]> git.proxmox.com Git - mirror_frr.git/blob - bgpd/bgp_zebra.c
Merge pull request #3072 from donaldsharp/fix_eigrp_crash_on_int_shut
[mirror_frr.git] / bgpd / bgp_zebra.c
1 /* zebra client
2 * Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "stream.h"
25 #include "network.h"
26 #include "prefix.h"
27 #include "log.h"
28 #include "sockunion.h"
29 #include "zclient.h"
30 #include "routemap.h"
31 #include "thread.h"
32 #include "queue.h"
33 #include "memory.h"
34 #include "lib/json.h"
35 #include "lib/bfd.h"
36 #include "filter.h"
37 #include "mpls.h"
38 #include "vxlan.h"
39
40 #include "bgpd/bgpd.h"
41 #include "bgpd/bgp_route.h"
42 #include "bgpd/bgp_attr.h"
43 #include "bgpd/bgp_nexthop.h"
44 #include "bgpd/bgp_zebra.h"
45 #include "bgpd/bgp_fsm.h"
46 #include "bgpd/bgp_debug.h"
47 #include "bgpd/bgp_errors.h"
48 #include "bgpd/bgp_mpath.h"
49 #include "bgpd/bgp_nexthop.h"
50 #include "bgpd/bgp_nht.h"
51 #include "bgpd/bgp_bfd.h"
52 #include "bgpd/bgp_label.h"
53 #if ENABLE_BGP_VNC
54 #include "bgpd/rfapi/rfapi_backend.h"
55 #include "bgpd/rfapi/vnc_export_bgp.h"
56 #endif
57 #include "bgpd/bgp_evpn.h"
58 #include "bgpd/bgp_mplsvpn.h"
59 #include "bgpd/bgp_labelpool.h"
60 #include "bgpd/bgp_pbr.h"
61
62 /* All information about zebra. */
63 struct zclient *zclient = NULL;
64
65 /* Can we install into zebra? */
66 static inline int bgp_install_info_to_zebra(struct bgp *bgp)
67 {
68 if (zclient->sock <= 0)
69 return 0;
70
71 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
72 return 0;
73
74 return 1;
75 }
76
77 int zclient_num_connects;
78
79 /* Router-id update message from zebra. */
80 static int bgp_router_id_update(int command, struct zclient *zclient,
81 zebra_size_t length, vrf_id_t vrf_id)
82 {
83 struct prefix router_id;
84
85 zebra_router_id_update_read(zclient->ibuf, &router_id);
86
87 if (BGP_DEBUG(zebra, ZEBRA)) {
88 char buf[PREFIX2STR_BUFFER];
89 prefix2str(&router_id, buf, sizeof(buf));
90 zlog_debug("Rx Router Id update VRF %u Id %s", vrf_id, buf);
91 }
92
93 bgp_router_id_zebra_bump(vrf_id, &router_id);
94 return 0;
95 }
96
97 /* Nexthop update message from zebra. */
98 static int bgp_read_nexthop_update(int command, struct zclient *zclient,
99 zebra_size_t length, vrf_id_t vrf_id)
100 {
101 bgp_parse_nexthop_update(command, vrf_id);
102 return 0;
103 }
104
105 static int bgp_read_import_check_update(int command, struct zclient *zclient,
106 zebra_size_t length, vrf_id_t vrf_id)
107 {
108 bgp_parse_nexthop_update(command, vrf_id);
109 return 0;
110 }
111
112 /* Set or clear interface on which unnumbered neighbor is configured. This
113 * would in turn cause BGP to initiate or turn off IPv6 RAs on this
114 * interface.
115 */
116 static void bgp_update_interface_nbrs(struct bgp *bgp, struct interface *ifp,
117 struct interface *upd_ifp)
118 {
119 struct listnode *node, *nnode;
120 struct peer *peer;
121
122 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
123 if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)) {
124 if (upd_ifp) {
125 peer->ifp = upd_ifp;
126 bgp_zebra_initiate_radv(bgp, peer);
127 } else {
128 bgp_zebra_terminate_radv(bgp, peer);
129 peer->ifp = upd_ifp;
130 }
131 }
132 }
133 }
134
135 static int bgp_read_fec_update(int command, struct zclient *zclient,
136 zebra_size_t length)
137 {
138 bgp_parse_fec_update();
139 return 0;
140 }
141
142 static void bgp_start_interface_nbrs(struct bgp *bgp, struct interface *ifp)
143 {
144 struct listnode *node, *nnode;
145 struct peer *peer;
146
147 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
148 if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)
149 && peer->status != Established) {
150 if (peer_active(peer))
151 BGP_EVENT_ADD(peer, BGP_Stop);
152 BGP_EVENT_ADD(peer, BGP_Start);
153 }
154 }
155 }
156
157 static void bgp_nbr_connected_add(struct bgp *bgp, struct nbr_connected *ifc)
158 {
159 struct listnode *node;
160 struct connected *connected;
161 struct interface *ifp;
162 struct prefix *p;
163
164 /* Kick-off the FSM for any relevant peers only if there is a
165 * valid local address on the interface.
166 */
167 ifp = ifc->ifp;
168 for (ALL_LIST_ELEMENTS_RO(ifp->connected, node, connected)) {
169 p = connected->address;
170 if (p->family == AF_INET6
171 && IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
172 break;
173 }
174 if (!connected)
175 return;
176
177 bgp_start_interface_nbrs(bgp, ifp);
178 }
179
180 static void bgp_nbr_connected_delete(struct bgp *bgp, struct nbr_connected *ifc,
181 int del)
182 {
183 struct listnode *node, *nnode;
184 struct peer *peer;
185 struct interface *ifp;
186
187 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
188 if (peer->conf_if
189 && (strcmp(peer->conf_if, ifc->ifp->name) == 0)) {
190 peer->last_reset = PEER_DOWN_NBR_ADDR_DEL;
191 BGP_EVENT_ADD(peer, BGP_Stop);
192 }
193 }
194 /* Free neighbor also, if we're asked to. */
195 if (del) {
196 ifp = ifc->ifp;
197 listnode_delete(ifp->nbr_connected, ifc);
198 nbr_connected_free(ifc);
199 }
200 }
201
202 /* Inteface addition message from zebra. */
203 static int bgp_interface_add(int command, struct zclient *zclient,
204 zebra_size_t length, vrf_id_t vrf_id)
205 {
206 struct interface *ifp;
207 struct bgp *bgp;
208
209 ifp = zebra_interface_add_read(zclient->ibuf, vrf_id);
210 if (!ifp) // unexpected
211 return 0;
212
213 if (BGP_DEBUG(zebra, ZEBRA) && ifp)
214 zlog_debug("Rx Intf add VRF %u IF %s", vrf_id, ifp->name);
215
216 bgp = bgp_lookup_by_vrf_id(vrf_id);
217 if (!bgp)
218 return 0;
219
220 bgp_update_interface_nbrs(bgp, ifp, ifp);
221 return 0;
222 }
223
224 static int bgp_interface_delete(int command, struct zclient *zclient,
225 zebra_size_t length, vrf_id_t vrf_id)
226 {
227 struct stream *s;
228 struct interface *ifp;
229 struct bgp *bgp;
230
231 bgp = bgp_lookup_by_vrf_id(vrf_id);
232 if (!bgp)
233 return 0;
234
235 s = zclient->ibuf;
236 ifp = zebra_interface_state_read(s, vrf_id);
237 if (!ifp) /* This may happen if we've just unregistered for a VRF. */
238 return 0;
239
240 if (BGP_DEBUG(zebra, ZEBRA))
241 zlog_debug("Rx Intf del VRF %u IF %s", vrf_id, ifp->name);
242
243 bgp_update_interface_nbrs(bgp, ifp, NULL);
244
245 if_set_index(ifp, IFINDEX_INTERNAL);
246 return 0;
247 }
248
249 static int bgp_interface_up(int command, struct zclient *zclient,
250 zebra_size_t length, vrf_id_t vrf_id)
251 {
252 struct stream *s;
253 struct interface *ifp;
254 struct connected *c;
255 struct nbr_connected *nc;
256 struct listnode *node, *nnode;
257 struct bgp *bgp;
258
259 bgp = bgp_lookup_by_vrf_id(vrf_id);
260 if (!bgp)
261 return 0;
262
263 s = zclient->ibuf;
264 ifp = zebra_interface_state_read(s, vrf_id);
265
266 if (!ifp)
267 return 0;
268
269 if (BGP_DEBUG(zebra, ZEBRA))
270 zlog_debug("Rx Intf up VRF %u IF %s", vrf_id, ifp->name);
271
272 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
273 bgp_connected_add(bgp, c);
274
275 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
276 bgp_nbr_connected_add(bgp, nc);
277
278 return 0;
279 }
280
281 static int bgp_interface_down(int command, struct zclient *zclient,
282 zebra_size_t length, vrf_id_t vrf_id)
283 {
284 struct stream *s;
285 struct interface *ifp;
286 struct connected *c;
287 struct nbr_connected *nc;
288 struct listnode *node, *nnode;
289 struct bgp *bgp;
290 struct peer *peer;
291
292 bgp = bgp_lookup_by_vrf_id(vrf_id);
293 if (!bgp)
294 return 0;
295
296 s = zclient->ibuf;
297 ifp = zebra_interface_state_read(s, vrf_id);
298 if (!ifp)
299 return 0;
300
301 if (BGP_DEBUG(zebra, ZEBRA))
302 zlog_debug("Rx Intf down VRF %u IF %s", vrf_id, ifp->name);
303
304 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
305 bgp_connected_delete(bgp, c);
306
307 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
308 bgp_nbr_connected_delete(bgp, nc, 1);
309
310 /* Fast external-failover */
311 if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
312
313 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
314 #if defined(HAVE_CUMULUS)
315 /* Take down directly connected EBGP peers as well as
316 * 1-hop BFD
317 * tracked (directly connected) IBGP peers.
318 */
319 if ((peer->ttl != 1) && (peer->gtsm_hops != 1)
320 && (!peer->bfd_info
321 || bgp_bfd_is_peer_multihop(peer)))
322 #else
323 /* Take down directly connected EBGP peers */
324 if ((peer->ttl != 1) && (peer->gtsm_hops != 1))
325 #endif
326 continue;
327
328 if (ifp == peer->nexthop.ifp) {
329 BGP_EVENT_ADD(peer, BGP_Stop);
330 peer->last_reset = PEER_DOWN_IF_DOWN;
331 }
332 }
333 }
334
335 return 0;
336 }
337
338 static int bgp_interface_address_add(int command, struct zclient *zclient,
339 zebra_size_t length, vrf_id_t vrf_id)
340 {
341 struct connected *ifc;
342 struct bgp *bgp;
343
344 bgp = bgp_lookup_by_vrf_id(vrf_id);
345 if (!bgp)
346 return 0;
347
348 ifc = zebra_interface_address_read(command, zclient->ibuf, vrf_id);
349
350 if (ifc == NULL)
351 return 0;
352
353 if (bgp_debug_zebra(ifc->address)) {
354 char buf[PREFIX2STR_BUFFER];
355 prefix2str(ifc->address, buf, sizeof(buf));
356 zlog_debug("Rx Intf address add VRF %u IF %s addr %s", vrf_id,
357 ifc->ifp->name, buf);
358 }
359
360 if (if_is_operative(ifc->ifp)) {
361 bgp_connected_add(bgp, ifc);
362
363 /* If we have learnt of any neighbors on this interface,
364 * check to kick off any BGP interface-based neighbors,
365 * but only if this is a link-local address.
