]> git.proxmox.com Git - mirror_frr.git/blob - bgpd/bgp_zebra.c
Merge pull request #3040 from pacovn/static_analysis__drop_const_1
[mirror_frr.git] / bgpd / bgp_zebra.c
1 /* zebra client
2 * Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "stream.h"
25 #include "network.h"
26 #include "prefix.h"
27 #include "log.h"
28 #include "sockunion.h"
29 #include "zclient.h"
30 #include "routemap.h"
31 #include "thread.h"
32 #include "queue.h"
33 #include "memory.h"
34 #include "lib/json.h"
35 #include "lib/bfd.h"
36 #include "filter.h"
37 #include "mpls.h"
38 #include "vxlan.h"
39
40 #include "bgpd/bgpd.h"
41 #include "bgpd/bgp_route.h"
42 #include "bgpd/bgp_attr.h"
43 #include "bgpd/bgp_nexthop.h"
44 #include "bgpd/bgp_zebra.h"
45 #include "bgpd/bgp_fsm.h"
46 #include "bgpd/bgp_debug.h"
47 #include "bgpd/bgp_errors.h"
48 #include "bgpd/bgp_mpath.h"
49 #include "bgpd/bgp_nexthop.h"
50 #include "bgpd/bgp_nht.h"
51 #include "bgpd/bgp_bfd.h"
52 #include "bgpd/bgp_label.h"
53 #if ENABLE_BGP_VNC
54 #include "bgpd/rfapi/rfapi_backend.h"
55 #include "bgpd/rfapi/vnc_export_bgp.h"
56 #endif
57 #include "bgpd/bgp_evpn.h"
58 #include "bgpd/bgp_mplsvpn.h"
59 #include "bgpd/bgp_labelpool.h"
60 #include "bgpd/bgp_pbr.h"
61
62 /* All information about zebra. */
63 struct zclient *zclient = NULL;
64
65 /* Can we install into zebra? */
66 static inline int bgp_install_info_to_zebra(struct bgp *bgp)
67 {
68 if (zclient->sock <= 0)
69 return 0;
70
71 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
72 return 0;
73
74 return 1;
75 }
76
77 int zclient_num_connects;
78
79 /* Router-id update message from zebra. */
80 static int bgp_router_id_update(int command, struct zclient *zclient,
81 zebra_size_t length, vrf_id_t vrf_id)
82 {
83 struct prefix router_id;
84
85 zebra_router_id_update_read(zclient->ibuf, &router_id);
86
87 if (BGP_DEBUG(zebra, ZEBRA)) {
88 char buf[PREFIX2STR_BUFFER];
89 prefix2str(&router_id, buf, sizeof(buf));
90 zlog_debug("Rx Router Id update VRF %u Id %s", vrf_id, buf);
91 }
92
93 bgp_router_id_zebra_bump(vrf_id, &router_id);
94 return 0;
95 }
96
97 /* Nexthop update message from zebra. */
98 static int bgp_read_nexthop_update(int command, struct zclient *zclient,
99 zebra_size_t length, vrf_id_t vrf_id)
100 {
101 bgp_parse_nexthop_update(command, vrf_id);
102 return 0;
103 }
104
105 static int bgp_read_import_check_update(int command, struct zclient *zclient,
106 zebra_size_t length, vrf_id_t vrf_id)
107 {
108 bgp_parse_nexthop_update(command, vrf_id);
109 return 0;
110 }
111
112 /* Set or clear interface on which unnumbered neighbor is configured. This
113 * would in turn cause BGP to initiate or turn off IPv6 RAs on this
114 * interface.
115 */
116 static void bgp_update_interface_nbrs(struct bgp *bgp, struct interface *ifp,
117 struct interface *upd_ifp)
118 {
119 struct listnode *node, *nnode;
120 struct peer *peer;
121
122 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
123 if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)) {
124 if (upd_ifp) {
125 peer->ifp = upd_ifp;
126 bgp_zebra_initiate_radv(bgp, peer);
127 } else {
128 bgp_zebra_terminate_radv(bgp, peer);
129 peer->ifp = upd_ifp;
130 }
131 }
132 }
133 }
134
135 static int bgp_read_fec_update(int command, struct zclient *zclient,
136 zebra_size_t length)
137 {
138 bgp_parse_fec_update();
139 return 0;
140 }
141
142 static void bgp_start_interface_nbrs(struct bgp *bgp, struct interface *ifp)
143 {
144 struct listnode *node, *nnode;
145 struct peer *peer;
146
147 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
148 if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)
149 && peer->status != Established) {
150 if (peer_active(peer))
151 BGP_EVENT_ADD(peer, BGP_Stop);
152 BGP_EVENT_ADD(peer, BGP_Start);
153 }
154 }
155 }
156
157 static void bgp_nbr_connected_add(struct bgp *bgp, struct nbr_connected *ifc)
158 {
159 struct listnode *node;
160 struct connected *connected;
161 struct interface *ifp;
162 struct prefix *p;
163
164 /* Kick-off the FSM for any relevant peers only if there is a
165 * valid local address on the interface.
166 */
167 ifp = ifc->ifp;
168 for (ALL_LIST_ELEMENTS_RO(ifp->connected, node, connected)) {
169 p = connected->address;
170 if (p->family == AF_INET6
171 && IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
172 break;
173 }
174 if (!connected)
175 return;
176
177 bgp_start_interface_nbrs(bgp, ifp);
178 }
179
180 static void bgp_nbr_connected_delete(struct bgp *bgp, struct nbr_connected *ifc,
181 int del)
182 {
183 struct listnode *node, *nnode;
184 struct peer *peer;
185 struct interface *ifp;
186
187 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
188 if (peer->conf_if
189 && (strcmp(peer->conf_if, ifc->ifp->name) == 0)) {
190 peer->last_reset = PEER_DOWN_NBR_ADDR_DEL;
191 BGP_EVENT_ADD(peer, BGP_Stop);
192 }
193 }
194 /* Free neighbor also, if we're asked to. */
195 if (del) {
196 ifp = ifc->ifp;
197 listnode_delete(ifp->nbr_connected, ifc);
198 nbr_connected_free(ifc);
199 }
200 }
201
202 /* Inteface addition message from zebra. */
203 static int bgp_interface_add(int command, struct zclient *zclient,
204 zebra_size_t length, vrf_id_t vrf_id)
205 {
206 struct interface *ifp;
207 struct bgp *bgp;
208
209 ifp = zebra_interface_add_read(zclient->ibuf, vrf_id);
210 if (!ifp) // unexpected
211 return 0;
212
213 if (BGP_DEBUG(zebra, ZEBRA) && ifp)
214 zlog_debug("Rx Intf add VRF %u IF %s", vrf_id, ifp->name);
215
216 bgp = bgp_lookup_by_vrf_id(vrf_id);
217 if (!bgp)
218 return 0;
219
220 bgp_update_interface_nbrs(bgp, ifp, ifp);
221 return 0;
222 }
223
224 static int bgp_interface_delete(int command, struct zclient *zclient,
225 zebra_size_t length, vrf_id_t vrf_id)
226 {
227 struct stream *s;
228 struct interface *ifp;
229 struct bgp *bgp;
230
231 bgp = bgp_lookup_by_vrf_id(vrf_id);
232 if (!bgp)
233 return 0;
234
235 s = zclient->ibuf;
236 ifp = zebra_interface_state_read(s, vrf_id);
237 if (!ifp) /* This may happen if we've just unregistered for a VRF. */
238 return 0;
239
240 if (BGP_DEBUG(zebra, ZEBRA))
241 zlog_debug("Rx Intf del VRF %u IF %s", vrf_id, ifp->name);
242
243 bgp_update_interface_nbrs(bgp, ifp, NULL);
244
245 if_set_index(ifp, IFINDEX_INTERNAL);
246 return 0;
247 }
248
249 static int bgp_interface_up(int command, struct zclient *zclient,
250 zebra_size_t length, vrf_id_t vrf_id)
251 {
252 struct stream *s;
253 struct interface *ifp;
254 struct connected *c;
255 struct nbr_connected *nc;
256 struct listnode *node, *nnode;
257 struct bgp *bgp;
258
259 bgp = bgp_lookup_by_vrf_id(vrf_id);
260 if (!bgp)
261 return 0;
262
263 s = zclient->ibuf;
264 ifp = zebra_interface_state_read(s, vrf_id);
265
266 if (!ifp)
267 return 0;
268
269 if (BGP_DEBUG(zebra, ZEBRA))
270 zlog_debug("Rx Intf up VRF %u IF %s", vrf_id, ifp->name);
271
272 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
273 bgp_connected_add(bgp, c);
274
275 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
276 bgp_nbr_connected_add(bgp, nc);
277
278 return 0;
279 }
280
281 static int bgp_interface_down(int command, struct zclient *zclient,
282 zebra_size_t length, vrf_id_t vrf_id)
283 {
284 struct stream *s;
285 struct interface *ifp;
286 struct connected *c;
287 struct nbr_connected *nc;
288 struct listnode *node, *nnode;
289 struct bgp *bgp;
290
291 bgp = bgp_lookup_by_vrf_id(vrf_id);
292 if (!bgp)
293 return 0;
294
295 s = zclient->ibuf;
296 ifp = zebra_interface_state_read(s, vrf_id);
297 if (!ifp)
298 return 0;
299
300 if (BGP_DEBUG(zebra, ZEBRA))
301 zlog_debug("Rx Intf down VRF %u IF %s", vrf_id, ifp->name);
302
303 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
304 bgp_connected_delete(bgp, c);
305
306 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
307 bgp_nbr_connected_delete(bgp, nc, 1);
308
309 /* Fast external-failover */
310 {
311 struct peer *peer;
312
313 if (CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER))
314 return 0;
315
316 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
317 #if defined(HAVE_CUMULUS)
318 /* Take down directly connected EBGP peers as well as
319 * 1-hop BFD
320 * tracked (directly connected) IBGP peers.
321 */
322 if ((peer->ttl != 1) && (peer->gtsm_hops != 1)
323 && (!peer->bfd_info
324 || bgp_bfd_is_peer_multihop(peer)))
325 #else
326 /* Take down directly connected EBGP peers */
327 if ((peer->ttl != 1) && (peer->gtsm_hops != 1))
328 #endif
329 continue;
330
331 if (ifp == peer->nexthop.ifp) {
332 BGP_EVENT_ADD(peer, BGP_Stop);
333 peer->last_reset = PEER_DOWN_IF_DOWN;
334 }
335 }
336 }
337
338 return 0;
339 }
340
341 static int bgp_interface_address_add(int command, struct zclient *zclient,
342 zebra_size_t length, vrf_id_t vrf_id)
343 {
344 struct connected *ifc;
345 struct bgp *bgp;
346
347 bgp = bgp_lookup_by_vrf_id(vrf_id);
348 if (!bgp)
349 return 0;
350
351 ifc = zebra_interface_address_read(command, zclient->ibuf, vrf_id);
352
353 if (ifc == NULL)
354 return 0;
355
356 if (bgp_debug_zebra(ifc->address)) {
357 char buf[PREFIX2STR_BUFFER];
358 prefix2str(ifc->address, buf, sizeof(buf));
359 zlog_debug("Rx Intf address add VRF %u IF %s addr %s", vrf_id,
360 ifc->ifp->name, buf);
361 }
362
363 if (if_is_operative(ifc->ifp)) {
364 bgp_connected_add(bgp, ifc);
365
366 /* If we have learnt of any neighbors on this interface,
367 * check to kick off any BGP interface-based neighbors,
368 * but only if this is a link-local address.
