]> git.proxmox.com Git - mirror_frr.git/blob - bgpd/bgp_zebra.c
Merge pull request #10424 from patrasar/master_pimv6_nht
[mirror_frr.git] / bgpd / bgp_zebra.c
1 /* zebra client
2 * Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "stream.h"
25 #include "network.h"
26 #include "prefix.h"
27 #include "log.h"
28 #include "sockunion.h"
29 #include "zclient.h"
30 #include "routemap.h"
31 #include "thread.h"
32 #include "queue.h"
33 #include "memory.h"
34 #include "lib/json.h"
35 #include "lib/bfd.h"
36 #include "lib/route_opaque.h"
37 #include "filter.h"
38 #include "mpls.h"
39 #include "vxlan.h"
40 #include "pbr.h"
41
42 #include "bgpd/bgpd.h"
43 #include "bgpd/bgp_route.h"
44 #include "bgpd/bgp_attr.h"
45 #include "bgpd/bgp_aspath.h"
46 #include "bgpd/bgp_nexthop.h"
47 #include "bgpd/bgp_zebra.h"
48 #include "bgpd/bgp_fsm.h"
49 #include "bgpd/bgp_debug.h"
50 #include "bgpd/bgp_errors.h"
51 #include "bgpd/bgp_mpath.h"
52 #include "bgpd/bgp_nexthop.h"
53 #include "bgpd/bgp_nht.h"
54 #include "bgpd/bgp_bfd.h"
55 #include "bgpd/bgp_label.h"
56 #ifdef ENABLE_BGP_VNC
57 #include "bgpd/rfapi/rfapi_backend.h"
58 #include "bgpd/rfapi/vnc_export_bgp.h"
59 #endif
60 #include "bgpd/bgp_evpn.h"
61 #include "bgpd/bgp_mplsvpn.h"
62 #include "bgpd/bgp_labelpool.h"
63 #include "bgpd/bgp_pbr.h"
64 #include "bgpd/bgp_evpn_private.h"
65 #include "bgpd/bgp_evpn_mh.h"
66 #include "bgpd/bgp_mac.h"
67 #include "bgpd/bgp_trace.h"
68 #include "bgpd/bgp_community.h"
69 #include "bgpd/bgp_lcommunity.h"
70
71 /* All information about zebra. */
72 struct zclient *zclient = NULL;
73
74 /* hook to indicate vrf status change for SNMP */
75 DEFINE_HOOK(bgp_vrf_status_changed, (struct bgp *bgp, struct interface *ifp),
76 (bgp, ifp));
77
78 /* Can we install into zebra? */
79 static inline bool bgp_install_info_to_zebra(struct bgp *bgp)
80 {
81 if (zclient->sock <= 0)
82 return false;
83
84 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
85 zlog_debug(
86 "%s: No zebra instance to talk to, not installing information",
87 __func__);
88 return false;
89 }
90
91 return true;
92 }
93
94 int zclient_num_connects;
95
96 /* Router-id update message from zebra. */
97 static int bgp_router_id_update(ZAPI_CALLBACK_ARGS)
98 {
99 struct prefix router_id;
100
101 zebra_router_id_update_read(zclient->ibuf, &router_id);
102
103 if (BGP_DEBUG(zebra, ZEBRA))
104 zlog_debug("Rx Router Id update VRF %u Id %pFX", vrf_id,
105 &router_id);
106
107 bgp_router_id_zebra_bump(vrf_id, &router_id);
108 return 0;
109 }
110
111 /* Nexthop update message from zebra. */
112 static int bgp_read_nexthop_update(ZAPI_CALLBACK_ARGS)
113 {
114 bgp_parse_nexthop_update(cmd, vrf_id);
115 return 0;
116 }
117
118 /* Set or clear interface on which unnumbered neighbor is configured. This
119 * would in turn cause BGP to initiate or turn off IPv6 RAs on this
120 * interface.
121 */
122 static void bgp_update_interface_nbrs(struct bgp *bgp, struct interface *ifp,
123 struct interface *upd_ifp)
124 {
125 struct listnode *node, *nnode;
126 struct peer *peer;
127
128 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
129 if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)) {
130 if (upd_ifp) {
131 peer->ifp = upd_ifp;
132 bgp_zebra_initiate_radv(bgp, peer);
133 } else {
134 bgp_zebra_terminate_radv(bgp, peer);
135 peer->ifp = upd_ifp;
136 }
137 }
138 }
139 }
140
141 static int bgp_read_fec_update(ZAPI_CALLBACK_ARGS)
142 {
143 bgp_parse_fec_update();
144 return 0;
145 }
146
147 static void bgp_start_interface_nbrs(struct bgp *bgp, struct interface *ifp)
148 {
149 struct listnode *node, *nnode;
150 struct peer *peer;
151
152 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
153 if (peer->conf_if && (strcmp(peer->conf_if, ifp->name) == 0)
154 && !peer_established(peer)) {
155 if (peer_active(peer))
156 BGP_EVENT_ADD(peer, BGP_Stop);
157 BGP_EVENT_ADD(peer, BGP_Start);
158 }
159 }
160 }
161
162 static void bgp_nbr_connected_add(struct bgp *bgp, struct nbr_connected *ifc)
163 {
164 struct listnode *node;
165 struct connected *connected;
166 struct interface *ifp;
167 struct prefix *p;
168
169 /* Kick-off the FSM for any relevant peers only if there is a
170 * valid local address on the interface.
171 */
172 ifp = ifc->ifp;
173 for (ALL_LIST_ELEMENTS_RO(ifp->connected, node, connected)) {
174 p = connected->address;
175 if (p->family == AF_INET6
176 && IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
177 break;
178 }
179 if (!connected)
180 return;
181
182 bgp_start_interface_nbrs(bgp, ifp);
183 }
184
185 static void bgp_nbr_connected_delete(struct bgp *bgp, struct nbr_connected *ifc,
186 int del)
187 {
188 struct listnode *node, *nnode;
189 struct peer *peer;
190 struct interface *ifp;
191
192 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
193 if (peer->conf_if
194 && (strcmp(peer->conf_if, ifc->ifp->name) == 0)) {
195 peer->last_reset = PEER_DOWN_NBR_ADDR_DEL;
196 BGP_EVENT_ADD(peer, BGP_Stop);
197 }
198 }
199 /* Free neighbor also, if we're asked to. */
200 if (del) {
201 ifp = ifc->ifp;
202 listnode_delete(ifp->nbr_connected, ifc);
203 nbr_connected_free(ifc);
204 }
205 }
206
207 static int bgp_ifp_destroy(struct interface *ifp)
208 {
209 struct bgp *bgp;
210
211 bgp = ifp->vrf->info;
212
213 if (BGP_DEBUG(zebra, ZEBRA))
214 zlog_debug("Rx Intf del VRF %u IF %s", ifp->vrf->vrf_id,
215 ifp->name);
216
217 if (bgp) {
218 bgp_update_interface_nbrs(bgp, ifp, NULL);
219 hook_call(bgp_vrf_status_changed, bgp, ifp);
220 }
221
222 bgp_mac_del_mac_entry(ifp);
223
224 return 0;
225 }
226
227 static int bgp_ifp_up(struct interface *ifp)
228 {
229 struct connected *c;
230 struct nbr_connected *nc;
231 struct listnode *node, *nnode;
232 struct bgp *bgp;
233
234 bgp = ifp->vrf->info;
235
236 bgp_mac_add_mac_entry(ifp);
237
238 if (BGP_DEBUG(zebra, ZEBRA))
239 zlog_debug("Rx Intf up VRF %u IF %s", ifp->vrf->vrf_id,
240 ifp->name);
241
242 if (!bgp)
243 return 0;
244
245 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
246 bgp_connected_add(bgp, c);
247
248 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
249 bgp_nbr_connected_add(bgp, nc);
250
251 hook_call(bgp_vrf_status_changed, bgp, ifp);
252 bgp_nht_ifp_up(ifp);
253
254 return 0;
255 }
256
257 static int bgp_ifp_down(struct interface *ifp)
258 {
259 struct connected *c;
260 struct nbr_connected *nc;
261 struct listnode *node, *nnode;
262 struct bgp *bgp;
263 struct peer *peer;
264
265 bgp = ifp->vrf->info;
266
267 bgp_mac_del_mac_entry(ifp);
268
269 if (BGP_DEBUG(zebra, ZEBRA))
270 zlog_debug("Rx Intf down VRF %u IF %s", ifp->vrf->vrf_id,
271 ifp->name);
272
273 if (!bgp)
274 return 0;
275
276 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
277 bgp_connected_delete(bgp, c);
278
279 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
280 bgp_nbr_connected_delete(bgp, nc, 1);
281
282 /* Fast external-failover */
283 if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
284
285 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
286 /* Take down directly connected peers. */
287 if ((peer->ttl != BGP_DEFAULT_TTL)
288 && (peer->gtsm_hops != BGP_GTSM_HOPS_CONNECTED))
289 continue;
290
291 if (ifp == peer->nexthop.ifp) {
292 BGP_EVENT_ADD(peer, BGP_Stop);
293 peer->last_reset = PEER_DOWN_IF_DOWN;
294 }
295 }
296 }
297
298 hook_call(bgp_vrf_status_changed, bgp, ifp);
299 bgp_nht_ifp_down(ifp);
300
301 return 0;
302 }
303
304 static int bgp_interface_address_add(ZAPI_CALLBACK_ARGS)
305 {
306 struct connected *ifc;
307 struct bgp *bgp;
308
309 bgp = bgp_lookup_by_vrf_id(vrf_id);
310
311 ifc = zebra_interface_address_read(cmd, zclient->ibuf, vrf_id);
312
313 if (ifc == NULL)
314 return 0;
315
316 if (bgp_debug_zebra(ifc->address))
317 zlog_debug("Rx Intf address add VRF %u IF %s addr %pFX", vrf_id,
318 ifc->ifp->name, ifc->address);
319
320 if (!bgp)
321 return 0;
322
323 if (if_is_operative(ifc->ifp)) {
324 bgp_connected_add(bgp, ifc);
325
326 /* If we have learnt of any neighbors on this interface,
327 * check to kick off any BGP interface-based neighbors,
328 * but only if this is a link-local address.
329 */
330 if (IN6_IS_ADDR_LINKLOCAL(&ifc->address->u.prefix6)
331 && !list_isempty(ifc->ifp->nbr_connected))
332 bgp_start_interface_nbrs(bgp, ifc->ifp);
333 }
334
335 return 0;
336 }
337
338 static int bgp_interface_address_delete(ZAPI_CALLBACK_ARGS)
339 {
340 struct listnode *node, *nnode;
341 struct connected *ifc;
342 struct peer *peer;
343 struct bgp *bgp;
344 struct prefix *addr;
345
346 bgp = bgp_lookup_by_vrf_id(vrf_id);
347
348 ifc = zebra_interface_address_read(cmd, zclient->ibuf, vrf_id);
349
350 if (ifc == NULL)
351 return 0;
352
353 if (bgp_debug_zebra(ifc->address))
354 zlog_debug("Rx Intf address del VRF %u IF %s addr %pFX", vrf_id,
355 ifc->ifp->name, ifc->address);
356
357 if (bgp && if_is_operative(ifc->ifp)) {
358 bgp_connected_delete(bgp, ifc);
359 }
360
361 addr = ifc->address;
362
363 if (bgp) {
364 /*
365 * When we are using the v6 global as part of the peering
366 * nexthops and we are removing it, then we need to
367 * clear the peer data saved for that nexthop and
368 * cause a re-announcement of the route. Since
369 * we do not want the peering to bounce.
370 */
371 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
372 afi_t afi;
373 safi_t safi;
374
375 if (addr->family == AF_INET)
376 continue;
377
378 if (!IN6_IS_ADDR_LINKLOCAL(&addr->u.prefix6)
379 && memcmp(&peer->nexthop.v6_global,
380 &addr->u.prefix6, 16)
381 == 0) {
382 memset(&peer->nexthop.v6_global, 0, 16);
383 FOREACH_AFI_SAFI (afi, safi)
384 bgp_announce_route(peer, afi, safi,
385 true);
386 }
387 }
388 }
389
390 connected_free(&ifc);
391
392 return 0;
393 }
394
395 static int bgp_interface_nbr_address_add(ZAPI_CALLBACK_ARGS)
396 {
397 struct nbr_connected *ifc = NULL;
398 struct bgp *bgp;
399
400 ifc = zebra_interface_nbr_address_read(cmd, zclient->ibuf, vrf_id);
401
402 if (ifc == NULL)
403 return 0;
404
405 if (bgp_debug_zebra(ifc->address))
406 zlog_debug("Rx Intf neighbor add VRF %u IF %s addr %pFX",
407 vrf_id, ifc->ifp->name, ifc->address);
408
409 if (if_is_operative(ifc->ifp)) {
410 bgp = bgp_lookup_by_vrf_id(vrf_id);
411 if (bgp)
412 bgp_nbr_connected_add(bgp, ifc);
413 }
414
415 return 0;
416 }
417
418 static int bgp_interface_nbr_address_delete(ZAPI_CALLBACK_ARGS)
419 {
420 struct nbr_connected *ifc = NULL;
421 struct bgp *bgp;
422
423 ifc = zebra_interface_nbr_address_read(cmd, zclient->ibuf, vrf_id);
424
425 if (ifc == NULL)
426 return 0;
427
428 if (bgp_debug_zebra(ifc->address))
429 zlog_debug("Rx Intf neighbor del VRF %u IF %s addr %pFX",
430 vrf_id, ifc->ifp->name, ifc->address);
431
432 if (if_is_operative(ifc->ifp)) {
433 bgp = bgp_lookup_by_vrf_id(vrf_id);
434 if (bgp)
435 bgp_nbr_connected_delete(bgp, ifc, 0);
436 }
437
438 nbr_connected_free(ifc);
439
440 return 0;
441 }
442
443 /* VRF update for an interface. */
444 static int bgp_interface_vrf_update(ZAPI_CALLBACK_ARGS)
445 {
446 struct interface *ifp;
447 vrf_id_t new_vrf_id;
448 struct connected *c;
449 struct nbr_connected *nc;
450 struct listnode *node, *nnode;
451 struct bgp *bgp;
452 struct peer *peer;
453
454 ifp = zebra_interface_vrf_update_read(zclient->ibuf, vrf_id,
455 &new_vrf_id);
456 if (!ifp)
457 return 0;
458
459 if (BGP_DEBUG(zebra, ZEBRA) && ifp)
460 zlog_debug("Rx Intf VRF change VRF %u IF %s NewVRF %u", vrf_id,
461 ifp->name, new_vrf_id);
462
463 bgp = bgp_lookup_by_vrf_id(vrf_id);
464
465 if (bgp) {
466 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
467 bgp_connected_delete(bgp, c);
468
469 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
470 bgp_nbr_connected_delete(bgp, nc, 1);
471
472 /* Fast external-failover */
473 if (!CHECK_FLAG(bgp->flags, BGP_FLAG_NO_FAST_EXT_FAILOVER)) {
474 for (ALL_LIST_ELEMENTS(bgp->peer, node, nnode, peer)) {
475 if ((peer->ttl != BGP_DEFAULT_TTL)
476 && (peer->gtsm_hops
477 != BGP_GTSM_HOPS_CONNECTED))
478 continue;
479
480 if (ifp == peer->nexthop.ifp)
481 BGP_EVENT_ADD(peer, BGP_Stop);
482 }
483 }
484 }
485
486 if_update_to_new_vrf(ifp, new_vrf_id);
487
488 bgp = bgp_lookup_by_vrf_id(new_vrf_id);
489 if (!bgp)
490 return 0;
491
492 for (ALL_LIST_ELEMENTS(ifp->connected, node, nnode, c))
493 bgp_connected_add(bgp, c);
494
495 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, node, nnode, nc))
496 bgp_nbr_connected_add(bgp, nc);
497
498 hook_call(bgp_vrf_status_changed, bgp, ifp);
499 return 0;
500 }
501
502 /* Zebra route add and delete treatment. */
503 static int zebra_read_route(ZAPI_CALLBACK_ARGS)
504 {
505 enum nexthop_types_t nhtype;
506 enum blackhole_type bhtype = BLACKHOLE_UNSPEC;
507 struct zapi_route api;
508 union g_addr nexthop = {};
509 ifindex_t ifindex;
510 int add, i;
511 struct bgp *bgp;
512
513 bgp = bgp_lookup_by_vrf_id(vrf_id);
514 if (!bgp)
515 return 0;
516
517 if (zapi_route_decode(zclient->ibuf, &api) < 0)
518 return -1;
519
520 /* we completely ignore srcdest routes for now. */
521 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_SRCPFX))
522 return 0;
523
524 /* ignore link-local address. */
525 if (api.prefix.family == AF_INET6
526 && IN6_IS_ADDR_LINKLOCAL(&api.prefix.u.prefix6))
527 return 0;
528
529 ifindex = api.nexthops[0].ifindex;
530 nhtype = api.nexthops[0].type;
531
532 /* api_nh structure has union of gate and bh_type */
533 if (nhtype == NEXTHOP_TYPE_BLACKHOLE) {
534 /* bh_type is only applicable if NEXTHOP_TYPE_BLACKHOLE*/
535 bhtype = api.nexthops[0].bh_type;
536 } else
537 nexthop = api.nexthops[0].gate;
538
539 add = (cmd == ZEBRA_REDISTRIBUTE_ROUTE_ADD);
540 if (add) {
541 /*
542 * The ADD message is actually an UPDATE and there is no
543 * explicit DEL
544 * for a prior redistributed route, if any. So, perform an
545 * implicit
546 * DEL processing for the same redistributed route from any
547 * other
548 * source type.