366 */
367 if (IN6_IS_ADDR_LINKLOCAL(&ifc->address->u.prefix6)
368 && !list_isempty(ifc->ifp->nbr_connected))
369 bgp_start_interface_nbrs(bgp, ifc->ifp);
370 }
371
372 return 0;
373 }
374
375 static int bgp_interface_address_delete(int command, struct zclient *zclient,
376 zebra_size_t length, vrf_id_t vrf_id)
377 {
378 struct connected *ifc;
379 struct bgp *bgp;
380
381 bgp = bgp_lookup_by_vrf_id(vrf_id);
382 if (!bgp)
383 return 0;
384
385 ifc = zebra_interface_address_read(command, zclient->ibuf, vrf_id);
386
387 if (ifc == NULL)
388 return 0;
389
390 if (bgp_debug_zebra(ifc->address)) {
391 char buf[PREFIX2STR_BUFFER];
392 prefix2str(ifc->address, buf, sizeof(buf));
393 zlog_debug("Rx Intf address del VRF %u IF %s addr %s", vrf_id,
394 ifc->ifp->name, buf);
395 }
396
397 if (if_is_operative(ifc->ifp)) {
398 bgp_connected_delete(bgp, ifc);
399 }
400
401 connected_free(ifc);
402
403 return 0;
404 }
405
406 static int bgp_interface_nbr_address_add(int command, struct zclient *zclient,
407 zebra_size_t length, vrf_id_t vrf_id)
408 {
409 struct nbr_connected *ifc = NULL;
410 struct bgp *bgp;
411
412 ifc = zebra_interface_nbr_address_read(command, zclient->ibuf, vrf_id);
413
414 if (ifc == NULL)
415 return 0;
416
417 if (bgp_debug_zebra(ifc->address)) {
418 char buf[PREFIX2STR_BUFFER];
419 prefix2str(ifc->address, buf, sizeof(buf));
420 zlog_debug("Rx Intf neighbor add VRF %u IF %s addr %s", vrf_id,
421 ifc->ifp->name, buf);
422 }
423
424 if (if_is_operative(ifc->ifp)) {
425 bgp = bgp_lookup_by_vrf_id(vrf_id);
426 if (bgp)
427 bgp_nbr_connected_add(bgp, ifc);
428 }
429
430 return 0;
431 }
432
433 static int bgp_interface_nbr_address_delete(int command,
434 struct zclient *zclient,
435 zebra_size_t length,
436 vrf_id_t vrf_id)
437 {
438 struct nbr_connected *ifc = NULL;
439 struct bgp *bgp;
440
441 ifc = zebra_interface_nbr_address_read(command, zclient->ibuf, vrf_id);
442
443 if (ifc == NULL)
444 return 0;
445
446 if (bgp_debug_zebra(ifc->address)) {
447 char buf[PREFIX2STR_BUFFER];
448 prefix2str(ifc->address, buf, sizeof(buf));
449 zlog_debug("Rx Intf neighbor del VRF %u IF %s addr %s", vrf_id,
450 ifc->ifp->name, buf);
451 }
452
453 if (if_is_operative(ifc->ifp)) {
454 bgp = bgp_lookup_by_vrf_id(vrf_id);
455 if (bgp)
456 bgp_nbr_connected_delete(bgp, ifc, 0);
457 }
458
459 nbr_connected_free(ifc);
460
461 return 0;
462 }
463
464 /* VRF update for an interface. */
465 static int bgp_interface_vrf_update(int command, struct zclient *zclient,
466 zebra_size_t length, vrf_id_t vrf_id)
467 {
468 struct interface *ifp;
469 vrf_id_t new_vrf_id;
470 struct connected *c;
471 struct nbr_connected *nc;
472 struct listnode *node, *nnode;
473 struct bgp *bgp;
474 struct peer *peer;
475
476 ifp = zebra_interface_vrf_update_read(zclient->ibuf, vrf_id,
477 &new_vrf_id);
478 if (!ifp)
479 return 0;
480
481 if (BGP_DEBUG(zebra, ZEBRA) && ifp)
482 zlog_debug("Rx Intf VRF change VRF %u IF %s NewVRF %u", vrf_id,
483 ifp->name, new_vrf_id);
484
485 bgp = bgp_lookup_by_vrf_id(vrf_id);
486 if (!bgp)
487 return 0;
488
489 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
490 bgp_connected_delete(bgp, c);
491
492 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
493 bgp_nbr_connected_delete(bgp, nc, 1);
494
495 /* Fast external-failover */
496 if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
497 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
498 if ((peer->ttl != 1) && (peer->gtsm_hops != 1))
499 continue;
500
501 if (ifp == peer->nexthop.ifp)
502 BGP_EVENT_ADD(peer, BGP_Stop);
503 }
504 }
505
506 if_update_to_new_vrf(ifp, new_vrf_id);
507
508 bgp = bgp_lookup_by_vrf_id(new_vrf_id);
509 if (!bgp)
510 return 0;
511
512 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
513 bgp_connected_add(bgp, c);
514
515 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
516 bgp_nbr_connected_add(bgp, nc);
517 return 0;
518 }
519
520 /* Zebra route add and delete treatment. */
521 static int zebra_read_route(int command, struct zclient *zclient,
522 zebra_size_t length, vrf_id_t vrf_id)
523 {
524 enum nexthop_types_t nhtype;
525 struct zapi_route api;
526 union g_addr nexthop;
527 ifindex_t ifindex;
528 int add, i;
529 struct bgp *bgp;
530
531 bgp = bgp_lookup_by_vrf_id(vrf_id);
532 if (!bgp)
533 return 0;
534
535 if (zapi_route_decode(zclient->ibuf, &api) < 0)
536 return -1;
537
538 /* we completely ignore srcdest routes for now. */
539 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_SRCPFX))
540 return 0;
541
542 /* ignore link-local address. */
543 if (api.prefix.family == AF_INET6
544 && IN6_IS_ADDR_LINKLOCAL(&api.prefix.u.prefix6))
545 return 0;
546
547 nexthop = api.nexthops[0].gate;
548 ifindex = api.nexthops[0].ifindex;
549 nhtype = api.nexthops[0].type;
550
551 add = (command == ZEBRA_REDISTRIBUTE_ROUTE_ADD);
552 if (add) {
553 /*
554 * The ADD message is actually an UPDATE and there is no
555 * explicit DEL
556 * for a prior redistributed route, if any. So, perform an
557 * implicit
558 * DEL processing for the same redistributed route from any
559 * other
560 * source type.
561 */
562 for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
563 if (i != api.type)
564 bgp_redistribute_delete(bgp, &api.prefix, i,
565 api.instance);
566 }
567
568 /* Now perform the add/update. */
569 bgp_redistribute_add(bgp, &api.prefix, &nexthop, ifindex,
570 nhtype, api.metric, api.type, api.instance,
571 api.tag);
572 } else {
573 bgp_redistribute_delete(bgp, &api.prefix, api.type,
574 api.instance);
575 }
576
577 if (bgp_debug_zebra(&api.prefix)) {
578 char buf[2][PREFIX_STRLEN];
579
580 prefix2str(&api.prefix, buf[0], sizeof(buf[0]));
581 if (add) {
582 inet_ntop(api.prefix.family, &nexthop, buf[1],
583 sizeof(buf[1]));
584 zlog_debug(
585 "Rx route ADD VRF %u %s[%d] %s nexthop %s (type %d if %u) metric %u tag %" ROUTE_TAG_PRI,
586 vrf_id, zebra_route_string(api.type),
587 api.instance, buf[0], buf[1], nhtype,
588 ifindex, api.metric, api.tag);
589 } else {
590 zlog_debug(
591 "Rx route DEL VRF %u %s[%d] %s",
592 vrf_id, zebra_route_string(api.type),
593 api.instance, buf[0]);
594 }
595 }
596
597 return 0;
598 }
599
600 struct interface *if_lookup_by_ipv4(struct in_addr *addr, vrf_id_t vrf_id)
601 {
602 struct vrf *vrf;
603 struct listnode *cnode;
604 struct interface *ifp;
605 struct connected *connected;
606 struct prefix_ipv4 p;
607 struct prefix *cp;
608
609 vrf = vrf_lookup_by_id(vrf_id);
610 if (!vrf)
611 return NULL;
612
613 p.family = AF_INET;
614 p.prefix = *addr;
615 p.prefixlen = IPV4_MAX_BITLEN;
616
617 FOR_ALL_INTERFACES (vrf, ifp) {
618 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
619 cp = connected->address;
620
621 if (cp->family == AF_INET)
622 if (prefix_match(cp, (struct prefix *)&p))
623 return ifp;
624 }
625 }
626 return NULL;
627 }
628
629 struct interface *if_lookup_by_ipv4_exact(struct in_addr *addr, vrf_id_t vrf_id)
630 {
631 struct vrf *vrf;
632 struct listnode *cnode;
633 struct interface *ifp;
634 struct connected *connected;
635 struct prefix *cp;
636
637 vrf = vrf_lookup_by_id(vrf_id);
638 if (!vrf)
639 return NULL;
640
641 FOR_ALL_INTERFACES (vrf, ifp) {
642 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
643 cp = connected->address;
644
645 if (cp->family == AF_INET)
646 if (IPV4_ADDR_SAME(&cp->u.prefix4, addr))
647 return ifp;
648 }
649 }
650 return NULL;
651 }
652
653 struct interface *if_lookup_by_ipv6(struct in6_addr *addr, ifindex_t ifindex,
654 vrf_id_t vrf_id)
655 {
656 struct vrf *vrf;
657 struct listnode *cnode;
658 struct interface *ifp;
659 struct connected *connected;
660 struct prefix_ipv6 p;
661 struct prefix *cp;
662
663 vrf = vrf_lookup_by_id(vrf_id);
664 if (!vrf)
665 return NULL;
666
667 p.family = AF_INET6;
668 p.prefix = *addr;
669 p.prefixlen = IPV6_MAX_BITLEN;
670
671 FOR_ALL_INTERFACES (vrf, ifp) {
672 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
673 cp = connected->address;
674
675 if (cp->family == AF_INET6)
676 if (prefix_match(cp, (struct prefix *)&p)) {
677 if (IN6_IS_ADDR_LINKLOCAL(
678 &cp->u.prefix6)) {
679 if (ifindex == ifp->ifindex)
680 return ifp;
681 } else
682 return ifp;
683 }
684 }
685 }
686 return NULL;
687 }
688
689 struct interface *if_lookup_by_ipv6_exact(struct in6_addr *addr,
690 ifindex_t ifindex, vrf_id_t vrf_id)
691 {
692 struct vrf *vrf;
693 struct listnode *cnode;
694 struct interface *ifp;
695 struct connected *connected;
696 struct prefix *cp;
697
698 vrf = vrf_lookup_by_id(vrf_id);
699 if (!vrf)
700 return NULL;
701
702 FOR_ALL_INTERFACES (vrf, ifp) {
703 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
704 cp = connected->address;
705
706 if (cp->family == AF_INET6)
707 if (IPV6_ADDR_SAME(&cp->u.prefix6, addr)) {
708 if (IN6_IS_ADDR_LINKLOCAL(
709 &cp->u.prefix6)) {
710 if (ifindex == ifp->ifindex)
711 return ifp;
712 } else
713 return ifp;
714 }
715 }
716 }
717 return NULL;
718 }
719
720 static int if_get_ipv6_global(struct interface *ifp, struct in6_addr *addr)
721 {
722 struct listnode *cnode;
723 struct connected *connected;
724 struct prefix *cp;
725
726 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
727 cp = connected->address;
728
729 if (cp->family == AF_INET6)
730 if (!IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
731 memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
732 return 1;
733 }
734 }
735 return 0;
736 }
737
738 static int if_get_ipv6_local(struct interface *ifp, struct in6_addr *addr)
739 {
740 struct listnode *cnode;
741 struct connected *connected;
742 struct prefix *cp;
743
744 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
745 cp = connected->address;
746
747 if (cp->family == AF_INET6)
748 if (IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
749 memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
750 return 1;
751 }
752 }
753 return 0;
754 }
755
756 static int if_get_ipv4_address(struct interface *ifp, struct in_addr *addr)
757 {
758 struct listnode *cnode;
759 struct connected *connected;
760 struct prefix *cp;
761
762 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
763 cp = connected->address;
764 if ((cp->family == AF_INET)
765 && !ipv4_martian(&(cp->u.prefix4))) {
766 *addr = cp->u.prefix4;
767 return 1;
768 }
769 }
770 return 0;
771 }
772
773
774 bool bgp_zebra_nexthop_set(union sockunion *local, union sockunion *remote,
775 struct bgp_nexthop *nexthop, struct peer *peer)
776 {
777 int ret = 0;
778 struct interface *ifp = NULL;
779
780 memset(nexthop, 0, sizeof(struct bgp_nexthop));
781
782 if (!local)
783 return false;
784 if (!remote)
785 return false;
786
787 if (local->sa.sa_family == AF_INET) {
788 nexthop->v4 = local->sin.sin_addr;
789 if (peer->update_if)
790 ifp = if_lookup_by_name(peer->update_if,
791 peer->bgp->vrf_id);
792 else
793 ifp = if_lookup_by_ipv4_exact(&local->sin.sin_addr,
794 peer->bgp->vrf_id);
795 }
796 if (local->sa.sa_family == AF_INET6) {
797 if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
798 if (peer->conf_if || peer->ifname)
799 ifp = if_lookup_by_name(peer->conf_if
800 ? peer->conf_if
801 : peer->ifname,
802 peer->bgp->vrf_id);
803 } else if (peer->update_if)
804 ifp = if_lookup_by_name(peer->update_if,
805 peer->bgp->vrf_id);
806 else
807 ifp = if_lookup_by_ipv6_exact(&local->sin6.sin6_addr,
808 local->sin6.sin6_scope_id,
809 peer->bgp->vrf_id);
810 }
811
812 if (!ifp) {
813 /*
814 * BGP views do not currently get proper data
815 * from zebra( when attached ) to be able to
816 * properly resolve nexthops, so give this
817 * instance type a pass.