369 */
370 if (IN6_IS_ADDR_LINKLOCAL(&ifc->address->u.prefix6)
371 && !list_isempty(ifc->ifp->nbr_connected))
372 bgp_start_interface_nbrs(bgp, ifc->ifp);
373 }
374
375 return 0;
376 }
377
378 static int bgp_interface_address_delete(int command, struct zclient *zclient,
379 zebra_size_t length, vrf_id_t vrf_id)
380 {
381 struct connected *ifc;
382 struct bgp *bgp;
383
384 bgp = bgp_lookup_by_vrf_id(vrf_id);
385 if (!bgp)
386 return 0;
387
388 ifc = zebra_interface_address_read(command, zclient->ibuf, vrf_id);
389
390 if (ifc == NULL)
391 return 0;
392
393 if (bgp_debug_zebra(ifc->address)) {
394 char buf[PREFIX2STR_BUFFER];
395 prefix2str(ifc->address, buf, sizeof(buf));
396 zlog_debug("Rx Intf address del VRF %u IF %s addr %s", vrf_id,
397 ifc->ifp->name, buf);
398 }
399
400 if (if_is_operative(ifc->ifp)) {
401 bgp_connected_delete(bgp, ifc);
402 }
403
404 connected_free(ifc);
405
406 return 0;
407 }
408
409 static int bgp_interface_nbr_address_add(int command, struct zclient *zclient,
410 zebra_size_t length, vrf_id_t vrf_id)
411 {
412 struct nbr_connected *ifc = NULL;
413 struct bgp *bgp;
414
415 ifc = zebra_interface_nbr_address_read(command, zclient->ibuf, vrf_id);
416
417 if (ifc == NULL)
418 return 0;
419
420 if (bgp_debug_zebra(ifc->address)) {
421 char buf[PREFIX2STR_BUFFER];
422 prefix2str(ifc->address, buf, sizeof(buf));
423 zlog_debug("Rx Intf neighbor add VRF %u IF %s addr %s", vrf_id,
424 ifc->ifp->name, buf);
425 }
426
427 if (if_is_operative(ifc->ifp)) {
428 bgp = bgp_lookup_by_vrf_id(vrf_id);
429 if (bgp)
430 bgp_nbr_connected_add(bgp, ifc);
431 }
432
433 return 0;
434 }
435
436 static int bgp_interface_nbr_address_delete(int command,
437 struct zclient *zclient,
438 zebra_size_t length,
439 vrf_id_t vrf_id)
440 {
441 struct nbr_connected *ifc = NULL;
442 struct bgp *bgp;
443
444 ifc = zebra_interface_nbr_address_read(command, zclient->ibuf, vrf_id);
445
446 if (ifc == NULL)
447 return 0;
448
449 if (bgp_debug_zebra(ifc->address)) {
450 char buf[PREFIX2STR_BUFFER];
451 prefix2str(ifc->address, buf, sizeof(buf));
452 zlog_debug("Rx Intf neighbor del VRF %u IF %s addr %s", vrf_id,
453 ifc->ifp->name, buf);
454 }
455
456 if (if_is_operative(ifc->ifp)) {
457 bgp = bgp_lookup_by_vrf_id(vrf_id);
458 if (bgp)
459 bgp_nbr_connected_delete(bgp, ifc, 0);
460 }
461
462 nbr_connected_free(ifc);
463
464 return 0;
465 }
466
467 /* VRF update for an interface. */
468 static int bgp_interface_vrf_update(int command, struct zclient *zclient,
469 zebra_size_t length, vrf_id_t vrf_id)
470 {
471 struct interface *ifp;
472 vrf_id_t new_vrf_id;
473 struct connected *c;
474 struct nbr_connected *nc;
475 struct listnode *node, *nnode;
476 struct bgp *bgp;
477
478 ifp = zebra_interface_vrf_update_read(zclient->ibuf, vrf_id,
479 &new_vrf_id);
480 if (!ifp)
481 return 0;
482
483 if (BGP_DEBUG(zebra, ZEBRA) && ifp)
484 zlog_debug("Rx Intf VRF change VRF %u IF %s NewVRF %u", vrf_id,
485 ifp->name, new_vrf_id);
486
487 bgp = bgp_lookup_by_vrf_id(vrf_id);
488 if (!bgp)
489 return 0;
490
491 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
492 bgp_connected_delete(bgp, c);
493
494 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
495 bgp_nbr_connected_delete(bgp, nc, 1);
496
497 /* Fast external-failover */
498 {
499 struct peer *peer;
500
501 if (CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER))
502 return 0;
503
504 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
505 if ((peer->ttl != 1) && (peer->gtsm_hops != 1))
506 continue;
507
508 if (ifp == peer->nexthop.ifp)
509 BGP_EVENT_ADD(peer, BGP_Stop);
510 }
511 }
512
513 if_update_to_new_vrf(ifp, new_vrf_id);
514
515 bgp = bgp_lookup_by_vrf_id(new_vrf_id);
516 if (!bgp)
517 return 0;
518
519 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
520 bgp_connected_add(bgp, c);
521
522 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
523 bgp_nbr_connected_add(bgp, nc);
524 return 0;
525 }
526
527 /* Zebra route add and delete treatment. */
528 static int zebra_read_route(int command, struct zclient *zclient,
529 zebra_size_t length, vrf_id_t vrf_id)
530 {
531 enum nexthop_types_t nhtype;
532 struct zapi_route api;
533 union g_addr nexthop;
534 ifindex_t ifindex;
535 int add, i;
536 struct bgp *bgp;
537
538 bgp = bgp_lookup_by_vrf_id(vrf_id);
539 if (!bgp)
540 return 0;
541
542 if (zapi_route_decode(zclient->ibuf, &api) < 0)
543 return -1;
544
545 /* we completely ignore srcdest routes for now. */
546 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_SRCPFX))
547 return 0;
548
549 /* ignore link-local address. */
550 if (api.prefix.family == AF_INET6
551 && IN6_IS_ADDR_LINKLOCAL(&api.prefix.u.prefix6))
552 return 0;
553
554 nexthop = api.nexthops[0].gate;
555 ifindex = api.nexthops[0].ifindex;
556 nhtype = api.nexthops[0].type;
557
558 add = (command == ZEBRA_REDISTRIBUTE_ROUTE_ADD);
559 if (add) {
560 /*
561 * The ADD message is actually an UPDATE and there is no
562 * explicit DEL
563 * for a prior redistributed route, if any. So, perform an
564 * implicit
565 * DEL processing for the same redistributed route from any
566 * other
567 * source type.
568 */
569 for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
570 if (i != api.type)
571 bgp_redistribute_delete(bgp, &api.prefix, i,
572 api.instance);
573 }
574
575 /* Now perform the add/update. */
576 bgp_redistribute_add(bgp, &api.prefix, &nexthop, ifindex,
577 nhtype, api.metric, api.type, api.instance,
578 api.tag);
579 } else {
580 bgp_redistribute_delete(bgp, &api.prefix, api.type,
581 api.instance);
582 }
583
584 if (bgp_debug_zebra(&api.prefix)) {
585 char buf[2][PREFIX_STRLEN];
586
587 prefix2str(&api.prefix, buf[0], sizeof(buf[0]));
588 if (add) {
589 inet_ntop(api.prefix.family, &nexthop, buf[1],
590 sizeof(buf[1]));
591 zlog_debug(
592 "Rx route ADD VRF %u %s[%d] %s nexthop %s (type %d if %u) metric %u tag %" ROUTE_TAG_PRI,
593 vrf_id, zebra_route_string(api.type),
594 api.instance, buf[0], buf[1], nhtype,
595 ifindex, api.metric, api.tag);
596 } else {
597 zlog_debug(
598 "Rx route DEL VRF %u %s[%d] %s",
599 vrf_id, zebra_route_string(api.type),
600 api.instance, buf[0]);
601 }
602 }
603
604 return 0;
605 }
606
607 struct interface *if_lookup_by_ipv4(struct in_addr *addr, vrf_id_t vrf_id)
608 {
609 struct vrf *vrf;
610 struct listnode *cnode;
611 struct interface *ifp;
612 struct connected *connected;
613 struct prefix_ipv4 p;
614 struct prefix *cp;
615
616 vrf = vrf_lookup_by_id(vrf_id);
617 if (!vrf)
618 return NULL;
619
620 p.family = AF_INET;
621 p.prefix = *addr;
622 p.prefixlen = IPV4_MAX_BITLEN;
623
624 FOR_ALL_INTERFACES (vrf, ifp) {
625 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
626 cp = connected->address;
627
628 if (cp->family == AF_INET)
629 if (prefix_match(cp, (struct prefix *)&p))
630 return ifp;
631 }
632 }
633 return NULL;
634 }
635
636 struct interface *if_lookup_by_ipv4_exact(struct in_addr *addr, vrf_id_t vrf_id)
637 {
638 struct vrf *vrf;
639 struct listnode *cnode;
640 struct interface *ifp;
641 struct connected *connected;
642 struct prefix *cp;
643
644 vrf = vrf_lookup_by_id(vrf_id);
645 if (!vrf)
646 return NULL;
647
648 FOR_ALL_INTERFACES (vrf, ifp) {
649 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
650 cp = connected->address;
651
652 if (cp->family == AF_INET)
653 if (IPV4_ADDR_SAME(&cp->u.prefix4, addr))
654 return ifp;
655 }
656 }
657 return NULL;
658 }
659
660 struct interface *if_lookup_by_ipv6(struct in6_addr *addr, ifindex_t ifindex,
661 vrf_id_t vrf_id)
662 {
663 struct vrf *vrf;
664 struct listnode *cnode;
665 struct interface *ifp;
666 struct connected *connected;
667 struct prefix_ipv6 p;
668 struct prefix *cp;
669
670 vrf = vrf_lookup_by_id(vrf_id);
671 if (!vrf)
672 return NULL;
673
674 p.family = AF_INET6;
675 p.prefix = *addr;
676 p.prefixlen = IPV6_MAX_BITLEN;
677
678 FOR_ALL_INTERFACES (vrf, ifp) {
679 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
680 cp = connected->address;
681
682 if (cp->family == AF_INET6)
683 if (prefix_match(cp, (struct prefix *)&p)) {
684 if (IN6_IS_ADDR_LINKLOCAL(
685 &cp->u.prefix6)) {
686 if (ifindex == ifp->ifindex)
687 return ifp;
688 } else
689 return ifp;
690 }
691 }
692 }
693 return NULL;
694 }
695
696 struct interface *if_lookup_by_ipv6_exact(struct in6_addr *addr,
697 ifindex_t ifindex, vrf_id_t vrf_id)
698 {
699 struct vrf *vrf;
700 struct listnode *cnode;
701 struct interface *ifp;
702 struct connected *connected;
703 struct prefix *cp;
704
705 vrf = vrf_lookup_by_id(vrf_id);
706 if (!vrf)
707 return NULL;
708
709 FOR_ALL_INTERFACES (vrf, ifp) {
710 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
711 cp = connected->address;
712
713 if (cp->family == AF_INET6)
714 if (IPV6_ADDR_SAME(&cp->u.prefix6, addr)) {
715 if (IN6_IS_ADDR_LINKLOCAL(
716 &cp->u.prefix6)) {
717 if (ifindex == ifp->ifindex)
718 return ifp;
719 } else
720 return ifp;
721 }
722 }
723 }
724 return NULL;
725 }
726
727 static int if_get_ipv6_global(struct interface *ifp, struct in6_addr *addr)
728 {
729 struct listnode *cnode;
730 struct connected *connected;
731 struct prefix *cp;
732
733 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
734 cp = connected->address;
735
736 if (cp->family == AF_INET6)
737 if (!IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
738 memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
739 return 1;
740 }
741 }
742 return 0;
743 }
744
745 static int if_get_ipv6_local(struct interface *ifp, struct in6_addr *addr)
746 {
747 struct listnode *cnode;
748 struct connected *connected;
749 struct prefix *cp;
750
751 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
752 cp = connected->address;
753
754 if (cp->family == AF_INET6)
755 if (IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
756 memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
757 return 1;
758 }
759 }
760 return 0;
761 }
762
763 static int if_get_ipv4_address(struct interface *ifp, struct in_addr *addr)
764 {
765 struct listnode *cnode;
766 struct connected *connected;
767 struct prefix *cp;
768
769 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
770 cp = connected->address;
771 if ((cp->family == AF_INET)
772 && !ipv4_martian(&(cp->u.prefix4))) {
773 *addr = cp->u.prefix4;
774 return 1;
775 }
776 }
777 return 0;
778 }
779
780 int bgp_nexthop_set(union sockunion *local, union sockunion *remote,
781 struct bgp_nexthop *nexthop, struct peer *peer)
782 {
783 int ret = 0;
784 struct interface *ifp = NULL;
785
786 memset(nexthop, 0, sizeof(struct bgp_nexthop));
787
788 if (!local)
789 return -1;
790 if (!remote)
791 return -1;
792
793 if (local->sa.sa_family == AF_INET) {
794 nexthop->v4 = local->sin.sin_addr;
795 if (peer->update_if)
796 ifp = if_lookup_by_name(peer->update_if,
797 peer->bgp->vrf_id);
798 else
799 ifp = if_lookup_by_ipv4_exact(&local->sin.sin_addr,
800 peer->bgp->vrf_id);
801 }
802 if (local->sa.sa_family == AF_INET6) {
803 if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
804 if (peer->conf_if || peer->ifname)
805 ifp = if_lookup_by_name(peer->conf_if
806 ? peer->conf_if
807 : peer->ifname,
808 peer->bgp->vrf_id);
809 } else if (peer->update_if)
810 ifp = if_lookup_by_name(peer->update_if,
811 peer->bgp->vrf_id);
812 else
813 ifp = if_lookup_by_ipv6_exact(&local->sin6.sin6_addr,
814 local->sin6.sin6_scope_id,
815 peer->bgp->vrf_id);
816 }
817
818 if (!ifp)
819 return -1;
820
821 nexthop->ifp = ifp;
822
823 /* IPv4 connection, fetch and store IPv6 local address(es) if any. */
824 if (local->sa.sa_family == AF_INET) {
825 /* IPv6 nexthop*/
826 ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
827
828 if (!ret) {
829 /* There is no global nexthop. Use link-local address as
830 * both the
831 * global and link-local nexthop. In this scenario, the
832 * expectation
833 * for interop is that the network admin would use a
834 * route-map to
835 * specify the global IPv6 nexthop.
