3194
3195 if (bgp_zebra_srv6_manager_get_locator_chunk(loc_name) < 0)
3196 return -1;
3197
3198 return 0;
3199 }
3200
3201 static int bgp_zebra_process_srv6_locator_delete(ZAPI_CALLBACK_ARGS)
3202 {
3203 struct srv6_locator loc = {};
3204 struct bgp *bgp = bgp_get_default();
3205 struct listnode *node, *nnode;
3206 struct srv6_locator_chunk *chunk;
3207 struct bgp_srv6_function *func;
3208 struct bgp *bgp_vrf;
3209 struct in6_addr *tovpn_sid;
3210 struct prefix_ipv6 tmp_prefi;
3211
3212 if (zapi_srv6_locator_decode(zclient->ibuf, &loc) < 0)
3213 return -1;
3214
3215 // refresh chunks
3216 for (ALL_LIST_ELEMENTS(bgp->srv6_locator_chunks, node, nnode, chunk))
3217 if (prefix_match((struct prefix *)&loc.prefix,
3218 (struct prefix *)&chunk->prefix))
3219 listnode_delete(bgp->srv6_locator_chunks, chunk);
3220
3221 // refresh functions
3222 for (ALL_LIST_ELEMENTS(bgp->srv6_functions, node, nnode, func)) {
3223 tmp_prefi.family = AF_INET6;
3224 tmp_prefi.prefixlen = 128;
3225 tmp_prefi.prefix = func->sid;
3226 if (prefix_match((struct prefix *)&loc.prefix,
3227 (struct prefix *)&tmp_prefi))
3228 listnode_delete(bgp->srv6_functions, func);
3229 }
3230
3231 // refresh tovpn_sid
3232 for (ALL_LIST_ELEMENTS_RO(bm->bgp, node, bgp_vrf)) {
3233 if (bgp_vrf->inst_type != BGP_INSTANCE_TYPE_VRF)
3234 continue;
3235
3236 // refresh vpnv4 tovpn_sid
3237 tovpn_sid = bgp_vrf->vpn_policy[AFI_IP].tovpn_sid;
3238 if (tovpn_sid) {
3239 tmp_prefi.family = AF_INET6;
3240 tmp_prefi.prefixlen = 128;
3241 tmp_prefi.prefix = *tovpn_sid;
3242 if (prefix_match((struct prefix *)&loc.prefix,
3243 (struct prefix *)&tmp_prefi))
3244 XFREE(MTYPE_BGP_SRV6_SID,
3245 bgp_vrf->vpn_policy[AFI_IP].tovpn_sid);
3246 }
3247
3248 // refresh vpnv6 tovpn_sid
3249 tovpn_sid = bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid;
3250 if (tovpn_sid) {
3251 tmp_prefi.family = AF_INET6;
3252 tmp_prefi.prefixlen = 128;
3253 tmp_prefi.prefix = *tovpn_sid;
3254 if (prefix_match((struct prefix *)&loc.prefix,
3255 (struct prefix *)&tmp_prefi))
3256 XFREE(MTYPE_BGP_SRV6_SID,
3257 bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid);
3258 }
3259 }
3260
3261 vpn_leak_postchange_all();
3262 return 0;
3263 }
3264
3265 static zclient_handler *const bgp_handlers[] = {
3266 [ZEBRA_ROUTER_ID_UPDATE] = bgp_router_id_update,
3267 [ZEBRA_INTERFACE_ADDRESS_ADD] = bgp_interface_address_add,
3268 [ZEBRA_INTERFACE_ADDRESS_DELETE] = bgp_interface_address_delete,
3269 [ZEBRA_INTERFACE_NBR_ADDRESS_ADD] = bgp_interface_nbr_address_add,
3270 [ZEBRA_INTERFACE_NBR_ADDRESS_DELETE] = bgp_interface_nbr_address_delete,
3271 [ZEBRA_INTERFACE_VRF_UPDATE] = bgp_interface_vrf_update,
3272 [ZEBRA_REDISTRIBUTE_ROUTE_ADD] = zebra_read_route,
3273 [ZEBRA_REDISTRIBUTE_ROUTE_DEL] = zebra_read_route,
3274 [ZEBRA_NEXTHOP_UPDATE] = bgp_read_nexthop_update,