549 */
550 for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
551 if (i != api.type)
552 bgp_redistribute_delete(bgp, &api.prefix, i,
553 api.instance);
554 }
555
556 /* Now perform the add/update. */
557 bgp_redistribute_add(bgp, &api.prefix, &nexthop, ifindex,
558 nhtype, bhtype, api.distance, api.metric,
559 api.type, api.instance, api.tag);
560 } else {
561 bgp_redistribute_delete(bgp, &api.prefix, api.type,
562 api.instance);
563 }
564
565 if (bgp_debug_zebra(&api.prefix)) {
566 char buf[PREFIX_STRLEN];
567
568 if (add) {
569 inet_ntop(api.prefix.family, &nexthop, buf,
570 sizeof(buf));
571 zlog_debug(
572 "Rx route ADD VRF %u %s[%d] %pFX nexthop %s (type %d if %u) metric %u distance %u tag %" ROUTE_TAG_PRI,
573 vrf_id, zebra_route_string(api.type),
574 api.instance, &api.prefix, buf, nhtype, ifindex,
575 api.metric, api.distance, api.tag);
576 } else {
577 zlog_debug("Rx route DEL VRF %u %s[%d] %pFX", vrf_id,
578 zebra_route_string(api.type), api.instance,
579 &api.prefix);
580 }
581 }
582
583 return 0;
584 }
585
586 struct interface *if_lookup_by_ipv4(struct in_addr *addr, vrf_id_t vrf_id)
587 {
588 struct vrf *vrf;
589 struct listnode *cnode;
590 struct interface *ifp;
591 struct connected *connected;
592 struct prefix_ipv4 p;
593 struct prefix *cp;
594
595 vrf = vrf_lookup_by_id(vrf_id);
596 if (!vrf)
597 return NULL;
598
599 p.family = AF_INET;
600 p.prefix = *addr;
601 p.prefixlen = IPV4_MAX_BITLEN;
602
603 FOR_ALL_INTERFACES (vrf, ifp) {
604 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
605 cp = connected->address;
606
607 if (cp->family == AF_INET)
608 if (prefix_match(cp, (struct prefix *)&p))
609 return ifp;
610 }
611 }
612 return NULL;
613 }
614
615 struct interface *if_lookup_by_ipv4_exact(struct in_addr *addr, vrf_id_t vrf_id)
616 {
617 struct vrf *vrf;
618 struct listnode *cnode;
619 struct interface *ifp;
620 struct connected *connected;
621 struct prefix *cp;
622
623 vrf = vrf_lookup_by_id(vrf_id);
624 if (!vrf)
625 return NULL;
626
627 FOR_ALL_INTERFACES (vrf, ifp) {
628 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
629 cp = connected->address;
630
631 if (cp->family == AF_INET)
632 if (IPV4_ADDR_SAME(&cp->u.prefix4, addr))
633 return ifp;
634 }
635 }
636 return NULL;
637 }
638
639 struct interface *if_lookup_by_ipv6(struct in6_addr *addr, ifindex_t ifindex,
640 vrf_id_t vrf_id)
641 {
642 struct vrf *vrf;
643 struct listnode *cnode;
644 struct interface *ifp;
645 struct connected *connected;
646 struct prefix_ipv6 p;
647 struct prefix *cp;
648
649 vrf = vrf_lookup_by_id(vrf_id);
650 if (!vrf)
651 return NULL;
652
653 p.family = AF_INET6;
654 p.prefix = *addr;
655 p.prefixlen = IPV6_MAX_BITLEN;
656
657 FOR_ALL_INTERFACES (vrf, ifp) {
658 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
659 cp = connected->address;
660
661 if (cp->family == AF_INET6)
662 if (prefix_match(cp, (struct prefix *)&p)) {
663 if (IN6_IS_ADDR_LINKLOCAL(
664 &cp->u.prefix6)) {
665 if (ifindex == ifp->ifindex)
666 return ifp;
667 } else
668 return ifp;
669 }
670 }
671 }
672 return NULL;
673 }
674
675 struct interface *if_lookup_by_ipv6_exact(struct in6_addr *addr,
676 ifindex_t ifindex, vrf_id_t vrf_id)
677 {
678 struct vrf *vrf;
679 struct listnode *cnode;
680 struct interface *ifp;
681 struct connected *connected;
682 struct prefix *cp;
683
684 vrf = vrf_lookup_by_id(vrf_id);
685 if (!vrf)
686 return NULL;
687
688 FOR_ALL_INTERFACES (vrf, ifp) {
689 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
690 cp = connected->address;
691
692 if (cp->family == AF_INET6)
693 if (IPV6_ADDR_SAME(&cp->u.prefix6, addr)) {
694 if (IN6_IS_ADDR_LINKLOCAL(
695 &cp->u.prefix6)) {
696 if (ifindex == ifp->ifindex)
697 return ifp;
698 } else
699 return ifp;
700 }
701 }
702 }
703 return NULL;
704 }
705
706 static int if_get_ipv6_global(struct interface *ifp, struct in6_addr *addr)
707 {
708 struct listnode *cnode;
709 struct connected *connected;
710 struct prefix *cp;
711
712 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
713 cp = connected->address;
714
715 if (cp->family == AF_INET6)
716 if (!IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
717 memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
718 return 1;
719 }
720 }
721 return 0;
722 }
723
724 static bool if_get_ipv6_local(struct interface *ifp, struct in6_addr *addr)
725 {
726 struct listnode *cnode;
727 struct connected *connected;
728 struct prefix *cp;
729
730 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
731 cp = connected->address;
732
733 if (cp->family == AF_INET6)
734 if (IN6_IS_ADDR_LINKLOCAL(&cp->u.prefix6)) {
735 memcpy(addr, &cp->u.prefix6, IPV6_MAX_BYTELEN);
736 return true;
737 }
738 }
739 return false;
740 }
741
742 static int if_get_ipv4_address(struct interface *ifp, struct in_addr *addr)
743 {
744 struct listnode *cnode;
745 struct connected *connected;
746 struct prefix *cp;
747
748 for (ALL_LIST_ELEMENTS_RO(ifp->connected, cnode, connected)) {
749 cp = connected->address;
750 if ((cp->family == AF_INET)
751 && !ipv4_martian(&(cp->u.prefix4))) {
752 *addr = cp->u.prefix4;
753 return 1;
754 }
755 }
756 return 0;
757 }
758
759
760 bool bgp_zebra_nexthop_set(union sockunion *local, union sockunion *remote,
761 struct bgp_nexthop *nexthop, struct peer *peer)
762 {
763 int ret = 0;
764 struct interface *ifp = NULL;
765 bool v6_ll_avail = true;
766
767 memset(nexthop, 0, sizeof(struct bgp_nexthop));
768
769 if (!local)
770 return false;
771 if (!remote)
772 return false;
773
774 if (local->sa.sa_family == AF_INET) {
775 nexthop->v4 = local->sin.sin_addr;
776 if (peer->update_if)
777 ifp = if_lookup_by_name(peer->update_if,
778 peer->bgp->vrf_id);
779 else
780 ifp = if_lookup_by_ipv4_exact(&local->sin.sin_addr,
781 peer->bgp->vrf_id);
782 }
783 if (local->sa.sa_family == AF_INET6) {
784 memcpy(&nexthop->v6_global, &local->sin6.sin6_addr, IPV6_MAX_BYTELEN);
785 if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
786 if (peer->conf_if || peer->ifname)
787 ifp = if_lookup_by_name(peer->conf_if
788 ? peer->conf_if
789 : peer->ifname,
790 peer->bgp->vrf_id);
791 else if (peer->update_if)
792 ifp = if_lookup_by_name(peer->update_if,
793 peer->bgp->vrf_id);
794 } else if (peer->update_if)
795 ifp = if_lookup_by_name(peer->update_if,
796 peer->bgp->vrf_id);
797 else
798 ifp = if_lookup_by_ipv6_exact(&local->sin6.sin6_addr,
799 local->sin6.sin6_scope_id,
800 peer->bgp->vrf_id);
801 }
802
803 if (!ifp) {
804 /*
805 * BGP views do not currently get proper data
806 * from zebra( when attached ) to be able to
807 * properly resolve nexthops, so give this
808 * instance type a pass.
809 */
810 if (peer->bgp->inst_type == BGP_INSTANCE_TYPE_VIEW)
811 return true;
812 /*
813 * If we have no interface data but we have established
814 * some connection w/ zebra than something has gone
815 * terribly terribly wrong here, so say this failed
816 * If we do not any zebra connection then not
817 * having a ifp pointer is ok.
818 */
819 return zclient_num_connects ? false : true;
820 }
821
822 nexthop->ifp = ifp;
823
824 /* IPv4 connection, fetch and store IPv6 local address(es) if any. */
825 if (local->sa.sa_family == AF_INET) {
826 /* IPv6 nexthop*/
827 ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
828
829 if (!ret) {
830 /* There is no global nexthop. Use link-local address as
831 * both the
832 * global and link-local nexthop. In this scenario, the
833 * expectation
834 * for interop is that the network admin would use a
835 * route-map to
836 * specify the global IPv6 nexthop.
837 */
838 v6_ll_avail =
839 if_get_ipv6_local(ifp, &nexthop->v6_global);
840 memcpy(&nexthop->v6_local, &nexthop->v6_global,
841 IPV6_MAX_BYTELEN);
842 } else
843 v6_ll_avail =
844 if_get_ipv6_local(ifp, &nexthop->v6_local);
845
846 /*
847 * If we are a v4 connection and we are not doing unnumbered
848 * not having a v6 LL address is ok
849 */
850 if (!v6_ll_avail && !peer->conf_if)
851 v6_ll_avail = true;
852 if (if_lookup_by_ipv4(&remote->sin.sin_addr, peer->bgp->vrf_id))
853 peer->shared_network = 1;
854 else
855 peer->shared_network = 0;
856 }
857
858 /* IPv6 connection, fetch and store IPv4 local address if any. */
859 if (local->sa.sa_family == AF_INET6) {
860 struct interface *direct = NULL;
861
862 /* IPv4 nexthop. */
863 ret = if_get_ipv4_address(ifp, &nexthop->v4);
864 if (!ret && peer->local_id.s_addr != INADDR_ANY)
865 nexthop->v4 = peer->local_id;
866
867 /* Global address*/
868 if (!IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)) {
869 memcpy(&nexthop->v6_global, &local->sin6.sin6_addr,
870 IPV6_MAX_BYTELEN);
871
872 /* If directory connected set link-local address. */
873 direct = if_lookup_by_ipv6(&remote->sin6.sin6_addr,
874 remote->sin6.sin6_scope_id,
875 peer->bgp->vrf_id);
876 if (direct)
877 v6_ll_avail = if_get_ipv6_local(
878 ifp, &nexthop->v6_local);
879 /*
880 * It's fine to not have a v6 LL when using
881 * update-source loopback/vrf
882 */
883 if (!v6_ll_avail && if_is_loopback(ifp))
884 v6_ll_avail = true;
885 } else
886 /* Link-local address. */
887 {
888 ret = if_get_ipv6_global(ifp, &nexthop->v6_global);
889
890 /* If there is no global address. Set link-local
891 address as
892 global. I know this break RFC specification... */
893 /* In this scenario, the expectation for interop is that
894 * the
895 * network admin would use a route-map to specify the
896 * global
897 * IPv6 nexthop.
898 */
899 if (!ret)
900 memcpy(&nexthop->v6_global,
901 &local->sin6.sin6_addr,
902 IPV6_MAX_BYTELEN);
903 /* Always set the link-local address */
904 memcpy(&nexthop->v6_local, &local->sin6.sin6_addr,
905 IPV6_MAX_BYTELEN);
906 }
907
908 if (IN6_IS_ADDR_LINKLOCAL(&local->sin6.sin6_addr)
909 || if_lookup_by_ipv6(&remote->sin6.sin6_addr,
910 remote->sin6.sin6_scope_id,
911 peer->bgp->vrf_id))
912 peer->shared_network = 1;
913 else
914 peer->shared_network = 0;
915 }
916
917 /* KAME stack specific treatment. */
918 #ifdef KAME
919 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_global)
920 && IN6_LINKLOCAL_IFINDEX(nexthop->v6_global)) {
921 SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_global, 0);
922 }
923 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->v6_local)
924 && IN6_LINKLOCAL_IFINDEX(nexthop->v6_local)) {
925 SET_IN6_LINKLOCAL_IFINDEX(nexthop->v6_local, 0);
926 }
927 #endif /* KAME */
928
929 /* If we have identified the local interface, there is no error for now.
930 */
931 return v6_ll_avail;
932 }
933
934 static struct in6_addr *
935 bgp_path_info_to_ipv6_nexthop(struct bgp_path_info *path, ifindex_t *ifindex)
936 {
937 struct in6_addr *nexthop = NULL;
938
939 /* Only global address nexthop exists. */
940 if (path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL
941 || path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_VPNV6_GLOBAL) {
942 nexthop = &path->attr->mp_nexthop_global;
943 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
944 *ifindex = path->attr->nh_ifindex;
945 }
946
947 /* If both global and link-local address present. */
948 if (path->attr->mp_nexthop_len == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL
949 || path->attr->mp_nexthop_len
950 == BGP_ATTR_NHLEN_VPNV6_GLOBAL_AND_LL) {
951 /* Check if route-map is set to prefer global over link-local */
952 if (path->attr->mp_nexthop_prefer_global) {
953 nexthop = &path->attr->mp_nexthop_global;
954 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
955 *ifindex = path->attr->nh_ifindex;
956 } else {
957 /* Workaround for Cisco's nexthop bug. */
958 if (IN6_IS_ADDR_UNSPECIFIED(
959 &path->attr->mp_nexthop_global)
960 && path->peer->su_remote
961 && path->peer->su_remote->sa.sa_family
962 == AF_INET6) {
963 nexthop =
964 &path->peer->su_remote->sin6.sin6_addr;
965 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
966 *ifindex = path->peer->nexthop.ifp
967 ->ifindex;
968 } else {
969 nexthop = &path->attr->mp_nexthop_local;
970 if (IN6_IS_ADDR_LINKLOCAL(nexthop))
971 *ifindex = path->attr->nh_lla_ifindex;
972 }
973 }
974 }
975
976 return nexthop;
977 }
978
979 static bool bgp_table_map_apply(struct route_map *map, const struct prefix *p,
980 struct bgp_path_info *path)
981 {
982 route_map_result_t ret;
983
984 ret = route_map_apply(map, p, path);
985 bgp_attr_flush(path->attr);
986
987 if (ret != RMAP_DENYMATCH)
988 return true;
989
990 if (bgp_debug_zebra(p)) {
991 if (p->family == AF_INET) {
992 zlog_debug(
993 "Zebra rmap deny: IPv4 route %pFX nexthop %pI4",
994 p, &path->attr->nexthop);
995 }
996 if (p->family == AF_INET6) {
997 char buf[2][INET6_ADDRSTRLEN];
998 ifindex_t ifindex;
999 struct in6_addr *nexthop;
1000
1001 nexthop = bgp_path_info_to_ipv6_nexthop(path, &ifindex);
1002 zlog_debug(
1003 "Zebra rmap deny: IPv6 route %pFX nexthop %s",
1004 p,
1005 nexthop ? inet_ntop(AF_INET6, nexthop, buf[1],
1006 sizeof(buf[1]))
1007 : inet_ntop(AF_INET,
1008 &path->attr->nexthop,
1009 buf[1], sizeof(buf[1])));
1010 }
1011 }
1012 return false;
1013 }
1014
1015 static struct thread *bgp_tm_thread_connect;
1016 static bool bgp_tm_status_connected;
1017 static bool bgp_tm_chunk_obtained;
1018 #define BGP_FLOWSPEC_TABLE_CHUNK 100000
1019 static uint32_t bgp_tm_min, bgp_tm_max, bgp_tm_chunk_size;
1020 struct bgp *bgp_tm_bgp;
1021
1022 static void bgp_zebra_tm_connect(struct thread *t)
1023 {
1024 struct zclient *zclient;
1025 int delay = 10, ret = 0;
1026
1027 zclient = THREAD_ARG(t);
1028 if (bgp_tm_status_connected && zclient->sock > 0)
1029 delay = 60;
1030 else {
1031 bgp_tm_status_connected = false;
1032 ret = tm_table_manager_connect(zclient);
1033 }
1034 if (ret < 0) {
1035 zlog_info("Error connecting to table manager!");
1036 bgp_tm_status_connected = false;
1037 } else {
1038 if (!bgp_tm_status_connected)
1039 zlog_debug("Connecting to table manager. Success");
1040 bgp_tm_status_connected = true;
1041 if (!bgp_tm_chunk_obtained) {
1042 if (bgp_zebra_get_table_range(bgp_tm_chunk_size,
1043 &bgp_tm_min,
1044 &bgp_tm_max) >= 0) {
1045 bgp_tm_chunk_obtained = true;
1046 /* parse non installed entries */
1047 bgp_zebra_announce_table(bgp_tm_bgp, AFI_IP, SAFI_FLOWSPEC);
1048 }
1049 }
1050 }
1051 thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
1052 &bgp_tm_thread_connect);
1053 }
1054
1055 bool bgp_zebra_tm_chunk_obtained(void)
1056 {
1057 return bgp_tm_chunk_obtained;
1058 }
1059
1060 uint32_t bgp_zebra_tm_get_id(void)
1061 {
1062 static int table_id;
1063
1064 if (!bgp_tm_chunk_obtained)
1065 return ++table_id;
1066 return bgp_tm_min++;
1067 }
1068
1069 void bgp_zebra_init_tm_connect(struct bgp *bgp)
1070 {
1071 int delay = 1;
1072
1073 /* if already set, do nothing
1074 */
1075 if (bgp_tm_thread_connect != NULL)
1076 return;
1077 bgp_tm_status_connected = false;
1078 bgp_tm_chunk_obtained = false;
1079 bgp_tm_min = bgp_tm_max = 0;
1080 bgp_tm_chunk_size = BGP_FLOWSPEC_TABLE_CHUNK;
1081 bgp_tm_bgp = bgp;
1082 thread_add_timer(bm->master, bgp_zebra_tm_connect, zclient, delay,
1083 &bgp_tm_thread_connect);
1084 }
1085
1086 int bgp_zebra_get_table_range(uint32_t chunk_size,
1087 uint32_t *start, uint32_t *end)
1088 {
1089 int ret;
1090
1091 if (!bgp_tm_status_connected)
1092 return -1;
1093 ret = tm_get_table_chunk(zclient, chunk_size, start, end);
1094 if (ret < 0) {
1095 flog_err(EC_BGP_TABLE_CHUNK,
1096 "BGP: Error getting table chunk %u", chunk_size);
1097 return -1;
1098 }
1099 zlog_info("BGP: Table Manager returns range from chunk %u is [%u %u]",
1100 chunk_size, *start, *end);
1101 return 0;
1102 }
1103
1104 static bool update_ipv4nh_for_route_install(int nh_othervrf, struct bgp *nh_bgp,
1105 struct in_addr *nexthop,
1106 struct attr *attr, bool is_evpn,
1107 struct zapi_nexthop *api_nh)
1108 {
1109 api_nh->gate.ipv4 = *nexthop;
1110 api_nh->vrf_id = nh_bgp->vrf_id;
1111
1112 /* Need to set fields appropriately for EVPN routes imported into
1113 * a VRF (which are programmed as onlink on l3-vni SVI) as well as
1114 * connected routes leaked into a VRF.