836 */
837 if_get_ipv6_local(ifp, &nexthop->v6_global);
838 memcpy(&nexthop->v6_local, &nexthop->v6_global,
839 IPV6_MAX_BYTELEN);
840 } else
841 if_get_ipv6_local(ifp, &nexthop->v6_local);
842
843 if (if_lookup_by_ipv4(&remote->sin.sin_addr, peer->bgp->vrf_id))
844 peer->shared_network = 1;
845 else
846 peer->shared_network = 0;
847 }
848
849 /* IPv6 connection, fetch and store IPv4 local address if any. */
850 if (local->sa.sa_family == AF_INET6) {
851 struct interface *direct = NULL;
852
853 /* IPv4 nexthop. */
854 ret = if_get_ipv4_address(ifp, &nexthop->v4);
855 if (!ret && peer->local_id.s_addr)
856 nexthop->v4 = peer->local_id;
857
858 /* Global address*/
859 if (!IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
860 memcpy(&nexthop->v6_global, &local->sin6.sin6_addr,
861 IPV6_MAX_BYTELEN);
862
863 /* If directory connected set link-local address. */
864 direct = if_lookup_by_ipv6(&remote->sin6.sin6_addr,
865 remote->sin6.sin6_scope_id,
866 peer->bgp->vrf_id);
867 if (direct)
868 if_get_ipv6_local(ifp, &nexthop->v6_local);
869 } else
870 /* Link-local address. */
871 {
872 ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
873
874 /* If there is no global address. Set link-local
875 address as
876 global. I know this break RFC specification... */
877 /* In this scenario, the expectation for interop is that
878 * the
879 * network admin would use a route-map to specify the
880 * global
881 * IPv6 nexthop.
882 */
883 if (!ret)
884 memcpy(&nexthop->v6_global,
885 &local->sin6.sin6_addr,
886 IPV6_MAX_BYTELEN);
887 /* Always set the link-local address */
888 memcpy(&nexthop->v6_local, &local->sin6.sin6_addr,
889 IPV6_MAX_BYTELEN);
890 }
891
892 if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)
893 || if_lookup_by_ipv6(&remote->sin6.sin6_addr,
894 remote->sin6.sin6_scope_id,
895 peer->bgp->vrf_id))
896 peer->shared_network = 1;
897 else
898 peer->shared_network = 0;
899 }
900
901 /* KAME stack specific treatment. */
902 #ifdef KAME
903 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_global)
904 && IN6_LINKLOCAL_IFINDEX(nexthop->v6_global)) {
905 SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_global, 0);
906 }
907 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_local)
908 && IN6_LINKLOCAL_IFINDEX(nexthop->v6_local)) {
909 SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_local, 0);
910 }
911 #endif /* KAME */
912
913 /* If we have identified the local interface, there is no error for now.
914 */
915 return 0;
916 }
917
918 static struct in6_addr *bgp_info_to_ipv6_nexthop(struct bgp_info *info,
919 ifindex_t *ifindex)
920 {
921 struct in6_addr *nexthop = NULL;
922
923 /* Only global address nexthop exists. */
924 if (info->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL) {
925 nexthop = &info->attr->mp_nexthop_global;
926 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
927 *ifindex = info->attr->nh_ifindex;
928
929 }
930
931 /* If both global and link-local address present. */
932 if (info->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL) {
933 /* Check if route-map is set to prefer global over link-local */
934 if (info->attr->mp_nexthop_prefer_global) {
935 nexthop = &info->attr->mp_nexthop_global;
936 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
937 *ifindex = info->attr->nh_ifindex;
938 } else {
939 /* Workaround for Cisco's nexthop bug. */
940 if (IN6_IS_ADDR_UNSPECIFIED(
941 &info->attr->mp_nexthop_global)
942 && info->peer->su_remote->sa.sa_family
943 == AF_INET6) {
944 nexthop =
945 &info->peer->su_remote->sin6.sin6_addr;
946 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
947 *ifindex = info->peer->nexthop.ifp
948 ->ifindex;
949 } else {
950 nexthop = &info->attr->mp_nexthop_local;
951 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
952 *ifindex = info->attr->nh_lla_ifindex;
953 }
954 }
955 }
956
957 return nexthop;
958 }
959
960 static int bgp_table_map_apply(struct route_map *map, struct prefix *p,
961 struct bgp_info *info)
962 {
963 route_map_result_t ret;
964
965 ret = route_map_apply(map, p, RMAP_BGP, info);
966 bgp_attr_flush(info->attr);
967
968 if (ret != RMAP_DENYMATCH)
969 return 1;
970
971 if (bgp_debug_zebra(p)) {
972 if (p->family == AF_INET) {
973 char buf[2][INET_ADDRSTRLEN];
974 zlog_debug(
975 "Zebra rmap deny: IPv4 route %s/%d nexthop %s",
976 inet_ntop(AF_INET, &p->u.prefix4, buf[0],
977 sizeof(buf[0])),
978 p->prefixlen,
979 inet_ntop(AF_INET, &info->attr->nexthop, buf[1],
980 sizeof(buf[1])));
981 }
982 if (p->family == AF_INET6) {
983 char buf[2][INET6_ADDRSTRLEN];
984 ifindex_t ifindex;
985 struct in6_addr *nexthop;
986
987 nexthop = bgp_info_to_ipv6_nexthop(info, &ifindex);
988 zlog_debug(
989 "Zebra rmap deny: IPv6 route %s/%d nexthop %s",
990 inet_ntop(AF_INET6, &p->u.prefix6, buf[0],
991 sizeof(buf[0])),
992 p->prefixlen,
993 inet_ntop(AF_INET6, nexthop,
994 buf[1], sizeof(buf[1])));
995 }
996 }
997 return 0;
998 }
999
1000 static struct thread *bgp_tm_thread_connect;
1001 static bool bgp_tm_status_connected;
1002 static bool bgp_tm_chunk_obtained;
1003 #define BGP_FLOWSPEC_TABLE_CHUNK 100000
1004 static uint32_t bgp_tm_min, bgp_tm_max, bgp_tm_chunk_size;
1005 struct bgp *bgp_tm_bgp;
1006
1007 static int bgp_zebra_tm_connect(struct thread *t)
1008 {
1009 struct zclient *zclient;
1010 int delay = 10, ret = 0;
1011
1012 zclient = THREAD_ARG(t);
1013 if (bgp_tm_status_connected && zclient->sock > 0)
1014 delay = 60;
1015 else {
1016 bgp_tm_status_connected = false;
1017 ret = tm_table_manager_connect(zclient);
1018 }
1019 if (ret < 0) {
1020 zlog_info("Error connecting to table manager!");
1021 bgp_tm_status_connected = false;
1022 } else {
1023 if (!bgp_tm_status_connected)
1024 zlog_debug("Connecting to table manager. Success");
1025 bgp_tm_status_connected = true;
1026 if (!bgp_tm_chunk_obtained) {
1027 if (bgp_zebra_get_table_range(bgp_tm_chunk_size,
1028 &bgp_tm_min,
1029 &bgp_tm_max) >= 0) {
1030 bgp_tm_chunk_obtained = true;
1031 /* parse non installed entries */
1032 bgp_zebra_announce_table(bgp_tm_bgp, AFI_IP, SAFI_FLOWSPEC);
1033 }
1034 }
1035 }
1036 thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
1037 &bgp_tm_thread_connect);
1038 return 0;
1039 }
1040
1041 bool bgp_zebra_tm_chunk_obtained(void)
1042 {
1043 return bgp_tm_chunk_obtained;
1044 }
1045
1046 uint32_t bgp_zebra_tm_get_id(void)
1047 {
1048 static int table_id;
1049
1050 if (!bgp_tm_chunk_obtained)
1051 return ++table_id;
1052 return bgp_tm_min++;
1053 }
1054
1055 void bgp_zebra_init_tm_connect(struct bgp *bgp)
1056 {
1057 int delay = 1;
1058
1059 /* if already set, do nothing
1060 */
1061 if (bgp_tm_thread_connect != NULL)
1062 return;
1063 bgp_tm_status_connected = false;
1064 bgp_tm_chunk_obtained = false;
1065 bgp_tm_min = bgp_tm_max = 0;
1066 bgp_tm_chunk_size = BGP_FLOWSPEC_TABLE_CHUNK;
1067 bgp_tm_bgp = bgp;
1068 thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
1069 &bgp_tm_thread_connect);
1070 }
1071
1072 int bgp_zebra_get_table_range(uint32_t chunk_size,
1073 uint32_t *start, uint32_t *end)
1074 {
1075 int ret;
1076
1077 if (!bgp_tm_status_connected)
1078 return -1;
1079 ret = tm_get_table_chunk(zclient, chunk_size, start, end);
1080 if (ret < 0) {
1081 flog_err(EC_BGP_TABLE_CHUNK,
1082 "BGP: Error getting table chunk %u", chunk_size);
1083 return -1;
1084 }
1085 zlog_info("BGP: Table Manager returns range from chunk %u is [%u %u]",
1086 chunk_size, *start, *end);
1087 return 0;
1088 }
1089
1090 static int update_ipv4nh_for_route_install(int nh_othervrf,
1091 struct in_addr *nexthop,
1092 struct attr *attr,
1093 bool is_evpn,
1094 struct zapi_nexthop *api_nh)
1095 {
1096 api_nh->gate.ipv4 = *nexthop;
1097
1098 /* Need to set fields appropriately for EVPN routes imported into
1099 * a VRF (which are programmed as onlink on l3-vni SVI) as well as
1100 * connected routes leaked into a VRF.
1101 */
1102 if (is_evpn)
1103 api_nh->type = NEXTHOP_TYPE_IPV4_IFINDEX;
1104 else if (nh_othervrf &&
1105 api_nh->gate.ipv4.s_addr == INADDR_ANY) {
1106 api_nh->type = NEXTHOP_TYPE_IFINDEX;
1107 api_nh->ifindex = attr->nh_ifindex;
1108 } else
1109 api_nh->type = NEXTHOP_TYPE_IPV4;
1110
1111 return 1;
1112 }
1113
1114 static int update_ipv6nh_for_route_install(int nh_othervrf,
1115 struct in6_addr *nexthop,
1116 ifindex_t ifindex,
1117 struct bgp_info *ri,
1118 struct bgp_info *best_ri,
1119 bool is_evpn,
1120 struct zapi_nexthop *api_nh)
1121 {
1122 struct attr *attr;
1123
1124 attr = ri->attr;
1125
1126 if (is_evpn)
1127 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1128 else if (nh_othervrf) {
1129 if (IN6_IS_ADDR_UNSPECIFIED(nexthop)) {
1130 api_nh->type = NEXTHOP_TYPE_IFINDEX;
1131 api_nh->ifindex = attr->nh_ifindex;
1132 } else if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
1133 if (ifindex == 0)
1134 return 0;
1135 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1136 api_nh->ifindex = ifindex;
1137 } else {
1138 api_nh->type = NEXTHOP_TYPE_IPV6;
1139 api_nh->ifindex = 0;
1140 }
1141 } else {
1142 if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
1143 if (ri == best_ri &&
1144 attr->mp_nexthop_len
1145 == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL)
1146 if (ri->peer->nexthop.ifp)
1147 ifindex = ri->peer->nexthop.ifp
1148 ->ifindex;
1149 if (!ifindex) {
1150 if (ri->peer->conf_if)
1151 ifindex = ri->peer->ifp->ifindex;
1152 else if (ri->peer->ifname)
1153 ifindex = ifname2ifindex(
1154 ri->peer->ifname,
1155 ri->peer->bgp->vrf_id);
1156 else if (ri->peer->nexthop.ifp)
1157 ifindex = ri->peer->nexthop.ifp
1158 ->ifindex;
1159 }
1160
1161 if (ifindex == 0)
1162 return 0;
1163 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1164 api_nh->ifindex = ifindex;
1165 } else {
1166 api_nh->type = NEXTHOP_TYPE_IPV6;
1167 api_nh->ifindex = 0;
1168 }
1169 }
1170 api_nh->gate.ipv6 = *nexthop;
1171
1172 return 1;
1173 }
1174
1175 void bgp_zebra_announce(struct bgp_node *rn, struct prefix *p,
1176 struct bgp_info *info, struct bgp *bgp, afi_t afi,
1177 safi_t safi)
1178 {
1179 struct zapi_route api;
1180 struct zapi_nexthop *api_nh;
1181 int nh_family;
1182 unsigned int valid_nh_count = 0;
1183 int has_valid_label = 0;
1184 uint8_t distance;
1185 struct peer *peer;
1186 struct bgp_info *mpinfo;
1187 uint32_t metric;
1188 struct attr local_attr;
1189 struct bgp_info local_info;
1190 struct bgp_info *mpinfo_cp = &local_info;
1191 route_tag_t tag;
1192 mpls_label_t label;
1193 int nh_othervrf = 0;
1194 char buf_prefix[PREFIX_STRLEN]; /* filled in if we are debugging */
1195 bool is_evpn;
1196 int nh_updated;
1197
1198 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1199 * know of this instance.