818 */
819 if (peer->bgp->inst_type == BGP_INSTANCE_TYPE_VIEW)
820 return true;
821 /*
822 * If we have no interface data but we have established
823 * some connection w/ zebra than something has gone
824 * terribly terribly wrong here, so say this failed
825 * If we do not any zebra connection then not
826 * having a ifp pointer is ok.
827 */
828 return zclient_num_connects ? false : true;
829 }
830
831 nexthop->ifp = ifp;
832
833 /* IPv4 connection, fetch and store IPv6 local address(es) if any. */
834 if (local->sa.sa_family == AF_INET) {
835 /* IPv6 nexthop*/
836 ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
837
838 if (!ret) {
839 /* There is no global nexthop. Use link-local address as
840 * both the
841 * global and link-local nexthop. In this scenario, the
842 * expectation
843 * for interop is that the network admin would use a
844 * route-map to
845 * specify the global IPv6 nexthop.
846 */
847 if_get_ipv6_local(ifp, &nexthop->v6_global);
848 memcpy(&nexthop->v6_local, &nexthop->v6_global,
849 IPV6_MAX_BYTELEN);
850 } else
851 if_get_ipv6_local(ifp, &nexthop->v6_local);
852
853 if (if_lookup_by_ipv4(&remote->sin.sin_addr, peer->bgp->vrf_id))
854 peer->shared_network = 1;
855 else
856 peer->shared_network = 0;
857 }
858
859 /* IPv6 connection, fetch and store IPv4 local address if any. */
860 if (local->sa.sa_family == AF_INET6) {
861 struct interface *direct = NULL;
862
863 /* IPv4 nexthop. */
864 ret = if_get_ipv4_address(ifp, &nexthop->v4);
865 if (!ret && peer->local_id.s_addr)
866 nexthop->v4 = peer->local_id;
867
868 /* Global address*/
869 if (!IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
870 memcpy(&nexthop->v6_global, &local->sin6.sin6_addr,
871 IPV6_MAX_BYTELEN);
872
873 /* If directory connected set link-local address. */
874 direct = if_lookup_by_ipv6(&remote->sin6.sin6_addr,
875 remote->sin6.sin6_scope_id,
876 peer->bgp->vrf_id);
877 if (direct)
878 if_get_ipv6_local(ifp, &nexthop->v6_local);
879 } else
880 /* Link-local address. */
881 {
882 ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
883
884 /* If there is no global address. Set link-local
885 address as
886 global. I know this break RFC specification... */
887 /* In this scenario, the expectation for interop is that
888 * the
889 * network admin would use a route-map to specify the
890 * global
891 * IPv6 nexthop.
892 */
893 if (!ret)
894 memcpy(&nexthop->v6_global,
895 &local->sin6.sin6_addr,
896 IPV6_MAX_BYTELEN);
897 /* Always set the link-local address */
898 memcpy(&nexthop->v6_local, &local->sin6.sin6_addr,
899 IPV6_MAX_BYTELEN);
900 }
901
902 if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)
903 || if_lookup_by_ipv6(&remote->sin6.sin6_addr,
904 remote->sin6.sin6_scope_id,
905 peer->bgp->vrf_id))
906 peer->shared_network = 1;
907 else
908 peer->shared_network = 0;
909 }
910
911 /* KAME stack specific treatment. */
912 #ifdef KAME
913 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_global)
914 && IN6_LINKLOCAL_IFINDEX(nexthop->v6_global)) {
915 SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_global, 0);
916 }
917 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_local)
918 && IN6_LINKLOCAL_IFINDEX(nexthop->v6_local)) {
919 SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_local, 0);
920 }
921 #endif /* KAME */
922
923 /* If we have identified the local interface, there is no error for now.
924 */
925 return true;
926 }
927
928 static struct in6_addr *bgp_info_to_ipv6_nexthop(struct bgp_info *info,
929 ifindex_t *ifindex)
930 {
931 struct in6_addr *nexthop = NULL;
932
933 /* Only global address nexthop exists. */
934 if (info->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL) {
935 nexthop = &info->attr->mp_nexthop_global;
936 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
937 *ifindex = info->attr->nh_ifindex;
938
939 }
940
941 /* If both global and link-local address present. */
942 if (info->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL) {
943 /* Check if route-map is set to prefer global over link-local */
944 if (info->attr->mp_nexthop_prefer_global) {
945 nexthop = &info->attr->mp_nexthop_global;
946 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
947 *ifindex = info->attr->nh_ifindex;
948 } else {
949 /* Workaround for Cisco's nexthop bug. */
950 if (IN6_IS_ADDR_UNSPECIFIED(
951 &info->attr->mp_nexthop_global)
952 && info->peer->su_remote->sa.sa_family
953 == AF_INET6) {
954 nexthop =
955 &info->peer->su_remote->sin6.sin6_addr;
956 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
957 *ifindex = info->peer->nexthop.ifp
958 ->ifindex;
959 } else {
960 nexthop = &info->attr->mp_nexthop_local;
961 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
962 *ifindex = info->attr->nh_lla_ifindex;
963 }
964 }
965 }
966
967 return nexthop;
968 }
969
970 static int bgp_table_map_apply(struct route_map *map, struct prefix *p,
971 struct bgp_info *info)
972 {
973 route_map_result_t ret;
974
975 ret = route_map_apply(map, p, RMAP_BGP, info);
976 bgp_attr_flush(info->attr);
977
978 if (ret != RMAP_DENYMATCH)
979 return 1;
980
981 if (bgp_debug_zebra(p)) {
982 if (p->family == AF_INET) {
983 char buf[2][INET_ADDRSTRLEN];
984 zlog_debug(
985 "Zebra rmap deny: IPv4 route %s/%d nexthop %s",
986 inet_ntop(AF_INET, &p->u.prefix4, buf[0],
987 sizeof(buf[0])),
988 p->prefixlen,
989 inet_ntop(AF_INET, &info->attr->nexthop, buf[1],
990 sizeof(buf[1])));
991 }
992 if (p->family == AF_INET6) {
993 char buf[2][INET6_ADDRSTRLEN];
994 ifindex_t ifindex;
995 struct in6_addr *nexthop;
996
997 nexthop = bgp_info_to_ipv6_nexthop(info, &ifindex);
998 zlog_debug(
999 "Zebra rmap deny: IPv6 route %s/%d nexthop %s",
1000 inet_ntop(AF_INET6, &p->u.prefix6, buf[0],
1001 sizeof(buf[0])),
1002 p->prefixlen,
1003 inet_ntop(AF_INET6, nexthop,
1004 buf[1], sizeof(buf[1])));
1005 }
1006 }
1007 return 0;
1008 }
1009
1010 static struct thread *bgp_tm_thread_connect;
1011 static bool bgp_tm_status_connected;
1012 static bool bgp_tm_chunk_obtained;
1013 #define BGP_FLOWSPEC_TABLE_CHUNK 100000
1014 static uint32_t bgp_tm_min, bgp_tm_max, bgp_tm_chunk_size;
1015 struct bgp *bgp_tm_bgp;
1016
1017 static int bgp_zebra_tm_connect(struct thread *t)
1018 {
1019 struct zclient *zclient;
1020 int delay = 10, ret = 0;
1021
1022 zclient = THREAD_ARG(t);
1023 if (bgp_tm_status_connected && zclient->sock > 0)
1024 delay = 60;
1025 else {
1026 bgp_tm_status_connected = false;
1027 ret = tm_table_manager_connect(zclient);
1028 }
1029 if (ret < 0) {
1030 zlog_info("Error connecting to table manager!");
1031 bgp_tm_status_connected = false;
1032 } else {
1033 if (!bgp_tm_status_connected)
1034 zlog_debug("Connecting to table manager. Success");
1035 bgp_tm_status_connected = true;
1036 if (!bgp_tm_chunk_obtained) {
1037 if (bgp_zebra_get_table_range(bgp_tm_chunk_size,
1038 &bgp_tm_min,
1039 &bgp_tm_max) >= 0) {
1040 bgp_tm_chunk_obtained = true;
1041 /* parse non installed entries */
1042 bgp_zebra_announce_table(bgp_tm_bgp, AFI_IP, SAFI_FLOWSPEC);
1043 }
1044 }
1045 }
1046 thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
1047 &bgp_tm_thread_connect);
1048 return 0;
1049 }
1050
1051 bool bgp_zebra_tm_chunk_obtained(void)
1052 {
1053 return bgp_tm_chunk_obtained;
1054 }
1055
1056 uint32_t bgp_zebra_tm_get_id(void)
1057 {
1058 static int table_id;
1059
1060 if (!bgp_tm_chunk_obtained)
1061 return ++table_id;
1062 return bgp_tm_min++;
1063 }
1064
1065 void bgp_zebra_init_tm_connect(struct bgp *bgp)
1066 {
1067 int delay = 1;
1068
1069 /* if already set, do nothing
1070 */
1071 if (bgp_tm_thread_connect != NULL)
1072 return;
1073 bgp_tm_status_connected = false;
1074 bgp_tm_chunk_obtained = false;
1075 bgp_tm_min = bgp_tm_max = 0;
1076 bgp_tm_chunk_size = BGP_FLOWSPEC_TABLE_CHUNK;
1077 bgp_tm_bgp = bgp;
1078 thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
1079 &bgp_tm_thread_connect);
1080 }
1081
1082 int bgp_zebra_get_table_range(uint32_t chunk_size,
1083 uint32_t *start, uint32_t *end)
1084 {
1085 int ret;
1086
1087 if (!bgp_tm_status_connected)
1088 return -1;
1089 ret = tm_get_table_chunk(zclient, chunk_size, start, end);
1090 if (ret < 0) {
1091 flog_err(EC_BGP_TABLE_CHUNK,
1092 "BGP: Error getting table chunk %u", chunk_size);
1093 return -1;
1094 }
1095 zlog_info("BGP: Table Manager returns range from chunk %u is [%u %u]",
1096 chunk_size, *start, *end);
1097 return 0;
1098 }
1099
1100 static int update_ipv4nh_for_route_install(int nh_othervrf,
1101 struct in_addr *nexthop,
1102 struct attr *attr,
1103 bool is_evpn,
1104 struct zapi_nexthop *api_nh)
1105 {
1106 api_nh->gate.ipv4 = *nexthop;
1107
1108 /* Need to set fields appropriately for EVPN routes imported into
1109 * a VRF (which are programmed as onlink on l3-vni SVI) as well as
1110 * connected routes leaked into a VRF.
1111 */
1112 if (is_evpn)
1113 api_nh->type = NEXTHOP_TYPE_IPV4_IFINDEX;
1114 else if (nh_othervrf &&
1115 api_nh->gate.ipv4.s_addr == INADDR_ANY) {
1116 api_nh->type = NEXTHOP_TYPE_IFINDEX;
1117 api_nh->ifindex = attr->nh_ifindex;
1118 } else
1119 api_nh->type = NEXTHOP_TYPE_IPV4;
1120
1121 return 1;
1122 }
1123
1124 static int update_ipv6nh_for_route_install(int nh_othervrf,
1125 struct in6_addr *nexthop,
1126 ifindex_t ifindex,
1127 struct bgp_info *ri,
1128 struct bgp_info *best_ri,
1129 bool is_evpn,
1130 struct zapi_nexthop *api_nh)
1131 {
1132 struct attr *attr;
1133
1134 attr = ri->attr;
1135
1136 if (is_evpn)
1137 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1138 else if (nh_othervrf) {
1139 if (IN6_IS_ADDR_UNSPECIFIED(nexthop)) {
1140 api_nh->type = NEXTHOP_TYPE_IFINDEX;
1141 api_nh->ifindex = attr->nh_ifindex;
1142 } else if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
1143 if (ifindex == 0)
1144 return 0;
1145 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1146 api_nh->ifindex = ifindex;
1147 } else {
1148 api_nh->type = NEXTHOP_TYPE_IPV6;
1149 api_nh->ifindex = 0;
1150 }
1151 } else {
1152 if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
1153 if (ri == best_ri &&
1154 attr->mp_nexthop_len
1155 == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL)
1156 if (ri->peer->nexthop.ifp)
1157 ifindex = ri->peer->nexthop.ifp
1158 ->ifindex;
1159 if (!ifindex) {
1160 if (ri->peer->conf_if)
1161 ifindex = ri->peer->ifp->ifindex;
1162 else if (ri->peer->ifname)
1163 ifindex = ifname2ifindex(
1164 ri->peer->ifname,
1165 ri->peer->bgp->vrf_id);
1166 else if (ri->peer->nexthop.ifp)
1167 ifindex = ri->peer->nexthop.ifp
1168 ->ifindex;
1169 }
1170
1171 if (ifindex == 0)
1172 return 0;
1173 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1174 api_nh->ifindex = ifindex;
1175 } else {
1176 api_nh->type = NEXTHOP_TYPE_IPV6;
1177 api_nh->ifindex = 0;
1178 }
1179 }
1180 api_nh->gate.ipv6 = *nexthop;
1181
1182 return 1;
1183 }
1184
1185 void bgp_zebra_announce(struct bgp_node *rn, struct prefix *p,
1186 struct bgp_info *info, struct bgp *bgp, afi_t afi,
1187 safi_t safi)
1188 {
1189 struct zapi_route api;
1190 struct zapi_nexthop *api_nh;
1191 int nh_family;
1192 unsigned int valid_nh_count = 0;
1193 int has_valid_label = 0;
1194 uint8_t distance;
1195 struct peer *peer;
1196 struct bgp_info *mpinfo;
1197 uint32_t metric;
1198 struct attr local_attr;
1199 struct bgp_info local_info;
1200 struct bgp_info *mpinfo_cp = &local_info;
1201 route_tag_t tag;
1202 mpls_label_t label;
1203 int nh_othervrf = 0;
1204 char buf_prefix[PREFIX_STRLEN]; /* filled in if we are debugging */
1205 bool is_evpn;
1206 int nh_updated;
1207
1208 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1209 * know of this instance.