3275 [ZEBRA_FEC_UPDATE] = bgp_read_fec_update,
3276 [ZEBRA_LOCAL_ES_ADD] = bgp_zebra_process_local_es_add,
3277 [ZEBRA_LOCAL_ES_DEL] = bgp_zebra_process_local_es_del,
3278 [ZEBRA_VNI_ADD] = bgp_zebra_process_local_vni,
3279 [ZEBRA_LOCAL_ES_EVI_ADD] = bgp_zebra_process_local_es_evi,
3280 [ZEBRA_LOCAL_ES_EVI_DEL] = bgp_zebra_process_local_es_evi,
3281 [ZEBRA_VNI_DEL] = bgp_zebra_process_local_vni,
3282 [ZEBRA_MACIP_ADD] = bgp_zebra_process_local_macip,
3283 [ZEBRA_MACIP_DEL] = bgp_zebra_process_local_macip,
3284 [ZEBRA_L3VNI_ADD] = bgp_zebra_process_local_l3vni,
3285 [ZEBRA_L3VNI_DEL] = bgp_zebra_process_local_l3vni,
3286 [ZEBRA_IP_PREFIX_ROUTE_ADD] = bgp_zebra_process_local_ip_prefix,
3287 [ZEBRA_IP_PREFIX_ROUTE_DEL] = bgp_zebra_process_local_ip_prefix,
3288 [ZEBRA_GET_LABEL_CHUNK] = bgp_zebra_process_label_chunk,
3289 [ZEBRA_RULE_NOTIFY_OWNER] = rule_notify_owner,
3290 [ZEBRA_IPSET_NOTIFY_OWNER] = ipset_notify_owner,
3291 [ZEBRA_IPSET_ENTRY_NOTIFY_OWNER] = ipset_entry_notify_owner,
3292 [ZEBRA_IPTABLE_NOTIFY_OWNER] = iptable_notify_owner,
3293 [ZEBRA_ROUTE_NOTIFY_OWNER] = bgp_zebra_route_notify_owner,
3294 [ZEBRA_SRV6_LOCATOR_ADD] = bgp_zebra_process_srv6_locator_add,
3295 [ZEBRA_SRV6_LOCATOR_DELETE] = bgp_zebra_process_srv6_locator_delete,
3296 [ZEBRA_SRV6_MANAGER_GET_LOCATOR_CHUNK] =
3297 bgp_zebra_process_srv6_locator_chunk,
3298 };
3299
3300 void bgp_zebra_init(struct thread_master *master, unsigned short instance)
3301 {
3302 zclient_num_connects = 0;
3303
3304 if_zapi_callbacks(bgp_ifp_create, bgp_ifp_up,
3305 bgp_ifp_down, bgp_ifp_destroy);
3306
3307 /* Set default values. */
3308 zclient = zclient_new(master, &zclient_options_default, bgp_handlers,
3309 array_size(bgp_handlers));
3310 zclient_init(zclient, ZEBRA_ROUTE_BGP, 0, &bgpd_privs);
3311 zclient->zebra_connected = bgp_zebra_connected;
3312 zclient->instance = instance;
3313 }
3314
3315 void bgp_zebra_destroy(void)
3316 {
3317 if (zclient == NULL)
3318 return;
3319 zclient_stop(zclient);
3320 zclient_free(zclient);
3321 zclient = NULL;
3322 }
3323
3324 int bgp_zebra_num_connects(void)
3325 {
3326 return zclient_num_connects;
3327 }
3328
3329 void bgp_send_pbr_rule_action(struct bgp_pbr_action *pbra,
3330 struct bgp_pbr_rule *pbr,
3331 bool install)
3332 {
3333 struct stream *s;
3334
3335 if (pbra->install_in_progress && !pbr)
3336 return;
3337 if (pbr && pbr->install_in_progress)
3338 return;
3339 if (BGP_DEBUG(zebra, ZEBRA)) {
3340 if (pbr)
3341 zlog_debug("%s: table %d (ip rule) %d", __func__,
3342 pbra->table_id, install);
3343 else
3344 zlog_debug("%s: table %d fwmark %d %d", __func__,
3345 pbra->table_id, pbra->fwmark, install);
3346 }
3347 s = zclient->obuf;
3348 stream_reset(s);
3349
3350 zclient_create_header(s,
3351 install ? ZEBRA_RULE_ADD : ZEBRA_RULE_DELETE,
3352 VRF_DEFAULT);