1200 */
1201 if (!bgp_install_info_to_zebra(bgp))
1202 return;
1203
1204 if (bgp->main_zebra_update_hold)
1205 return;
1206
1207 if (bgp_debug_zebra(p))
1208 prefix2str(p, buf_prefix, sizeof(buf_prefix));
1209
1210 if (safi == SAFI_FLOWSPEC)
1211 return bgp_pbr_update_entry(bgp, &rn->p,
1212 info, afi, safi, true);
1213
1214 /*
1215 * vrf leaking support (will have only one nexthop)
1216 */
1217 if (info->extra && info->extra->bgp_orig)
1218 nh_othervrf = 1;
1219
1220 /* Make Zebra API structure. */
1221 memset(&api, 0, sizeof(api));
1222 api.vrf_id = bgp->vrf_id;
1223 api.type = ZEBRA_ROUTE_BGP;
1224 api.safi = safi;
1225 api.prefix = *p;
1226 SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
1227
1228 peer = info->peer;
1229
1230 if (info->type == ZEBRA_ROUTE_BGP
1231 && info->sub_type == BGP_ROUTE_IMPORTED) {
1232
1233 /* Obtain peer from parent */
1234 if (info->extra && info->extra->parent)
1235 peer = ((struct bgp_info *)(info->extra->parent))->peer;
1236 }
1237
1238 tag = info->attr->tag;
1239
1240 /* If the route's source is EVPN, flag as such. */
1241 is_evpn = is_route_parent_evpn(info);
1242 if (is_evpn)
1243 SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
1244
1245 if (peer->sort == BGP_PEER_IBGP || peer->sort == BGP_PEER_CONFED
1246 || info->sub_type == BGP_ROUTE_AGGREGATE) {
1247 SET_FLAG(api.flags, ZEBRA_FLAG_IBGP);
1248 SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
1249 }
1250
1251 if ((peer->sort == BGP_PEER_EBGP && peer->ttl != 1)
1252 || CHECK_FLAG(peer->flags, PEER_FLAG_DISABLE_CONNECTED_CHECK)
1253 || bgp_flag_check(bgp, BGP_FLAG_DISABLE_NH_CONNECTED_CHK))
1254
1255 SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
1256
1257 /* Metric is currently based on the best-path only */
1258 metric = info->attr->med;
1259 for (mpinfo = info; mpinfo; mpinfo = bgp_info_mpath_next(mpinfo)) {
1260 if (valid_nh_count >= multipath_num)
1261 break;
1262
1263 *mpinfo_cp = *mpinfo;
1264
1265 /* Get nexthop address-family */
1266 if (p->family == AF_INET
1267 && !BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr))
1268 nh_family = AF_INET;
1269 else if (p->family == AF_INET6
1270 || (p->family == AF_INET
1271 && BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr)))
1272 nh_family = AF_INET6;
1273 else
1274 continue;
1275
1276 api_nh = &api.nexthops[valid_nh_count];
1277 api_nh->vrf_id = nh_othervrf ? info->extra->bgp_orig->vrf_id
1278 : bgp->vrf_id;
1279 if (nh_family == AF_INET) {
1280 if (bgp_debug_zebra(&api.prefix)) {
1281 if (mpinfo->extra) {
1282 zlog_debug(
1283 "%s: p=%s, bgp_is_valid_label: %d",
1284 __func__, buf_prefix,
1285 bgp_is_valid_label(
1286 &mpinfo->extra
1287 ->label[0]));
1288 } else {
1289 zlog_debug(
1290 "%s: p=%s, extra is NULL, no label",
1291 __func__, buf_prefix);
1292 }
1293 }
1294
1295 if (bgp->table_map[afi][safi].name) {
1296 /* Copy info and attributes, so the route-map
1297 apply doesn't modify the BGP route info. */
1298 local_attr = *mpinfo->attr;
1299 mpinfo_cp->attr = &local_attr;
1300 }
1301
1302 if (bgp->table_map[afi][safi].name) {
1303 if (!bgp_table_map_apply(
1304 bgp->table_map[afi][safi].map, p,
1305 mpinfo_cp))
1306 continue;
1307
1308 /* metric/tag is only allowed to be
1309 * overridden on 1st nexthop */
1310 if (mpinfo == info) {
1311 metric = mpinfo_cp->attr->med;
1312 tag = mpinfo_cp->attr->tag;
1313 }
1314 }
1315
1316 nh_updated = update_ipv4nh_for_route_install(
1317 nh_othervrf,
1318 &mpinfo_cp->attr->nexthop,
1319 mpinfo_cp->attr, is_evpn, api_nh);
1320 } else {
1321 ifindex_t ifindex = IFINDEX_INTERNAL;
1322 struct in6_addr *nexthop;
1323
1324 if (bgp->table_map[afi][safi].name) {
1325 /* Copy info and attributes, so the route-map
1326 apply doesn't modify the BGP route info. */
1327 local_attr = *mpinfo->attr;
1328 mpinfo_cp->attr = &local_attr;
1329 }
1330
1331 if (bgp->table_map[afi][safi].name) {
1332 /* Copy info and attributes, so the route-map
1333 apply doesn't modify the BGP route info. */
1334 local_attr = *mpinfo->attr;
1335 mpinfo_cp->attr = &local_attr;
1336
1337 if (!bgp_table_map_apply(
1338 bgp->table_map[afi][safi].map, p,
1339 mpinfo_cp))
1340 continue;
1341
1342 /* metric/tag is only allowed to be
1343 * overridden on 1st nexthop */
1344 if (mpinfo == info) {
1345 metric = mpinfo_cp->attr->med;
1346 tag = mpinfo_cp->attr->tag;
1347 }
1348 }
1349 nexthop = bgp_info_to_ipv6_nexthop(mpinfo_cp,
1350 &ifindex);
1351 nh_updated = update_ipv6nh_for_route_install(
1352 nh_othervrf, nexthop, ifindex,
1353 mpinfo, info, is_evpn, api_nh);
1354 }
1355
1356 /* Did we get proper nexthop info to update zebra? */
1357 if (!nh_updated)
1358 continue;
1359
1360 if (mpinfo->extra
1361 && bgp_is_valid_label(&mpinfo->extra->label[0])
1362 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)) {
1363 has_valid_label = 1;
1364 label = label_pton(&mpinfo->extra->label[0]);
1365
1366 api_nh->label_num = 1;
1367 api_nh->labels[0] = label;
1368 }
1369 memcpy(&api_nh->rmac, &(mpinfo->attr->rmac),
1370 sizeof(struct ethaddr));
1371 valid_nh_count++;
1372 }
1373
1374
1375 /* if this is a evpn route we don't have to include the label */
1376 if (has_valid_label && !(CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)))
1377 SET_FLAG(api.message, ZAPI_MESSAGE_LABEL);
1378
1379 /*
1380 * When we create an aggregate route we must also
1381 * install a Null0 route in the RIB, so overwrite
1382 * what was written into api with a blackhole route
1383 */
1384 if (info->sub_type == BGP_ROUTE_AGGREGATE)
1385 zapi_route_set_blackhole(&api, BLACKHOLE_NULL);
1386 else
1387 api.nexthop_num = valid_nh_count;
1388
1389 SET_FLAG(api.message, ZAPI_MESSAGE_METRIC);
1390 api.metric = metric;
1391
1392 if (tag) {
1393 SET_FLAG(api.message, ZAPI_MESSAGE_TAG);
1394 api.tag = tag;
1395 }
1396
1397 distance = bgp_distance_apply(p, info, afi, safi, bgp);
1398 if (distance) {
1399 SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
1400 api.distance = distance;
1401 }
1402
1403 if (bgp_debug_zebra(p)) {
1404 char prefix_buf[PREFIX_STRLEN];
1405 char nh_buf[INET6_ADDRSTRLEN];
1406 char label_buf[20];
1407 int i;
1408
1409 prefix2str(&api.prefix, prefix_buf, sizeof(prefix_buf));
1410 zlog_debug("Tx route %s VRF %u %s metric %u tag %" ROUTE_TAG_PRI
1411 " count %d",
1412 valid_nh_count ? "add" : "delete", bgp->vrf_id,
1413 prefix_buf, api.metric, api.tag, api.nexthop_num);
1414 for (i = 0; i < api.nexthop_num; i++) {
1415 api_nh = &api.nexthops[i];
1416
1417 if (api_nh->type == NEXTHOP_TYPE_IFINDEX)
1418 nh_buf[0] = '\0';
1419 else {
1420 if (api_nh->type == NEXTHOP_TYPE_IPV4)
1421 nh_family = AF_INET;
1422 else
1423 nh_family = AF_INET6;
1424 inet_ntop(nh_family, &api_nh->gate, nh_buf,
1425 sizeof(nh_buf));
1426 }
1427
1428 label_buf[0] = '\0';
1429 if (has_valid_label
1430 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE))
1431 sprintf(label_buf, "label %u",
1432 api_nh->labels[0]);
1433 zlog_debug(" nhop [%d]: %s if %u VRF %u %s",
1434 i + 1, nh_buf, api_nh->ifindex,
1435 api_nh->vrf_id, label_buf);
1436 }
1437 }
1438
1439 if (bgp_debug_zebra(p)) {
1440 int recursion_flag = 0;
1441
1442 if (CHECK_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION))
1443 recursion_flag = 1;
1444
1445 zlog_debug("%s: %s: announcing to zebra (recursion %sset)",
1446 __func__, buf_prefix,
1447 (recursion_flag ? "" : "NOT "));
1448 }
1449 zclient_route_send(valid_nh_count ? ZEBRA_ROUTE_ADD
1450 : ZEBRA_ROUTE_DELETE,
1451 zclient, &api);
1452 }
1453
1454 /* Announce all routes of a table to zebra */
1455 void bgp_zebra_announce_table(struct bgp *bgp, afi_t afi, safi_t safi)
1456 {
1457 struct bgp_node *rn;
1458 struct bgp_table *table;
1459 struct bgp_info *ri;
1460
1461 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1462 * know of this instance.
1463 */
1464 if (!bgp_install_info_to_zebra(bgp))
1465 return;
1466
1467 table = bgp->rib[afi][safi];
1468 if (!table)
1469 return;
1470
1471 for (rn = bgp_table_top(table); rn; rn = bgp_route_next(rn))
1472 for (ri = rn->info; ri; ri = ri->next)
1473 if (CHECK_FLAG(ri->flags, BGP_INFO_SELECTED) &&
1474
1475 (ri->type == ZEBRA_ROUTE_BGP
1476 && (ri->sub_type == BGP_ROUTE_NORMAL
1477 || ri->sub_type == BGP_ROUTE_IMPORTED)))
1478
1479 bgp_zebra_announce(rn, &rn->p, ri, bgp, afi,
1480 safi);
1481 }
1482
1483 void bgp_zebra_withdraw(struct prefix *p, struct bgp_info *info,
1484 struct bgp *bgp, safi_t safi)
1485 {
1486 struct zapi_route api;
1487 struct peer *peer;
1488
1489 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1490 * know of this instance.