1210 */
1211 if (!bgp_install_info_to_zebra(bgp))
1212 return;
1213
1214 if (bgp->main_zebra_update_hold)
1215 return;
1216
1217 if (bgp_debug_zebra(p))
1218 prefix2str(p, buf_prefix, sizeof(buf_prefix));
1219
1220 if (safi == SAFI_FLOWSPEC)
1221 return bgp_pbr_update_entry(bgp, &rn->p,
1222 info, afi, safi, true);
1223
1224 /*
1225 * vrf leaking support (will have only one nexthop)
1226 */
1227 if (info->extra && info->extra->bgp_orig)
1228 nh_othervrf = 1;
1229
1230 /* Make Zebra API structure. */
1231 memset(&api, 0, sizeof(api));
1232 api.vrf_id = bgp->vrf_id;
1233 api.type = ZEBRA_ROUTE_BGP;
1234 api.safi = safi;
1235 api.prefix = *p;
1236 SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
1237
1238 peer = info->peer;
1239
1240 if (info->type == ZEBRA_ROUTE_BGP
1241 && info->sub_type == BGP_ROUTE_IMPORTED) {
1242
1243 /* Obtain peer from parent */
1244 if (info->extra && info->extra->parent)
1245 peer = ((struct bgp_info *)(info->extra->parent))->peer;
1246 }
1247
1248 tag = info->attr->tag;
1249
1250 /* If the route's source is EVPN, flag as such. */
1251 is_evpn = is_route_parent_evpn(info);
1252 if (is_evpn)
1253 SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
1254
1255 if (peer->sort == BGP_PEER_IBGP || peer->sort == BGP_PEER_CONFED
1256 || info->sub_type == BGP_ROUTE_AGGREGATE) {
1257 SET_FLAG(api.flags, ZEBRA_FLAG_IBGP);
1258 SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
1259 }
1260
1261 if ((peer->sort == BGP_PEER_EBGP && peer->ttl != 1)
1262 || CHECK_FLAG(peer->flags, PEER_FLAG_DISABLE_CONNECTED_CHECK)
1263 || bgp_flag_check(bgp, BGP_FLAG_DISABLE_NH_CONNECTED_CHK))
1264
1265 SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
1266
1267 /* Metric is currently based on the best-path only */
1268 metric = info->attr->med;
1269 for (mpinfo = info; mpinfo; mpinfo = bgp_info_mpath_next(mpinfo)) {
1270 if (valid_nh_count >= multipath_num)
1271 break;
1272
1273 *mpinfo_cp = *mpinfo;
1274
1275 /* Get nexthop address-family */
1276 if (p->family == AF_INET
1277 && !BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr))
1278 nh_family = AF_INET;
1279 else if (p->family == AF_INET6
1280 || (p->family == AF_INET
1281 && BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr)))
1282 nh_family = AF_INET6;
1283 else
1284 continue;
1285
1286 api_nh = &api.nexthops[valid_nh_count];
1287 api_nh->vrf_id = nh_othervrf ? info->extra->bgp_orig->vrf_id
1288 : bgp->vrf_id;
1289 if (nh_family == AF_INET) {
1290 if (bgp_debug_zebra(&api.prefix)) {
1291 if (mpinfo->extra) {
1292 zlog_debug(
1293 "%s: p=%s, bgp_is_valid_label: %d",
1294 __func__, buf_prefix,
1295 bgp_is_valid_label(
1296 &mpinfo->extra
1297 ->label[0]));
1298 } else {
1299 zlog_debug(
1300 "%s: p=%s, extra is NULL, no label",
1301 __func__, buf_prefix);
1302 }
1303 }
1304
1305 if (bgp->table_map[afi][safi].name) {
1306 /* Copy info and attributes, so the route-map
1307 apply doesn't modify the BGP route info. */
1308 local_attr = *mpinfo->attr;
1309 mpinfo_cp->attr = &local_attr;
1310 }
1311
1312 if (bgp->table_map[afi][safi].name) {
1313 if (!bgp_table_map_apply(
1314 bgp->table_map[afi][safi].map, p,
1315 mpinfo_cp))
1316 continue;
1317
1318 /* metric/tag is only allowed to be
1319 * overridden on 1st nexthop */
1320 if (mpinfo == info) {
1321 metric = mpinfo_cp->attr->med;
1322 tag = mpinfo_cp->attr->tag;
1323 }
1324 }
1325
1326 nh_updated = update_ipv4nh_for_route_install(
1327 nh_othervrf,
1328 &mpinfo_cp->attr->nexthop,
1329 mpinfo_cp->attr, is_evpn, api_nh);
1330 } else {
1331 ifindex_t ifindex = IFINDEX_INTERNAL;
1332 struct in6_addr *nexthop;
1333
1334 if (bgp->table_map[afi][safi].name) {
1335 /* Copy info and attributes, so the route-map
1336 apply doesn't modify the BGP route info. */
1337 local_attr = *mpinfo->attr;
1338 mpinfo_cp->attr = &local_attr;
1339 }
1340
1341 if (bgp->table_map[afi][safi].name) {
1342 /* Copy info and attributes, so the route-map
1343 apply doesn't modify the BGP route info. */
1344 local_attr = *mpinfo->attr;
1345 mpinfo_cp->attr = &local_attr;
1346
1347 if (!bgp_table_map_apply(
1348 bgp->table_map[afi][safi].map, p,
1349 mpinfo_cp))
1350 continue;
1351
1352 /* metric/tag is only allowed to be
1353 * overridden on 1st nexthop */
1354 if (mpinfo == info) {
1355 metric = mpinfo_cp->attr->med;
1356 tag = mpinfo_cp->attr->tag;
1357 }
1358 }
1359 nexthop = bgp_info_to_ipv6_nexthop(mpinfo_cp,
1360 &ifindex);
1361 nh_updated = update_ipv6nh_for_route_install(
1362 nh_othervrf, nexthop, ifindex,
1363 mpinfo, info, is_evpn, api_nh);
1364 }
1365
1366 /* Did we get proper nexthop info to update zebra? */
1367 if (!nh_updated)
1368 continue;
1369
1370 if (mpinfo->extra
1371 && bgp_is_valid_label(&mpinfo->extra->label[0])
1372 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)) {
1373 has_valid_label = 1;
1374 label = label_pton(&mpinfo->extra->label[0]);
1375
1376 api_nh->label_num = 1;
1377 api_nh->labels[0] = label;
1378 }
1379 memcpy(&api_nh->rmac, &(mpinfo->attr->rmac),
1380 sizeof(struct ethaddr));
1381 valid_nh_count++;
1382 }
1383
1384
1385 /* if this is a evpn route we don't have to include the label */
1386 if (has_valid_label && !(CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)))
1387 SET_FLAG(api.message, ZAPI_MESSAGE_LABEL);
1388
1389 /*
1390 * When we create an aggregate route we must also
1391 * install a Null0 route in the RIB, so overwrite
1392 * what was written into api with a blackhole route
1393 */
1394 if (info->sub_type == BGP_ROUTE_AGGREGATE)
1395 zapi_route_set_blackhole(&api, BLACKHOLE_NULL);
1396 else
1397 api.nexthop_num = valid_nh_count;
1398
1399 SET_FLAG(api.message, ZAPI_MESSAGE_METRIC);
1400 api.metric = metric;
1401
1402 if (tag) {
1403 SET_FLAG(api.message, ZAPI_MESSAGE_TAG);
1404 api.tag = tag;
1405 }
1406
1407 distance = bgp_distance_apply(p, info, afi, safi, bgp);
1408 if (distance) {
1409 SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
1410 api.distance = distance;
1411 }
1412
1413 if (bgp_debug_zebra(p)) {
1414 char prefix_buf[PREFIX_STRLEN];
1415 char nh_buf[INET6_ADDRSTRLEN];
1416 char label_buf[20];
1417 int i;
1418
1419 prefix2str(&api.prefix, prefix_buf, sizeof(prefix_buf));
1420 zlog_debug("Tx route %s VRF %u %s metric %u tag %" ROUTE_TAG_PRI
1421 " count %d",
1422 valid_nh_count ? "add" : "delete", bgp->vrf_id,
1423 prefix_buf, api.metric, api.tag, api.nexthop_num);
1424 for (i = 0; i < api.nexthop_num; i++) {
1425 api_nh = &api.nexthops[i];
1426
1427 if (api_nh->type == NEXTHOP_TYPE_IFINDEX)
1428 nh_buf[0] = '\0';
1429 else {
1430 if (api_nh->type == NEXTHOP_TYPE_IPV4)
1431 nh_family = AF_INET;
1432 else
1433 nh_family = AF_INET6;
1434 inet_ntop(nh_family, &api_nh->gate, nh_buf,
1435 sizeof(nh_buf));
1436 }
1437
1438 label_buf[0] = '\0';
1439 if (has_valid_label
1440 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE))
1441 sprintf(label_buf, "label %u",
1442 api_nh->labels[0]);
1443 zlog_debug(" nhop [%d]: %s if %u VRF %u %s",
1444 i + 1, nh_buf, api_nh->ifindex,
1445 api_nh->vrf_id, label_buf);
1446 }
1447 }
1448
1449 if (bgp_debug_zebra(p)) {
1450 int recursion_flag = 0;
1451
1452 if (CHECK_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION))
1453 recursion_flag = 1;
1454
1455 zlog_debug("%s: %s: announcing to zebra (recursion %sset)",
1456 __func__, buf_prefix,
1457 (recursion_flag ? "" : "NOT "));
1458 }
1459 zclient_route_send(valid_nh_count ? ZEBRA_ROUTE_ADD
1460 : ZEBRA_ROUTE_DELETE,
1461 zclient, &api);
1462 }
1463
1464 /* Announce all routes of a table to zebra */
1465 void bgp_zebra_announce_table(struct bgp *bgp, afi_t afi, safi_t safi)
1466 {
1467 struct bgp_node *rn;
1468 struct bgp_table *table;
1469 struct bgp_info *ri;
1470
1471 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1472 * know of this instance.
1473 */
1474 if (!bgp_install_info_to_zebra(bgp))
1475 return;
1476
1477 table = bgp->rib[afi][safi];
1478 if (!table)
1479 return;
1480
1481 for (rn = bgp_table_top(table); rn; rn = bgp_route_next(rn))
1482 for (ri = rn->info; ri; ri = ri->next)
1483 if (CHECK_FLAG(ri->flags, BGP_INFO_SELECTED) &&
1484
1485 (ri->type == ZEBRA_ROUTE_BGP
1486 && (ri->sub_type == BGP_ROUTE_NORMAL
1487 || ri->sub_type == BGP_ROUTE_IMPORTED)))
1488
1489 bgp_zebra_announce(rn, &rn->p, ri, bgp, afi,
1490 safi);
1491 }
1492
1493 void bgp_zebra_withdraw(struct prefix *p, struct bgp_info *info,
1494 struct bgp *bgp, safi_t safi)
1495 {
1496 struct zapi_route api;
1497 struct peer *peer;
1498
1499 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1500 * know of this instance.