1115 */
1116 if (attr->nh_type == NEXTHOP_TYPE_BLACKHOLE) {
1117 api_nh->type = attr->nh_type;
1118 api_nh->bh_type = attr->bh_type;
1119 } else if (is_evpn) {
1120 /*
1121 * If the nexthop is EVPN overlay index gateway IP,
1122 * treat the nexthop as NEXTHOP_TYPE_IPV4
1123 * Else, mark the nexthop as onlink.
1124 */
1125 if (attr->evpn_overlay.type == OVERLAY_INDEX_GATEWAY_IP)
1126 api_nh->type = NEXTHOP_TYPE_IPV4;
1127 else {
1128 api_nh->type = NEXTHOP_TYPE_IPV4_IFINDEX;
1129 SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_ONLINK);
1130 api_nh->ifindex = nh_bgp->l3vni_svi_ifindex;
1131 }
1132 } else if (nh_othervrf && api_nh->gate.ipv4.s_addr == INADDR_ANY) {
1133 api_nh->type = NEXTHOP_TYPE_IFINDEX;
1134 api_nh->ifindex = attr->nh_ifindex;
1135 } else
1136 api_nh->type = NEXTHOP_TYPE_IPV4;
1137
1138 return true;
1139 }
1140
1141 static bool update_ipv6nh_for_route_install(int nh_othervrf, struct bgp *nh_bgp,
1142 struct in6_addr *nexthop,
1143 ifindex_t ifindex,
1144 struct bgp_path_info *pi,
1145 struct bgp_path_info *best_pi,
1146 bool is_evpn,
1147 struct zapi_nexthop *api_nh)
1148 {
1149 struct attr *attr;
1150
1151 attr = pi->attr;
1152 api_nh->vrf_id = nh_bgp->vrf_id;
1153
1154 if (attr->nh_type == NEXTHOP_TYPE_BLACKHOLE) {
1155 api_nh->type = attr->nh_type;
1156 api_nh->bh_type = attr->bh_type;
1157 } else if (is_evpn) {
1158 /*
1159 * If the nexthop is EVPN overlay index gateway IP,
1160 * treat the nexthop as NEXTHOP_TYPE_IPV4
1161 * Else, mark the nexthop as onlink.
1162 */
1163 if (attr->evpn_overlay.type == OVERLAY_INDEX_GATEWAY_IP)
1164 api_nh->type = NEXTHOP_TYPE_IPV6;
1165 else {
1166 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1167 SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_ONLINK);
1168 api_nh->ifindex = nh_bgp->l3vni_svi_ifindex;
1169 }
1170 } else if (nh_othervrf) {
1171 if (IN6_IS_ADDR_UNSPECIFIED(nexthop)) {
1172 api_nh->type = NEXTHOP_TYPE_IFINDEX;
1173 api_nh->ifindex = attr->nh_ifindex;
1174 } else if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
1175 if (ifindex == 0)
1176 return false;
1177 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1178 api_nh->ifindex = ifindex;
1179 } else {
1180 api_nh->type = NEXTHOP_TYPE_IPV6;
1181 api_nh->ifindex = 0;
1182 }
1183 } else {
1184 if (IN6_IS_ADDR_LINKLOCAL(nexthop)) {
1185 if (pi == best_pi
1186 && attr->mp_nexthop_len
1187 == BGP_ATTR_NHLEN_IPV6_GLOBAL_AND_LL)
1188 if (pi->peer->nexthop.ifp)
1189 ifindex =
1190 pi->peer->nexthop.ifp->ifindex;
1191 if (!ifindex) {
1192 if (pi->peer->conf_if)
1193 ifindex = pi->peer->ifp->ifindex;
1194 else if (pi->peer->ifname)
1195 ifindex = ifname2ifindex(
1196 pi->peer->ifname,
1197 pi->peer->bgp->vrf_id);
1198 else if (pi->peer->nexthop.ifp)
1199 ifindex =
1200 pi->peer->nexthop.ifp->ifindex;
1201 }
1202
1203 if (ifindex == 0)
1204 return false;
1205 api_nh->type = NEXTHOP_TYPE_IPV6_IFINDEX;
1206 api_nh->ifindex = ifindex;
1207 } else {
1208 api_nh->type = NEXTHOP_TYPE_IPV6;
1209 api_nh->ifindex = 0;
1210 }
1211 }
1212 /* api_nh structure has union of gate and bh_type */
1213 if (nexthop && api_nh->type != NEXTHOP_TYPE_BLACKHOLE)
1214 api_nh->gate.ipv6 = *nexthop;
1215
1216 return true;
1217 }
1218
1219 static bool bgp_zebra_use_nhop_weighted(struct bgp *bgp, struct attr *attr,
1220 uint64_t tot_bw, uint32_t *nh_weight)
1221 {
1222 uint32_t bw;
1223 uint64_t tmp;
1224
1225 bw = attr->link_bw;
1226 /* zero link-bandwidth and link-bandwidth not present are treated
1227 * as the same situation.
1228 */
1229 if (!bw) {
1230 /* the only situations should be if we're either told
1231 * to skip or use default weight.
1232 */
1233 if (bgp->lb_handling == BGP_LINK_BW_SKIP_MISSING)
1234 return false;
1235 *nh_weight = BGP_ZEBRA_DEFAULT_NHOP_WEIGHT;
1236 } else {
1237 tmp = (uint64_t)bw * 100;
1238 *nh_weight = ((uint32_t)(tmp / tot_bw));
1239 }
1240
1241 return true;
1242 }
1243
1244 void bgp_zebra_announce(struct bgp_dest *dest, const struct prefix *p,
1245 struct bgp_path_info *info, struct bgp *bgp, afi_t afi,
1246 safi_t safi)
1247 {
1248 struct zapi_route api = { 0 };
1249 struct zapi_nexthop *api_nh;
1250 int nh_family;
1251 unsigned int valid_nh_count = 0;
1252 bool allow_recursion = false;
1253 uint8_t distance;
1254 struct peer *peer;
1255 struct bgp_path_info *mpinfo;
1256 struct bgp *bgp_orig;
1257 uint32_t metric;
1258 struct attr local_attr;
1259 struct bgp_path_info local_info;
1260 struct bgp_path_info *mpinfo_cp = &local_info;
1261 route_tag_t tag;
1262 mpls_label_t label;
1263 struct bgp_sid_info *sid_info;
1264 int nh_othervrf = 0;
1265 bool is_evpn;
1266 bool nh_updated = false;
1267 bool do_wt_ecmp;
1268 uint64_t cum_bw = 0;
1269 uint32_t nhg_id = 0;
1270 bool is_add;
1271
1272 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1273 * know of this instance.
1274 */
1275 if (!bgp_install_info_to_zebra(bgp))
1276 return;
1277
1278 if (bgp->main_zebra_update_hold)
1279 return;
1280
1281 if (safi == SAFI_FLOWSPEC) {
1282 bgp_pbr_update_entry(bgp, bgp_dest_get_prefix(dest), info, afi,
1283 safi, true);
1284 return;
1285 }
1286
1287 /*
1288 * vrf leaking support (will have only one nexthop)
1289 */
1290 if (info->extra && info->extra->bgp_orig)
1291 nh_othervrf = 1;
1292
1293 /* Make Zebra API structure. */
1294 api.vrf_id = bgp->vrf_id;
1295 api.type = ZEBRA_ROUTE_BGP;
1296 api.safi = safi;
1297 api.prefix = *p;
1298 SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
1299
1300 peer = info->peer;
1301
1302 if (info->type == ZEBRA_ROUTE_BGP
1303 && info->sub_type == BGP_ROUTE_IMPORTED) {
1304
1305 /* Obtain peer from parent */
1306 if (info->extra && info->extra->parent)
1307 peer = ((struct bgp_path_info *)(info->extra->parent))
1308 ->peer;
1309 }
1310
1311 tag = info->attr->tag;
1312
1313 /* If the route's source is EVPN, flag as such. */
1314 is_evpn = is_route_parent_evpn(info);
1315 if (is_evpn)
1316 SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
1317
1318 if (peer->sort == BGP_PEER_IBGP || peer->sort == BGP_PEER_CONFED
1319 || info->sub_type == BGP_ROUTE_AGGREGATE) {
1320 SET_FLAG(api.flags, ZEBRA_FLAG_IBGP);
1321 SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
1322 }
1323
1324 if ((peer->sort == BGP_PEER_EBGP && peer->ttl != BGP_DEFAULT_TTL)
1325 || CHECK_FLAG(peer->flags, PEER_FLAG_DISABLE_CONNECTED_CHECK)
1326 || CHECK_FLAG(bgp->flags, BGP_FLAG_DISABLE_NH_CONNECTED_CHK))
1327
1328 allow_recursion = true;
1329
1330 if (info->attr->rmap_table_id) {
1331 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
1332 api.tableid = info->attr->rmap_table_id;
1333 }
1334
1335 if (CHECK_FLAG(info->attr->flag, ATTR_FLAG_BIT(BGP_ATTR_SRTE_COLOR)))
1336 SET_FLAG(api.message, ZAPI_MESSAGE_SRTE);
1337
1338 /* Metric is currently based on the best-path only */
1339 metric = info->attr->med;
1340
1341 /* Determine if we're doing weighted ECMP or not */
1342 do_wt_ecmp = bgp_path_info_mpath_chkwtd(bgp, info);
1343 if (do_wt_ecmp)
1344 cum_bw = bgp_path_info_mpath_cumbw(info);
1345
1346 /* EVPN MAC-IP routes are installed with a L3 NHG id */
1347 if (bgp_evpn_path_es_use_nhg(bgp, info, &nhg_id)) {
1348 mpinfo = NULL;
1349 api.nhgid = nhg_id;
1350 if (nhg_id)
1351 SET_FLAG(api.message, ZAPI_MESSAGE_NHG);
1352 } else {
1353 mpinfo = info;
1354 }
1355
1356 for (; mpinfo; mpinfo = bgp_path_info_mpath_next(mpinfo)) {
1357 uint32_t nh_weight;
1358
1359 if (valid_nh_count >= multipath_num)
1360 break;
1361
1362 *mpinfo_cp = *mpinfo;
1363 nh_weight = 0;
1364
1365 /* Get nexthop address-family */
1366 if (p->family == AF_INET
1367 && !BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr))
1368 nh_family = AF_INET;
1369 else if (p->family == AF_INET6
1370 || (p->family == AF_INET
1371 && BGP_ATTR_NEXTHOP_AFI_IP6(mpinfo_cp->attr)))
1372 nh_family = AF_INET6;
1373 else
1374 continue;
1375
1376 /* If processing for weighted ECMP, determine the next hop's
1377 * weight. Based on user setting, we may skip the next hop
1378 * in some situations.
1379 */
1380 if (do_wt_ecmp) {
1381 if (!bgp_zebra_use_nhop_weighted(bgp, mpinfo->attr,
1382 cum_bw, &nh_weight))
1383 continue;
1384 }
1385 api_nh = &api.nexthops[valid_nh_count];
1386
1387 if (CHECK_FLAG(info->attr->flag,
1388 ATTR_FLAG_BIT(BGP_ATTR_SRTE_COLOR)))
1389 api_nh->srte_color = info->attr->srte_color;
1390
1391 if (bgp_debug_zebra(&api.prefix)) {
1392 if (mpinfo->extra) {
1393 zlog_debug("%s: p=%pFX, bgp_is_valid_label: %d",
1394 __func__, p,
1395 bgp_is_valid_label(
1396 &mpinfo->extra->label[0]));
1397 } else {
1398 zlog_debug(
1399 "%s: p=%pFX, extra is NULL, no label",
1400 __func__, p);
1401 }
1402 }
1403
1404 if (bgp->table_map[afi][safi].name) {
1405 /* Copy info and attributes, so the route-map
1406 apply doesn't modify the BGP route info. */
1407 local_attr = *mpinfo->attr;
1408 mpinfo_cp->attr = &local_attr;
1409 if (!bgp_table_map_apply(bgp->table_map[afi][safi].map,
1410 p, mpinfo_cp))
1411 continue;
1412
1413 /* metric/tag is only allowed to be
1414 * overridden on 1st nexthop */
1415 if (mpinfo == info) {
1416 metric = mpinfo_cp->attr->med;
1417 tag = mpinfo_cp->attr->tag;
1418 }
1419 }
1420
1421 BGP_ORIGINAL_UPDATE(bgp_orig, mpinfo, bgp);
1422
1423 if (nh_family == AF_INET) {
1424 nh_updated = update_ipv4nh_for_route_install(
1425 nh_othervrf, bgp_orig,
1426 &mpinfo_cp->attr->nexthop, mpinfo_cp->attr,
1427 is_evpn, api_nh);
1428 } else {
1429 ifindex_t ifindex = IFINDEX_INTERNAL;
1430 struct in6_addr *nexthop;
1431
1432 nexthop = bgp_path_info_to_ipv6_nexthop(mpinfo_cp,
1433 &ifindex);
1434
1435 if (!nexthop)
1436 nh_updated = update_ipv4nh_for_route_install(
1437 nh_othervrf, bgp_orig,
1438 &mpinfo_cp->attr->nexthop,
1439 mpinfo_cp->attr, is_evpn, api_nh);
1440 else
1441 nh_updated = update_ipv6nh_for_route_install(
1442 nh_othervrf, bgp_orig, nexthop, ifindex,
1443 mpinfo, info, is_evpn, api_nh);
1444 }
1445
1446 /* Did we get proper nexthop info to update zebra? */
1447 if (!nh_updated)
1448 continue;
1449
1450 /* Allow recursion if it is a multipath group with both
1451 * eBGP and iBGP paths.
