]> git.proxmox.com Git - mirror_lxcfs.git/blob - bindings.c
lxcfs, bindings: show "." and ".." dir entries
[mirror_lxcfs.git] / bindings.c
1 /* lxcfs
2 *
3 * Copyright © 2014-2016 Canonical, Inc
4 * Author: Serge Hallyn <serge.hallyn@ubuntu.com>
5 *
6 * See COPYING file for details.
7 */
8
9 #define FUSE_USE_VERSION 26
10
11 #include <dirent.h>
12 #include <errno.h>
13 #include <fcntl.h>
14 #include <fuse.h>
15 #include <libgen.h>
16 #include <pthread.h>
17 #include <sched.h>
18 #include <stdbool.h>
19 #include <stdio.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <time.h>
23 #include <unistd.h>
24 #include <wait.h>
25 #include <linux/sched.h>
26 #include <sys/epoll.h>
27 #include <sys/mman.h>
28 #include <sys/mount.h>
29 #include <sys/param.h>
30 #include <sys/socket.h>
31 #include <sys/syscall.h>
32
33 #include "bindings.h"
34 #include "config.h" // for VERSION
35
36 /* Define pivot_root() if missing from the C library */
37 #ifndef HAVE_PIVOT_ROOT
38 static int pivot_root(const char * new_root, const char * put_old)
39 {
40 #ifdef __NR_pivot_root
41 return syscall(__NR_pivot_root, new_root, put_old);
42 #else
43 errno = ENOSYS;
44 return -1;
45 #endif
46 }
47 #else
48 extern int pivot_root(const char * new_root, const char * put_old);
49 #endif
50
51 #ifdef DEBUG
52 #define lxcfs_debug(format, ...) \
53 do { \
54 fprintf(stderr, "%s: %d: %s: " format, __FILE__, __LINE__, \
55 __func__, __VA_ARGS__); \
56 } while (false)
57 #else
58 #define lxcfs_debug(format, ...)
59 #endif /* DEBUG */
60
61 enum {
62 LXC_TYPE_CGDIR,
63 LXC_TYPE_CGFILE,
64 LXC_TYPE_PROC_MEMINFO,
65 LXC_TYPE_PROC_CPUINFO,
66 LXC_TYPE_PROC_UPTIME,
67 LXC_TYPE_PROC_STAT,
68 LXC_TYPE_PROC_DISKSTATS,
69 LXC_TYPE_PROC_SWAPS,
70 };
71
72 struct file_info {
73 char *controller;
74 char *cgroup;
75 char *file;
76 int type;
77 char *buf; // unused as of yet
78 int buflen;
79 int size; //actual data size
80 int cached;
81 };
82
83 /* reserve buffer size, for cpuall in /proc/stat */
84 #define BUF_RESERVE_SIZE 256
85
86 /*
87 * A table caching which pid is init for a pid namespace.
88 * When looking up which pid is init for $qpid, we first
89 * 1. Stat /proc/$qpid/ns/pid.
90 * 2. Check whether the ino_t is in our store.
91 * a. if not, fork a child in qpid's ns to send us
92 * ucred.pid = 1, and read the initpid. Cache
93 * initpid and creation time for /proc/initpid
94 * in a new store entry.
95 * b. if so, verify that /proc/initpid still matches
96 * what we have saved. If not, clear the store
97 * entry and go back to a. If so, return the
98 * cached initpid.
99 */
100 struct pidns_init_store {
101 ino_t ino; // inode number for /proc/$pid/ns/pid
102 pid_t initpid; // the pid of nit in that ns
103 long int ctime; // the time at which /proc/$initpid was created
104 struct pidns_init_store *next;
105 long int lastcheck;
106 };
107
108 /* lol - look at how they are allocated in the kernel */
109 #define PIDNS_HASH_SIZE 4096
110 #define HASH(x) ((x) % PIDNS_HASH_SIZE)
111
112 static struct pidns_init_store *pidns_hash_table[PIDNS_HASH_SIZE];
113 static pthread_mutex_t pidns_store_mutex = PTHREAD_MUTEX_INITIALIZER;
114 static void lock_mutex(pthread_mutex_t *l)
115 {
116 int ret;
117
118 if ((ret = pthread_mutex_lock(l)) != 0) {
119 fprintf(stderr, "pthread_mutex_lock returned:%d %s\n", ret, strerror(ret));
120 exit(1);
121 }
122 }
123
124 /* READ-ONLY after __constructor__ collect_and_mount_subsystems() has run.
125 * Number of hierarchies mounted. */
126 static int num_hierarchies;
127
128 /* READ-ONLY after __constructor__ collect_and_mount_subsystems() has run.
129 * Hierachies mounted {cpuset, blkio, ...}:
130 * Initialized via __constructor__ collect_and_mount_subsystems(). */
131 static char **hierarchies;
132
133 /* READ-ONLY after __constructor__ collect_and_mount_subsystems() has run.
134 * Open file descriptors:
135 * @fd_hierarchies[i] refers to cgroup @hierarchies[i]. They are mounted in a
136 * private mount namespace.
137 * Initialized via __constructor__ collect_and_mount_subsystems().