1501 */
1502 if (!bgp_install_info_to_zebra(bgp))
1503 return;
1504
1505 if (safi == SAFI_FLOWSPEC) {
1506 peer = info->peer;
1507 return bgp_pbr_update_entry(peer->bgp, p,
1508 info, AFI_IP, safi, false);
1509 }
1510
1511 memset(&api, 0, sizeof(api));
1512 api.vrf_id = bgp->vrf_id;
1513 api.type = ZEBRA_ROUTE_BGP;
1514 api.safi = safi;
1515 api.prefix = *p;
1516
1517 /* If the route's source is EVPN, flag as such. */
1518 if (is_route_parent_evpn(info))
1519 SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
1520
1521 if (bgp_debug_zebra(p)) {
1522 char buf[PREFIX_STRLEN];
1523
1524 prefix2str(&api.prefix, buf, sizeof(buf));
1525 zlog_debug("Tx route delete VRF %u %s", bgp->vrf_id, buf);
1526 }
1527
1528 zclient_route_send(ZEBRA_ROUTE_DELETE, zclient, &api);
1529 }
1530
1531 struct bgp_redist *bgp_redist_lookup(struct bgp *bgp, afi_t afi, uint8_t type,
1532 unsigned short instance)
1533 {
1534 struct list *red_list;
1535 struct listnode *node;
1536 struct bgp_redist *red;
1537
1538 red_list = bgp->redist[afi][type];
1539 if (!red_list)
1540 return (NULL);
1541
1542 for (ALL_LIST_ELEMENTS_RO(red_list, node, red))
1543 if (red->instance == instance)
1544 return red;
1545
1546 return NULL;
1547 }
1548
1549 struct bgp_redist *bgp_redist_add(struct bgp *bgp, afi_t afi, uint8_t type,
1550 unsigned short instance)
1551 {
1552 struct list *red_list;
1553 struct bgp_redist *red;
1554
1555 red = bgp_redist_lookup(bgp, afi, type, instance);
1556 if (red)
1557 return red;
1558
1559 if (!bgp->redist[afi][type])
1560 bgp->redist[afi][type] = list_new();
1561
1562 red_list = bgp->redist[afi][type];
1563 red = (struct bgp_redist *)XCALLOC(MTYPE_BGP_REDIST,
1564 sizeof(struct bgp_redist));
1565 red->instance = instance;
1566
1567 listnode_add(red_list, red);
1568
1569 return red;
1570 }
1571
1572 static void bgp_redist_del(struct bgp *bgp, afi_t afi, uint8_t type,
1573 unsigned short instance)
1574 {
1575 struct bgp_redist *red;
1576
1577 red = bgp_redist_lookup(bgp, afi, type, instance);
1578
1579 if (red) {
1580 listnode_delete(bgp->redist[afi][type], red);
1581 XFREE(MTYPE_BGP_REDIST, red);
1582 if (!bgp->redist[afi][type]->count)
1583 list_delete_and_null(&bgp->redist[afi][type]);
1584 }
1585 }
1586
1587 /* Other routes redistribution into BGP. */
1588 int bgp_redistribute_set(struct bgp *bgp, afi_t afi, int type,
1589 unsigned short instance, bool changed)
1590 {
1591 /* If redistribute options are changed call
1592 * bgp_redistribute_unreg() to reset the option and withdraw
1593 * the routes
1594 */
1595 if (changed)
1596 bgp_redistribute_unreg(bgp, afi, type, instance);
1597
1598 /* Return if already redistribute flag is set. */
1599 if (instance) {
1600 if (redist_check_instance(&zclient->mi_redist[afi][type],
1601 instance))
1602 return CMD_WARNING;
1603
1604 redist_add_instance(&zclient->mi_redist[afi][type], instance);
1605 } else {
1606 if (vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
1607 return CMD_WARNING;
1608
1609 #if ENABLE_BGP_VNC
1610 if (bgp->vrf_id == VRF_DEFAULT
1611 && type == ZEBRA_ROUTE_VNC_DIRECT) {
1612 vnc_export_bgp_enable(
1613 bgp, afi); /* only enables if mode bits cfg'd */
1614 }
1615 #endif
1616
1617 vrf_bitmap_set(zclient->redist[afi][type], bgp->vrf_id);
1618 }
1619
1620 /*
1621 * Don't try to register if we're not connected to Zebra or Zebra
1622 * doesn't know of this instance.
1623 *
1624 * When we come up later well resend if needed.
1625 */
1626 if (!bgp_install_info_to_zebra(bgp))
1627 return CMD_SUCCESS;
1628
1629 if (BGP_DEBUG(zebra, ZEBRA))
1630 zlog_debug("Tx redistribute add VRF %u afi %d %s %d",
1631 bgp->vrf_id, afi, zebra_route_string(type),
1632 instance);
1633
1634 /* Send distribute add message to zebra. */
1635 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
1636 instance, bgp->vrf_id);
1637
1638 return CMD_SUCCESS;
1639 }
1640
1641 int bgp_redistribute_resend(struct bgp *bgp, afi_t afi, int type,
1642 unsigned short instance)
1643 {
1644 /* Don't try to send if we're not connected to Zebra or Zebra doesn't
1645 * know of this instance.
1646 */
1647 if (!bgp_install_info_to_zebra(bgp))
1648 return -1;
1649
1650 if (BGP_DEBUG(zebra, ZEBRA))
1651 zlog_debug("Tx redistribute del/add VRF %u afi %d %s %d",
1652 bgp->vrf_id, afi, zebra_route_string(type),
1653 instance);
1654
1655 /* Send distribute add message to zebra. */
1656 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi, type,
1657 instance, bgp->vrf_id);
1658 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
1659 instance, bgp->vrf_id);
1660
1661 return 0;
1662 }
1663
1664 /* Redistribute with route-map specification. */
1665 int bgp_redistribute_rmap_set(struct bgp_redist *red, const char *name)
1666 {
1667 if (red->rmap.name && (strcmp(red->rmap.name, name) == 0))
1668 return 0;
1669
1670 if (red->rmap.name)
1671 XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
1672 red->rmap.name = XSTRDUP(MTYPE_ROUTE_MAP_NAME, name);
1673 red->rmap.map = route_map_lookup_by_name(name);
1674
1675 return 1;
1676 }
1677
1678 /* Redistribute with metric specification. */
1679 int bgp_redistribute_metric_set(struct bgp *bgp, struct bgp_redist *red,
1680 afi_t afi, int type, uint32_t metric)
1681 {
1682 struct bgp_node *rn;
1683 struct bgp_info *ri;
1684
1685 if (red->redist_metric_flag && red->redist_metric == metric)
1686 return 0;
1687
1688 red->redist_metric_flag = 1;
1689 red->redist_metric = metric;
1690
1691 for (rn = bgp_table_top(bgp->rib[afi][SAFI_UNICAST]); rn;
1692 rn = bgp_route_next(rn)) {
1693 for (ri = rn->info; ri; ri = ri->next) {
1694 if (ri->sub_type == BGP_ROUTE_REDISTRIBUTE
1695 && ri->type == type
1696 && ri->instance == red->instance) {
1697 struct attr *old_attr;
1698 struct attr new_attr;
1699
1700 bgp_attr_dup(&new_attr, ri->attr);
1701 new_attr.med = red->redist_metric;
1702 old_attr = ri->attr;
1703 ri->attr = bgp_attr_intern(&new_attr);
1704 bgp_attr_unintern(&old_attr);
1705
1706 bgp_info_set_flag(rn, ri,
1707 BGP_INFO_ATTR_CHANGED);
1708 bgp_process(bgp, rn, afi, SAFI_UNICAST);
1709 }
1710 }
1711 }
1712
1713 return 1;
1714 }
1715
1716 /* Unset redistribution. */
1717 int bgp_redistribute_unreg(struct bgp *bgp, afi_t afi, int type,
1718 unsigned short instance)
1719 {
1720 struct bgp_redist *red;
1721
1722 red = bgp_redist_lookup(bgp, afi, type, instance);
1723 if (!red)
1724 return CMD_SUCCESS;
1725
1726 /* Return if zebra connection is disabled. */
1727 if (instance) {
1728 if (!redist_check_instance(&zclient->mi_redist[afi][type],
1729 instance))
1730 return CMD_WARNING;
1731 redist_del_instance(&zclient->mi_redist[afi][type], instance);
1732 } else {
1733 if (!vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
1734 return CMD_WARNING;
1735 vrf_bitmap_unset(zclient->redist[afi][type], bgp->vrf_id);
1736 }
1737
1738
1739 if (bgp_install_info_to_zebra(bgp)) {
1740 /* Send distribute delete message to zebra. */
1741 if (BGP_DEBUG(zebra, ZEBRA))
1742 zlog_debug("Tx redistribute del VRF %u afi %d %s %d",
1743 bgp->vrf_id, afi, zebra_route_string(type),
1744 instance);
1745 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi,
1746 type, instance, bgp->vrf_id);
1747 }
1748
1749 /* Withdraw redistributed routes from current BGP's routing table. */
1750 bgp_redistribute_withdraw(bgp, afi, type, instance);
1751
1752 return CMD_SUCCESS;
1753 }
1754
1755 /* Unset redistribution. */
1756 int bgp_redistribute_unset(struct bgp *bgp, afi_t afi, int type,
1757 unsigned short instance)
1758 {
1759 struct bgp_redist *red;
1760
1761 /*
1762 * vnc and vpn->vrf checks must be before red check because
1763 * they operate within bgpd irrespective of zebra connection
1764 * status. red lookup fails if there is no zebra connection.
1765 */
1766 #if ENABLE_BGP_VNC
1767 if (bgp->vrf_id == VRF_DEFAULT && type == ZEBRA_ROUTE_VNC_DIRECT) {
1768 vnc_export_bgp_disable(bgp, afi);
1769 }
1770 #endif
1771
1772 red = bgp_redist_lookup(bgp, afi, type, instance);
1773 if (!red)
1774 return CMD_SUCCESS;
1775
1776 bgp_redistribute_unreg(bgp, afi, type, instance);
1777
1778 /* Unset route-map. */
1779 if (red->rmap.name)
1780 XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
1781 red->rmap.name = NULL;
1782 red->rmap.map = NULL;
1783
1784 /* Unset metric. */
1785 red->redist_metric_flag = 0;
1786 red->redist_metric = 0;
1787
1788 bgp_redist_del(bgp, afi, type, instance);
1789
1790 return CMD_SUCCESS;
1791 }
1792
1793 /* Update redistribute vrf bitmap during triggers like
1794 restart networking or delete/add VRFs */
1795 void bgp_update_redist_vrf_bitmaps(struct bgp *bgp, vrf_id_t old_vrf_id)
1796 {
1797 int i;
1798 afi_t afi;
1799
1800 for (afi = AFI_IP; afi < AFI_MAX; afi++)
1801 for (i = 0; i < ZEBRA_ROUTE_MAX; i++)
1802 if ((old_vrf_id == VRF_UNKNOWN)
1803 || vrf_bitmap_check(zclient->redist[afi][i],
1804 old_vrf_id)) {
1805 vrf_bitmap_unset(zclient->redist[afi][i],
1806 old_vrf_id);
1807 vrf_bitmap_set(zclient->redist[afi][i],
1808 bgp->vrf_id);
1809 }
1810 return;
1811 }
1812
1813 void bgp_zclient_reset(void)
1814 {
1815 zclient_reset(zclient);
1816 }
1817
1818 /* Register this instance with Zebra. Invoked upon connect (for
1819 * default instance) and when other VRFs are learnt (or created and
1820 * already learnt).
1821 */
1822 void bgp_zebra_instance_register(struct bgp *bgp)
1823 {
1824 /* Don't try to register if we're not connected to Zebra */
1825 if (!zclient || zclient->sock < 0)
1826 return;
1827
1828 if (BGP_DEBUG(zebra, ZEBRA))
1829 zlog_debug("Registering VRF %u", bgp->vrf_id);
1830
1831 /* Register for router-id, interfaces, redistributed routes. */
1832 zclient_send_reg_requests(zclient, bgp->vrf_id);
1833
1834 /* For default instance, register to learn about VNIs, if appropriate.
1835 */
1836 if (bgp->inst_type == BGP_INSTANCE_TYPE_DEFAULT && is_evpn_enabled())
1837 bgp_zebra_advertise_all_vni(bgp, 1);
1838 }
1839
1840 /* Deregister this instance with Zebra. Invoked upon the instance
1841 * being deleted (default or VRF) and it is already registered.
1842 */
1843 void bgp_zebra_instance_deregister(struct bgp *bgp)
1844 {
1845 /* Don't try to deregister if we're not connected to Zebra */
1846 if (zclient->sock < 0)
1847 return;
1848
1849 if (BGP_DEBUG(zebra, ZEBRA))
1850 zlog_debug("Deregistering VRF %u", bgp->vrf_id);
1851
1852 /* For default instance, unregister learning about VNIs, if appropriate.