1452 */
1453 if (!allow_recursion
1454 && CHECK_FLAG(bgp->flags, BGP_FLAG_PEERTYPE_MULTIPATH_RELAX)
1455 && (mpinfo->peer->sort == BGP_PEER_IBGP
1456 || mpinfo->peer->sort == BGP_PEER_CONFED))
1457 allow_recursion = true;
1458
1459 if (mpinfo->extra
1460 && bgp_is_valid_label(&mpinfo->extra->label[0])
1461 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)) {
1462 label = label_pton(&mpinfo->extra->label[0]);
1463
1464 SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_LABEL);
1465
1466 api_nh->label_num = 1;
1467 api_nh->labels[0] = label;
1468 }
1469
1470 if (is_evpn
1471 && mpinfo->attr->evpn_overlay.type
1472 != OVERLAY_INDEX_GATEWAY_IP)
1473 memcpy(&api_nh->rmac, &(mpinfo->attr->rmac),
1474 sizeof(struct ethaddr));
1475
1476 api_nh->weight = nh_weight;
1477
1478 if (mpinfo->extra && !sid_zero(&mpinfo->extra->sid[0].sid)
1479 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)) {
1480 sid_info = &mpinfo->extra->sid[0];
1481
1482 memcpy(&api_nh->seg6_segs, &sid_info->sid,
1483 sizeof(api_nh->seg6_segs));
1484
1485 if (sid_info->transposition_len != 0) {
1486 if (!bgp_is_valid_label(
1487 &mpinfo->extra->label[0]))
1488 continue;
1489
1490 label = label_pton(&mpinfo->extra->label[0]);
1491 transpose_sid(&api_nh->seg6_segs, label,
1492 sid_info->transposition_offset,
1493 sid_info->transposition_len);
1494 }
1495
1496 SET_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_SEG6);
1497 }
1498
1499 valid_nh_count++;
1500 }
1501
1502 is_add = (valid_nh_count || nhg_id) ? true : false;
1503
1504 if (is_add && CHECK_FLAG(bm->flags, BM_FLAG_SEND_EXTRA_DATA_TO_ZEBRA)) {
1505 struct bgp_zebra_opaque bzo = {};
1506 const char *reason =
1507 bgp_path_selection_reason2str(dest->reason);
1508
1509 strlcpy(bzo.aspath, info->attr->aspath->str,
1510 sizeof(bzo.aspath));
1511
1512 if (info->attr->flag & ATTR_FLAG_BIT(BGP_ATTR_COMMUNITIES))
1513 strlcpy(bzo.community,
1514 bgp_attr_get_community(info->attr)->str,
1515 sizeof(bzo.community));
1516
1517 if (info->attr->flag
1518 & ATTR_FLAG_BIT(BGP_ATTR_LARGE_COMMUNITIES))
1519 strlcpy(bzo.lcommunity,
1520 bgp_attr_get_lcommunity(info->attr)->str,
1521 sizeof(bzo.lcommunity));
1522
1523 strlcpy(bzo.selection_reason, reason,
1524 sizeof(bzo.selection_reason));
1525
1526 SET_FLAG(api.message, ZAPI_MESSAGE_OPAQUE);
1527 api.opaque.length = MIN(sizeof(struct bgp_zebra_opaque),
1528 ZAPI_MESSAGE_OPAQUE_LENGTH);
1529 memcpy(api.opaque.data, &bzo, api.opaque.length);
1530 }
1531
1532 if (allow_recursion)
1533 SET_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION);
1534
1535 /*
1536 * When we create an aggregate route we must also
1537 * install a Null0 route in the RIB, so overwrite
1538 * what was written into api with a blackhole route
1539 */
1540 if (info->sub_type == BGP_ROUTE_AGGREGATE)
1541 zapi_route_set_blackhole(&api, BLACKHOLE_NULL);
1542 else
1543 api.nexthop_num = valid_nh_count;
1544
1545 SET_FLAG(api.message, ZAPI_MESSAGE_METRIC);
1546 api.metric = metric;
1547
1548 if (tag) {
1549 SET_FLAG(api.message, ZAPI_MESSAGE_TAG);
1550 api.tag = tag;
1551 }
1552
1553 distance = bgp_distance_apply(p, info, afi, safi, bgp);
1554 if (distance) {
1555 SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
1556 api.distance = distance;
1557 }
1558
1559 if (bgp_debug_zebra(p)) {
1560 char nh_buf[INET6_ADDRSTRLEN];
1561 char eth_buf[ETHER_ADDR_STRLEN + 7] = {'\0'};
1562 char buf1[ETHER_ADDR_STRLEN];
1563 char label_buf[20];
1564 char sid_buf[20];
1565 char segs_buf[256];
1566 int i;
1567
1568 zlog_debug(
1569 "Tx route %s VRF %u %pFX metric %u tag %" ROUTE_TAG_PRI
1570 " count %d nhg %d",
1571 valid_nh_count ? "add" : "delete", bgp->vrf_id,
1572 &api.prefix, api.metric, api.tag, api.nexthop_num,
1573 nhg_id);
1574 for (i = 0; i < api.nexthop_num; i++) {
1575 api_nh = &api.nexthops[i];
1576
1577 switch (api_nh->type) {
1578 case NEXTHOP_TYPE_IFINDEX:
1579 nh_buf[0] = '\0';
1580 break;
1581 case NEXTHOP_TYPE_IPV4:
1582 case NEXTHOP_TYPE_IPV4_IFINDEX:
1583 nh_family = AF_INET;
1584 inet_ntop(nh_family, &api_nh->gate, nh_buf,
1585 sizeof(nh_buf));
1586 break;
1587 case NEXTHOP_TYPE_IPV6:
1588 case NEXTHOP_TYPE_IPV6_IFINDEX:
1589 nh_family = AF_INET6;
1590 inet_ntop(nh_family, &api_nh->gate, nh_buf,
1591 sizeof(nh_buf));
1592 break;
1593 case NEXTHOP_TYPE_BLACKHOLE:
1594 strlcpy(nh_buf, "blackhole", sizeof(nh_buf));
1595 break;
1596 default:
1597 /* Note: add new nexthop case */
1598 assert(0);
1599 break;
1600 }
1601
1602 label_buf[0] = '\0';
1603 eth_buf[0] = '\0';
1604 segs_buf[0] = '\0';
1605 if (CHECK_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_LABEL)
1606 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE))
1607 snprintf(label_buf, sizeof(label_buf),
1608 "label %u", api_nh->labels[0]);
1609 if (CHECK_FLAG(api_nh->flags, ZAPI_NEXTHOP_FLAG_SEG6)
1610 && !CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)) {
1611 inet_ntop(AF_INET6, &api_nh->seg6_segs,
1612 sid_buf, sizeof(sid_buf));
1613 snprintf(segs_buf, sizeof(segs_buf), "segs %s",
1614 sid_buf);
1615 }
1616 if (CHECK_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE)
1617 && !is_zero_mac(&api_nh->rmac))
1618 snprintf(eth_buf, sizeof(eth_buf), " RMAC %s",
1619 prefix_mac2str(&api_nh->rmac,
1620 buf1, sizeof(buf1)));
1621 zlog_debug(" nhop [%d]: %s if %u VRF %u wt %u %s %s %s",
1622 i + 1, nh_buf, api_nh->ifindex,
1623 api_nh->vrf_id, api_nh->weight,
1624 label_buf, segs_buf, eth_buf);
1625 }
1626
1627 int recursion_flag = 0;
1628
1629 if (CHECK_FLAG(api.flags, ZEBRA_FLAG_ALLOW_RECURSION))
1630 recursion_flag = 1;
1631
1632 zlog_debug("%s: %pFX: announcing to zebra (recursion %sset)",
1633 __func__, p, (recursion_flag ? "" : "NOT "));
1634 }
1635 zclient_route_send(is_add ? ZEBRA_ROUTE_ADD : ZEBRA_ROUTE_DELETE,
1636 zclient, &api);
1637 }
1638
1639 /* Announce all routes of a table to zebra */
1640 void bgp_zebra_announce_table(struct bgp *bgp, afi_t afi, safi_t safi)
1641 {
1642 struct bgp_dest *dest;
1643 struct bgp_table *table;
1644 struct bgp_path_info *pi;
1645
1646 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1647 * know of this instance.
1648 */
1649 if (!bgp_install_info_to_zebra(bgp))
1650 return;
1651
1652 table = bgp->rib[afi][safi];
1653 if (!table)
1654 return;
1655
1656 for (dest = bgp_table_top(table); dest; dest = bgp_route_next(dest))
1657 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next)
1658 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED) &&
1659
1660 (pi->type == ZEBRA_ROUTE_BGP
1661 && (pi->sub_type == BGP_ROUTE_NORMAL
1662 || pi->sub_type == BGP_ROUTE_IMPORTED)))
1663
1664 bgp_zebra_announce(dest,
1665 bgp_dest_get_prefix(dest),
1666 pi, bgp, afi, safi);
1667 }
1668
1669 /* Announce routes of any bgp subtype of a table to zebra */
1670 void bgp_zebra_announce_table_all_subtypes(struct bgp *bgp, afi_t afi,
1671 safi_t safi)
1672 {
1673 struct bgp_dest *dest;
1674 struct bgp_table *table;
1675 struct bgp_path_info *pi;
1676
1677 if (!bgp_install_info_to_zebra(bgp))
1678 return;
1679
1680 table = bgp->rib[afi][safi];
1681 if (!table)
1682 return;
1683
1684 for (dest = bgp_table_top(table); dest; dest = bgp_route_next(dest))
1685 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next)
1686 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED) &&
1687 pi->type == ZEBRA_ROUTE_BGP)
1688 bgp_zebra_announce(dest,
1689 bgp_dest_get_prefix(dest),
1690 pi, bgp, afi, safi);
1691 }
1692
1693 void bgp_zebra_withdraw(const struct prefix *p, struct bgp_path_info *info,
1694 struct bgp *bgp, safi_t safi)
1695 {
1696 struct zapi_route api;
1697 struct peer *peer;
1698
1699 /* Don't try to install if we're not connected to Zebra or Zebra doesn't
1700 * know of this instance.
1701 */
1702 if (!bgp_install_info_to_zebra(bgp))
1703 return;
1704
1705 if (safi == SAFI_FLOWSPEC) {
1706 peer = info->peer;
1707 bgp_pbr_update_entry(peer->bgp, p, info, AFI_IP, safi, false);
1708 return;
1709 }
1710
1711 memset(&api, 0, sizeof(api));
1712 api.vrf_id = bgp->vrf_id;
1713 api.type = ZEBRA_ROUTE_BGP;
1714 api.safi = safi;
1715 api.prefix = *p;
1716
1717 if (info->attr->rmap_table_id) {
1718 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
1719 api.tableid = info->attr->rmap_table_id;
1720 }
1721
1722 /* If the route's source is EVPN, flag as such. */
1723 if (is_route_parent_evpn(info))
1724 SET_FLAG(api.flags, ZEBRA_FLAG_EVPN_ROUTE);
1725
1726 if (bgp_debug_zebra(p))
1727 zlog_debug("Tx route delete VRF %u %pFX", bgp->vrf_id,
1728 &api.prefix);
1729
1730 zclient_route_send(ZEBRA_ROUTE_DELETE, zclient, &api);
1731 }
1732
1733 /* Withdraw all entries in a BGP instances RIB table from Zebra */
1734 void bgp_zebra_withdraw_table_all_subtypes(struct bgp *bgp, afi_t afi, safi_t safi)
1735 {
1736 struct bgp_dest *dest;
1737 struct bgp_table *table;
1738 struct bgp_path_info *pi;
1739
1740 if (!bgp_install_info_to_zebra(bgp))
1741 return;
1742
1743 table = bgp->rib[afi][safi];
1744 if (!table)
1745 return;
1746
1747 for (dest = bgp_table_top(table); dest; dest = bgp_route_next(dest)) {
1748 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next) {
1749 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED)
1750 && (pi->type == ZEBRA_ROUTE_BGP))
1751 bgp_zebra_withdraw(bgp_dest_get_prefix(dest),
1752 pi, bgp, safi);
1753 }
1754 }
1755 }
1756
1757 struct bgp_redist *bgp_redist_lookup(struct bgp *bgp, afi_t afi, uint8_t type,
1758 unsigned short instance)
1759 {
1760 struct list *red_list;
1761 struct listnode *node;
1762 struct bgp_redist *red;
1763
1764 red_list = bgp->redist[afi][type];
1765 if (!red_list)
1766 return (NULL);
1767
1768 for (ALL_LIST_ELEMENTS_RO(red_list, node, red))
1769 if (red->instance == instance)
1770 return red;
1771
1772 return NULL;
1773 }
1774
1775 struct bgp_redist *bgp_redist_add(struct bgp *bgp, afi_t afi, uint8_t type,
1776 unsigned short instance)
1777 {
1778 struct list *red_list;
1779 struct bgp_redist *red;
1780
1781 red = bgp_redist_lookup(bgp, afi, type, instance);
1782 if (red)
1783 return red;
1784
1785 if (!bgp->redist[afi][type])
1786 bgp->redist[afi][type] = list_new();
1787
1788 red_list = bgp->redist[afi][type];
1789 red = XCALLOC(MTYPE_BGP_REDIST, sizeof(struct bgp_redist));
1790 red->instance = instance;
1791
1792 listnode_add(red_list, red);
1793
1794 return red;
1795 }
1796
1797 static void bgp_redist_del(struct bgp *bgp, afi_t afi, uint8_t type,
1798 unsigned short instance)
1799 {
1800 struct bgp_redist *red;
1801
1802 red = bgp_redist_lookup(bgp, afi, type, instance);
1803
1804 if (red) {
1805 listnode_delete(bgp->redist[afi][type], red);
1806 XFREE(MTYPE_BGP_REDIST, red);
1807 if (!bgp->redist[afi][type]->count)
1808 list_delete(&bgp->redist[afi][type]);
1809 }
1810 }
1811
1812 /* Other routes redistribution into BGP. */
1813 int bgp_redistribute_set(struct bgp *bgp, afi_t afi, int type,
1814 unsigned short instance, bool changed)
1815 {
1816 /* If redistribute options are changed call
1817 * bgp_redistribute_unreg() to reset the option and withdraw
1818 * the routes
1819 */
1820 if (changed)
1821 bgp_redistribute_unreg(bgp, afi, type, instance);
1822
1823 /* Return if already redistribute flag is set. */
1824 if (instance) {
1825 if (redist_check_instance(&zclient->mi_redist[afi][type],
1826 instance))
1827 return CMD_WARNING;
1828
1829 redist_add_instance(&zclient->mi_redist[afi][type], instance);
1830 } else {
1831 if (vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
1832 return CMD_WARNING;
1833
1834 #ifdef ENABLE_BGP_VNC
1835 if (EVPN_ENABLED(bgp) && type == ZEBRA_ROUTE_VNC_DIRECT) {
1836 vnc_export_bgp_enable(
1837 bgp, afi); /* only enables if mode bits cfg'd */
1838 }
1839 #endif
1840
1841 vrf_bitmap_set(zclient->redist[afi][type], bgp->vrf_id);
1842 }
1843
1844 /*
1845 * Don't try to register if we're not connected to Zebra or Zebra
1846 * doesn't know of this instance.
1847 *
1848 * When we come up later well resend if needed.
1849 */
1850 if (!bgp_install_info_to_zebra(bgp))
1851 return CMD_SUCCESS;
1852
1853 if (BGP_DEBUG(zebra, ZEBRA))
1854 zlog_debug("Tx redistribute add VRF %u afi %d %s %d",
1855 bgp->vrf_id, afi, zebra_route_string(type),
1856 instance);
1857
1858 /* Send distribute add message to zebra. */
1859 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
1860 instance, bgp->vrf_id);
1861
1862 return CMD_SUCCESS;
1863 }
1864
1865 int bgp_redistribute_resend(struct bgp *bgp, afi_t afi, int type,
1866 unsigned short instance)
1867 {
1868 /* Don't try to send if we're not connected to Zebra or Zebra doesn't
1869 * know of this instance.
1870 */
1871 if (!bgp_install_info_to_zebra(bgp))
1872 return -1;
1873
1874 if (BGP_DEBUG(zebra, ZEBRA))
1875 zlog_debug("Tx redistribute del/add VRF %u afi %d %s %d",
1876 bgp->vrf_id, afi, zebra_route_string(type),
1877 instance);
1878
1879 /* Send distribute add message to zebra. */
1880 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi, type,
1881 instance, bgp->vrf_id);
1882 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_ADD, zclient, afi, type,
1883 instance, bgp->vrf_id);
1884
1885 return 0;
1886 }
1887
1888 /* Redistribute with route-map specification. */
1889 bool bgp_redistribute_rmap_set(struct bgp_redist *red, const char *name,
1890 struct route_map *route_map)
1891 {
1892 if (red->rmap.name && (strcmp(red->rmap.name, name) == 0))
1893 return false;
1894
1895 XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
1896 /* Decrement the count for existing routemap and
1897 * increment the count for new route map.
1898 */
1899 route_map_counter_decrement(red->rmap.map);
1900 red->rmap.name = XSTRDUP(MTYPE_ROUTE_MAP_NAME, name);
1901 red->rmap.map = route_map;
1902 route_map_counter_increment(red->rmap.map);
1903
1904 return true;
1905 }
1906
1907 /* Redistribute with metric specification. */
1908 bool bgp_redistribute_metric_set(struct bgp *bgp, struct bgp_redist *red,
1909 afi_t afi, int type, uint32_t metric)
1910 {
1911 struct bgp_dest *dest;
1912 struct bgp_path_info *pi;
1913
1914 if (red->redist_metric_flag && red->redist_metric == metric)
1915 return false;
1916
1917 red->redist_metric_flag = 1;
1918 red->redist_metric = metric;
1919
1920 for (dest = bgp_table_top(bgp->rib[afi][SAFI_UNICAST]); dest;
1921 dest = bgp_route_next(dest)) {
1922 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next) {
1923 if (pi->sub_type == BGP_ROUTE_REDISTRIBUTE
1924 && pi->type == type
1925 && pi->instance == red->instance) {
1926 struct attr *old_attr;
1927 struct attr new_attr;
1928
1929 new_attr = *pi->attr;
1930 new_attr.med = red->redist_metric;
1931 old_attr = pi->attr;
1932 pi->attr = bgp_attr_intern(&new_attr);
1933 bgp_attr_unintern(&old_attr);
1934
1935 bgp_path_info_set_flag(dest, pi,
1936 BGP_PATH_ATTR_CHANGED);
1937 bgp_process(bgp, dest, afi, SAFI_UNICAST);
1938 }
1939 }
1940 }
1941
1942 return true;
1943 }
1944
1945 /* Unset redistribution. */
1946 int bgp_redistribute_unreg(struct bgp *bgp, afi_t afi, int type,
1947 unsigned short instance)
1948 {
1949 struct bgp_redist *red;
1950
1951 red = bgp_redist_lookup(bgp, afi, type, instance);
1952 if (!red)
1953 return CMD_SUCCESS;
1954
1955 /* Return if zebra connection is disabled. */
1956 if (instance) {
1957 if (!redist_check_instance(&zclient->mi_redist[afi][type],
1958 instance))
1959 return CMD_WARNING;
1960 redist_del_instance(&zclient->mi_redist[afi][type], instance);
1961 } else {
1962 if (!vrf_bitmap_check(zclient->redist[afi][type], bgp->vrf_id))
1963 return CMD_WARNING;
1964 vrf_bitmap_unset(zclient->redist[afi][type], bgp->vrf_id);
1965 }
1966
1967 if (bgp_install_info_to_zebra(bgp)) {
1968 /* Send distribute delete message to zebra. */
1969 if (BGP_DEBUG(zebra, ZEBRA))
1970 zlog_debug("Tx redistribute del VRF %u afi %d %s %d",
1971 bgp->vrf_id, afi, zebra_route_string(type),
1972 instance);
1973 zebra_redistribute_send(ZEBRA_REDISTRIBUTE_DELETE, zclient, afi,
1974 type, instance, bgp->vrf_id);
1975 }
1976
1977 /* Withdraw redistributed routes from current BGP's routing table. */
1978 bgp_redistribute_withdraw(bgp, afi, type, instance);
1979
1980 return CMD_SUCCESS;
1981 }
1982
1983 /* Unset redistribution. */
1984 int bgp_redistribute_unset(struct bgp *bgp, afi_t afi, int type,
1985 unsigned short instance)
1986 {
1987 struct bgp_redist *red;
1988
1989 /*
1990 * vnc and vpn->vrf checks must be before red check because
1991 * they operate within bgpd irrespective of zebra connection
1992 * status. red lookup fails if there is no zebra connection.