1491 */
1492 if (!bgp_install_info_to_zebra(bgp))
1493 return;
1494
1495 if (safi == SAFI_FLOWSPEC) {
1496 peer = info->peer;
1497 return bgp_pbr_update_entry(peer->bgp, p,
1498 info, AFI_IP, safi, false);
1499 }
1500
1501 memset(&api, 0, sizeof(api));
1502 api.vrf_id = bgp->vrf_id;
1503 api.type = ZEBRA_ROUTE_BGP;
1504 api.safi = safi;
1505 api.prefix = *p;
1506
1507 /* If the route's source is EVPN, flag as such. */
1508 if (is_route_parent_evpn(info))
1509 SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
1510
1511 if (bgp_debug_zebra(p)) {
1512 char buf[PREFIX_STRLEN];
1513
1514 prefix2str(&api.prefix, buf, sizeof(buf));
1515 zlog_debug("Tx route delete VRF %u %s", bgp->vrf_id, buf);
1516 }
1517
1518 zclient_route_send(ZEBRA_ROUTE_DELETE, zclient, &api);
1519 }
1520
1521 struct bgp_redist *bgp_redist_lookup(struct bgp *bgp, afi_t afi, uint8_t type,
1522 unsigned short instance)
1523 {
1524 struct list *red_list;
1525 struct listnode *node;
1526 struct bgp_redist *red;
1527
1528 red_list = bgp->redist[afi][type];
1529 if (!red_list)
1530 return (NULL);
1531
1532 for (ALL_LIST_ELEMENTS_RO(red_list, node, red))
1533 if (red->instance == instance)
1534 return red;
1535
1536 return NULL;
1537 }
1538
1539 struct bgp_redist *bgp_redist_add(struct bgp *bgp, afi_t afi, uint8_t type,
1540 unsigned short instance)
1541 {
1542 struct list *red_list;
1543 struct bgp_redist *red;
1544
1545 red = bgp_redist_lookup(bgp, afi, type, instance);
1546 if (red)
1547 return red;
1548
1549 if (!bgp->redist[afi][type])
1550 bgp->redist[afi][type] = list_new();
1551
1552 red_list = bgp->redist[afi][type];
1553 red = (struct bgp_redist *)XCALLOC(MTYPE_BGP_REDIST,
1554 sizeof(struct bgp_redist));
1555 red->instance = instance;
1556
1557 listnode_add(red_list, red);
1558
1559 return red;
1560 }
1561
1562 static void bgp_redist_del(struct bgp *bgp, afi_t afi, uint8_t type,
1563 unsigned short instance)
1564 {
1565 struct bgp_redist *red;
1566
1567 red = bgp_redist_lookup(bgp, afi, type, instance);
1568
1569 if (red) {
1570 listnode_delete(bgp->redist[afi][type], red);
1571 XFREE(MTYPE_BGP_REDIST, red);
1572 if (!bgp->redist[afi][type]->count)
1573 list_delete_and_null(&bgp->redist[afi][type]);
1574 }
1575 }
1576
1577 /* Other routes redistribution into BGP. */
1578 int bgp_redistribute_set(struct bgp *bgp, afi_t afi, int type,
1579 unsigned short instance, bool changed)
1580 {
1581 /* If redistribute options are changed call
1582 * bgp_redistribute_unreg() to reset the option and withdraw
1583 * the routes
1584 */
1585 if (changed)
1586 bgp_redistribute_unreg(bgp, afi, type, instance);
1587
1588 /* Return if already redistribute flag is set. */
1589 if (instance) {
1590 if (redist_check_instance(&zclient->mi_redist[afi][type],
1591 instance))
1592 return CMD_WARNING;
1593
1594 redist_add_instance(&zclient->mi_redist[afi][type], instance);
1595 } else {
1596 if (vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
1597 return CMD_WARNING;
1598
1599 #if ENABLE_BGP_VNC
1600 if (bgp->vrf_id == VRF_DEFAULT
1601 && type == ZEBRA_ROUTE_VNC_DIRECT) {
1602 vnc_export_bgp_enable(
1603 bgp, afi); /* only enables if mode bits cfg'd */
1604 }
1605 #endif
1606
1607 vrf_bitmap_set(zclient->redist[afi][type], bgp->vrf_id);
1608 }
1609
1610 /*
1611 * Don't try to register if we're not connected to Zebra or Zebra
1612 * doesn't know of this instance.
1613 *
1614 * When we come up later well resend if needed.
1615 */
1616 if (!bgp_install_info_to_zebra(bgp))
1617 return CMD_SUCCESS;
1618
1619 if (BGP_DEBUG(zebra, ZEBRA))
1620 zlog_debug("Tx redistribute add VRF %u afi %d %s %d",
1621 bgp->vrf_id, afi, zebra_route_string(type),
1622 instance);
1623
1624 /* Send distribute add message to zebra. */
1625 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
1626 instance, bgp->vrf_id);
1627
1628 return CMD_SUCCESS;
1629 }
1630
1631 int bgp_redistribute_resend(struct bgp *bgp, afi_t afi, int type,
1632 unsigned short instance)
1633 {
1634 /* Don't try to send if we're not connected to Zebra or Zebra doesn't
1635 * know of this instance.
1636 */
1637 if (!bgp_install_info_to_zebra(bgp))
1638 return -1;
1639
1640 if (BGP_DEBUG(zebra, ZEBRA))
1641 zlog_debug("Tx redistribute del/add VRF %u afi %d %s %d",
1642 bgp->vrf_id, afi, zebra_route_string(type),
1643 instance);
1644
1645 /* Send distribute add message to zebra. */
1646 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi, type,
1647 instance, bgp->vrf_id);
1648 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
1649 instance, bgp->vrf_id);
1650
1651 return 0;
1652 }
1653
1654 /* Redistribute with route-map specification. */
1655 int bgp_redistribute_rmap_set(struct bgp_redist *red, const char *name)
1656 {
1657 if (red->rmap.name && (strcmp(red->rmap.name, name) == 0))
1658 return 0;
1659
1660 if (red->rmap.name)
1661 XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
1662 red->rmap.name = XSTRDUP(MTYPE_ROUTE_MAP_NAME, name);
1663 red->rmap.map = route_map_lookup_by_name(name);
1664
1665 return 1;
1666 }
1667
1668 /* Redistribute with metric specification. */
1669 int bgp_redistribute_metric_set(struct bgp *bgp, struct bgp_redist *red,
1670 afi_t afi, int type, uint32_t metric)
1671 {
1672 struct bgp_node *rn;
1673 struct bgp_info *ri;
1674
1675 if (red->redist_metric_flag && red->redist_metric == metric)
1676 return 0;
1677
1678 red->redist_metric_flag = 1;
1679 red->redist_metric = metric;
1680
1681 for (rn = bgp_table_top(bgp->rib[afi][SAFI_UNICAST]); rn;
1682 rn = bgp_route_next(rn)) {
1683 for (ri = rn->info; ri; ri = ri->next) {
1684 if (ri->sub_type == BGP_ROUTE_REDISTRIBUTE
1685 && ri->type == type
1686 && ri->instance == red->instance) {
1687 struct attr *old_attr;
1688 struct attr new_attr;
1689
1690 bgp_attr_dup(&new_attr, ri->attr);
1691 new_attr.med = red->redist_metric;
1692 old_attr = ri->attr;
1693 ri->attr = bgp_attr_intern(&new_attr);
1694 bgp_attr_unintern(&old_attr);
1695
1696 bgp_info_set_flag(rn, ri,
1697 BGP_INFO_ATTR_CHANGED);
1698 bgp_process(bgp, rn, afi, SAFI_UNICAST);
1699 }
1700 }
1701 }
1702
1703 return 1;
1704 }
1705
1706 /* Unset redistribution. */
1707 int bgp_redistribute_unreg(struct bgp *bgp, afi_t afi, int type,
1708 unsigned short instance)
1709 {
1710 struct bgp_redist *red;
1711
1712 red = bgp_redist_lookup(bgp, afi, type, instance);
1713 if (!red)
1714 return CMD_SUCCESS;
1715
1716 /* Return if zebra connection is disabled. */
1717 if (instance) {
1718 if (!redist_check_instance(&zclient->mi_redist[afi][type],
1719 instance))
1720 return CMD_WARNING;
1721 redist_del_instance(&zclient->mi_redist[afi][type], instance);
1722 } else {
1723 if (!vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
1724 return CMD_WARNING;
1725 vrf_bitmap_unset(zclient->redist[afi][type], bgp->vrf_id);
1726 }
1727
1728
1729 if (bgp_install_info_to_zebra(bgp)) {
1730 /* Send distribute delete message to zebra. */
1731 if (BGP_DEBUG(zebra, ZEBRA))
1732 zlog_debug("Tx redistribute del VRF %u afi %d %s %d",
1733 bgp->vrf_id, afi, zebra_route_string(type),
1734 instance);
1735 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi,
1736 type, instance, bgp->vrf_id);
1737 }
1738
1739 /* Withdraw redistributed routes from current BGP's routing table. */
1740 bgp_redistribute_withdraw(bgp, afi, type, instance);
1741
1742 return CMD_SUCCESS;
1743 }
1744
1745 /* Unset redistribution. */
1746 int bgp_redistribute_unset(struct bgp *bgp, afi_t afi, int type,
1747 unsigned short instance)
1748 {
1749 struct bgp_redist *red;
1750
1751 /*
1752 * vnc and vpn->vrf checks must be before red check because
1753 * they operate within bgpd irrespective of zebra connection
1754 * status. red lookup fails if there is no zebra connection.
1755 */
1756 #if ENABLE_BGP_VNC
1757 if (bgp->vrf_id == VRF_DEFAULT && type == ZEBRA_ROUTE_VNC_DIRECT) {
1758 vnc_export_bgp_disable(bgp, afi);
1759 }
1760 #endif
1761
1762 red = bgp_redist_lookup(bgp, afi, type, instance);
1763 if (!red)
1764 return CMD_SUCCESS;
1765
1766 bgp_redistribute_unreg(bgp, afi, type, instance);
1767
1768 /* Unset route-map. */
1769 if (red->rmap.name)
1770 XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
1771 red->rmap.name = NULL;
1772 red->rmap.map = NULL;
1773
1774 /* Unset metric. */
1775 red->redist_metric_flag = 0;
1776 red->redist_metric = 0;
1777
1778 bgp_redist_del(bgp, afi, type, instance);
1779
1780 return CMD_SUCCESS;
1781 }
1782
1783 /* Update redistribute vrf bitmap during triggers like
1784 restart networking or delete/add VRFs */
1785 void bgp_update_redist_vrf_bitmaps(struct bgp *bgp, vrf_id_t old_vrf_id)
1786 {
1787 int i;
1788 afi_t afi;
1789
1790 for (afi = AFI_IP; afi < AFI_MAX; afi++)
1791 for (i = 0; i < ZEBRA_ROUTE_MAX; i++)
1792 if ((old_vrf_id == VRF_UNKNOWN)
1793 || vrf_bitmap_check(zclient->redist[afi][i],
1794 old_vrf_id)) {
1795 vrf_bitmap_unset(zclient->redist[afi][i],
1796 old_vrf_id);
1797 vrf_bitmap_set(zclient->redist[afi][i],
1798 bgp->vrf_id);
1799 }
1800 return;
1801 }
1802
1803 void bgp_zclient_reset(void)
1804 {
1805 zclient_reset(zclient);
1806 }
1807
1808 /* Register this instance with Zebra. Invoked upon connect (for
1809 * default instance) and when other VRFs are learnt (or created and
1810 * already learnt).
1811 */
1812 void bgp_zebra_instance_register(struct bgp *bgp)
1813 {
1814 /* Don't try to register if we're not connected to Zebra */
1815 if (!zclient || zclient->sock < 0)
1816 return;
1817
1818 if (BGP_DEBUG(zebra, ZEBRA))
1819 zlog_debug("Registering VRF %u", bgp->vrf_id);
1820
1821 /* Register for router-id, interfaces, redistributed routes. */
1822 zclient_send_reg_requests(zclient, bgp->vrf_id);
1823
1824 /* For default instance, register to learn about VNIs, if appropriate.
1825 */
1826 if (bgp->inst_type == BGP_INSTANCE_TYPE_DEFAULT && is_evpn_enabled())
1827 bgp_zebra_advertise_all_vni(bgp, 1);
1828 }
1829
1830 /* Deregister this instance with Zebra. Invoked upon the instance
1831 * being deleted (default or VRF) and it is already registered.
1832 */
1833 void bgp_zebra_instance_deregister(struct bgp *bgp)
1834 {
1835 /* Don't try to deregister if we're not connected to Zebra */
1836 if (zclient->sock < 0)
1837 return;
1838
1839 if (BGP_DEBUG(zebra, ZEBRA))
1840 zlog_debug("Deregistering VRF %u", bgp->vrf_id);
1841
1842 /* For default instance, unregister learning about VNIs, if appropriate.