1853 */
1854 if (bgp->inst_type == BGP_INSTANCE_TYPE_DEFAULT && is_evpn_enabled())
1855 bgp_zebra_advertise_all_vni(bgp, 0);
1856
1857 /* Deregister for router-id, interfaces, redistributed routes. */
1858 zclient_send_dereg_requests(zclient, bgp->vrf_id);
1859 }
1860
1861 void bgp_zebra_initiate_radv(struct bgp *bgp, struct peer *peer)
1862 {
1863 int ra_interval = BGP_UNNUM_DEFAULT_RA_INTERVAL;
1864
1865 /* Don't try to initiate if we're not connected to Zebra */
1866 if (zclient->sock < 0)
1867 return;
1868
1869 if (BGP_DEBUG(zebra, ZEBRA))
1870 zlog_debug("%u: Initiating RA for peer %s", bgp->vrf_id,
1871 peer->host);
1872
1873 zclient_send_interface_radv_req(zclient, bgp->vrf_id, peer->ifp, 1,
1874 ra_interval);
1875 }
1876
1877 void bgp_zebra_terminate_radv(struct bgp *bgp, struct peer *peer)
1878 {
1879 /* Don't try to terminate if we're not connected to Zebra */
1880 if (zclient->sock < 0)
1881 return;
1882
1883 if (BGP_DEBUG(zebra, ZEBRA))
1884 zlog_debug("%u: Terminating RA for peer %s", bgp->vrf_id,
1885 peer->host);
1886
1887 zclient_send_interface_radv_req(zclient, bgp->vrf_id, peer->ifp, 0, 0);
1888 }
1889
1890 int bgp_zebra_advertise_subnet(struct bgp *bgp, int advertise, vni_t vni)
1891 {
1892 struct stream *s = NULL;
1893
1894 /* Check socket. */
1895 if (!zclient || zclient->sock < 0)
1896 return 0;
1897
1898 /* Don't try to register if Zebra doesn't know of this instance. */
1899 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
1900 return 0;
1901
1902 s = zclient->obuf;
1903 stream_reset(s);
1904
1905 zclient_create_header(s, ZEBRA_ADVERTISE_SUBNET, bgp->vrf_id);
1906 stream_putc(s, advertise);
1907 stream_put3(s, vni);
1908 stream_putw_at(s, 0, stream_get_endp(s));
1909
1910 return zclient_send_message(zclient);
1911 }
1912
1913 int bgp_zebra_advertise_gw_macip(struct bgp *bgp, int advertise, vni_t vni)
1914 {
1915 struct stream *s = NULL;
1916
1917 /* Check socket. */
1918 if (!zclient || zclient->sock < 0)
1919 return 0;
1920
1921 /* Don't try to register if Zebra doesn't know of this instance. */
1922 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
1923 return 0;
1924
1925 s = zclient->obuf;
1926 stream_reset(s);
1927
1928 zclient_create_header(s, ZEBRA_ADVERTISE_DEFAULT_GW, bgp->vrf_id);
1929 stream_putc(s, advertise);
1930 stream_putl(s, vni);
1931 stream_putw_at(s, 0, stream_get_endp(s));
1932
1933 return zclient_send_message(zclient);
1934 }
1935
1936 int bgp_zebra_advertise_all_vni(struct bgp *bgp, int advertise)
1937 {
1938 struct stream *s;
1939
1940 /* Check socket. */
1941 if (!zclient || zclient->sock < 0)
1942 return 0;
1943
1944 /* Don't try to register if Zebra doesn't know of this instance. */
1945 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
1946 return 0;
1947
1948 s = zclient->obuf;
1949 stream_reset(s);
1950
1951 zclient_create_header(s, ZEBRA_ADVERTISE_ALL_VNI, bgp->vrf_id);
1952 stream_putc(s, advertise);
1953 stream_putw_at(s, 0, stream_get_endp(s));
1954
1955 return zclient_send_message(zclient);
1956 }
1957
1958 static int rule_notify_owner(int command, struct zclient *zclient,
1959 zebra_size_t length, vrf_id_t vrf_id)
1960 {
1961 uint32_t seqno, priority, unique;
1962 enum zapi_rule_notify_owner note;
1963 struct bgp_pbr_action *bgp_pbra;
1964 ifindex_t ifi;
1965
1966 if (!zapi_rule_notify_decode(zclient->ibuf, &seqno, &priority, &unique,
1967 &ifi, &note))
1968 return -1;
1969
1970 bgp_pbra = bgp_pbr_action_rule_lookup(vrf_id, unique);
1971 if (!bgp_pbra) {
1972 if (BGP_DEBUG(zebra, ZEBRA))
1973 zlog_debug("%s: Fail to look BGP rule (%u)",
1974 __PRETTY_FUNCTION__, unique);
1975 return 0;
1976 }
1977
1978 switch (note) {
1979 case ZAPI_RULE_FAIL_INSTALL:
1980 if (BGP_DEBUG(zebra, ZEBRA))
1981 zlog_debug("%s: Received RULE_FAIL_INSTALL",
1982 __PRETTY_FUNCTION__);
1983 bgp_pbra->installed = false;
1984 bgp_pbra->install_in_progress = false;
1985 break;
1986 case ZAPI_RULE_INSTALLED:
1987 bgp_pbra->installed = true;
1988 bgp_pbra->install_in_progress = false;
1989 if (BGP_DEBUG(zebra, ZEBRA))
1990 zlog_debug("%s: Received RULE_INSTALLED",
1991 __PRETTY_FUNCTION__);
1992 break;
1993 case ZAPI_RULE_FAIL_REMOVE:
1994 case ZAPI_RULE_REMOVED:
1995 if (BGP_DEBUG(zebra, ZEBRA))
1996 zlog_debug("%s: Received RULE REMOVED",
1997 __PRETTY_FUNCTION__);
1998 break;
1999 }
2000
2001 return 0;
2002 }
2003
2004 static int ipset_notify_owner(int command, struct zclient *zclient,
2005 zebra_size_t length, vrf_id_t vrf_id)
2006 {
2007 uint32_t unique;
2008 enum zapi_ipset_notify_owner note;
2009 struct bgp_pbr_match *bgp_pbim;
2010
2011 if (!zapi_ipset_notify_decode(zclient->ibuf,
2012 &unique,
2013 &note))
2014 return -1;
2015
2016 bgp_pbim = bgp_pbr_match_ipset_lookup(vrf_id, unique);
2017 if (!bgp_pbim) {
2018 if (BGP_DEBUG(zebra, ZEBRA))
2019 zlog_debug("%s: Fail to look BGP match ( %u, ID %u)",
2020 __PRETTY_FUNCTION__, note, unique);
2021 return 0;
2022 }
2023
2024 switch (note) {
2025 case ZAPI_IPSET_FAIL_INSTALL:
2026 if (BGP_DEBUG(zebra, ZEBRA))
2027 zlog_debug("%s: Received IPSET_FAIL_INSTALL",
2028 __PRETTY_FUNCTION__);
2029 bgp_pbim->installed = false;
2030 bgp_pbim->install_in_progress = false;
2031 break;
2032 case ZAPI_IPSET_INSTALLED:
2033 bgp_pbim->installed = true;
2034 bgp_pbim->install_in_progress = false;
2035 if (BGP_DEBUG(zebra, ZEBRA))
2036 zlog_debug("%s: Received IPSET_INSTALLED",
2037 __PRETTY_FUNCTION__);
2038 break;
2039 case ZAPI_IPSET_FAIL_REMOVE:
2040 case ZAPI_IPSET_REMOVED:
2041 if (BGP_DEBUG(zebra, ZEBRA))
2042 zlog_debug("%s: Received IPSET REMOVED",
2043 __PRETTY_FUNCTION__);
2044 break;
2045 }
2046
2047 return 0;
2048 }
2049
2050 static int ipset_entry_notify_owner(int command, struct zclient *zclient,
2051 zebra_size_t length, vrf_id_t vrf_id)
2052 {
2053 uint32_t unique;
2054 char ipset_name[ZEBRA_IPSET_NAME_SIZE];
2055 enum zapi_ipset_entry_notify_owner note;
2056 struct bgp_pbr_match_entry *bgp_pbime;
2057
2058 if (!zapi_ipset_entry_notify_decode(
2059 zclient->ibuf,
2060 &unique,
2061 ipset_name,
2062 &note))
2063 return -1;
2064 bgp_pbime = bgp_pbr_match_ipset_entry_lookup(vrf_id,
2065 ipset_name,
2066 unique);
2067 if (!bgp_pbime) {
2068 if (BGP_DEBUG(zebra, ZEBRA))
2069 zlog_debug("%s: Fail to look BGP match entry (%u, ID %u)",
2070 __PRETTY_FUNCTION__, note, unique);
2071 return 0;
2072 }
2073
2074 switch (note) {
2075 case ZAPI_IPSET_ENTRY_FAIL_INSTALL:
2076 if (BGP_DEBUG(zebra, ZEBRA))
2077 zlog_debug("%s: Received IPSET_ENTRY_FAIL_INSTALL",
2078 __PRETTY_FUNCTION__);
2079 bgp_pbime->installed = false;
2080 bgp_pbime->install_in_progress = false;
2081 break;
2082 case ZAPI_IPSET_ENTRY_INSTALLED:
2083 {
2084 struct bgp_info *bgp_info;
2085 struct bgp_info_extra *extra;
2086
2087 bgp_pbime->installed = true;
2088 bgp_pbime->install_in_progress = false;
2089 if (BGP_DEBUG(zebra, ZEBRA))
2090 zlog_debug("%s: Received IPSET_ENTRY_INSTALLED",
2091 __PRETTY_FUNCTION__);
2092 /* link bgp_info to bpme */
2093 bgp_info = (struct bgp_info *)bgp_pbime->bgp_info;
2094 extra = bgp_info_extra_get(bgp_info);
2095 if (extra->bgp_fs_pbr == NULL)
2096 extra->bgp_fs_pbr = list_new();
2097 listnode_add(extra->bgp_fs_pbr, bgp_pbime);
2098 }
2099 break;
2100 case ZAPI_IPSET_ENTRY_FAIL_REMOVE:
2101 case ZAPI_IPSET_ENTRY_REMOVED:
2102 if (BGP_DEBUG(zebra, ZEBRA))
2103 zlog_debug("%s: Received IPSET_ENTRY_REMOVED",
2104 __PRETTY_FUNCTION__);
2105 break;
2106 }
2107 return 0;
2108 }
2109
2110 static int iptable_notify_owner(int command, struct zclient *zclient,
2111 zebra_size_t length, vrf_id_t vrf_id)
2112 {
2113 uint32_t unique;
2114 enum zapi_iptable_notify_owner note;
2115 struct bgp_pbr_match *bgpm;
2116
2117 if (!zapi_iptable_notify_decode(
2118 zclient->ibuf,
2119 &unique,
2120 &note))
2121 return -1;
2122 bgpm = bgp_pbr_match_iptable_lookup(vrf_id, unique);
2123 if (!bgpm) {
2124 if (BGP_DEBUG(zebra, ZEBRA))
2125 zlog_debug("%s: Fail to look BGP iptable (%u %u)",
2126 __PRETTY_FUNCTION__, note, unique);
2127 return 0;
2128 }
2129 switch (note) {
2130 case ZAPI_IPTABLE_FAIL_INSTALL:
2131 if (BGP_DEBUG(zebra, ZEBRA))
2132 zlog_debug("%s: Received IPTABLE_FAIL_INSTALL",
2133 __PRETTY_FUNCTION__);
2134 bgpm->installed_in_iptable = false;
2135 bgpm->install_iptable_in_progress = false;
2136 break;
2137 case ZAPI_IPTABLE_INSTALLED:
2138 bgpm->installed_in_iptable = true;
2139 bgpm->install_iptable_in_progress = false;
2140 if (BGP_DEBUG(zebra, ZEBRA))
2141 zlog_debug("%s: Received IPTABLE_INSTALLED",
2142 __PRETTY_FUNCTION__);
2143 bgpm->action->refcnt++;
2144 break;
2145 case ZAPI_IPTABLE_FAIL_REMOVE:
2146 case ZAPI_IPTABLE_REMOVED:
2147 if (BGP_DEBUG(zebra, ZEBRA))
2148 zlog_debug("%s: Received IPTABLE REMOVED",
2149 __PRETTY_FUNCTION__);
2150 break;
2151 }
2152 return 0;
2153 }
2154
2155 static void bgp_encode_pbr_rule_action(struct stream *s,
2156 struct bgp_pbr_action *pbra)
2157 {
2158 struct prefix any;
2159
2160 stream_putl(s, 0); /* seqno unused */
2161 stream_putl(s, 0); /* ruleno unused */
2162
2163 stream_putl(s, pbra->unique);
2164
2165 memset(&any, 0, sizeof(any));
2166 any.family = AF_INET;
2167 stream_putc(s, any.family);
2168 stream_putc(s, any.prefixlen);
2169 stream_put(s, &any.u.prefix, prefix_blen(&any));
2170
2171 stream_putw(s, 0); /* src port */
2172
2173 stream_putc(s, any.family);
2174 stream_putc(s, any.prefixlen);
2175 stream_put(s, &any.u.prefix, prefix_blen(&any));
2176
2177 stream_putw(s, 0); /* dst port */
2178
2179 stream_putl(s, pbra->fwmark); /* fwmark */
2180
2181 stream_putl(s, pbra->table_id);
2182
2183 stream_putl(s, 0); /* ifindex unused */
2184 }
2185
2186 static void bgp_encode_pbr_ipset_match(struct stream *s,
2187 struct bgp_pbr_match *pbim)
2188 {
2189 stream_putl(s, pbim->unique);
2190 stream_putl(s, pbim->type);
2191
2192 stream_put(s, pbim->ipset_name,
2193 ZEBRA_IPSET_NAME_SIZE);
2194
2195
2196 }
2197
2198 static void bgp_encode_pbr_ipset_entry_match(struct stream *s,
2199 struct bgp_pbr_match_entry *pbime)
2200 {
2201 stream_putl(s, pbime->unique);
2202 /* check that back pointer is not null */
2203 stream_put(s, pbime->backpointer->ipset_name,
2204 ZEBRA_IPSET_NAME_SIZE);
2205
2206 stream_putc(s, pbime->src.family);
2207 stream_putc(s, pbime->src.prefixlen);
2208 stream_put(s, &pbime->src.u.prefix, prefix_blen(&pbime->src));
2209
2210 stream_putc(s, pbime->dst.family);
2211 stream_putc(s, pbime->dst.prefixlen);
2212 stream_put(s, &pbime->dst.u.prefix, prefix_blen(&pbime->dst));
2213
2214 stream_putw(s, pbime->src_port_min);
2215 stream_putw(s, pbime->src_port_max);
2216 stream_putw(s, pbime->dst_port_min);
2217 stream_putw(s, pbime->dst_port_max);
2218 stream_putc(s, pbime->proto);
2219 }
2220
2221 static void bgp_encode_pbr_iptable_match(struct stream *s,
2222 struct bgp_pbr_action *bpa,
2223 struct bgp_pbr_match *pbm)
2224 {
2225 stream_putl(s, pbm->unique2);
2226
2227 stream_putl(s, pbm->type);
2228
2229 stream_putl(s, pbm->flags);
2230
2231 /* TODO: correlate with what is contained
2232 * into bgp_pbr_action.