1993 */
1994 #ifdef ENABLE_BGP_VNC
1995 if (EVPN_ENABLED(bgp) && type == ZEBRA_ROUTE_VNC_DIRECT) {
1996 vnc_export_bgp_disable(bgp, afi);
1997 }
1998 #endif
1999
2000 red = bgp_redist_lookup(bgp, afi, type, instance);
2001 if (!red)
2002 return CMD_SUCCESS;
2003
2004 bgp_redistribute_unreg(bgp, afi, type, instance);
2005
2006 /* Unset route-map. */
2007 XFREE(MTYPE_ROUTE_MAP_NAME, red->rmap.name);
2008 route_map_counter_decrement(red->rmap.map);
2009 red->rmap.map = NULL;
2010
2011 /* Unset metric. */
2012 red->redist_metric_flag = 0;
2013 red->redist_metric = 0;
2014
2015 bgp_redist_del(bgp, afi, type, instance);
2016
2017 return CMD_SUCCESS;
2018 }
2019
2020 void bgp_redistribute_redo(struct bgp *bgp)
2021 {
2022 afi_t afi;
2023 int i;
2024 struct list *red_list;
2025 struct listnode *node;
2026 struct bgp_redist *red;
2027
2028 for (afi = AFI_IP; afi < AFI_MAX; afi++) {
2029 for (i = 0; i < ZEBRA_ROUTE_MAX; i++) {
2030
2031 red_list = bgp->redist[afi][i];
2032 if (!red_list)
2033 continue;
2034
2035 for (ALL_LIST_ELEMENTS_RO(red_list, node, red)) {
2036 bgp_redistribute_resend(bgp, afi, i,
2037 red->instance);
2038 }
2039 }
2040 }
2041 }
2042
2043 void bgp_zclient_reset(void)
2044 {
2045 zclient_reset(zclient);
2046 }
2047
2048 /* Register this instance with Zebra. Invoked upon connect (for
2049 * default instance) and when other VRFs are learnt (or created and
2050 * already learnt).
2051 */
2052 void bgp_zebra_instance_register(struct bgp *bgp)
2053 {
2054 /* Don't try to register if we're not connected to Zebra */
2055 if (!zclient || zclient->sock < 0)
2056 return;
2057
2058 if (BGP_DEBUG(zebra, ZEBRA))
2059 zlog_debug("Registering VRF %u", bgp->vrf_id);
2060
2061 /* Register for router-id, interfaces, redistributed routes. */
2062 zclient_send_reg_requests(zclient, bgp->vrf_id);
2063
2064 /* For EVPN instance, register to learn about VNIs, if appropriate. */
2065 if (bgp->advertise_all_vni)
2066 bgp_zebra_advertise_all_vni(bgp, 1);
2067
2068 bgp_nht_register_nexthops(bgp);
2069 }
2070
2071 /* Deregister this instance with Zebra. Invoked upon the instance
2072 * being deleted (default or VRF) and it is already registered.
2073 */
2074 void bgp_zebra_instance_deregister(struct bgp *bgp)
2075 {
2076 /* Don't try to deregister if we're not connected to Zebra */
2077 if (zclient->sock < 0)
2078 return;
2079
2080 if (BGP_DEBUG(zebra, ZEBRA))
2081 zlog_debug("Deregistering VRF %u", bgp->vrf_id);
2082
2083 /* For EVPN instance, unregister learning about VNIs, if appropriate. */
2084 if (bgp->advertise_all_vni)
2085 bgp_zebra_advertise_all_vni(bgp, 0);
2086
2087 /* Deregister for router-id, interfaces, redistributed routes. */
2088 zclient_send_dereg_requests(zclient, bgp->vrf_id);
2089 }
2090
2091 void bgp_zebra_initiate_radv(struct bgp *bgp, struct peer *peer)
2092 {
2093 uint32_t ra_interval = BGP_UNNUM_DEFAULT_RA_INTERVAL;
2094
2095 /* Don't try to initiate if we're not connected to Zebra */
2096 if (zclient->sock < 0)
2097 return;
2098
2099 if (BGP_DEBUG(zebra, ZEBRA))
2100 zlog_debug("%u: Initiating RA for peer %s", bgp->vrf_id,
2101 peer->host);
2102
2103 /*
2104 * If unnumbered peer (peer->ifp) call thru zapi to start RAs.
2105 * If we don't have an ifp pointer, call function to find the
2106 * ifps for a numbered enhe peer to turn RAs on.
2107 */
2108 peer->ifp ? zclient_send_interface_radv_req(zclient, bgp->vrf_id,
2109 peer->ifp, 1, ra_interval)
2110 : bgp_nht_reg_enhe_cap_intfs(peer);
2111 }
2112
2113 void bgp_zebra_terminate_radv(struct bgp *bgp, struct peer *peer)
2114 {
2115 /* Don't try to terminate if we're not connected to Zebra */
2116 if (zclient->sock < 0)
2117 return;
2118
2119 if (BGP_DEBUG(zebra, ZEBRA))
2120 zlog_debug("%u: Terminating RA for peer %s", bgp->vrf_id,
2121 peer->host);
2122
2123 /*
2124 * If unnumbered peer (peer->ifp) call thru zapi to stop RAs.
2125 * If we don't have an ifp pointer, call function to find the
2126 * ifps for a numbered enhe peer to turn RAs off.
2127 */
2128 peer->ifp ? zclient_send_interface_radv_req(zclient, bgp->vrf_id,
2129 peer->ifp, 0, 0)
2130 : bgp_nht_dereg_enhe_cap_intfs(peer);
2131 }
2132
2133 int bgp_zebra_advertise_subnet(struct bgp *bgp, int advertise, vni_t vni)
2134 {
2135 struct stream *s = NULL;
2136
2137 /* Check socket. */
2138 if (!zclient || zclient->sock < 0)
2139 return 0;
2140
2141 /* Don't try to register if Zebra doesn't know of this instance. */
2142 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
2143 if (BGP_DEBUG(zebra, ZEBRA))
2144 zlog_debug(
2145 "%s: No zebra instance to talk to, cannot advertise subnet",
2146 __func__);
2147 return 0;
2148 }
2149
2150 s = zclient->obuf;
2151 stream_reset(s);
2152
2153 zclient_create_header(s, ZEBRA_ADVERTISE_SUBNET, bgp->vrf_id);
2154 stream_putc(s, advertise);
2155 stream_put3(s, vni);
2156 stream_putw_at(s, 0, stream_get_endp(s));
2157
2158 return zclient_send_message(zclient);
2159 }
2160
2161 int bgp_zebra_advertise_svi_macip(struct bgp *bgp, int advertise, vni_t vni)
2162 {
2163 struct stream *s = NULL;
2164
2165 /* Check socket. */
2166 if (!zclient || zclient->sock < 0)
2167 return 0;
2168
2169 /* Don't try to register if Zebra doesn't know of this instance. */
2170 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
2171 return 0;
2172
2173 s = zclient->obuf;
2174 stream_reset(s);
2175
2176 zclient_create_header(s, ZEBRA_ADVERTISE_SVI_MACIP, bgp->vrf_id);
2177 stream_putc(s, advertise);
2178 stream_putl(s, vni);
2179 stream_putw_at(s, 0, stream_get_endp(s));
2180
2181 return zclient_send_message(zclient);
2182 }
2183
2184 int bgp_zebra_advertise_gw_macip(struct bgp *bgp, int advertise, vni_t vni)
2185 {
2186 struct stream *s = NULL;
2187
2188 /* Check socket. */
2189 if (!zclient || zclient->sock < 0)
2190 return 0;
2191
2192 /* Don't try to register if Zebra doesn't know of this instance. */
2193 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
2194 if (BGP_DEBUG(zebra, ZEBRA))
2195 zlog_debug(
2196 "%s: No zebra instance to talk to, not installing gw_macip",
2197 __func__);
2198 return 0;
2199 }
2200
2201 s = zclient->obuf;
2202 stream_reset(s);
2203
2204 zclient_create_header(s, ZEBRA_ADVERTISE_DEFAULT_GW, bgp->vrf_id);
2205 stream_putc(s, advertise);
2206 stream_putl(s, vni);
2207 stream_putw_at(s, 0, stream_get_endp(s));
2208
2209 return zclient_send_message(zclient);
2210 }
2211
2212 int bgp_zebra_vxlan_flood_control(struct bgp *bgp,
2213 enum vxlan_flood_control flood_ctrl)
2214 {
2215 struct stream *s;
2216
2217 /* Check socket. */
2218 if (!zclient || zclient->sock < 0)
2219 return 0;
2220
2221 /* Don't try to register if Zebra doesn't know of this instance. */
2222 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp)) {
2223 if (BGP_DEBUG(zebra, ZEBRA))
2224 zlog_debug(
2225 "%s: No zebra instance to talk to, not installing all vni",
2226 __func__);
2227 return 0;
2228 }
2229
2230 s = zclient->obuf;
2231 stream_reset(s);
2232
2233 zclient_create_header(s, ZEBRA_VXLAN_FLOOD_CONTROL, bgp->vrf_id);
2234 stream_putc(s, flood_ctrl);
2235 stream_putw_at(s, 0, stream_get_endp(s));
2236
2237 return zclient_send_message(zclient);
2238 }
2239
2240 int bgp_zebra_advertise_all_vni(struct bgp *bgp, int advertise)
2241 {
2242 struct stream *s;
2243
2244 /* Check socket. */
2245 if (!zclient || zclient->sock < 0)
2246 return 0;
2247
2248 /* Don't try to register if Zebra doesn't know of this instance. */
2249 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
2250 return 0;
2251
2252 s = zclient->obuf;
2253 stream_reset(s);
2254
2255 zclient_create_header(s, ZEBRA_ADVERTISE_ALL_VNI, bgp->vrf_id);
2256 stream_putc(s, advertise);
2257 /* Also inform current BUM handling setting. This is really
2258 * relevant only when 'advertise' is set.
2259 */
2260 stream_putc(s, bgp->vxlan_flood_ctrl);
2261 stream_putw_at(s, 0, stream_get_endp(s));
2262
2263 return zclient_send_message(zclient);
2264 }
2265
2266 int bgp_zebra_dup_addr_detection(struct bgp *bgp)
2267 {
2268 struct stream *s;
2269
2270 /* Check socket. */
2271 if (!zclient || zclient->sock < 0)
2272 return 0;
2273
2274 /* Don't try to register if Zebra doesn't know of this instance. */
2275 if (!IS_BGP_INST_KNOWN_TO_ZEBRA(bgp))
2276 return 0;
2277
2278 if (BGP_DEBUG(zebra, ZEBRA))
2279 zlog_debug("dup addr detect %s max_moves %u time %u freeze %s freeze_time %u",
2280 bgp->evpn_info->dup_addr_detect ?
2281 "enable" : "disable",
2282 bgp->evpn_info->dad_max_moves,
2283 bgp->evpn_info->dad_time,
2284 bgp->evpn_info->dad_freeze ?
2285 "enable" : "disable",
2286 bgp->evpn_info->dad_freeze_time);
2287
2288 s = zclient->obuf;
2289 stream_reset(s);
2290 zclient_create_header(s, ZEBRA_DUPLICATE_ADDR_DETECTION,
2291 bgp->vrf_id);
2292 stream_putl(s, bgp->evpn_info->dup_addr_detect);
2293 stream_putl(s, bgp->evpn_info->dad_time);
2294 stream_putl(s, bgp->evpn_info->dad_max_moves);
2295 stream_putl(s, bgp->evpn_info->dad_freeze);
2296 stream_putl(s, bgp->evpn_info->dad_freeze_time);
2297 stream_putw_at(s, 0, stream_get_endp(s));
2298
2299 return zclient_send_message(zclient);
2300 }
2301
2302 static int rule_notify_owner(ZAPI_CALLBACK_ARGS)
2303 {
2304 uint32_t seqno, priority, unique;
2305 enum zapi_rule_notify_owner note;
2306 struct bgp_pbr_action *bgp_pbra;
2307 struct bgp_pbr_rule *bgp_pbr = NULL;
2308 char ifname[INTERFACE_NAMSIZ + 1];
2309
2310 if (!zapi_rule_notify_decode(zclient->ibuf, &seqno, &priority, &unique,
2311 ifname, &note))
2312 return -1;
2313
2314 bgp_pbra = bgp_pbr_action_rule_lookup(vrf_id, unique);
2315 if (!bgp_pbra) {
2316 /* look in bgp pbr rule */
2317 bgp_pbr = bgp_pbr_rule_lookup(vrf_id, unique);
2318 if (!bgp_pbr && note != ZAPI_RULE_REMOVED) {
2319 if (BGP_DEBUG(zebra, ZEBRA))
2320 zlog_debug("%s: Fail to look BGP rule (%u)",
2321 __func__, unique);
2322 return 0;
2323 }
2324 }
2325
2326 switch (note) {
2327 case ZAPI_RULE_FAIL_INSTALL:
2328 if (BGP_DEBUG(zebra, ZEBRA))
2329 zlog_debug("%s: Received RULE_FAIL_INSTALL", __func__);
2330 if (bgp_pbra) {
2331 bgp_pbra->installed = false;
2332 bgp_pbra->install_in_progress = false;
2333 } else {
2334 bgp_pbr->installed = false;
2335 bgp_pbr->install_in_progress = false;
2336 }
2337 break;
2338 case ZAPI_RULE_INSTALLED:
2339 if (bgp_pbra) {
2340 bgp_pbra->installed = true;
2341 bgp_pbra->install_in_progress = false;
2342 } else {
2343 struct bgp_path_info *path;
2344 struct bgp_path_info_extra *extra;
2345
2346 bgp_pbr->installed = true;
2347 bgp_pbr->install_in_progress = false;
2348 bgp_pbr->action->refcnt++;
2349 /* link bgp_info to bgp_pbr */
2350 path = (struct bgp_path_info *)bgp_pbr->path;
2351 extra = bgp_path_info_extra_get(path);
2352 listnode_add_force(&extra->bgp_fs_iprule,
2353 bgp_pbr);
2354 }
2355 if (BGP_DEBUG(zebra, ZEBRA))
2356 zlog_debug("%s: Received RULE_INSTALLED", __func__);
2357 break;
2358 case ZAPI_RULE_FAIL_REMOVE:
2359 case ZAPI_RULE_REMOVED:
2360 if (BGP_DEBUG(zebra, ZEBRA))
2361 zlog_debug("%s: Received RULE REMOVED", __func__);
2362 break;
2363 }
2364
2365 return 0;
2366 }
2367
2368 static int ipset_notify_owner(ZAPI_CALLBACK_ARGS)
2369 {
2370 uint32_t unique;
2371 enum zapi_ipset_notify_owner note;
2372 struct bgp_pbr_match *bgp_pbim;
2373
2374 if (!zapi_ipset_notify_decode(zclient->ibuf,
2375 &unique,
2376 &note))
2377 return -1;
2378
2379 bgp_pbim = bgp_pbr_match_ipset_lookup(vrf_id, unique);
2380 if (!bgp_pbim) {
2381 if (BGP_DEBUG(zebra, ZEBRA))
2382 zlog_debug("%s: Fail to look BGP match ( %u, ID %u)",
2383 __func__, note, unique);
2384 return 0;
2385 }
2386
2387 switch (note) {
2388 case ZAPI_IPSET_FAIL_INSTALL:
2389 if (BGP_DEBUG(zebra, ZEBRA))
2390 zlog_debug("%s: Received IPSET_FAIL_INSTALL", __func__);
2391 bgp_pbim->installed = false;
2392 bgp_pbim->install_in_progress = false;
2393 break;
2394 case ZAPI_IPSET_INSTALLED:
2395 bgp_pbim->installed = true;
2396 bgp_pbim->install_in_progress = false;
2397 if (BGP_DEBUG(zebra, ZEBRA))
2398 zlog_debug("%s: Received IPSET_INSTALLED", __func__);
2399 break;
2400 case ZAPI_IPSET_FAIL_REMOVE:
2401 case ZAPI_IPSET_REMOVED:
2402 if (BGP_DEBUG(zebra, ZEBRA))
2403 zlog_debug("%s: Received IPSET REMOVED", __func__);
2404 break;
2405 }
2406
2407 return 0;
2408 }
2409
2410 static int ipset_entry_notify_owner(ZAPI_CALLBACK_ARGS)
2411 {
2412 uint32_t unique;
2413 char ipset_name[ZEBRA_IPSET_NAME_SIZE];
2414 enum zapi_ipset_entry_notify_owner note;
2415 struct bgp_pbr_match_entry *bgp_pbime;
2416
2417 if (!zapi_ipset_entry_notify_decode(
2418 zclient->ibuf,
2419 &unique,
2420 ipset_name,
2421 &note))
2422 return -1;
2423 bgp_pbime = bgp_pbr_match_ipset_entry_lookup(vrf_id,
2424 ipset_name,
2425 unique);
2426 if (!bgp_pbime) {
2427 if (BGP_DEBUG(zebra, ZEBRA))
2428 zlog_debug(
2429 "%s: Fail to look BGP match entry (%u, ID %u)",
2430 __func__, note, unique);
2431 return 0;
2432 }
2433
2434 switch (note) {
2435 case ZAPI_IPSET_ENTRY_FAIL_INSTALL:
2436 if (BGP_DEBUG(zebra, ZEBRA))
2437 zlog_debug("%s: Received IPSET_ENTRY_FAIL_INSTALL",
2438 __func__);
2439 bgp_pbime->installed = false;
2440 bgp_pbime->install_in_progress = false;
2441 break;
2442 case ZAPI_IPSET_ENTRY_INSTALLED:
2443 {
2444 struct bgp_path_info *path;
2445 struct bgp_path_info_extra *extra;
2446
2447 bgp_pbime->installed = true;
2448 bgp_pbime->install_in_progress = false;
2449 if (BGP_DEBUG(zebra, ZEBRA))
2450 zlog_debug("%s: Received IPSET_ENTRY_INSTALLED",
2451 __func__);
2452 /* link bgp_path_info to bpme */
2453 path = (struct bgp_path_info *)bgp_pbime->path;
2454 extra = bgp_path_info_extra_get(path);
2455 listnode_add_force(&extra->bgp_fs_pbr, bgp_pbime);
2456 }
2457 break;
2458 case ZAPI_IPSET_ENTRY_FAIL_REMOVE:
2459 case ZAPI_IPSET_ENTRY_REMOVED:
2460 if (BGP_DEBUG(zebra, ZEBRA))
2461 zlog_debug("%s: Received IPSET_ENTRY_REMOVED",
2462 __func__);
2463 break;
2464 }
2465 return 0;
2466 }
2467
2468 static int iptable_notify_owner(ZAPI_CALLBACK_ARGS)
2469 {
2470 uint32_t unique;
2471 enum zapi_iptable_notify_owner note;
2472 struct bgp_pbr_match *bgpm;
2473
2474 if (!zapi_iptable_notify_decode(
2475 zclient->ibuf,
2476 &unique,
2477 &note))
2478 return -1;
2479 bgpm = bgp_pbr_match_iptable_lookup(vrf_id, unique);
2480 if (!bgpm) {
2481 if (BGP_DEBUG(zebra, ZEBRA))
2482 zlog_debug("%s: Fail to look BGP iptable (%u %u)",
2483 __func__, note, unique);
2484 return 0;
2485 }
2486 switch (note) {
2487 case ZAPI_IPTABLE_FAIL_INSTALL:
2488 if (BGP_DEBUG(zebra, ZEBRA))
2489 zlog_debug("%s: Received IPTABLE_FAIL_INSTALL",
2490 __func__);
2491 bgpm->installed_in_iptable = false;
2492 bgpm->install_iptable_in_progress = false;
2493 break;
2494 case ZAPI_IPTABLE_INSTALLED:
2495 bgpm->installed_in_iptable = true;
2496 bgpm->install_iptable_in_progress = false;
2497 if (BGP_DEBUG(zebra, ZEBRA))
2498 zlog_debug("%s: Received IPTABLE_INSTALLED", __func__);
2499 bgpm->action->refcnt++;
2500 break;
2501 case ZAPI_IPTABLE_FAIL_REMOVE:
2502 case ZAPI_IPTABLE_REMOVED:
2503 if (BGP_DEBUG(zebra, ZEBRA))
2504 zlog_debug("%s: Received IPTABLE REMOVED", __func__);
2505 break;
2506 }
2507 return 0;
2508 }
2509
2510 /* Process route notification messages from RIB */
2511 static int bgp_zebra_route_notify_owner(int command, struct zclient *zclient,
2512 zebra_size_t length, vrf_id_t vrf_id)
2513 {
2514 struct prefix p;
2515 enum zapi_route_notify_owner note;
2516 uint32_t table_id;
2517 afi_t afi;
2518 safi_t safi;
2519 struct bgp_dest *dest;
2520 struct bgp *bgp;
2521 struct bgp_path_info *pi, *new_select;
2522
2523 if (!zapi_route_notify_decode(zclient->ibuf, &p, &table_id, &note,
2524 &afi, &safi)) {
2525 zlog_err("%s : error in msg decode", __func__);
2526 return -1;
2527 }
2528
2529 /* Get the bgp instance */
2530 bgp = bgp_lookup_by_vrf_id(vrf_id);
2531 if (!bgp) {
2532 flog_err(EC_BGP_INVALID_BGP_INSTANCE,
2533 "%s : bgp instance not found vrf %d", __func__,
2534 vrf_id);
2535 return -1;
2536 }
2537
2538 /* Find the bgp route node */
2539 dest = bgp_afi_node_lookup(bgp->rib[afi][safi], afi, safi, &p,
2540 &bgp->vrf_prd);
2541 if (!dest)
2542 return -1;
2543
2544 switch (note) {
2545 case ZAPI_ROUTE_INSTALLED:
2546 new_select = NULL;
2547 /* Clear the flags so that route can be processed */
2548 UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALL_PENDING);
2549 SET_FLAG(dest->flags, BGP_NODE_FIB_INSTALLED);
2550 if (BGP_DEBUG(zebra, ZEBRA))
2551 zlog_debug("route %pRN : INSTALLED", dest);
2552 /* Find the best route */
2553 for (pi = dest->info; pi; pi = pi->next) {
2554 /* Process aggregate route */
2555 bgp_aggregate_increment(bgp, &p, pi, afi, safi);
2556 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED))
2557 new_select = pi;
2558 }
2559 /* Advertise the route */
2560 if (new_select)
2561 group_announce_route(bgp, afi, safi, dest, new_select);
2562 else {
2563 flog_err(EC_BGP_INVALID_ROUTE,
2564 "selected route %pRN not found", dest);
2565
2566 bgp_dest_unlock_node(dest);
2567 return -1;
2568 }
2569 break;
2570 case ZAPI_ROUTE_REMOVED:
2571 /* Route deleted from dataplane, reset the installed flag
2572 * so that route can be reinstalled when client sends
2573 * route add later
2574 */
2575 UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALLED);
2576 if (BGP_DEBUG(zebra, ZEBRA))
2577 zlog_debug("route %pRN: Removed from Fib", dest);
2578 break;
2579 case ZAPI_ROUTE_FAIL_INSTALL:
2580 new_select = NULL;
2581 if (BGP_DEBUG(zebra, ZEBRA))
2582 zlog_debug("route: %pRN Failed to Install into Fib",
2583 dest);
2584 UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALL_PENDING);
2585 UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALLED);
2586 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next) {
2587 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED))
2588 new_select = pi;
2589 }
2590 if (new_select)
2591 group_announce_route(bgp, afi, safi, dest, new_select);
2592 /* Error will be logged by zebra module */
2593 break;
2594 case ZAPI_ROUTE_BETTER_ADMIN_WON:
2595 if (BGP_DEBUG(zebra, ZEBRA))
2596 zlog_debug("route: %pRN removed due to better admin won",
2597 dest);
2598 new_select = NULL;
2599 UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALL_PENDING);
2600 UNSET_FLAG(dest->flags, BGP_NODE_FIB_INSTALLED);
2601 for (pi = bgp_dest_get_bgp_path_info(dest); pi; pi = pi->next) {
2602 bgp_aggregate_decrement(bgp, &p, pi, afi, safi);
2603 if (CHECK_FLAG(pi->flags, BGP_PATH_SELECTED))
2604 new_select = pi;
2605 }
2606 if (new_select)
2607 group_announce_route(bgp, afi, safi, dest, new_select);
2608 /* No action required */
2609 break;
2610 case ZAPI_ROUTE_REMOVE_FAIL:
2611 zlog_warn("%s: Route %pRN failure to remove",
2612 __func__, dest);
2613 break;
2614 }
2615
2616 bgp_dest_unlock_node(dest);
2617 return 0;
2618 }
2619
2620 /* this function is used to forge ip rule,
2621 * - either for iptable/ipset using fwmark id
2622 * - or for sample ip rule cmd
2623 */
2624 static void bgp_encode_pbr_rule_action(struct stream *s,
2625 struct bgp_pbr_action *pbra,
2626 struct bgp_pbr_rule *pbr)
2627 {
2628 struct prefix pfx;
2629 uint8_t fam = AF_INET;
2630 char ifname[INTERFACE_NAMSIZ];
2631
2632 if (pbra->nh.type == NEXTHOP_TYPE_IPV6)
2633 fam = AF_INET6;
2634 stream_putl(s, 0); /* seqno unused */
2635 if (pbr)
2636 stream_putl(s, pbr->priority);
2637 else
2638 stream_putl(s, 0);
2639 /* ruleno unused - priority change
2640 * ruleno permits distinguishing various FS PBR entries
2641 * - FS PBR entries based on ipset/iptables
2642 * - FS PBR entries based on iprule
2643 * the latter may contain default routing information injected by FS
2644 */
2645 if (pbr)
2646 stream_putl(s, pbr->unique);
2647 else
2648 stream_putl(s, pbra->unique);
2649 stream_putc(s, 0); /* ip protocol being used */
2650 if (pbr && pbr->flags & MATCH_IP_SRC_SET)
2651 memcpy(&pfx, &(pbr->src), sizeof(struct prefix));
2652 else {
2653 memset(&pfx, 0, sizeof(pfx));
2654 pfx.family = fam;
2655 }
2656 stream_putc(s, pfx.family);
2657 stream_putc(s, pfx.prefixlen);
2658 stream_put(s, &pfx.u.prefix, prefix_blen(&pfx));
2659
2660 stream_putw(s, 0); /* src port */
2661
2662 if (pbr && pbr->flags & MATCH_IP_DST_SET)
2663 memcpy(&pfx, &(pbr->dst), sizeof(struct prefix));
2664 else {
2665 memset(&pfx, 0, sizeof(pfx));
2666 pfx.family = fam;
2667 }
2668 stream_putc(s, pfx.family);
2669 stream_putc(s, pfx.prefixlen);
2670 stream_put(s, &pfx.u.prefix, prefix_blen(&pfx));
2671
2672 stream_putw(s, 0); /* dst port */
2673 stream_putc(s, 0); /* dsfield */
2674 /* if pbr present, fwmark is not used */
2675 if (pbr)
2676 stream_putl(s, 0);
2677 else
2678 stream_putl(s, pbra->fwmark); /* fwmark */
2679
2680 stream_putl(s, pbra->table_id);
2681
2682 memset(ifname, 0, sizeof(ifname));
2683 stream_put(s, ifname, INTERFACE_NAMSIZ); /* ifname unused */
2684 }
2685
2686 static void bgp_encode_pbr_ipset_match(struct stream *s,
2687 struct bgp_pbr_match *pbim)
2688 {
2689 stream_putl(s, pbim->unique);
2690 stream_putl(s, pbim->type);
2691 stream_putc(s, pbim->family);
2692 stream_put(s, pbim->ipset_name,
2693 ZEBRA_IPSET_NAME_SIZE);
2694 }
2695
2696 static void bgp_encode_pbr_ipset_entry_match(struct stream *s,
2697 struct bgp_pbr_match_entry *pbime)
2698 {
2699 stream_putl(s, pbime->unique);
2700 /* check that back pointer is not null */
2701 stream_put(s, pbime->backpointer->ipset_name,
2702 ZEBRA_IPSET_NAME_SIZE);
2703
2704 stream_putc(s, pbime->src.family);
2705 stream_putc(s, pbime->src.prefixlen);
2706 stream_put(s, &pbime->src.u.prefix, prefix_blen(&pbime->src));
2707
2708 stream_putc(s, pbime->dst.family);
2709 stream_putc(s, pbime->dst.prefixlen);
2710 stream_put(s, &pbime->dst.u.prefix, prefix_blen(&pbime->dst));
2711
2712 stream_putw(s, pbime->src_port_min);
2713 stream_putw(s, pbime->src_port_max);
2714 stream_putw(s, pbime->dst_port_min);
2715 stream_putw(s, pbime->dst_port_max);
2716 stream_putc(s, pbime->proto);
2717 }
2718
2719 static void bgp_encode_pbr_iptable_match(struct stream *s,
2720 struct bgp_pbr_action *bpa,
2721 struct bgp_pbr_match *pbm)
2722 {
2723 stream_putl(s, pbm->unique2);
2724
2725 stream_putl(s, pbm->type);
2726
2727 stream_putl(s, pbm->flags);
2728
2729 /* TODO: correlate with what is contained
2730 * into bgp_pbr_action.
2731 * currently only forward supported
2732 */
2733 if (bpa->nh.type == NEXTHOP_TYPE_BLACKHOLE)
2734 stream_putl(s, ZEBRA_IPTABLES_DROP);
2735 else
2736 stream_putl(s, ZEBRA_IPTABLES_FORWARD);
2737 stream_putl(s, bpa->fwmark);
2738 stream_put(s, pbm->ipset_name,
2739 ZEBRA_IPSET_NAME_SIZE);
2740 stream_putc(s, pbm->family);
2741 stream_putw(s, pbm->pkt_len_min);
2742 stream_putw(s, pbm->pkt_len_max);
2743 stream_putw(s, pbm->tcp_flags);
2744 stream_putw(s, pbm->tcp_mask_flags);
2745 stream_putc(s, pbm->dscp_value);
2746 stream_putc(s, pbm->fragment);
2747 stream_putc(s, pbm->protocol);
2748 stream_putw(s, pbm->flow_label);
2749 }
2750
2751 /* BGP has established connection with Zebra. */
2752 static void bgp_zebra_connected(struct zclient *zclient)
2753 {
2754 struct bgp *bgp;
2755
2756 zclient_num_connects++; /* increment even if not responding */
2757
2758 /* Send the client registration */
2759 bfd_client_sendmsg(zclient, ZEBRA_BFD_CLIENT_REGISTER, VRF_DEFAULT);
2760
2761 /* At this point, we may or may not have BGP instances configured, but
2762 * we're only interested in the default VRF (others wouldn't have learnt
2763 * the VRF from Zebra yet.)
2764 */
2765 bgp = bgp_get_default();
2766 if (!bgp)
2767 return;
2768
2769 bgp_zebra_instance_register(bgp);
2770
2771 /* tell label pool that zebra is connected */
2772 bgp_lp_event_zebra_up();
2773
2774 /* TODO - What if we have peers and networks configured, do we have to
2775 * kick-start them?