1843 */
1844 if (bgp->inst_type == BGP_INSTANCE_TYPE_DEFAULT && is_evpn_enabled())
1845 bgp_zebra_advertise_all_vni(bgp, 0);
1846
1847 /* Deregister for router-id, interfaces, redistributed routes. */
1848 zclient_send_dereg_requests(zclient, bgp->vrf_id);
1849 }
1850
1851 void bgp_zebra_initiate_radv(struct bgp *bgp, struct peer *peer)
1852 {
1853 int ra_interval = BGP_UNNUM_DEFAULT_RA_INTERVAL;
1854
1855 /* Don't try to initiate if we're not connected to Zebra */
1856 if (zclient->sock < 0)
1857 return;
1858
1859 if (BGP_DEBUG(zebra, ZEBRA))
1860 zlog_debug("%u: Initiating RA for peer %s", bgp->vrf_id,
1861 peer->host);
1862
1863 zclient_send_interface_radv_req(zclient, bgp->vrf_id, peer->ifp, 1,
1864 ra_interval);
1865 }
1866
1867 void bgp_zebra_terminate_radv(struct bgp *bgp, struct peer *peer)
1868 {
1869 /* Don't try to terminate if we're not connected to Zebra */
1870 if (zclient->sock < 0)
1871 return;
1872
1873 if (BGP_DEBUG(zebra, ZEBRA))
1874 zlog_debug("%u: Terminating RA for peer %s", bgp->vrf_id,
1875 peer->host);
1876
1877 zclient_send_interface_radv_req(zclient, bgp->vrf_id, peer->ifp, 0, 0);
1878 }
1879
1880 int bgp_zebra_advertise_subnet(struct bgp *bgp, int advertise, vni_t vni)
1881 {
1882 struct stream *s = NULL;
1883
1884 /* Check socket. */
1885 if (!zclient || zclient->sock < 0)
1886 return 0;
1887
1888 /* Don't try to register if Zebra doesn't know of this instance. */
1889 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
1890 return 0;
1891
1892 s = zclient->obuf;
1893 stream_reset(s);
1894
1895 zclient_create_header(s, ZEBRA_ADVERTISE_SUBNET, bgp->vrf_id);
1896 stream_putc(s, advertise);
1897 stream_put3(s, vni);
1898 stream_putw_at(s, 0, stream_get_endp(s));
1899
1900 return zclient_send_message(zclient);
1901 }
1902
1903 int bgp_zebra_advertise_gw_macip(struct bgp *bgp, int advertise, vni_t vni)
1904 {
1905 struct stream *s = NULL;
1906
1907 /* Check socket. */
1908 if (!zclient || zclient->sock < 0)
1909 return 0;
1910
1911 /* Don't try to register if Zebra doesn't know of this instance. */
1912 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
1913 return 0;
1914
1915 s = zclient->obuf;
1916 stream_reset(s);
1917
1918 zclient_create_header(s, ZEBRA_ADVERTISE_DEFAULT_GW, bgp->vrf_id);
1919 stream_putc(s, advertise);
1920 stream_putl(s, vni);
1921 stream_putw_at(s, 0, stream_get_endp(s));
1922
1923 return zclient_send_message(zclient);
1924 }
1925
1926 int bgp_zebra_advertise_all_vni(struct bgp *bgp, int advertise)
1927 {
1928 struct stream *s;
1929
1930 /* Check socket. */
1931 if (!zclient || zclient->sock < 0)
1932 return 0;
1933
1934 /* Don't try to register if Zebra doesn't know of this instance. */
1935 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
1936 return 0;
1937
1938 s = zclient->obuf;
1939 stream_reset(s);
1940
1941 zclient_create_header(s, ZEBRA_ADVERTISE_ALL_VNI, bgp->vrf_id);
1942 stream_putc(s, advertise);
1943 stream_putw_at(s, 0, stream_get_endp(s));
1944
1945 return zclient_send_message(zclient);
1946 }
1947
1948 static int rule_notify_owner(int command, struct zclient *zclient,
1949 zebra_size_t length, vrf_id_t vrf_id)
1950 {
1951 uint32_t seqno, priority, unique;
1952 enum zapi_rule_notify_owner note;
1953 struct bgp_pbr_action *bgp_pbra;
1954 ifindex_t ifi;
1955
1956 if (!zapi_rule_notify_decode(zclient->ibuf, &seqno, &priority, &unique,
1957 &ifi, &note))
1958 return -1;
1959
1960 bgp_pbra = bgp_pbr_action_rule_lookup(vrf_id, unique);
1961 if (!bgp_pbra) {
1962 if (BGP_DEBUG(zebra, ZEBRA))
1963 zlog_debug("%s: Fail to look BGP rule (%u)",
1964 __PRETTY_FUNCTION__, unique);
1965 return 0;
1966 }
1967
1968 switch (note) {
1969 case ZAPI_RULE_FAIL_INSTALL:
1970 if (BGP_DEBUG(zebra, ZEBRA))
1971 zlog_debug("%s: Received RULE_FAIL_INSTALL",
1972 __PRETTY_FUNCTION__);
1973 bgp_pbra->installed = false;
1974 bgp_pbra->install_in_progress = false;
1975 break;
1976 case ZAPI_RULE_INSTALLED:
1977 bgp_pbra->installed = true;
1978 bgp_pbra->install_in_progress = false;
1979 if (BGP_DEBUG(zebra, ZEBRA))
1980 zlog_debug("%s: Received RULE_INSTALLED",
1981 __PRETTY_FUNCTION__);
1982 break;
1983 case ZAPI_RULE_FAIL_REMOVE:
1984 case ZAPI_RULE_REMOVED:
1985 if (BGP_DEBUG(zebra, ZEBRA))
1986 zlog_debug("%s: Received RULE REMOVED",
1987 __PRETTY_FUNCTION__);
1988 break;
1989 }
1990
1991 return 0;
1992 }
1993
1994 static int ipset_notify_owner(int command, struct zclient *zclient,
1995 zebra_size_t length, vrf_id_t vrf_id)
1996 {
1997 uint32_t unique;
1998 enum zapi_ipset_notify_owner note;
1999 struct bgp_pbr_match *bgp_pbim;
2000
2001 if (!zapi_ipset_notify_decode(zclient->ibuf,
2002 &unique,
2003 &note))
2004 return -1;
2005
2006 bgp_pbim = bgp_pbr_match_ipset_lookup(vrf_id, unique);
2007 if (!bgp_pbim) {
2008 if (BGP_DEBUG(zebra, ZEBRA))
2009 zlog_debug("%s: Fail to look BGP match ( %u, ID %u)",
2010 __PRETTY_FUNCTION__, note, unique);
2011 return 0;
2012 }
2013
2014 switch (note) {
2015 case ZAPI_IPSET_FAIL_INSTALL:
2016 if (BGP_DEBUG(zebra, ZEBRA))
2017 zlog_debug("%s: Received IPSET_FAIL_INSTALL",
2018 __PRETTY_FUNCTION__);
2019 bgp_pbim->installed = false;
2020 bgp_pbim->install_in_progress = false;
2021 break;
2022 case ZAPI_IPSET_INSTALLED:
2023 bgp_pbim->installed = true;
2024 bgp_pbim->install_in_progress = false;
2025 if (BGP_DEBUG(zebra, ZEBRA))
2026 zlog_debug("%s: Received IPSET_INSTALLED",
2027 __PRETTY_FUNCTION__);
2028 break;
2029 case ZAPI_IPSET_FAIL_REMOVE:
2030 case ZAPI_IPSET_REMOVED:
2031 if (BGP_DEBUG(zebra, ZEBRA))
2032 zlog_debug("%s: Received IPSET REMOVED",
2033 __PRETTY_FUNCTION__);
2034 break;
2035 }
2036
2037 return 0;
2038 }
2039
2040 static int ipset_entry_notify_owner(int command, struct zclient *zclient,
2041 zebra_size_t length, vrf_id_t vrf_id)
2042 {
2043 uint32_t unique;
2044 char ipset_name[ZEBRA_IPSET_NAME_SIZE];
2045 enum zapi_ipset_entry_notify_owner note;
2046 struct bgp_pbr_match_entry *bgp_pbime;
2047
2048 if (!zapi_ipset_entry_notify_decode(
2049 zclient->ibuf,
2050 &unique,
2051 ipset_name,
2052 &note))
2053 return -1;
2054 bgp_pbime = bgp_pbr_match_ipset_entry_lookup(vrf_id,
2055 ipset_name,
2056 unique);
2057 if (!bgp_pbime) {
2058 if (BGP_DEBUG(zebra, ZEBRA))
2059 zlog_debug("%s: Fail to look BGP match entry (%u, ID %u)",
2060 __PRETTY_FUNCTION__, note, unique);
2061 return 0;
2062 }
2063
2064 switch (note) {
2065 case ZAPI_IPSET_ENTRY_FAIL_INSTALL:
2066 if (BGP_DEBUG(zebra, ZEBRA))
2067 zlog_debug("%s: Received IPSET_ENTRY_FAIL_INSTALL",
2068 __PRETTY_FUNCTION__);
2069 bgp_pbime->installed = false;
2070 bgp_pbime->install_in_progress = false;
2071 break;
2072 case ZAPI_IPSET_ENTRY_INSTALLED:
2073 {
2074 struct bgp_info *bgp_info;
2075 struct bgp_info_extra *extra;
2076
2077 bgp_pbime->installed = true;
2078 bgp_pbime->install_in_progress = false;
2079 if (BGP_DEBUG(zebra, ZEBRA))
2080 zlog_debug("%s: Received IPSET_ENTRY_INSTALLED",
2081 __PRETTY_FUNCTION__);
2082 /* link bgp_info to bpme */
2083 bgp_info = (struct bgp_info *)bgp_pbime->bgp_info;
2084 extra = bgp_info_extra_get(bgp_info);
2085 if (extra->bgp_fs_pbr == NULL)
2086 extra->bgp_fs_pbr = list_new();
2087 listnode_add(extra->bgp_fs_pbr, bgp_pbime);
2088 }
2089 break;
2090 case ZAPI_IPSET_ENTRY_FAIL_REMOVE:
2091 case ZAPI_IPSET_ENTRY_REMOVED:
2092 if (BGP_DEBUG(zebra, ZEBRA))
2093 zlog_debug("%s: Received IPSET_ENTRY_REMOVED",
2094 __PRETTY_FUNCTION__);
2095 break;
2096 }
2097 return 0;
2098 }
2099
2100 static int iptable_notify_owner(int command, struct zclient *zclient,
2101 zebra_size_t length, vrf_id_t vrf_id)
2102 {
2103 uint32_t unique;
2104 enum zapi_iptable_notify_owner note;
2105 struct bgp_pbr_match *bgpm;
2106
2107 if (!zapi_iptable_notify_decode(
2108 zclient->ibuf,
2109 &unique,
2110 &note))
2111 return -1;
2112 bgpm = bgp_pbr_match_iptable_lookup(vrf_id, unique);
2113 if (!bgpm) {
2114 if (BGP_DEBUG(zebra, ZEBRA))
2115 zlog_debug("%s: Fail to look BGP iptable (%u %u)",
2116 __PRETTY_FUNCTION__, note, unique);
2117 return 0;
2118 }
2119 switch (note) {
2120 case ZAPI_IPTABLE_FAIL_INSTALL:
2121 if (BGP_DEBUG(zebra, ZEBRA))
2122 zlog_debug("%s: Received IPTABLE_FAIL_INSTALL",
2123 __PRETTY_FUNCTION__);
2124 bgpm->installed_in_iptable = false;
2125 bgpm->install_iptable_in_progress = false;
2126 break;
2127 case ZAPI_IPTABLE_INSTALLED:
2128 bgpm->installed_in_iptable = true;
2129 bgpm->install_iptable_in_progress = false;
2130 if (BGP_DEBUG(zebra, ZEBRA))
2131 zlog_debug("%s: Received IPTABLE_INSTALLED",
2132 __PRETTY_FUNCTION__);
2133 bgpm->action->refcnt++;
2134 break;
2135 case ZAPI_IPTABLE_FAIL_REMOVE:
2136 case ZAPI_IPTABLE_REMOVED:
2137 if (BGP_DEBUG(zebra, ZEBRA))
2138 zlog_debug("%s: Received IPTABLE REMOVED",
2139 __PRETTY_FUNCTION__);
2140 break;
2141 }
2142 return 0;
2143 }
2144
2145 static void bgp_encode_pbr_rule_action(struct stream *s,
2146 struct bgp_pbr_action *pbra)
2147 {
2148 struct prefix any;
2149
2150 stream_putl(s, 0); /* seqno unused */
2151 stream_putl(s, 0); /* ruleno unused */
2152
2153 stream_putl(s, pbra->unique);
2154
2155 memset(&any, 0, sizeof(any));
2156 any.family = AF_INET;
2157 stream_putc(s, any.family);
2158 stream_putc(s, any.prefixlen);
2159 stream_put(s, &any.u.prefix, prefix_blen(&any));
2160
2161 stream_putw(s, 0); /* src port */
2162
2163 stream_putc(s, any.family);
2164 stream_putc(s, any.prefixlen);
2165 stream_put(s, &any.u.prefix, prefix_blen(&any));
2166
2167 stream_putw(s, 0); /* dst port */
2168
2169 stream_putl(s, pbra->fwmark); /* fwmark */
2170
2171 stream_putl(s, pbra->table_id);
2172
2173 stream_putl(s, 0); /* ifindex unused */
2174 }
2175
2176 static void bgp_encode_pbr_ipset_match(struct stream *s,
2177 struct bgp_pbr_match *pbim)
2178 {
2179 stream_putl(s, pbim->unique);
2180 stream_putl(s, pbim->type);
2181
2182 stream_put(s, pbim->ipset_name,
2183 ZEBRA_IPSET_NAME_SIZE);
2184
2185
2186 }
2187
2188 static void bgp_encode_pbr_ipset_entry_match(struct stream *s,
2189 struct bgp_pbr_match_entry *pbime)
2190 {
2191 stream_putl(s, pbime->unique);
2192 /* check that back pointer is not null */
2193 stream_put(s, pbime->backpointer->ipset_name,
2194 ZEBRA_IPSET_NAME_SIZE);
2195
2196 stream_putc(s, pbime->src.family);
2197 stream_putc(s, pbime->src.prefixlen);
2198 stream_put(s, &pbime->src.u.prefix, prefix_blen(&pbime->src));
2199
2200 stream_putc(s, pbime->dst.family);
2201 stream_putc(s, pbime->dst.prefixlen);
2202 stream_put(s, &pbime->dst.u.prefix, prefix_blen(&pbime->dst));
2203
2204 stream_putw(s, pbime->src_port_min);
2205 stream_putw(s, pbime->src_port_max);
2206 stream_putw(s, pbime->dst_port_min);
2207 stream_putw(s, pbime->dst_port_max);
2208 stream_putc(s, pbime->proto);
2209 }
2210
2211 static void bgp_encode_pbr_iptable_match(struct stream *s,
2212 struct bgp_pbr_action *bpa,
2213 struct bgp_pbr_match *pbm)
2214 {
2215 stream_putl(s, pbm->unique2);
2216
2217 stream_putl(s, pbm->type);
2218
2219 stream_putl(s, pbm->flags);
2220
2221 /* TODO: correlate with what is contained
2222 * into bgp_pbr_action.