2233 * currently only forward supported
2234 */
2235 if (bpa->nh.type == NEXTHOP_TYPE_BLACKHOLE)
2236 stream_putl(s, ZEBRA_IPTABLES_DROP);
2237 else
2238 stream_putl(s, ZEBRA_IPTABLES_FORWARD);
2239 stream_putl(s, bpa->fwmark);
2240 stream_put(s, pbm->ipset_name,
2241 ZEBRA_IPSET_NAME_SIZE);
2242 stream_putw(s, pbm->pkt_len_min);
2243 stream_putw(s, pbm->pkt_len_max);
2244 stream_putw(s, pbm->tcp_flags);
2245 stream_putw(s, pbm->tcp_mask_flags);
2246 stream_putc(s, pbm->dscp_value);
2247 stream_putc(s, pbm->fragment);
2248 }
2249
2250 /* BGP has established connection with Zebra. */
2251 static void bgp_zebra_connected(struct zclient *zclient)
2252 {
2253 struct bgp *bgp;
2254
2255 zclient_num_connects++; /* increment even if not responding */
2256
2257 /* At this point, we may or may not have BGP instances configured, but
2258 * we're only interested in the default VRF (others wouldn't have learnt
2259 * the VRF from Zebra yet.)
2260 */
2261 bgp = bgp_get_default();
2262 if (!bgp)
2263 return;
2264
2265 bgp_zebra_instance_register(bgp);
2266
2267 /* Send the client registration */
2268 bfd_client_sendmsg(zclient, ZEBRA_BFD_CLIENT_REGISTER);
2269
2270 /* tell label pool that zebra is connected */
2271 bgp_lp_event_zebra_up();
2272
2273 /* TODO - What if we have peers and networks configured, do we have to
2274 * kick-start them?
2275 */
2276 }
2277
2278 static int bgp_zebra_process_local_es(int cmd, struct zclient *zclient,
2279 zebra_size_t length, vrf_id_t vrf_id)
2280 {
2281 esi_t esi;
2282 struct bgp *bgp = NULL;
2283 struct stream *s = NULL;
2284 char buf[ESI_STR_LEN];
2285 char buf1[INET6_ADDRSTRLEN];
2286 struct ipaddr originator_ip;
2287
2288 memset(&esi, 0, sizeof(esi_t));
2289 memset(&originator_ip, 0, sizeof(struct ipaddr));
2290
2291 bgp = bgp_lookup_by_vrf_id(vrf_id);
2292 if (!bgp)
2293 return 0;
2294
2295 s = zclient->ibuf;
2296 stream_get(&esi, s, sizeof(esi_t));
2297 stream_get(&originator_ip, s, sizeof(struct ipaddr));
2298
2299 if (BGP_DEBUG(zebra, ZEBRA))
2300 zlog_debug("Rx %s ESI %s originator-ip %s",
2301 (cmd == ZEBRA_LOCAL_ES_ADD) ? "add" : "del",
2302 esi_to_str(&esi, buf, sizeof(buf)),
2303 ipaddr2str(&originator_ip, buf1, sizeof(buf1)));
2304
2305 if (cmd == ZEBRA_LOCAL_ES_ADD)
2306 bgp_evpn_local_es_add(bgp, &esi, &originator_ip);
2307 else
2308 bgp_evpn_local_es_del(bgp, &esi, &originator_ip);
2309 return 0;
2310 }
2311
2312 static int bgp_zebra_process_local_l3vni(int cmd, struct zclient *zclient,
2313 zebra_size_t length, vrf_id_t vrf_id)
2314 {
2315 int filter = 0;
2316 char buf[ETHER_ADDR_STRLEN];
2317 vni_t l3vni = 0;
2318 struct ethaddr rmac;
2319 struct in_addr originator_ip;
2320 struct stream *s;
2321
2322 memset(&rmac, 0, sizeof(struct ethaddr));
2323 memset(&originator_ip, 0, sizeof(struct in_addr));
2324 s = zclient->ibuf;
2325 l3vni = stream_getl(s);
2326 if (cmd == ZEBRA_L3VNI_ADD) {
2327 stream_get(&rmac, s, sizeof(struct ethaddr));
2328 originator_ip.s_addr = stream_get_ipv4(s);
2329 stream_get(&filter, s, sizeof(int));
2330 }
2331
2332 if (BGP_DEBUG(zebra, ZEBRA))
2333 zlog_debug("Rx L3-VNI %s VRF %s VNI %u RMAC %s filter %s",
2334 (cmd == ZEBRA_L3VNI_ADD) ? "add" : "del",
2335 vrf_id_to_name(vrf_id), l3vni,
2336 prefix_mac2str(&rmac, buf, sizeof(buf)),
2337 filter ? "prefix-routes-only" : "none");
2338
2339 if (cmd == ZEBRA_L3VNI_ADD)
2340 bgp_evpn_local_l3vni_add(l3vni, vrf_id, &rmac, originator_ip,
2341 filter);
2342 else
2343 bgp_evpn_local_l3vni_del(l3vni, vrf_id);
2344
2345 return 0;
2346 }
2347
2348 static int bgp_zebra_process_local_vni(int command, struct zclient *zclient,
2349 zebra_size_t length, vrf_id_t vrf_id)
2350 {
2351 struct stream *s;
2352 vni_t vni;
2353 struct bgp *bgp;
2354 struct in_addr vtep_ip = {INADDR_ANY};
2355 vrf_id_t tenant_vrf_id = VRF_DEFAULT;
2356
2357 s = zclient->ibuf;
2358 vni = stream_getl(s);
2359 if (command == ZEBRA_VNI_ADD) {
2360 vtep_ip.s_addr = stream_get_ipv4(s);
2361 stream_get(&tenant_vrf_id, s, sizeof(vrf_id_t));
2362 }
2363
2364 bgp = bgp_lookup_by_vrf_id(vrf_id);
2365 if (!bgp)
2366 return 0;
2367
2368 if (BGP_DEBUG(zebra, ZEBRA))
2369 zlog_debug("Rx VNI %s VRF %s VNI %u tenant-vrf %s",
2370 (command == ZEBRA_VNI_ADD) ? "add" : "del",
2371 vrf_id_to_name(vrf_id), vni,
2372 vrf_id_to_name(tenant_vrf_id));
2373
2374 if (command == ZEBRA_VNI_ADD)
2375 return bgp_evpn_local_vni_add(
2376 bgp, vni, vtep_ip.s_addr ? vtep_ip : bgp->router_id,
2377 tenant_vrf_id);
2378 else
2379 return bgp_evpn_local_vni_del(bgp, vni);
2380 }
2381
2382 static int bgp_zebra_process_local_macip(int command, struct zclient *zclient,
2383 zebra_size_t length, vrf_id_t vrf_id)
2384 {
2385 struct stream *s;
2386 vni_t vni;
2387 struct bgp *bgp;
2388 struct ethaddr mac;
2389 struct ipaddr ip;
2390 int ipa_len;
2391 char buf[ETHER_ADDR_STRLEN];
2392 char buf1[INET6_ADDRSTRLEN];
2393 uint8_t flags = 0;
2394 uint32_t seqnum = 0;
2395
2396 memset(&ip, 0, sizeof(ip));
2397 s = zclient->ibuf;
2398 vni = stream_getl(s);
2399 stream_get(&mac.octet, s, ETH_ALEN);
2400 ipa_len = stream_getl(s);
2401 if (ipa_len != 0 && ipa_len != IPV4_MAX_BYTELEN
2402 && ipa_len != IPV6_MAX_BYTELEN) {
2403 flog_err(EC_BGP_MACIP_LEN,
2404 "%u:Recv MACIP %s with invalid IP addr length %d",
2405 vrf_id, (command == ZEBRA_MACIP_ADD) ? "Add" : "Del",
2406 ipa_len);
2407 return -1;
2408 }
2409
2410 if (ipa_len) {
2411 ip.ipa_type =
2412 (ipa_len == IPV4_MAX_BYTELEN) ? IPADDR_V4 : IPADDR_V6;
2413 stream_get(&ip.ip.addr, s, ipa_len);
2414 }
2415 if (command == ZEBRA_MACIP_ADD) {
2416 flags = stream_getc(s);
2417 seqnum = stream_getl(s);
2418 }
2419
2420 bgp = bgp_lookup_by_vrf_id(vrf_id);
2421 if (!bgp)
2422 return 0;
2423
2424 if (BGP_DEBUG(zebra, ZEBRA))
2425 zlog_debug("%u:Recv MACIP %s flags 0x%x MAC %s IP %s VNI %u seq %u",
2426 vrf_id, (command == ZEBRA_MACIP_ADD) ? "Add" : "Del",
2427 flags, prefix_mac2str(&mac, buf, sizeof(buf)),
2428 ipaddr2str(&ip, buf1, sizeof(buf1)), vni, seqnum);
2429
2430 if (command == ZEBRA_MACIP_ADD)
2431 return bgp_evpn_local_macip_add(bgp, vni, &mac, &ip,
2432 flags, seqnum);
2433 else
2434 return bgp_evpn_local_macip_del(bgp, vni, &mac, &ip);
2435 }
2436
2437 static void bgp_zebra_process_local_ip_prefix(int cmd, struct zclient *zclient,
2438 zebra_size_t length,
2439 vrf_id_t vrf_id)
2440 {
2441 struct stream *s = NULL;
2442 struct bgp *bgp_vrf = NULL;
2443 struct prefix p;
2444 char buf[PREFIX_STRLEN];
2445
2446 memset(&p, 0, sizeof(struct prefix));
2447 s = zclient->ibuf;
2448 stream_get(&p, s, sizeof(struct prefix));
2449
2450 bgp_vrf = bgp_lookup_by_vrf_id(vrf_id);
2451 if (!bgp_vrf)
2452 return;
2453
2454 if (BGP_DEBUG(zebra, ZEBRA))
2455 zlog_debug("Recv prefix %s %s on vrf %s",
2456 prefix2str(&p, buf, sizeof(buf)),
2457 (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) ? "ADD" : "DEL",
2458 vrf_id_to_name(vrf_id));
2459
2460 if (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) {
2461
2462 if (p.family == AF_INET)
2463 return bgp_evpn_advertise_type5_route(
2464 bgp_vrf, &p, NULL, AFI_IP, SAFI_UNICAST);
2465 else
2466 return bgp_evpn_advertise_type5_route(
2467 bgp_vrf, &p, NULL, AFI_IP6, SAFI_UNICAST);
2468
2469 } else {
2470 if (p.family == AF_INET)
2471 return bgp_evpn_withdraw_type5_route(
2472 bgp_vrf, &p, AFI_IP, SAFI_UNICAST);
2473 else
2474 return bgp_evpn_withdraw_type5_route(
2475 bgp_vrf, &p, AFI_IP6, SAFI_UNICAST);
2476 }
2477 }
2478
2479 static void bgp_zebra_process_label_chunk(
2480 int cmd,
2481 struct zclient *zclient,
2482 zebra_size_t length,
2483 vrf_id_t vrf_id)
2484 {
2485 struct stream *s = NULL;
2486 uint8_t response_keep;
2487 uint32_t first;
2488 uint32_t last;
2489 uint8_t proto;
2490 unsigned short instance;
2491
2492 s = zclient->ibuf;
2493 STREAM_GETC(s, proto);
2494 STREAM_GETW(s, instance);
2495 STREAM_GETC(s, response_keep);
2496 STREAM_GETL(s, first);
2497 STREAM_GETL(s, last);
2498
2499 if (zclient->redist_default != proto) {
2500 flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong proto %u",
2501 proto);
2502 return;
2503 }
2504 if (zclient->instance != instance) {
2505 flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong instance %u",
2506 proto);
2507 return;
2508 }
2509
2510 if (first > last ||
2511 first < MPLS_LABEL_UNRESERVED_MIN ||
2512 last > MPLS_LABEL_UNRESERVED_MAX) {
2513
2514 flog_err(EC_BGP_LM_ERROR, "%s: Invalid Label chunk: %u - %u",
2515 __func__, first, last);
2516 return;
2517 }
2518 if (BGP_DEBUG(zebra, ZEBRA)) {
2519 zlog_debug("Label Chunk assign: %u - %u (%u) ",
2520 first, last, response_keep);
2521 }
2522
2523 bgp_lp_event_chunk(response_keep, first, last);
2524
2525 stream_failure: /* for STREAM_GETX */
2526 return;
2527 }
2528
2529 extern struct zebra_privs_t bgpd_privs;
2530
2531 void bgp_zebra_init(struct thread_master *master, unsigned short instance)
2532 {
2533 zclient_num_connects = 0;
2534
2535 /* Set default values. */
2536 zclient = zclient_new_notify(master, &zclient_options_default);