2776 */
2777 BGP_GR_ROUTER_DETECT_AND_SEND_CAPABILITY_TO_ZEBRA(bgp, bgp->peer);
2778 }
2779
2780 static int bgp_zebra_process_local_es_add(ZAPI_CALLBACK_ARGS)
2781 {
2782 esi_t esi;
2783 struct bgp *bgp = NULL;
2784 struct stream *s = NULL;
2785 char buf[ESI_STR_LEN];
2786 struct in_addr originator_ip;
2787 uint8_t active;
2788 uint8_t bypass;
2789 uint16_t df_pref;
2790
2791 bgp = bgp_lookup_by_vrf_id(vrf_id);
2792 if (!bgp)
2793 return 0;
2794
2795 s = zclient->ibuf;
2796 stream_get(&esi, s, sizeof(esi_t));
2797 originator_ip.s_addr = stream_get_ipv4(s);
2798 active = stream_getc(s);
2799 df_pref = stream_getw(s);
2800 bypass = stream_getc(s);
2801
2802 if (BGP_DEBUG(zebra, ZEBRA))
2803 zlog_debug(
2804 "Rx add ESI %s originator-ip %pI4 active %u df_pref %u %s",
2805 esi_to_str(&esi, buf, sizeof(buf)), &originator_ip,
2806 active, df_pref, bypass ? "bypass" : "");
2807
2808 frrtrace(5, frr_bgp, evpn_mh_local_es_add_zrecv, &esi, originator_ip,
2809 active, bypass, df_pref);
2810
2811 bgp_evpn_local_es_add(bgp, &esi, originator_ip, active, df_pref,
2812 !!bypass);
2813
2814 return 0;
2815 }
2816
2817 static int bgp_zebra_process_local_es_del(ZAPI_CALLBACK_ARGS)
2818 {
2819 esi_t esi;
2820 struct bgp *bgp = NULL;
2821 struct stream *s = NULL;
2822 char buf[ESI_STR_LEN];
2823
2824 memset(&esi, 0, sizeof(esi_t));
2825 bgp = bgp_lookup_by_vrf_id(vrf_id);
2826 if (!bgp)
2827 return 0;
2828
2829 s = zclient->ibuf;
2830 stream_get(&esi, s, sizeof(esi_t));
2831
2832 if (BGP_DEBUG(zebra, ZEBRA))
2833 zlog_debug("Rx del ESI %s",
2834 esi_to_str(&esi, buf, sizeof(buf)));
2835
2836 frrtrace(1, frr_bgp, evpn_mh_local_es_del_zrecv, &esi);
2837
2838 bgp_evpn_local_es_del(bgp, &esi);
2839
2840 return 0;
2841 }
2842
2843 static int bgp_zebra_process_local_es_evi(ZAPI_CALLBACK_ARGS)
2844 {
2845 esi_t esi;
2846 vni_t vni;
2847 struct bgp *bgp;
2848 struct stream *s;
2849 char buf[ESI_STR_LEN];
2850
2851 bgp = bgp_lookup_by_vrf_id(vrf_id);
2852 if (!bgp)
2853 return 0;
2854
2855 s = zclient->ibuf;
2856 stream_get(&esi, s, sizeof(esi_t));
2857 vni = stream_getl(s);
2858
2859 if (BGP_DEBUG(zebra, ZEBRA))
2860 zlog_debug("Rx %s ESI %s VNI %u",
2861 (cmd == ZEBRA_VNI_ADD) ? "add" : "del",
2862 esi_to_str(&esi, buf, sizeof(buf)), vni);
2863
2864 if (cmd == ZEBRA_LOCAL_ES_EVI_ADD) {
2865 frrtrace(2, frr_bgp, evpn_mh_local_es_evi_add_zrecv, &esi, vni);
2866
2867 bgp_evpn_local_es_evi_add(bgp, &esi, vni);
2868 } else {
2869 frrtrace(2, frr_bgp, evpn_mh_local_es_evi_del_zrecv, &esi, vni);
2870
2871 bgp_evpn_local_es_evi_del(bgp, &esi, vni);
2872 }
2873
2874 return 0;
2875 }
2876
2877 static int bgp_zebra_process_local_l3vni(ZAPI_CALLBACK_ARGS)
2878 {
2879 int filter = 0;
2880 vni_t l3vni = 0;
2881 struct ethaddr svi_rmac, vrr_rmac = {.octet = {0} };
2882 struct in_addr originator_ip;
2883 struct stream *s;
2884 ifindex_t svi_ifindex;
2885 bool is_anycast_mac = false;
2886
2887 memset(&svi_rmac, 0, sizeof(struct ethaddr));
2888 memset(&originator_ip, 0, sizeof(struct in_addr));
2889 s = zclient->ibuf;
2890 l3vni = stream_getl(s);
2891 if (cmd == ZEBRA_L3VNI_ADD) {
2892 stream_get(&svi_rmac, s, sizeof(struct ethaddr));
2893 originator_ip.s_addr = stream_get_ipv4(s);
2894 stream_get(&filter, s, sizeof(int));
2895 svi_ifindex = stream_getl(s);
2896 stream_get(&vrr_rmac, s, sizeof(struct ethaddr));
2897 is_anycast_mac = stream_getl(s);
2898
2899 if (BGP_DEBUG(zebra, ZEBRA))
2900 zlog_debug(
2901 "Rx L3-VNI ADD VRF %s VNI %u RMAC svi-mac %pEA vrr-mac %pEA filter %s svi-if %u",
2902 vrf_id_to_name(vrf_id), l3vni, &svi_rmac,
2903 &vrr_rmac,
2904 filter ? "prefix-routes-only" : "none",
2905 svi_ifindex);
2906
2907 frrtrace(8, frr_bgp, evpn_local_l3vni_add_zrecv, l3vni, vrf_id,
2908 &svi_rmac, &vrr_rmac, filter, originator_ip,
2909 svi_ifindex, is_anycast_mac);
2910
2911 bgp_evpn_local_l3vni_add(l3vni, vrf_id, &svi_rmac, &vrr_rmac,
2912 originator_ip, filter, svi_ifindex,
2913 is_anycast_mac);
2914 } else {
2915 if (BGP_DEBUG(zebra, ZEBRA))
2916 zlog_debug("Rx L3-VNI DEL VRF %s VNI %u",
2917 vrf_id_to_name(vrf_id), l3vni);
2918
2919 frrtrace(2, frr_bgp, evpn_local_l3vni_del_zrecv, l3vni, vrf_id);
2920
2921 bgp_evpn_local_l3vni_del(l3vni, vrf_id);
2922 }
2923
2924 return 0;
2925 }
2926
2927 static int bgp_zebra_process_local_vni(ZAPI_CALLBACK_ARGS)
2928 {
2929 struct stream *s;
2930 vni_t vni;
2931 struct bgp *bgp;
2932 struct in_addr vtep_ip = {INADDR_ANY};
2933 vrf_id_t tenant_vrf_id = VRF_DEFAULT;
2934 struct in_addr mcast_grp = {INADDR_ANY};
2935 ifindex_t svi_ifindex = 0;
2936
2937 s = zclient->ibuf;
2938 vni = stream_getl(s);
2939 if (cmd == ZEBRA_VNI_ADD) {
2940 vtep_ip.s_addr = stream_get_ipv4(s);
2941 stream_get(&tenant_vrf_id, s, sizeof(vrf_id_t));
2942 mcast_grp.s_addr = stream_get_ipv4(s);
2943 stream_get(&svi_ifindex, s, sizeof(ifindex_t));
2944 }
2945
2946 bgp = bgp_lookup_by_vrf_id(vrf_id);
2947 if (!bgp)
2948 return 0;
2949
2950 if (BGP_DEBUG(zebra, ZEBRA))
2951 zlog_debug(
2952 "Rx VNI %s VRF %s VNI %u tenant-vrf %s SVI ifindex %u",
2953 (cmd == ZEBRA_VNI_ADD) ? "add" : "del",
2954 vrf_id_to_name(vrf_id), vni,
2955 vrf_id_to_name(tenant_vrf_id), svi_ifindex);
2956
2957 if (cmd == ZEBRA_VNI_ADD) {
2958 frrtrace(4, frr_bgp, evpn_local_vni_add_zrecv, vni, vtep_ip,
2959 tenant_vrf_id, mcast_grp);
2960
2961 return bgp_evpn_local_vni_add(
2962 bgp, vni,
2963 vtep_ip.s_addr != INADDR_ANY ? vtep_ip : bgp->router_id,
2964 tenant_vrf_id, mcast_grp, svi_ifindex);
2965 } else {
2966 frrtrace(1, frr_bgp, evpn_local_vni_del_zrecv, vni);
2967
2968 return bgp_evpn_local_vni_del(bgp, vni);
2969 }
2970 }
2971
2972 static int bgp_zebra_process_local_macip(ZAPI_CALLBACK_ARGS)
2973 {
2974 struct stream *s;
2975 vni_t vni;
2976 struct bgp *bgp;
2977 struct ethaddr mac;
2978 struct ipaddr ip;
2979 int ipa_len;
2980 uint8_t flags = 0;
2981 uint32_t seqnum = 0;
2982 int state = 0;
2983 char buf2[ESI_STR_LEN];
2984 esi_t esi;
2985
2986 memset(&ip, 0, sizeof(ip));
2987 s = zclient->ibuf;
2988 vni = stream_getl(s);
2989 stream_get(&mac.octet, s, ETH_ALEN);
2990 ipa_len = stream_getl(s);
2991 if (ipa_len != 0 && ipa_len != IPV4_MAX_BYTELEN
2992 && ipa_len != IPV6_MAX_BYTELEN) {
2993 flog_err(EC_BGP_MACIP_LEN,
2994 "%u:Recv MACIP %s with invalid IP addr length %d",
2995 vrf_id, (cmd == ZEBRA_MACIP_ADD) ? "Add" : "Del",
2996 ipa_len);
2997 return -1;
2998 }
2999
3000 if (ipa_len) {
3001 ip.ipa_type =
3002 (ipa_len == IPV4_MAX_BYTELEN) ? IPADDR_V4 : IPADDR_V6;
3003 stream_get(&ip.ip.addr, s, ipa_len);
3004 }
3005 if (cmd == ZEBRA_MACIP_ADD) {
3006 flags = stream_getc(s);
3007 seqnum = stream_getl(s);
3008 stream_get(&esi, s, sizeof(esi_t));
3009 } else {
3010 state = stream_getl(s);
3011 memset(&esi, 0, sizeof(esi_t));
3012 }
3013
3014 bgp = bgp_lookup_by_vrf_id(vrf_id);
3015 if (!bgp)
3016 return 0;
3017
3018 if (BGP_DEBUG(zebra, ZEBRA))
3019 zlog_debug(
3020 "%u:Recv MACIP %s f 0x%x MAC %pEA IP %pIA VNI %u seq %u state %d ESI %s",
3021 vrf_id, (cmd == ZEBRA_MACIP_ADD) ? "Add" : "Del", flags,
3022 &mac, &ip, vni, seqnum, state,
3023 esi_to_str(&esi, buf2, sizeof(buf2)));
3024
3025 if (cmd == ZEBRA_MACIP_ADD) {
3026 frrtrace(6, frr_bgp, evpn_local_macip_add_zrecv, vni, &mac, &ip,
3027 flags, seqnum, &esi);
3028
3029 return bgp_evpn_local_macip_add(bgp, vni, &mac, &ip,
3030 flags, seqnum, &esi);
3031 } else {
3032 frrtrace(4, frr_bgp, evpn_local_macip_del_zrecv, vni, &mac, &ip,
3033 state);
3034
3035 return bgp_evpn_local_macip_del(bgp, vni, &mac, &ip, state);
3036 }
3037 }
3038
3039 static int bgp_zebra_process_local_ip_prefix(ZAPI_CALLBACK_ARGS)
3040 {
3041 struct stream *s = NULL;
3042 struct bgp *bgp_vrf = NULL;
3043 struct prefix p;
3044
3045 memset(&p, 0, sizeof(struct prefix));
3046 s = zclient->ibuf;
3047 stream_get(&p, s, sizeof(struct prefix));
3048
3049 bgp_vrf = bgp_lookup_by_vrf_id(vrf_id);
3050 if (!bgp_vrf)
3051 return 0;
3052
3053 if (BGP_DEBUG(zebra, ZEBRA))
3054 zlog_debug("Recv prefix %pFX %s on vrf %s", &p,
3055 (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) ? "ADD" : "DEL",
3056 vrf_id_to_name(vrf_id));
3057
3058 if (cmd == ZEBRA_IP_PREFIX_ROUTE_ADD) {
3059
3060 if (p.family == AF_INET)
3061 bgp_evpn_advertise_type5_route(bgp_vrf, &p, NULL,
3062 AFI_IP, SAFI_UNICAST);
3063 else
3064 bgp_evpn_advertise_type5_route(bgp_vrf, &p, NULL,
3065 AFI_IP6, SAFI_UNICAST);
3066
3067 } else {
3068 if (p.family == AF_INET)
3069 bgp_evpn_withdraw_type5_route(bgp_vrf, &p, AFI_IP,
3070 SAFI_UNICAST);
3071 else
3072 bgp_evpn_withdraw_type5_route(bgp_vrf, &p, AFI_IP6,
3073 SAFI_UNICAST);
3074 }
3075 return 0;
3076 }
3077
3078 static int bgp_zebra_process_label_chunk(ZAPI_CALLBACK_ARGS)
3079 {
3080 struct stream *s = NULL;
3081 uint8_t response_keep;
3082 uint32_t first;
3083 uint32_t last;
3084 uint8_t proto;
3085 unsigned short instance;
3086
3087 s = zclient->ibuf;
3088 STREAM_GETC(s, proto);
3089 STREAM_GETW(s, instance);
3090 STREAM_GETC(s, response_keep);
3091 STREAM_GETL(s, first);
3092 STREAM_GETL(s, last);
3093
3094 if (zclient->redist_default != proto) {
3095 flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong proto %u",
3096 proto);
3097 return 0;
3098 }
3099 if (zclient->instance != instance) {
3100 flog_err(EC_BGP_LM_ERROR, "Got LM msg with wrong instance %u",
3101 proto);
3102 return 0;
3103 }
3104
3105 if (first > last ||
3106 first < MPLS_LABEL_UNRESERVED_MIN ||
3107 last > MPLS_LABEL_UNRESERVED_MAX) {
3108
3109 flog_err(EC_BGP_LM_ERROR, "%s: Invalid Label chunk: %u - %u",
3110 __func__, first, last);
3111 return 0;
3112 }
3113 if (BGP_DEBUG(zebra, ZEBRA)) {
3114 zlog_debug("Label Chunk assign: %u - %u (%u) ",
3115 first, last, response_keep);
3116 }
3117
3118 bgp_lp_event_chunk(response_keep, first, last);
3119
3120 return 0;
3121
3122 stream_failure: /* for STREAM_GETX */
3123 return -1;
3124 }
3125
3126 extern struct zebra_privs_t bgpd_privs;
3127
3128 static int bgp_ifp_create(struct interface *ifp)
3129 {
3130 struct bgp *bgp;
3131
3132 if (BGP_DEBUG(zebra, ZEBRA))
3133 zlog_debug("Rx Intf add VRF %u IF %s", ifp->vrf->vrf_id,
3134 ifp->name);
3135
3136 bgp = ifp->vrf->info;
3137 if (!bgp)
3138 return 0;
3139
3140 bgp_mac_add_mac_entry(ifp);
3141
3142 bgp_update_interface_nbrs(bgp, ifp, ifp);
3143 hook_call(bgp_vrf_status_changed, bgp, ifp);
3144 return 0;
3145 }
3146
3147 static int bgp_zebra_process_srv6_locator_chunk(ZAPI_CALLBACK_ARGS)
3148 {
3149 struct stream *s = NULL;
3150 struct bgp *bgp = bgp_get_default();
3151 struct listnode *node;
3152 struct prefix_ipv6 *c;
3153 struct srv6_locator_chunk s6c = {};
3154 struct prefix_ipv6 *chunk = NULL;
3155
3156 s = zclient->ibuf;
3157 zapi_srv6_locator_chunk_decode(s, &s6c);
3158
3159 if (strcmp(bgp->srv6_locator_name, s6c.locator_name) != 0) {
3160 zlog_err("%s: Locator name unmatch %s:%s", __func__,
3161 bgp->srv6_locator_name, s6c.locator_name);
3162 return 0;
3163 }
3164
3165 for (ALL_LIST_ELEMENTS_RO(bgp->srv6_locator_chunks, node, c)) {
3166 if (!prefix_cmp(c, &s6c.prefix))
3167 return 0;
3168 }
3169
3170 chunk = prefix_ipv6_new();
3171 *chunk = s6c.prefix;
3172 listnode_add(bgp->srv6_locator_chunks, chunk);
3173 vpn_leak_postchange_all();
3174 return 0;
3175 }
3176
3177 static int bgp_zebra_process_srv6_locator_add(ZAPI_CALLBACK_ARGS)
3178 {
3179 struct srv6_locator loc = {};
3180 struct bgp *bgp = bgp_get_default();
3181 const char *loc_name = bgp->srv6_locator_name;
3182
3183 if (zapi_srv6_locator_decode(zclient->ibuf, &loc) < 0)
3184 return -1;
3185
3186 if (!bgp || !bgp->srv6_enabled)
3187 return 0;
3188
3189 if (bgp_zebra_srv6_manager_get_locator_chunk(loc_name) < 0)
3190 return -1;
3191
3192 return 0;
3193 }
3194
3195 static int bgp_zebra_process_srv6_locator_delete(ZAPI_CALLBACK_ARGS)
3196 {
3197 struct srv6_locator loc = {};
3198 struct bgp *bgp = bgp_get_default();
3199 struct listnode *node, *nnode;
3200 struct prefix_ipv6 *chunk;
3201 struct bgp_srv6_function *func;
3202 struct bgp *bgp_vrf;
3203 struct in6_addr *tovpn_sid;
3204 struct prefix_ipv6 tmp_prefi;
3205
3206 if (zapi_srv6_locator_decode(zclient->ibuf, &loc) < 0)
3207 return -1;
3208
3209 // refresh chunks
3210 for (ALL_LIST_ELEMENTS(bgp->srv6_locator_chunks, node, nnode, chunk))
3211 if (prefix_match((struct prefix *)&loc.prefix,
3212 (struct prefix *)chunk))
3213 listnode_delete(bgp->srv6_locator_chunks, chunk);
3214
3215 // refresh functions
3216 for (ALL_LIST_ELEMENTS(bgp->srv6_functions, node, nnode, func)) {
3217 tmp_prefi.family = AF_INET6;
3218 tmp_prefi.prefixlen = 128;
3219 tmp_prefi.prefix = func->sid;
3220 if (prefix_match((struct prefix *)&loc.prefix,
3221 (struct prefix *)&tmp_prefi))
3222 listnode_delete(bgp->srv6_functions, func);
3223 }
3224
3225 // refresh tovpn_sid
3226 for (ALL_LIST_ELEMENTS_RO(bm->bgp, node, bgp_vrf)) {
3227 if (bgp_vrf->inst_type != BGP_INSTANCE_TYPE_VRF)
3228 continue;
3229
3230 // refresh vpnv4 tovpn_sid
3231 tovpn_sid = bgp_vrf->vpn_policy[AFI_IP].tovpn_sid;
3232 if (tovpn_sid) {
3233 tmp_prefi.family = AF_INET6;
3234 tmp_prefi.prefixlen = 128;
3235 tmp_prefi.prefix = *tovpn_sid;
3236 if (prefix_match((struct prefix *)&loc.prefix,
3237 (struct prefix *)&tmp_prefi))
3238 XFREE(MTYPE_BGP_SRV6_SID,
3239 bgp_vrf->vpn_policy[AFI_IP].tovpn_sid);
3240 }
3241
3242 // refresh vpnv6 tovpn_sid
3243 tovpn_sid = bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid;
3244 if (tovpn_sid) {
3245 tmp_prefi.family = AF_INET6;
3246 tmp_prefi.prefixlen = 128;
3247 tmp_prefi.prefix = *tovpn_sid;
3248 if (prefix_match((struct prefix *)&loc.prefix,
3249 (struct prefix *)&tmp_prefi))
3250 XFREE(MTYPE_BGP_SRV6_SID,
3251 bgp_vrf->vpn_policy[AFI_IP6].tovpn_sid);
3252 }
3253 }
3254
3255 vpn_leak_postchange_all();
3256 return 0;
3257 }
3258
3259 static zclient_handler *const bgp_handlers[] = {
3260 [ZEBRA_ROUTER_ID_UPDATE] = bgp_router_id_update,
3261 [ZEBRA_INTERFACE_ADDRESS_ADD] = bgp_interface_address_add,
3262 [ZEBRA_INTERFACE_ADDRESS_DELETE] = bgp_interface_address_delete,
3263 [ZEBRA_INTERFACE_NBR_ADDRESS_ADD] = bgp_interface_nbr_address_add,
3264 [ZEBRA_INTERFACE_NBR_ADDRESS_DELETE] = bgp_interface_nbr_address_delete,
3265 [ZEBRA_INTERFACE_VRF_UPDATE] = bgp_interface_vrf_update,
3266 [ZEBRA_REDISTRIBUTE_ROUTE_ADD] = zebra_read_route,