2223 * currently only forward supported
2224 */
2225 if (bpa->nh.type == NEXTHOP_TYPE_BLACKHOLE)
2226 stream_putl(s, ZEBRA_IPTABLES_DROP);
2227 else
2228 stream_putl(s, ZEBRA_IPTABLES_FORWARD);
2229 stream_putl(s, bpa->fwmark);
2230 stream_put(s, pbm->ipset_name,
2231 ZEBRA_IPSET_NAME_SIZE);
2232 stream_putw(s, pbm->pkt_len_min);
2233 stream_putw(s, pbm->pkt_len_max);
2234 stream_putw(s, pbm->tcp_flags);
2235 stream_putw(s, pbm->tcp_mask_flags);
2236 stream_putc(s, pbm->dscp_value);
2237 stream_putc(s, pbm->fragment);
2238 }
2239
2240 /* BGP has established connection with Zebra. */
2241 static void bgp_zebra_connected(struct zclient *zclient)
2242 {
2243 struct bgp *bgp;
2244
2245 zclient_num_connects++; /* increment even if not responding */
2246
2247 /* At this point, we may or may not have BGP instances configured, but
2248 * we're only interested in the default VRF (others wouldn't have learnt
2249 * the VRF from Zebra yet.)
2250 */
2251 bgp = bgp_get_default();
2252 if (!bgp)
2253 return;
2254
2255 bgp_zebra_instance_register(bgp);
2256
2257 /* Send the client registration */
2258 bfd_client_sendmsg(zclient, ZEBRA_BFD_CLIENT_REGISTER);
2259
2260 /* tell label pool that zebra is connected */
2261 bgp_lp_event_zebra_up();
2262
2263 /* TODO - What if we have peers and networks configured, do we have to
2264 * kick-start them?
2265 */
2266 }
2267
2268 static int bgp_zebra_process_local_es(int cmd, struct zclient *zclient,
2269 zebra_size_t length, vrf_id_t vrf_id)
2270 {
2271 esi_t esi;
2272 struct bgp *bgp = NULL;
2273 struct stream *s = NULL;
2274 char buf[ESI_STR_LEN];
2275 char buf1[INET6_ADDRSTRLEN];
2276 struct ipaddr originator_ip;
2277
2278 memset(&esi, 0, sizeof(esi_t));
2279 memset(&originator_ip, 0, sizeof(struct ipaddr));
2280
2281 bgp = bgp_lookup_by_vrf_id(vrf_id);
2282 if (!bgp)
2283 return 0;
2284
2285 s = zclient->ibuf;
2286 stream_get(&esi, s, sizeof(esi_t));
2287 stream_get(&originator_ip, s, sizeof(struct ipaddr));
2288
2289 if (BGP_DEBUG(zebra, ZEBRA))
2290 zlog_debug("Rx %s ESI %s originator-ip %s",
2291 (cmd == ZEBRA_LOCAL_ES_ADD) ? "add" : "del",
2292 esi_to_str(&esi, buf, sizeof(buf)),
2293 ipaddr2str(&originator_ip, buf1, sizeof(buf1)));
2294
2295 if (cmd == ZEBRA_LOCAL_ES_ADD)
2296 bgp_evpn_local_es_add(bgp, &esi, &originator_ip);
2297 else
2298 bgp_evpn_local_es_del(bgp, &esi, &originator_ip);
2299 return 0;
2300 }
2301
2302 static int bgp_zebra_process_local_l3vni(int cmd, struct zclient *zclient,
2303 zebra_size_t length, vrf_id_t vrf_id)
2304 {
2305 int filter = 0;
2306 char buf[ETHER_ADDR_STRLEN];
2307 vni_t l3vni = 0;
2308 struct ethaddr rmac;
2309 struct in_addr originator_ip;
2310 struct stream *s;
2311
2312 memset(&rmac, 0, sizeof(struct ethaddr));
2313 memset(&originator_ip, 0, sizeof(struct in_addr));
2314 s = zclient->ibuf;
2315 l3vni = stream_getl(s);
2316 if (cmd == ZEBRA_L3VNI_ADD) {
2317 stream_get(&rmac, s, sizeof(struct ethaddr));
2318 originator_ip.s_addr = stream_get_ipv4(s);
2319 stream_get(&filter, s, sizeof(int));
2320 }
2321
2322 if (BGP_DEBUG(zebra, ZEBRA))
2323 zlog_debug("Rx L3-VNI %s VRF %s VNI %u RMAC %s filter %s",
2324 (cmd == ZEBRA_L3VNI_ADD) ? "add" : "del",
2325 vrf_id_to_name(vrf_id), l3vni,
2326 prefix_mac2str(&rmac, buf, sizeof(buf)),
2327 filter ? "prefix-routes-only" : "none");
2328
2329 if (cmd == ZEBRA_L3VNI_ADD)
2330 bgp_evpn_local_l3vni_add(l3vni, vrf_id, &rmac, originator_ip,
2331 filter);
2332 else
2333 bgp_evpn_local_l3vni_del(l3vni, vrf_id);
2334
2335 return 0;
2336 }
2337
2338 static int bgp_zebra_process_local_vni(int command, struct zclient *zclient,
2339 zebra_size_t length, vrf_id_t vrf_id)
2340 {
2341 struct stream *s;
2342 vni_t vni;
2343 struct bgp *bgp;
2344 struct in_addr vtep_ip = {INADDR_ANY};
2345 vrf_id_t tenant_vrf_id = VRF_DEFAULT;
2346
2347 s = zclient->ibuf;
2348 vni = stream_getl(s);
2349 if (command == ZEBRA_VNI_ADD) {
2350 vtep_ip.s_addr = stream_get_ipv4(s);
2351 stream_get(&tenant_vrf_id, s, sizeof(vrf_id_t));
2352 }
2353
2354 bgp = bgp_lookup_by_vrf_id(vrf_id);
2355 if (!bgp)
2356 return 0;
2357
2358 if (BGP_DEBUG(zebra, ZEBRA))
2359 zlog_debug("Rx VNI %s VRF %s VNI %u tenant-vrf %s",
2360 (command == ZEBRA_VNI_ADD) ? "add" : "del",
2361 vrf_id_to_name(vrf_id), vni,
2362 vrf_id_to_name(tenant_vrf_id));
2363
2364 if (command == ZEBRA_VNI_ADD)
2365 return bgp_evpn_local_vni_add(
2366 bgp, vni, vtep_ip.s_addr ? vtep_ip : bgp->router_id,
2367 tenant_vrf_id);
2368 else
2369 return bgp_evpn_local_vni_del(bgp, vni);
2370 }
2371
2372 static int bgp_zebra_process_local_macip(int command, struct zclient *zclient,
2373 zebra_size_t length, vrf_id_t vrf_id)
2374 {
2375 struct stream *s;
2376 vni_t vni;
2377 struct bgp *bgp;
2378 struct ethaddr mac;
2379 struct ipaddr ip;
2380 int ipa_len;
2381 char buf[ETHER_ADDR_STRLEN];
2382 char buf1[INET6_ADDRSTRLEN];
2383 uint8_t flags = 0;
2384 uint32_t seqnum = 0;
2385
2386 memset(&ip, 0, sizeof(ip));
2387 s = zclient->ibuf;
2388 vni = stream_getl(s);
2389 stream_get(&mac.octet, s, ETH_ALEN);
2390 ipa_len = stream_getl(s);
2391 if (ipa_len != 0 && ipa_len != IPV4_MAX_BYTELEN
2392 && ipa_len != IPV6_MAX_BYTELEN) {
2393 flog_err(EC_BGP_MACIP_LEN,
2394 "%u:Recv MACIP %s with invalid IP addr length %d",
2395 vrf_id, (command == ZEBRA_MACIP_ADD) ? "Add" : "Del",
2396 ipa_len);
2397 return -1;
2398 }
2399
2400 if (ipa_len) {
2401 ip.ipa_type =
2402 (ipa_len == IPV4_MAX_BYTELEN) ? IPADDR_V4 : IPADDR_V6;
2403 stream_get(&ip.ip.addr, s, ipa_len);
2404 }
2405 if (command == ZEBRA_MACIP_ADD) {
2406 flags = stream_getc(s);
2407 seqnum = stream_getl(s);
2408 }
2409
2410 bgp = bgp_lookup_by_vrf_id(vrf_id);
2411 if (!bgp)
2412 return 0;
2413
2414 if (BGP_DEBUG(zebra, ZEBRA))
2415 zlog_debug("%u:Recv MACIP %s flags 0x%x MAC %s IP %s VNI %u seq %u",
2416 vrf_id, (command == ZEBRA_MACIP_ADD) ? "Add" : "Del",
2417 flags, prefix_mac2str(&mac, buf, sizeof(buf)),
2418 ipaddr2str(&ip, buf1, sizeof(buf1)), vni, seqnum);
2419
2420 if (command == ZEBRA_MACIP_ADD)
2421 return bgp_evpn_local_macip_add(bgp, vni, &mac, &ip,
2422 flags, seqnum);
2423 else
2424 return bgp_evpn_local_macip_del(bgp, vni, &mac, &ip);
2425 }
2426
2427 static void bgp_zebra_process_local_ip_prefix(int cmd, struct zclient *zclient,
2428 zebra_size_t length,
2429 vrf_id_t vrf_id)
2430 {
2431 struct stream *s = NULL;
2432 struct bgp *bgp_vrf = NULL;
2433 struct prefix p;
2434 char buf[PREFIX_STRLEN];
2435
2436 memset(&p, 0, sizeof(struct prefix));
2437 s = zclient->ibuf;
2438 stream_get(&p, s, sizeof(struct prefix));
2439
2440 bgp_vrf = bgp_lookup_by_vrf_id(vrf_id);
2441 if (!bgp_vrf)
2442 return;
2443
2444 if (BGP_DEBUG(zebra, ZEBRA))
2445 zlog_debug("Recv prefix %s %s on vrf %s",
2446 prefix2str(&p, buf, sizeof(buf)),
2447 (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) ? "ADD" : "DEL",
2448 vrf_id_to_name(vrf_id));
2449
2450 if (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) {
2451
2452 if (p.family == AF_INET)
2453 return bgp_evpn_advertise_type5_route(
2454 bgp_vrf, &p, NULL, AFI_IP, SAFI_UNICAST);
2455 else
2456 return bgp_evpn_advertise_type5_route(
2457 bgp_vrf, &p, NULL, AFI_IP6, SAFI_UNICAST);
2458
2459 } else {
2460 if (p.family == AF_INET)
2461 return bgp_evpn_withdraw_type5_route(
2462 bgp_vrf, &p, AFI_IP, SAFI_UNICAST);
2463 else
2464 return bgp_evpn_withdraw_type5_route(
2465 bgp_vrf, &p, AFI_IP6, SAFI_UNICAST);
2466 }
2467 }
2468
2469 static void bgp_zebra_process_label_chunk(
2470 int cmd,
2471 struct zclient *zclient,
2472 zebra_size_t length,
2473 vrf_id_t vrf_id)
2474 {
2475 struct stream *s = NULL;
2476 uint8_t response_keep;
2477 uint32_t first;
2478 uint32_t last;
2479 uint8_t proto;
2480 unsigned short instance;
2481
2482 s = zclient->ibuf;
2483 STREAM_GETC(s, proto);
2484 STREAM_GETW(s, instance);
2485 STREAM_GETC(s, response_keep);
2486 STREAM_GETL(s, first);
2487 STREAM_GETL(s, last);
2488
2489 if (zclient->redist_default != proto) {
2490 flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong proto %u",
2491 proto);
2492 return;
2493 }
2494 if (zclient->instance != instance) {
2495 flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong instance %u",
2496 proto);
2497 return;
2498 }
2499
2500 if (first > last ||
2501 first < MPLS_LABEL_UNRESERVED_MIN ||
2502 last > MPLS_LABEL_UNRESERVED_MAX) {
2503
2504 flog_err(EC_BGP_LM_ERROR, "%s: Invalid Label chunk: %u - %u",
2505 __func__, first, last);
2506 return;
2507 }
2508 if (BGP_DEBUG(zebra, ZEBRA)) {
2509 zlog_debug("Label Chunk assign: %u - %u (%u) ",
2510 first, last, response_keep);
2511 }
2512
2513 bgp_lp_event_chunk(response_keep, first, last);
2514
2515 stream_failure: /* for STREAM_GETX */
2516 return;
2517 }
2518
2519 extern struct zebra_privs_t bgpd_privs;
2520
2521 void bgp_zebra_init(struct thread_master *master)
2522 {
2523 zclient_num_connects = 0;
2524
2525 /* Set default values. */
2526 zclient = zclient_new_notify(master, &zclient_options_default);