2537 zclient_init(zclient, ZEBRA_ROUTE_BGP, 0, &bgpd_privs);
2538 zclient->zebra_connected = bgp_zebra_connected;
2539 zclient->router_id_update = bgp_router_id_update;
2540 zclient->interface_add = bgp_interface_add;
2541 zclient->interface_delete = bgp_interface_delete;
2542 zclient->interface_address_add = bgp_interface_address_add;
2543 zclient->interface_address_delete = bgp_interface_address_delete;
2544 zclient->interface_nbr_address_add = bgp_interface_nbr_address_add;
2545 zclient->interface_nbr_address_delete =
2546 bgp_interface_nbr_address_delete;
2547 zclient->interface_vrf_update = bgp_interface_vrf_update;
2548 zclient->redistribute_route_add = zebra_read_route;
2549 zclient->redistribute_route_del = zebra_read_route;
2550 zclient->interface_up = bgp_interface_up;
2551 zclient->interface_down = bgp_interface_down;
2552 zclient->nexthop_update = bgp_read_nexthop_update;
2553 zclient->import_check_update = bgp_read_import_check_update;
2554 zclient->fec_update = bgp_read_fec_update;
2555 zclient->local_es_add = bgp_zebra_process_local_es;
2556 zclient->local_es_del = bgp_zebra_process_local_es;
2557 zclient->local_vni_add = bgp_zebra_process_local_vni;
2558 zclient->local_vni_del = bgp_zebra_process_local_vni;
2559 zclient->local_macip_add = bgp_zebra_process_local_macip;
2560 zclient->local_macip_del = bgp_zebra_process_local_macip;
2561 zclient->local_l3vni_add = bgp_zebra_process_local_l3vni;
2562 zclient->local_l3vni_del = bgp_zebra_process_local_l3vni;
2563 zclient->local_ip_prefix_add = bgp_zebra_process_local_ip_prefix;
2564 zclient->local_ip_prefix_del = bgp_zebra_process_local_ip_prefix;
2565 zclient->label_chunk = bgp_zebra_process_label_chunk;
2566 zclient->rule_notify_owner = rule_notify_owner;
2567 zclient->ipset_notify_owner = ipset_notify_owner;
2568 zclient->ipset_entry_notify_owner = ipset_entry_notify_owner;
2569 zclient->iptable_notify_owner = iptable_notify_owner;
2570 zclient->instance = instance;
2571 }
2572
2573 void bgp_zebra_destroy(void)
2574 {
2575 if (zclient == NULL)
2576 return;
2577 zclient_stop(zclient);
2578 zclient_free(zclient);
2579 zclient = NULL;
2580 }
2581
2582 int bgp_zebra_num_connects(void)
2583 {
2584 return zclient_num_connects;
2585 }
2586
2587 void bgp_send_pbr_rule_action(struct bgp_pbr_action *pbra, bool install)
2588 {
2589 struct stream *s;
2590
2591 if (pbra->install_in_progress)
2592 return;
2593 if (BGP_DEBUG(zebra, ZEBRA))
2594 zlog_debug("%s: table %d fwmark %d %d",
2595 __PRETTY_FUNCTION__,
2596 pbra->table_id, pbra->fwmark, install);
2597 s = zclient->obuf;
2598 stream_reset(s);
2599
2600 zclient_create_header(s,
2601 install ? ZEBRA_RULE_ADD : ZEBRA_RULE_DELETE,
2602 VRF_DEFAULT);
2603 stream_putl(s, 1); /* send one pbr action */
2604
2605 bgp_encode_pbr_rule_action(s, pbra);
2606
2607 stream_putw_at(s, 0, stream_get_endp(s));
2608 if (!zclient_send_message(zclient) && install)
2609 pbra->install_in_progress = true;
2610 }
2611
2612 void bgp_send_pbr_ipset_match(struct bgp_pbr_match *pbrim, bool install)
2613 {
2614 struct stream *s;
2615
2616 if (pbrim->install_in_progress)
2617 return;
2618 if (BGP_DEBUG(zebra, ZEBRA))
2619 zlog_debug("%s: name %s type %d %d, ID %u",
2620 __PRETTY_FUNCTION__,
2621 pbrim->ipset_name, pbrim->type,
2622 install, pbrim->unique);
2623 s = zclient->obuf;
2624 stream_reset(s);
2625
2626 zclient_create_header(s,
2627 install ? ZEBRA_IPSET_CREATE :
2628 ZEBRA_IPSET_DESTROY,
2629 VRF_DEFAULT);
2630
2631 stream_putl(s, 1); /* send one pbr action */
2632
2633 bgp_encode_pbr_ipset_match(s, pbrim);
2634
2635 stream_putw_at(s, 0, stream_get_endp(s));
2636 if (!zclient_send_message(zclient) && install)
2637 pbrim->install_in_progress = true;
2638 }
2639
2640 void bgp_send_pbr_ipset_entry_match(struct bgp_pbr_match_entry *pbrime,
2641 bool install)
2642 {
2643 struct stream *s;
2644
2645 if (pbrime->install_in_progress)
2646 return;
2647 if (BGP_DEBUG(zebra, ZEBRA))
2648 zlog_debug("%s: name %s %d %d, ID %u", __PRETTY_FUNCTION__,
2649 pbrime->backpointer->ipset_name,
2650 pbrime->unique, install, pbrime->unique);
2651 s = zclient->obuf;
2652 stream_reset(s);
2653
2654 zclient_create_header(s,
2655 install ? ZEBRA_IPSET_ENTRY_ADD :
2656 ZEBRA_IPSET_ENTRY_DELETE,
2657 VRF_DEFAULT);
2658
2659 stream_putl(s, 1); /* send one pbr action */
2660
2661 bgp_encode_pbr_ipset_entry_match(s, pbrime);
2662
2663 stream_putw_at(s, 0, stream_get_endp(s));
2664 if (!zclient_send_message(zclient) && install)
2665 pbrime->install_in_progress = true;
2666 }
2667
2668 static void bgp_encode_pbr_interface_list(struct bgp *bgp, struct stream *s)
2669 {
2670 struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
2671 struct bgp_pbr_interface_head *head;
2672 struct bgp_pbr_interface *pbr_if;
2673 struct interface *ifp;
2674
2675 if (!bgp_pbr_cfg)
2676 return;
2677 head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
2678
2679 RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
2680 ifp = if_lookup_by_name(pbr_if->name, bgp->vrf_id);
2681 if (ifp)
2682 stream_putl(s, ifp->ifindex);
2683 }
2684 }
2685
2686 static int bgp_pbr_get_ifnumber(struct bgp *bgp)
2687 {
2688 struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
2689 struct bgp_pbr_interface_head *head;
2690 struct bgp_pbr_interface *pbr_if;
2691 int cnt = 0;
2692
2693 if (!bgp_pbr_cfg)
2694 return 0;
2695 head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
2696
2697 RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
2698 if (if_lookup_by_name(pbr_if->name, bgp->vrf_id))
2699 cnt++;
2700 }
2701 return cnt;
2702 }
2703
2704 void bgp_send_pbr_iptable(struct bgp_pbr_action *pba,
2705 struct bgp_pbr_match *pbm,
2706 bool install)
2707 {
2708 struct stream *s;
2709 int ret = 0;
2710 int nb_interface;
2711
2712 if (pbm->install_iptable_in_progress)
2713 return;
2714 if (BGP_DEBUG(zebra, ZEBRA))
2715 zlog_debug("%s: name %s type %d mark %d %d, ID %u",
2716 __PRETTY_FUNCTION__, pbm->ipset_name,
2717 pbm->type, pba->fwmark, install,
2718 pbm->unique2);
2719 s = zclient->obuf;
2720 stream_reset(s);
2721
2722 zclient_create_header(s,
2723 install ? ZEBRA_IPTABLE_ADD :
2724 ZEBRA_IPTABLE_DELETE,
2725 VRF_DEFAULT);
2726
2727 bgp_encode_pbr_iptable_match(s, pba, pbm);
2728 nb_interface = bgp_pbr_get_ifnumber(pba->bgp);
2729 stream_putl(s, nb_interface);
2730 if (nb_interface)
2731 bgp_encode_pbr_interface_list(pba->bgp, s);
2732 stream_putw_at(s, 0, stream_get_endp(s));
2733 ret = zclient_send_message(zclient);
2734 if (install) {
2735 if (ret)
2736 pba->refcnt++;
2737 else
2738 pbm->install_iptable_in_progress = true;
2739 }
2740 }
2741
2742 /* inject in table <table_id> a default route to:
2743 * - if nexthop IP is present : to this nexthop
2744 * - if vrf is different from local : to the matching VRF
2745 */
2746 void bgp_zebra_announce_default(struct bgp *bgp, struct nexthop *nh,
2747 afi_t afi, uint32_t table_id, bool announce)
2748 {
2749 struct zapi_nexthop *api_nh;
2750 struct zapi_route api;
2751 struct prefix p;
2752
2753 if (!nh || nh->type != NEXTHOP_TYPE_IPV4
2754 || nh->vrf_id == VRF_UNKNOWN)
2755 return;
2756 memset(&p, 0, sizeof(struct prefix));
2757 /* default route */
2758 if (afi != AFI_IP)
2759 return;
2760 p.family = AF_INET;
2761 memset(&api, 0, sizeof(api));
2762 api.vrf_id = bgp->vrf_id;
2763 api.type = ZEBRA_ROUTE_BGP;
2764 api.safi = SAFI_UNICAST;
2765 api.prefix = p;
2766 api.tableid = table_id;
2767 api.nexthop_num = 1;
2768 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
2769 SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
2770 api_nh = &api.nexthops[0];
2771
2772 /* redirect IP */
2773 if (nh->gate.ipv4.s_addr) {
2774 char buff[PREFIX_STRLEN];
2775
2776 api_nh->vrf_id = nh->vrf_id;
2777 api_nh->gate.ipv4 = nh->gate.ipv4;
2778 api_nh->type = NEXTHOP_TYPE_IPV4;
2779
2780 inet_ntop(AF_INET, &(nh->gate.ipv4), buff, INET_ADDRSTRLEN);
2781 if (BGP_DEBUG(zebra, ZEBRA))
2782 zlog_info("BGP: %s default route to %s table %d (redirect IP)",
2783 announce ? "adding" : "withdrawing",
2784 buff, table_id);
2785 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
2786 : ZEBRA_ROUTE_DELETE,
2787 zclient, &api);
2788 } else if (nh->vrf_id != bgp->vrf_id) {
2789 struct vrf *vrf;
2790 struct interface *ifp;
2791
2792 vrf = vrf_lookup_by_id(nh->vrf_id);
2793 if (!vrf)
2794 return;
2795 /* create default route with interface <VRF>
2796 * with nexthop-vrf <VRF>
2797 */
2798 ifp = if_lookup_by_name_all_vrf(vrf->name);
2799 if (!ifp)
2800 return;
2801 api_nh->vrf_id = nh->vrf_id;
2802 api_nh->type = NEXTHOP_TYPE_IFINDEX;
2803 api_nh->ifindex = ifp->ifindex;
2804 if (BGP_DEBUG(zebra, ZEBRA))
2805 zlog_info("BGP: %s default route to %s table %d (redirect VRF)",
2806 announce ? "adding" : "withdrawing",
2807 vrf->name, table_id);
2808 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
2809 : ZEBRA_ROUTE_DELETE,
2810 zclient, &api);
2811 return;
2812 }
2813 }