3353 stream_putl(s, 1); /* send one pbr action */
3354
3355 bgp_encode_pbr_rule_action(s, pbra, pbr);
3356
3357 stream_putw_at(s, 0, stream_get_endp(s));
3358 if ((zclient_send_message(zclient) != ZCLIENT_SEND_FAILURE)
3359 && install) {
3360 if (!pbr)
3361 pbra->install_in_progress = true;
3362 else
3363 pbr->install_in_progress = true;
3364 }
3365 }
3366
3367 void bgp_send_pbr_ipset_match(struct bgp_pbr_match *pbrim, bool install)
3368 {
3369 struct stream *s;
3370
3371 if (pbrim->install_in_progress)
3372 return;
3373 if (BGP_DEBUG(zebra, ZEBRA))
3374 zlog_debug("%s: name %s type %d %d, ID %u", __func__,
3375 pbrim->ipset_name, pbrim->type, install,
3376 pbrim->unique);
3377 s = zclient->obuf;
3378 stream_reset(s);
3379
3380 zclient_create_header(s,
3381 install ? ZEBRA_IPSET_CREATE :
3382 ZEBRA_IPSET_DESTROY,
3383 VRF_DEFAULT);
3384
3385 stream_putl(s, 1); /* send one pbr action */
3386
3387 bgp_encode_pbr_ipset_match(s, pbrim);
3388
3389 stream_putw_at(s, 0, stream_get_endp(s));
3390 if ((zclient_send_message(zclient) != ZCLIENT_SEND_FAILURE) && install)
3391 pbrim->install_in_progress = true;
3392 }
3393
3394 void bgp_send_pbr_ipset_entry_match(struct bgp_pbr_match_entry *pbrime,
3395 bool install)
3396 {
3397 struct stream *s;
3398
3399 if (pbrime->install_in_progress)
3400 return;
3401 if (BGP_DEBUG(zebra, ZEBRA))
3402 zlog_debug("%s: name %s %d %d, ID %u", __func__,
3403 pbrime->backpointer->ipset_name, pbrime->unique,
3404 install, pbrime->unique);
3405 s = zclient->obuf;
3406 stream_reset(s);
3407
3408 zclient_create_header(s,
3409 install ? ZEBRA_IPSET_ENTRY_ADD :
3410 ZEBRA_IPSET_ENTRY_DELETE,
3411 VRF_DEFAULT);
3412
3413 stream_putl(s, 1); /* send one pbr action */
3414
3415 bgp_encode_pbr_ipset_entry_match(s, pbrime);
3416
3417 stream_putw_at(s, 0, stream_get_endp(s));
3418 if ((zclient_send_message(zclient) != ZCLIENT_SEND_FAILURE) && install)
3419 pbrime->install_in_progress = true;
3420 }
3421
3422 static void bgp_encode_pbr_interface_list(struct bgp *bgp, struct stream *s,
3423 uint8_t family)
3424 {
3425 struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
3426 struct bgp_pbr_interface_head *head;
3427 struct bgp_pbr_interface *pbr_if;
3428 struct interface *ifp;
3429
3430 if (!bgp_pbr_cfg)
3431 return;
3432 if (family == AF_INET)
3433 head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
3434 else
3435 head = &(bgp_pbr_cfg->ifaces_by_name_ipv6);
3436 RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
3437 ifp = if_lookup_by_name(pbr_if->name, bgp->vrf_id);
3438 if (ifp)
3439 stream_putl(s, ifp->ifindex);
3440 }
3441 }
3442
3443 static int bgp_pbr_get_ifnumber(struct bgp *bgp, uint8_t family)
3444 {
3445 struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
3446 struct bgp_pbr_interface_head *head;