2527 zclient_init(zclient, ZEBRA_ROUTE_BGP, 0, &bgpd_privs);
2528 zclient->zebra_connected = bgp_zebra_connected;
2529 zclient->router_id_update = bgp_router_id_update;
2530 zclient->interface_add = bgp_interface_add;
2531 zclient->interface_delete = bgp_interface_delete;
2532 zclient->interface_address_add = bgp_interface_address_add;
2533 zclient->interface_address_delete = bgp_interface_address_delete;
2534 zclient->interface_nbr_address_add = bgp_interface_nbr_address_add;
2535 zclient->interface_nbr_address_delete =
2536 bgp_interface_nbr_address_delete;
2537 zclient->interface_vrf_update = bgp_interface_vrf_update;
2538 zclient->redistribute_route_add = zebra_read_route;
2539 zclient->redistribute_route_del = zebra_read_route;
2540 zclient->interface_up = bgp_interface_up;
2541 zclient->interface_down = bgp_interface_down;
2542 zclient->nexthop_update = bgp_read_nexthop_update;
2543 zclient->import_check_update = bgp_read_import_check_update;
2544 zclient->fec_update = bgp_read_fec_update;
2545 zclient->local_es_add = bgp_zebra_process_local_es;
2546 zclient->local_es_del = bgp_zebra_process_local_es;
2547 zclient->local_vni_add = bgp_zebra_process_local_vni;
2548 zclient->local_vni_del = bgp_zebra_process_local_vni;
2549 zclient->local_macip_add = bgp_zebra_process_local_macip;
2550 zclient->local_macip_del = bgp_zebra_process_local_macip;
2551 zclient->local_l3vni_add = bgp_zebra_process_local_l3vni;
2552 zclient->local_l3vni_del = bgp_zebra_process_local_l3vni;
2553 zclient->local_ip_prefix_add = bgp_zebra_process_local_ip_prefix;
2554 zclient->local_ip_prefix_del = bgp_zebra_process_local_ip_prefix;
2555 zclient->label_chunk = bgp_zebra_process_label_chunk;
2556 zclient->rule_notify_owner = rule_notify_owner;
2557 zclient->ipset_notify_owner = ipset_notify_owner;
2558 zclient->ipset_entry_notify_owner = ipset_entry_notify_owner;
2559 zclient->iptable_notify_owner = iptable_notify_owner;
2560 }
2561
2562 void bgp_zebra_destroy(void)
2563 {
2564 if (zclient == NULL)
2565 return;
2566 zclient_stop(zclient);
2567 zclient_free(zclient);
2568 zclient = NULL;
2569 }
2570
2571 int bgp_zebra_num_connects(void)
2572 {
2573 return zclient_num_connects;
2574 }
2575
2576 void bgp_send_pbr_rule_action(struct bgp_pbr_action *pbra, bool install)
2577 {
2578 struct stream *s;
2579
2580 if (pbra->install_in_progress)
2581 return;
2582 if (BGP_DEBUG(zebra, ZEBRA))
2583 zlog_debug("%s: table %d fwmark %d %d",
2584 __PRETTY_FUNCTION__,
2585 pbra->table_id, pbra->fwmark, install);
2586 s = zclient->obuf;
2587 stream_reset(s);
2588
2589 zclient_create_header(s,
2590 install ? ZEBRA_RULE_ADD : ZEBRA_RULE_DELETE,
2591 VRF_DEFAULT);
2592 stream_putl(s, 1); /* send one pbr action */
2593
2594 bgp_encode_pbr_rule_action(s, pbra);
2595
2596 stream_putw_at(s, 0, stream_get_endp(s));
2597 if (!zclient_send_message(zclient) && install)
2598 pbra->install_in_progress = true;
2599 }
2600
2601 void bgp_send_pbr_ipset_match(struct bgp_pbr_match *pbrim, bool install)
2602 {
2603 struct stream *s;
2604
2605 if (pbrim->install_in_progress)
2606 return;
2607 if (BGP_DEBUG(zebra, ZEBRA))
2608 zlog_debug("%s: name %s type %d %d, ID %u",
2609 __PRETTY_FUNCTION__,
2610 pbrim->ipset_name, pbrim->type,
2611 install, pbrim->unique);
2612 s = zclient->obuf;
2613 stream_reset(s);
2614
2615 zclient_create_header(s,
2616 install ? ZEBRA_IPSET_CREATE :
2617 ZEBRA_IPSET_DESTROY,
2618 VRF_DEFAULT);
2619
2620 stream_putl(s, 1); /* send one pbr action */
2621
2622 bgp_encode_pbr_ipset_match(s, pbrim);
2623
2624 stream_putw_at(s, 0, stream_get_endp(s));
2625 if (!zclient_send_message(zclient) && install)
2626 pbrim->install_in_progress = true;
2627 }
2628
2629 void bgp_send_pbr_ipset_entry_match(struct bgp_pbr_match_entry *pbrime,
2630 bool install)
2631 {
2632 struct stream *s;
2633
2634 if (pbrime->install_in_progress)
2635 return;
2636 if (BGP_DEBUG(zebra, ZEBRA))
2637 zlog_debug("%s: name %s %d %d, ID %u", __PRETTY_FUNCTION__,
2638 pbrime->backpointer->ipset_name,
2639 pbrime->unique, install, pbrime->unique);
2640 s = zclient->obuf;
2641 stream_reset(s);
2642
2643 zclient_create_header(s,
2644 install ? ZEBRA_IPSET_ENTRY_ADD :
2645 ZEBRA_IPSET_ENTRY_DELETE,
2646 VRF_DEFAULT);
2647
2648 stream_putl(s, 1); /* send one pbr action */
2649
2650 bgp_encode_pbr_ipset_entry_match(s, pbrime);
2651
2652 stream_putw_at(s, 0, stream_get_endp(s));
2653 if (!zclient_send_message(zclient) && install)
2654 pbrime->install_in_progress = true;
2655 }
2656
2657 static void bgp_encode_pbr_interface_list(struct bgp *bgp, struct stream *s)
2658 {
2659 struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
2660 struct bgp_pbr_interface_head *head;
2661 struct bgp_pbr_interface *pbr_if;
2662 struct interface *ifp;
2663
2664 if (!bgp_pbr_cfg)
2665 return;
2666 head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
2667
2668 RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
2669 ifp = if_lookup_by_name(pbr_if->name, bgp->vrf_id);
2670 if (ifp)
2671 stream_putl(s, ifp->ifindex);
2672 }
2673 }
2674
2675 static int bgp_pbr_get_ifnumber(struct bgp *bgp)
2676 {
2677 struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
2678 struct bgp_pbr_interface_head *head;
2679 struct bgp_pbr_interface *pbr_if;
2680 int cnt = 0;
2681
2682 if (!bgp_pbr_cfg)
2683 return 0;
2684 head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
2685
2686 RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
2687 if (if_lookup_by_name(pbr_if->name, bgp->vrf_id))
2688 cnt++;
2689 }
2690 return cnt;
2691 }
2692
2693 void bgp_send_pbr_iptable(struct bgp_pbr_action *pba,
2694 struct bgp_pbr_match *pbm,
2695 bool install)
2696 {
2697 struct stream *s;
2698 int ret = 0;
2699 int nb_interface;
2700
2701 if (pbm->install_iptable_in_progress)
2702 return;
2703 if (BGP_DEBUG(zebra, ZEBRA))
2704 zlog_debug("%s: name %s type %d mark %d %d, ID %u",
2705 __PRETTY_FUNCTION__, pbm->ipset_name,
2706 pbm->type, pba->fwmark, install,
2707 pbm->unique2);
2708 s = zclient->obuf;
2709 stream_reset(s);
2710
2711 zclient_create_header(s,
2712 install ? ZEBRA_IPTABLE_ADD :
2713 ZEBRA_IPTABLE_DELETE,
2714 VRF_DEFAULT);
2715
2716 bgp_encode_pbr_iptable_match(s, pba, pbm);
2717 nb_interface = bgp_pbr_get_ifnumber(pba->bgp);
2718 stream_putl(s, nb_interface);
2719 if (nb_interface)
2720 bgp_encode_pbr_interface_list(pba->bgp, s);
2721 stream_putw_at(s, 0, stream_get_endp(s));
2722 ret = zclient_send_message(zclient);
2723 if (install) {
2724 if (ret)
2725 pba->refcnt++;
2726 else
2727 pbm->install_iptable_in_progress = true;
2728 }
2729 }
2730
2731 /* inject in table <table_id> a default route to:
2732 * - if nexthop IP is present : to this nexthop
2733 * - if vrf is different from local : to the matching VRF
2734 */
2735 void bgp_zebra_announce_default(struct bgp *bgp, struct nexthop *nh,
2736 afi_t afi, uint32_t table_id, bool announce)
2737 {
2738 struct zapi_nexthop *api_nh;
2739 struct zapi_route api;
2740 struct prefix p;
2741
2742 if (!nh || nh->type != NEXTHOP_TYPE_IPV4
2743 || nh->vrf_id == VRF_UNKNOWN)
2744 return;
2745 memset(&p, 0, sizeof(struct prefix));
2746 /* default route */
2747 if (afi != AFI_IP)
2748 return;
2749 p.family = AF_INET;
2750 memset(&api, 0, sizeof(api));
2751 api.vrf_id = bgp->vrf_id;
2752 api.type = ZEBRA_ROUTE_BGP;
2753 api.safi = SAFI_UNICAST;
2754 api.prefix = p;
2755 api.tableid = table_id;
2756 api.nexthop_num = 1;
2757 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
2758 SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
2759 api_nh = &api.nexthops[0];
2760
2761 /* redirect IP */
2762 if (nh->gate.ipv4.s_addr) {
2763 char buff[PREFIX_STRLEN];
2764
2765 api_nh->vrf_id = nh->vrf_id;
2766 api_nh->gate.ipv4 = nh->gate.ipv4;
2767 api_nh->type = NEXTHOP_TYPE_IPV4;
2768
2769 inet_ntop(AF_INET, &(nh->gate.ipv4), buff, INET_ADDRSTRLEN);
2770 if (BGP_DEBUG(zebra, ZEBRA))
2771 zlog_info("BGP: %s default route to %s table %d (redirect IP)",
2772 announce ? "adding" : "withdrawing",
2773 buff, table_id);
2774 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
2775 : ZEBRA_ROUTE_DELETE,
2776 zclient, &api);
2777 } else if (nh->vrf_id != bgp->vrf_id) {
2778 struct vrf *vrf;
2779 struct interface *ifp;
2780
2781 vrf = vrf_lookup_by_id(nh->vrf_id);
2782 if (!vrf)
2783 return;
2784 /* create default route with interface <VRF>
2785 * with nexthop-vrf <VRF>
2786 */
2787 ifp = if_lookup_by_name_all_vrf(vrf->name);
2788 if (!ifp)
2789 return;
2790 api_nh->vrf_id = nh->vrf_id;
2791 api_nh->type = NEXTHOP_TYPE_IFINDEX;
2792 api_nh->ifindex = ifp->ifindex;
2793 if (BGP_DEBUG(zebra, ZEBRA))
2794 zlog_info("BGP: %s default route to %s table %d (redirect VRF)",
2795 announce ? "adding" : "withdrawing",
2796 vrf->name, table_id);
2797 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
2798 : ZEBRA_ROUTE_DELETE,
2799 zclient, &api);
2800 return;
2801 }
2802 }