3267 [ZEBRA_REDISTRIBUTE_ROUTE_DEL] = zebra_read_route,
3268 [ZEBRA_NEXTHOP_UPDATE] = bgp_read_nexthop_update,
3269 [ZEBRA_FEC_UPDATE] = bgp_read_fec_update,
3270 [ZEBRA_LOCAL_ES_ADD] = bgp_zebra_process_local_es_add,
3271 [ZEBRA_LOCAL_ES_DEL] = bgp_zebra_process_local_es_del,
3272 [ZEBRA_VNI_ADD] = bgp_zebra_process_local_vni,
3273 [ZEBRA_LOCAL_ES_EVI_ADD] = bgp_zebra_process_local_es_evi,
3274 [ZEBRA_LOCAL_ES_EVI_DEL] = bgp_zebra_process_local_es_evi,
3275 [ZEBRA_VNI_DEL] = bgp_zebra_process_local_vni,
3276 [ZEBRA_MACIP_ADD] = bgp_zebra_process_local_macip,
3277 [ZEBRA_MACIP_DEL] = bgp_zebra_process_local_macip,
3278 [ZEBRA_L3VNI_ADD] = bgp_zebra_process_local_l3vni,
3279 [ZEBRA_L3VNI_DEL] = bgp_zebra_process_local_l3vni,
3280 [ZEBRA_IP_PREFIX_ROUTE_ADD] = bgp_zebra_process_local_ip_prefix,
3281 [ZEBRA_IP_PREFIX_ROUTE_DEL] = bgp_zebra_process_local_ip_prefix,
3282 [ZEBRA_GET_LABEL_CHUNK] = bgp_zebra_process_label_chunk,
3283 [ZEBRA_RULE_NOTIFY_OWNER] = rule_notify_owner,
3284 [ZEBRA_IPSET_NOTIFY_OWNER] = ipset_notify_owner,
3285 [ZEBRA_IPSET_ENTRY_NOTIFY_OWNER] = ipset_entry_notify_owner,
3286 [ZEBRA_IPTABLE_NOTIFY_OWNER] = iptable_notify_owner,
3287 [ZEBRA_ROUTE_NOTIFY_OWNER] = bgp_zebra_route_notify_owner,
3288 [ZEBRA_SRV6_LOCATOR_ADD] = bgp_zebra_process_srv6_locator_add,
3289 [ZEBRA_SRV6_LOCATOR_DELETE] = bgp_zebra_process_srv6_locator_delete,
3290 [ZEBRA_SRV6_MANAGER_GET_LOCATOR_CHUNK] =
3291 bgp_zebra_process_srv6_locator_chunk,
3292 };
3293
3294 void bgp_zebra_init(struct thread_master *master, unsigned short instance)
3295 {
3296 zclient_num_connects = 0;
3297
3298 if_zapi_callbacks(bgp_ifp_create, bgp_ifp_up,
3299 bgp_ifp_down, bgp_ifp_destroy);
3300
3301 /* Set default values. */
3302 zclient = zclient_new(master, &zclient_options_default, bgp_handlers,
3303 array_size(bgp_handlers));
3304 zclient_init(zclient, ZEBRA_ROUTE_BGP, 0, &bgpd_privs);
3305 zclient->zebra_connected = bgp_zebra_connected;
3306 zclient->instance = instance;
3307 }
3308
3309 void bgp_zebra_destroy(void)
3310 {
3311 if (zclient == NULL)
3312 return;
3313 zclient_stop(zclient);
3314 zclient_free(zclient);
3315 zclient = NULL;
3316 }
3317
3318 int bgp_zebra_num_connects(void)
3319 {
3320 return zclient_num_connects;
3321 }
3322
3323 void bgp_send_pbr_rule_action(struct bgp_pbr_action *pbra,
3324 struct bgp_pbr_rule *pbr,
3325 bool install)
3326 {
3327 struct stream *s;
3328
3329 if (pbra->install_in_progress && !pbr)
3330 return;
3331 if (pbr && pbr->install_in_progress)
3332 return;
3333 if (BGP_DEBUG(zebra, ZEBRA)) {
3334 if (pbr)
3335 zlog_debug("%s: table %d (ip rule) %d", __func__,
3336 pbra->table_id, install);
3337 else
3338 zlog_debug("%s: table %d fwmark %d %d", __func__,
3339 pbra->table_id, pbra->fwmark, install);
3340 }
3341 s = zclient->obuf;
3342 stream_reset(s);
3343
3344 zclient_create_header(s,
3345 install ? ZEBRA_RULE_ADD : ZEBRA_RULE_DELETE,
3346 VRF_DEFAULT);
3347 stream_putl(s, 1); /* send one pbr action */
3348
3349 bgp_encode_pbr_rule_action(s, pbra, pbr);
3350
3351 stream_putw_at(s, 0, stream_get_endp(s));
3352 if ((zclient_send_message(zclient) != ZCLIENT_SEND_FAILURE)
3353 && install) {
3354 if (!pbr)
3355 pbra->install_in_progress = true;
3356 else
3357 pbr->install_in_progress = true;
3358 }
3359 }
3360
3361 void bgp_send_pbr_ipset_match(struct bgp_pbr_match *pbrim, bool install)
3362 {
3363 struct stream *s;
3364
3365 if (pbrim->install_in_progress)
3366 return;
3367 if (BGP_DEBUG(zebra, ZEBRA))
3368 zlog_debug("%s: name %s type %d %d, ID %u", __func__,
3369 pbrim->ipset_name, pbrim->type, install,
3370 pbrim->unique);
3371 s = zclient->obuf;
3372 stream_reset(s);
3373
3374 zclient_create_header(s,
3375 install ? ZEBRA_IPSET_CREATE :
3376 ZEBRA_IPSET_DESTROY,
3377 VRF_DEFAULT);
3378
3379 stream_putl(s, 1); /* send one pbr action */
3380
3381 bgp_encode_pbr_ipset_match(s, pbrim);
3382
3383 stream_putw_at(s, 0, stream_get_endp(s));
3384 if ((zclient_send_message(zclient) != ZCLIENT_SEND_FAILURE) && install)
3385 pbrim->install_in_progress = true;
3386 }
3387
3388 void bgp_send_pbr_ipset_entry_match(struct bgp_pbr_match_entry *pbrime,
3389 bool install)
3390 {
3391 struct stream *s;
3392
3393 if (pbrime->install_in_progress)
3394 return;
3395 if (BGP_DEBUG(zebra, ZEBRA))
3396 zlog_debug("%s: name %s %d %d, ID %u", __func__,
3397 pbrime->backpointer->ipset_name, pbrime->unique,
3398 install, pbrime->unique);
3399 s = zclient->obuf;
3400 stream_reset(s);
3401
3402 zclient_create_header(s,
3403 install ? ZEBRA_IPSET_ENTRY_ADD :
3404 ZEBRA_IPSET_ENTRY_DELETE,
3405 VRF_DEFAULT);
3406
3407 stream_putl(s, 1); /* send one pbr action */
3408
3409 bgp_encode_pbr_ipset_entry_match(s, pbrime);
3410
3411 stream_putw_at(s, 0, stream_get_endp(s));
3412 if ((zclient_send_message(zclient) != ZCLIENT_SEND_FAILURE) && install)
3413 pbrime->install_in_progress = true;
3414 }
3415
3416 static void bgp_encode_pbr_interface_list(struct bgp *bgp, struct stream *s,
3417 uint8_t family)
3418 {
3419 struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
3420 struct bgp_pbr_interface_head *head;
3421 struct bgp_pbr_interface *pbr_if;
3422 struct interface *ifp;
3423
3424 if (!bgp_pbr_cfg)
3425 return;
3426 if (family == AF_INET)
3427 head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
3428 else
3429 head = &(bgp_pbr_cfg->ifaces_by_name_ipv6);
3430 RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
3431 ifp = if_lookup_by_name(pbr_if->name, bgp->vrf_id);
3432 if (ifp)
3433 stream_putl(s, ifp->ifindex);
3434 }
3435 }
3436
3437 static int bgp_pbr_get_ifnumber(struct bgp *bgp, uint8_t family)
3438 {
3439 struct bgp_pbr_config *bgp_pbr_cfg = bgp->bgp_pbr_cfg;
3440 struct bgp_pbr_interface_head *head;
3441 struct bgp_pbr_interface *pbr_if;
3442 int cnt = 0;
3443
3444 if (!bgp_pbr_cfg)
3445 return 0;
3446 if (family == AF_INET)
3447 head = &(bgp_pbr_cfg->ifaces_by_name_ipv4);
3448 else
3449 head = &(bgp_pbr_cfg->ifaces_by_name_ipv6);
3450 RB_FOREACH (pbr_if, bgp_pbr_interface_head, head) {
3451 if (if_lookup_by_name(pbr_if->name, bgp->vrf_id))
3452 cnt++;
3453 }
3454 return cnt;
3455 }
3456
3457 void bgp_send_pbr_iptable(struct bgp_pbr_action *pba,
3458 struct bgp_pbr_match *pbm,
3459 bool install)
3460 {
3461 struct stream *s;
3462 int ret = 0;
3463 int nb_interface;
3464
3465 if (pbm->install_iptable_in_progress)
3466 return;
3467 if (BGP_DEBUG(zebra, ZEBRA))
3468 zlog_debug("%s: name %s type %d mark %d %d, ID %u", __func__,
3469 pbm->ipset_name, pbm->type, pba->fwmark, install,
3470 pbm->unique2);
3471 s = zclient->obuf;
3472 stream_reset(s);
3473
3474 zclient_create_header(s,
3475 install ? ZEBRA_IPTABLE_ADD :
3476 ZEBRA_IPTABLE_DELETE,
3477 VRF_DEFAULT);
3478
3479 bgp_encode_pbr_iptable_match(s, pba, pbm);
3480 nb_interface = bgp_pbr_get_ifnumber(pba->bgp, pbm->family);
3481 stream_putl(s, nb_interface);
3482 if (nb_interface)
3483 bgp_encode_pbr_interface_list(pba->bgp, s, pbm->family);
3484 stream_putw_at(s, 0, stream_get_endp(s));
3485 ret = zclient_send_message(zclient);
3486 if (install) {
3487 if (ret != ZCLIENT_SEND_FAILURE)
3488 pba->refcnt++;
3489 else
3490 pbm->install_iptable_in_progress = true;
3491 }
3492 }
3493
3494 /* inject in table <table_id> a default route to:
3495 * - if nexthop IP is present : to this nexthop
3496 * - if vrf is different from local : to the matching VRF
3497 */
3498 void bgp_zebra_announce_default(struct bgp *bgp, struct nexthop *nh,
3499 afi_t afi, uint32_t table_id, bool announce)
3500 {
3501 struct zapi_nexthop *api_nh;
3502 struct zapi_route api;
3503 struct prefix p;
3504
3505 if (!nh || (nh->type != NEXTHOP_TYPE_IPV4
3506 && nh->type != NEXTHOP_TYPE_IPV6)
3507 || nh->vrf_id == VRF_UNKNOWN)
3508 return;
3509
3510 /* in vrf-lite, no default route has to be announced
3511 * the table id of vrf is directly used to divert traffic
3512 */
3513 if (!vrf_is_backend_netns() && bgp->vrf_id != nh->vrf_id)
3514 return;
3515
3516 memset(&p, 0, sizeof(struct prefix));
3517 if (afi != AFI_IP && afi != AFI_IP6)
3518 return;
3519 p.family = afi2family(afi);
3520 memset(&api, 0, sizeof(api));
3521 api.vrf_id = bgp->vrf_id;
3522 api.type = ZEBRA_ROUTE_BGP;
3523 api.safi = SAFI_UNICAST;
3524 api.prefix = p;
3525 api.tableid = table_id;
3526 api.nexthop_num = 1;
3527 SET_FLAG(api.message, ZAPI_MESSAGE_TABLEID);
3528 SET_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP);
3529 api_nh = &api.nexthops[0];
3530
3531 api.distance = ZEBRA_EBGP_DISTANCE_DEFAULT;
3532 SET_FLAG(api.message, ZAPI_MESSAGE_DISTANCE);
3533
3534 /* redirect IP */
3535 if (afi == AFI_IP && nh->gate.ipv4.s_addr != INADDR_ANY) {
3536 char buff[PREFIX_STRLEN];
3537
3538 api_nh->vrf_id = nh->vrf_id;
3539 api_nh->gate.ipv4 = nh->gate.ipv4;
3540 api_nh->type = NEXTHOP_TYPE_IPV4;
3541
3542 inet_ntop(AF_INET, &(nh->gate.ipv4), buff, INET_ADDRSTRLEN);
3543 if (BGP_DEBUG(zebra, ZEBRA))
3544 zlog_debug("BGP: %s default route to %s table %d (redirect IP)",
3545 announce ? "adding" : "withdrawing",
3546 buff, table_id);
3547 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
3548 : ZEBRA_ROUTE_DELETE,
3549 zclient, &api);
3550 } else if (afi == AFI_IP6 &&
3551 memcmp(&nh->gate.ipv6,
3552 &in6addr_any, sizeof(struct in6_addr))) {
3553 char buff[PREFIX_STRLEN];
3554
3555 api_nh->vrf_id = nh->vrf_id;
3556 memcpy(&api_nh->gate.ipv6, &nh->gate.ipv6,
3557 sizeof(struct in6_addr));
3558 api_nh->type = NEXTHOP_TYPE_IPV6;
3559
3560 inet_ntop(AF_INET6, &(nh->gate.ipv6), buff, INET_ADDRSTRLEN);
3561 if (BGP_DEBUG(zebra, ZEBRA))
3562 zlog_debug("BGP: %s default route to %s table %d (redirect IP)",
3563 announce ? "adding" : "withdrawing",
3564 buff, table_id);
3565 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
3566 : ZEBRA_ROUTE_DELETE,
3567 zclient, &api);
3568 } else if (nh->vrf_id != bgp->vrf_id) {
3569 struct vrf *vrf;
3570 struct interface *ifp;
3571
3572 vrf = vrf_lookup_by_id(nh->vrf_id);
3573 if (!vrf)
3574 return;
3575 /* create default route with interface <VRF>
3576 * with nexthop-vrf <VRF>
3577 */
3578 ifp = if_lookup_by_name_vrf(vrf->name, vrf);
3579 if (!ifp)
3580 return;
3581 api_nh->vrf_id = nh->vrf_id;
3582 api_nh->type = NEXTHOP_TYPE_IFINDEX;
3583 api_nh->ifindex = ifp->ifindex;
3584 if (BGP_DEBUG(zebra, ZEBRA))
3585 zlog_info("BGP: %s default route to %s table %d (redirect VRF)",
3586 announce ? "adding" : "withdrawing",
3587 vrf->name, table_id);
3588 zclient_route_send(announce ? ZEBRA_ROUTE_ADD
3589 : ZEBRA_ROUTE_DELETE,
3590 zclient, &api);
3591 return;
3592 }
3593 }
3594
3595 /* Send capabilities to RIB */
3596 int bgp_zebra_send_capabilities(struct bgp *bgp, bool disable)
3597 {
3598 struct zapi_cap api;
3599 int ret = BGP_GR_SUCCESS;
3600
3601 if (zclient == NULL) {
3602 if (BGP_DEBUG(zebra, ZEBRA))
3603 zlog_debug("zclient invalid");
3604 return BGP_GR_FAILURE;
3605 }
3606
3607 /* Check if the client is connected */
3608 if ((zclient->sock < 0) || (zclient->t_connect)) {
3609 if (BGP_DEBUG(zebra, ZEBRA))
3610 zlog_debug("client not connected");
3611 return BGP_GR_FAILURE;
3612 }
3613
3614 /* Check if capability is already sent. If the flag force is set
3615 * send the capability since this can be initial bgp configuration
3616 */
3617 memset(&api, 0, sizeof(struct zapi_cap));
3618 if (disable) {
3619 api.cap = ZEBRA_CLIENT_GR_DISABLE;
3620 api.vrf_id = bgp->vrf_id;
3621 } else {
3622 api.cap = ZEBRA_CLIENT_GR_CAPABILITIES;
3623 api.stale_removal_time = bgp->rib_stale_time;
3624 api.vrf_id = bgp->vrf_id;
3625 }
3626
3627 if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
3628 == ZCLIENT_SEND_FAILURE) {
3629 zlog_err("error sending capability");
3630 ret = BGP_GR_FAILURE;
3631 } else {
3632 if (disable)
3633 bgp->present_zebra_gr_state = ZEBRA_GR_DISABLE;
3634 else
3635 bgp->present_zebra_gr_state = ZEBRA_GR_ENABLE;
3636
3637 if (BGP_DEBUG(zebra, ZEBRA))
3638 zlog_debug("send capabilty success");
3639 ret = BGP_GR_SUCCESS;
3640 }
3641 return ret;
3642 }
3643
3644 /* Send route update pesding or completed status to RIB for the
3645 * specific AFI, SAFI
3646 */
3647 int bgp_zebra_update(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type)
3648 {
3649 struct zapi_cap api = {0};
3650
3651 if (zclient == NULL) {
3652 if (BGP_DEBUG(zebra, ZEBRA))
3653 zlog_debug("zclient == NULL, invalid");
3654 return BGP_GR_FAILURE;
3655 }
3656
3657 /* Check if the client is connected */
3658 if ((zclient->sock < 0) || (zclient->t_connect)) {
3659 if (BGP_DEBUG(zebra, ZEBRA))
3660 zlog_debug("client not connected");
3661 return BGP_GR_FAILURE;
3662 }
3663
3664 api.afi = afi;
3665 api.safi = safi;
3666 api.vrf_id = vrf_id;
3667 api.cap = type;
3668
3669 if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
3670 == ZCLIENT_SEND_FAILURE) {
3671 if (BGP_DEBUG(zebra, ZEBRA))
3672 zlog_debug("error sending capability");
3673 return BGP_GR_FAILURE;
3674 }
3675 return BGP_GR_SUCCESS;
3676 }
3677
3678
3679 /* Send RIB stale timer update */
3680 int bgp_zebra_stale_timer_update(struct bgp *bgp)
3681 {
3682 struct zapi_cap api;
3683
3684 if (zclient == NULL) {
3685 if (BGP_DEBUG(zebra, ZEBRA))
3686 zlog_debug("zclient invalid");
3687 return BGP_GR_FAILURE;
3688 }
3689
3690 /* Check if the client is connected */
3691 if ((zclient->sock < 0) || (zclient->t_connect)) {
3692 if (BGP_DEBUG(zebra, ZEBRA))
3693 zlog_debug("client not connected");
3694 return BGP_GR_FAILURE;
3695 }
3696
3697 memset(&api, 0, sizeof(struct zapi_cap));
3698 api.cap = ZEBRA_CLIENT_RIB_STALE_TIME;
3699 api.stale_removal_time = bgp->rib_stale_time;
3700 api.vrf_id = bgp->vrf_id;
3701 if (zclient_capabilities_send(ZEBRA_CLIENT_CAPABILITIES, zclient, &api)
3702 == ZCLIENT_SEND_FAILURE) {
3703 if (BGP_DEBUG(zebra, ZEBRA))
3704 zlog_debug("error sending capability");
3705 return BGP_GR_FAILURE;
3706 }
3707 if (BGP_DEBUG(zebra, ZEBRA))
3708 zlog_debug("send capabilty success");
3709 return BGP_GR_SUCCESS;
3710 }
3711
3712 int bgp_zebra_srv6_manager_get_locator_chunk(const char *name)
3713 {
3714 return srv6_manager_get_locator_chunk(zclient, name);
3715 }
3716
3717 int bgp_zebra_srv6_manager_release_locator_chunk(const char *name)
3718 {
3719 return srv6_manager_release_locator_chunk(zclient, name);
3720 }