3447 struct bgp_pbr_interface *pbr_if;
3448 int cnt = 0;
3449
3450 if (!bgp_pbr_cfg)
3451 return 0;
3452 if (family == AF_INET)
3453 head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
3454 else
3455 head = &(bgp_pbr_cfg->ifaces_by_name_ipv6);
3456 RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
3457 if (if_lookup_by_name(pbr_if->name, bgp->vrf_id))
3458 cnt++;
3459 }
3460 return cnt;
3461 }
3462
3463 void bgp_send_pbr_iptable(struct bgp_pbr_action *pba,
3464 struct bgp_pbr_match *pbm,
3465 bool install)
3466 {
3467 struct stream *s;
3468 int ret = 0;
3469 int nb_interface;
3470
3471 if (pbm->install_iptable_in_progress)
3472 return;
3473 if (BGP_DEBUG(zebra, ZEBRA))
3474 zlog_debug("%s: name %s type %d mark %d %d, ID %u", __func__,
3475 pbm->ipset_name, pbm->type, pba->fwmark, install,
3476 pbm->unique2);
3477 s = zclient->obuf;
3478 stream_reset(s);
3479
3480 zclient_create_header(s,
3481 install ? ZEBRA_IPTABLE_ADD :
3482 ZEBRA_IPTABLE_DELETE,
3483 VRF_DEFAULT);
3484
3485 bgp_encode_pbr_iptable_match(s, pba, pbm);
3486 nb_interface = bgp_pbr_get_ifnumber(pba->bgp, pbm->family);
3487 stream_putl(s, nb_interface);
3488 if (nb_interface)
3489 bgp_encode_pbr_interface_list(pba->bgp, s, pbm->family);
3490 stream_putw_at(s, 0, stream_get_endp(s));
3491 ret = zclient_send_message(zclient);
3492 if (install) {
3493 if (ret != ZCLIENT_SEND_FAILURE)
3494 pba->refcnt++;
3495 else
3496 pbm->install_iptable_in_progress = true;
3497 }
3498 }
3499
3500 /* inject in table <table_id> a default route to:
3501 * - if nexthop IP is present : to this nexthop
3502 * - if vrf is different from local : to the matching VRF
3503 */
3504 void bgp_zebra_announce_default(struct bgp *bgp, struct nexthop *nh,
3505 afi_t afi, uint32_t table_id, bool announce)
3506 {
3507 struct zapi_nexthop *api_nh;
3508 struct zapi_route api;
3509 struct prefix p;
3510
3511 if (!nh || (nh->type != NEXTHOP_TYPE_IPV4
3512 && nh->type != NEXTHOP_TYPE_IPV6)
3513 || nh->vrf_id == VRF_UNKNOWN)
3514 return;
3515
3516 /* in vrf-lite, no default route has to be announced
3517 * the table id of vrf is directly used to divert traffic
3518 */
3519 if (!vrf_is_backend_netns() && bgp->vrf_id != nh->vrf_id)
3520 return;
3521
3522 memset(&p, 0, sizeof(struct prefix));
3523 if (afi != AFI_IP && afi != AFI_IP6)
3524 return;
3525 p.family = afi2family(afi);
3526 memset(&api, 0, sizeof(api));
3527 api.vrf_id = bgp->vrf_id;
3528 api.type = ZEBRA_ROUTE_BGP;
3529 api.safi = SAFI_UNICAST;
3530 api.prefix = p;
3531 api.tableid = table_id;
3532 api.nexthop_num = 1;
3533 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
3534 SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
3535 api_nh = &api.nexthops[0];
3536
3537 api.distance = ZEBRA_EBGP_DISTANCE_DEFAULT;
3538 SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
3539
3540 /* redirect IP */
3541 if (afi == AFI_IP && nh->gate.ipv4.s_addr != INADDR_ANY) {
3542 char buff[PREFIX_STRLEN];
3543
3544 api_nh->vrf_id = nh->vrf_id;
3545 api_nh->gate.ipv4 = nh->gate.ipv4;
3546 api_nh->type = NEXTHOP_TYPE_IPV4;
3547
3548 inet_ntop(AF_INET, &(nh->gate.ipv4), buff, INET_ADDRSTRLEN);
3549 if (BGP_DEBUG(zebra, ZEBRA))
3550 zlog_debug("BGP: %s default route to %s table %d (redirect IP)",
3551 announce ? "adding" : "withdrawing",
3552 buff, table_id);
3553 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
3554 : ZEBRA_ROUTE_DELETE,
3555 zclient, &api);
3556 } else if (afi == AFI_IP6 &&
3557 memcmp(&nh->gate.ipv6,
3558 &in6addr_any, sizeof(struct in6_addr))) {
3559 char buff[PREFIX_STRLEN];
3560
3561 api_nh->vrf_id = nh->vrf_id;
3562 memcpy(&api_nh->gate.ipv6, &nh->gate.ipv6,
3563 sizeof(struct in6_addr));
3564 api_nh->type = NEXTHOP_TYPE_IPV6;
3565
3566 inet_ntop(AF_INET6, &(nh->gate.ipv6), buff, INET_ADDRSTRLEN);
3567 if (BGP_DEBUG(zebra, ZEBRA))
3568 zlog_debug("BGP: %s default route to %s table %d (redirect IP)",
3569 announce ? "adding" : "withdrawing",
3570 buff, table_id);
3571 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
3572 : ZEBRA_ROUTE_DELETE,
3573 zclient, &api);
3574 } else if (nh->vrf_id != bgp->vrf_id) {
3575 struct vrf *vrf;
3576 struct interface *ifp;
3577
3578 vrf = vrf_lookup_by_id(nh->vrf_id);
3579 if (!vrf)
3580 return;
3581 /* create default route with interface <VRF>
3582 * with nexthop-vrf <VRF>
3583 */
3584 ifp = if_lookup_by_name_vrf(vrf->name, vrf);
3585 if (!ifp)
3586 return;
3587 api_nh->vrf_id = nh->vrf_id;
3588 api_nh->type = NEXTHOP_TYPE_IFINDEX;
3589 api_nh->ifindex = ifp->ifindex;
3590 if (BGP_DEBUG(zebra, ZEBRA))
3591 zlog_info("BGP: %s default route to %s table %d (redirect VRF)",
3592 announce ? "adding" : "withdrawing",
3593 vrf->name, table_id);
3594 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
3595 : ZEBRA_ROUTE_DELETE,
3596 zclient, &api);
3597 return;
3598 }
3599 }
3600
3601 /* Send capabilities to RIB */
3602 int bgp_zebra_send_capabilities(struct bgp *bgp, bool disable)
3603 {
3604 struct zapi_cap api;
3605 int ret = BGP_GR_SUCCESS;
3606
3607 if (zclient == NULL) {
3608 if (BGP_DEBUG(zebra, ZEBRA))
3609 zlog_debug("zclient invalid");
3610 return BGP_GR_FAILURE;
3611 }
3612
3613 /* Check if the client is connected */
3614 if ((zclient->sock < 0) || (zclient->t_connect)) {
3615 if (BGP_DEBUG(zebra, ZEBRA))
3616 zlog_debug("client not connected");
3617 return BGP_GR_FAILURE;
3618 }
3619
3620 /* Check if capability is already sent. If the flag force is set
3621 * send the capability since this can be initial bgp configuration
3622 */
3623 memset(&api, 0, sizeof(struct zapi_cap));
3624 if (disable) {
3625 api.cap = ZEBRA_CLIENT_GR_DISABLE;
3626 api.vrf_id = bgp->vrf_id;
3627 } else {
3628 api.cap = ZEBRA_CLIENT_GR_CAPABILITIES;
3629 api.stale_removal_time = bgp->rib_stale_time;
3630 api.vrf_id = bgp->vrf_id;
3631 }
3632
3633 if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
3634 == ZCLIENT_SEND_FAILURE) {
3635 zlog_err("error sending capability");
3636 ret = BGP_GR_FAILURE;
3637 } else {
3638 if (disable)
3639 bgp->present_zebra_gr_state = ZEBRA_GR_DISABLE;
3640 else
3641 bgp->present_zebra_gr_state = ZEBRA_GR_ENABLE;
3642
3643 if (BGP_DEBUG(zebra, ZEBRA))
3644 zlog_debug("send capabilty success");
3645 ret = BGP_GR_SUCCESS;
3646 }
3647 return ret;
3648 }
3649
3650 /* Send route update pesding or completed status to RIB for the
3651 * specific AFI, SAFI
3652 */
3653 int bgp_zebra_update(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type)
3654 {
3655 struct zapi_cap api = {0};
3656
3657 if (zclient == NULL) {
3658 if (BGP_DEBUG(zebra, ZEBRA))
3659 zlog_debug("zclient == NULL, invalid");
3660 return BGP_GR_FAILURE;
3661 }
3662
3663 /* Check if the client is connected */
3664 if ((zclient->sock < 0) || (zclient->t_connect)) {
3665 if (BGP_DEBUG(zebra, ZEBRA))
3666 zlog_debug("client not connected");
3667 return BGP_GR_FAILURE;
3668 }
3669
3670 api.afi = afi;
3671 api.safi = safi;
3672 api.vrf_id = vrf_id;
3673 api.cap = type;
3674
3675 if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
3676 == ZCLIENT_SEND_FAILURE) {
3677 if (BGP_DEBUG(zebra, ZEBRA))
3678 zlog_debug("error sending capability");
3679 return BGP_GR_FAILURE;
3680 }
3681 return BGP_GR_SUCCESS;
3682 }
3683
3684
3685 /* Send RIB stale timer update */
3686 int bgp_zebra_stale_timer_update(struct bgp *bgp)
3687 {
3688 struct zapi_cap api;
3689
3690 if (zclient == NULL) {
3691 if (BGP_DEBUG(zebra, ZEBRA))
3692 zlog_debug("zclient invalid");
3693 return BGP_GR_FAILURE;
3694 }
3695
3696 /* Check if the client is connected */
3697 if ((zclient->sock < 0) || (zclient->t_connect)) {
3698 if (BGP_DEBUG(zebra, ZEBRA))
3699 zlog_debug("client not connected");
3700 return BGP_GR_FAILURE;
3701 }
3702
3703 memset(&api, 0, sizeof(struct zapi_cap));
3704 api.cap = ZEBRA_CLIENT_RIB_STALE_TIME;
3705 api.stale_removal_time = bgp->rib_stale_time;
3706 api.vrf_id = bgp->vrf_id;
3707 if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
3708 == ZCLIENT_SEND_FAILURE) {
3709 if (BGP_DEBUG(zebra, ZEBRA))
3710 zlog_debug("error sending capability");
3711 return BGP_GR_FAILURE;
3712 }
3713 if (BGP_DEBUG(zebra, ZEBRA))
3714 zlog_debug("send capabilty success");
3715 return BGP_GR_SUCCESS;
3716 }
3717
3718 int bgp_zebra_srv6_manager_get_locator_chunk(const char *name)
3719 {
3720 return srv6_manager_get_locator_chunk(zclient, name);
3721 }
3722
3723 int bgp_zebra_srv6_manager_release_locator_chunk(const char *name)
3724 {
3725 return srv6_manager_release_locator_chunk(zclient, name);
3726 }