138 * @fd_hierarchies[i] can be used to perform file operations on the cgroup
139 * mounts and respective files in the private namespace even when located in
140 * another namespace using the *at() family of functions
141 * {openat(), fchownat(), ...}. */
142 static int *fd_hierarchies;
143
144 static void unlock_mutex(pthread_mutex_t *l)
145 {
146 int ret;
147
148 if ((ret = pthread_mutex_unlock(l)) != 0) {
149 fprintf(stderr, "pthread_mutex_unlock returned:%d %s\n", ret, strerror(ret));
150 exit(1);
151 }
152 }
153
154 static void store_lock(void)
155 {
156 lock_mutex(&pidns_store_mutex);
157 }
158
159 static void store_unlock(void)
160 {
161 unlock_mutex(&pidns_store_mutex);
162 }
163
164 /* Must be called under store_lock */
165 static bool initpid_still_valid(struct pidns_init_store *e, struct stat *nsfdsb)
166 {
167 struct stat initsb;
168 char fnam[100];
169
170 snprintf(fnam, 100, "/proc/%d", e->initpid);
171 if (stat(fnam, &initsb) < 0)
172 return false;
173
174 lxcfs_debug("Comparing ctime %ld == %ld for pid %d.\n", e->ctime,
175 initsb.st_ctime, e->initpid);
176
177 if (e->ctime != initsb.st_ctime)
178 return false;
179 return true;
180 }
181
182 /* Must be called under store_lock */
183 static void remove_initpid(struct pidns_init_store *e)
184 {
185 struct pidns_init_store *tmp;
186 int h;
187
188 lxcfs_debug("Remove_initpid: removing entry for %d.\n", e->initpid);
189
190 h = HASH(e->ino);
191 if (pidns_hash_table[h] == e) {
192 pidns_hash_table[h] = e->next;
193 free(e);
194 return;
195 }
196
197 tmp = pidns_hash_table[h];
198 while (tmp) {
199 if (tmp->next == e) {
200 tmp->next = e->next;
201 free(e);
202 return;
203 }
204 tmp = tmp->next;
205 }
206 }
207
208 #define PURGE_SECS 5
209 /* Must be called under store_lock */
210 static void prune_initpid_store(void)
211 {
212 static long int last_prune = 0;
213 struct pidns_init_store *e, *prev, *delme;
214 long int now, threshold;
215 int i;
216
217 if (!last_prune) {
218 last_prune = time(NULL);
219 return;
220 }
221 now = time(NULL);
222 if (now < last_prune + PURGE_SECS)
223 return;
224
225 lxcfs_debug("%s\n", "Pruning.");
226
227 last_prune = now;
228 threshold = now - 2 * PURGE_SECS;
229
230 for (i = 0; i < PIDNS_HASH_SIZE; i++) {
231 for (prev = NULL, e = pidns_hash_table[i]; e; ) {
232 if (e->lastcheck < threshold) {
233
234 lxcfs_debug("Removing cached entry for %d.\n", e->initpid);
235
236 delme = e;
237 if (prev)
238 prev->next = e->next;
239 else
240 pidns_hash_table[i] = e->next;
241 e = e->next;
242 free(delme);
243 } else {
244 prev = e;
245 e = e->next;
246 }
247 }
248 }
249 }
250
251 /* Must be called under store_lock */
252 static void save_initpid(struct stat *sb, pid_t pid)
253 {
254 struct pidns_init_store *e;
255 char fpath[100];
256 struct stat procsb;
257 int h;
258
259 lxcfs_debug("Save_initpid: adding entry for %d.\n", pid);
260
261 snprintf(fpath, 100, "/proc/%d", pid);
262 if (stat(fpath, &procsb) < 0)
263 return;
264 do {
265 e = malloc(sizeof(*e));
266 } while (!e);
267 e->ino = sb->st_ino;
268 e->initpid = pid;
269 e->ctime = procsb.st_ctime;
270 h = HASH(e->ino);
271 e->next = pidns_hash_table[h];
272 e->lastcheck = time(NULL);
273 pidns_hash_table[h] = e;
274 }
275
276 /*
277 * Given the stat(2) info for a nsfd pid inode, lookup the init_pid_store
278 * entry for the inode number and creation time. Verify that the init pid
279 * is still valid. If not, remove it. Return the entry if valid, NULL
280 * otherwise.
281 * Must be called under store_lock
282 */
283 static struct pidns_init_store *lookup_verify_initpid(struct stat *sb)
284 {
285 int h = HASH(sb->st_ino);
286 struct pidns_init_store *e = pidns_hash_table[h];
287
288 while (e) {
289 if (e->ino == sb->st_ino) {
290 if (initpid_still_valid(e, sb)) {
291 e->lastcheck = time(NULL);
292 return e;
293 }
294 remove_initpid(e);
295 return NULL;
296 }
297 e = e->next;
298 }
299
300 return NULL;
301 }
302
303 static int is_dir(const char *path, int fd)
304 {
305 struct stat statbuf;
306 int ret = fstatat(fd, path, &statbuf, fd);
307 if (ret == 0 && S_ISDIR(statbuf.st_mode))
308 return 1;
309 return 0;
310 }
311
312 static char *must_copy_string(const char *str)
313 {
314 char *dup = NULL;
315 if (!str)
316 return NULL;
317 do {
318 dup = strdup(str);
319 } while (!dup);
320
321 return dup;
322 }
323
324 static inline void drop_trailing_newlines(char *s)
325 {
326 int l;
327
328 for (l=strlen(s); l>0 && s[l-1] == '\n'; l--)
329 s[l-1] = '\0';
330 }
331
332 #define BATCH_SIZE 50
333 static void dorealloc(char **mem, size_t oldlen, size_t newlen)
334 {
335 int newbatches = (newlen / BATCH_SIZE) + 1;
336 int oldbatches = (oldlen / BATCH_SIZE) + 1;
337
338 if (!*mem || newbatches > oldbatches) {
339 char *tmp;
340 do {
341 tmp = realloc(*mem, newbatches * BATCH_SIZE);
342 } while (!tmp);
343 *mem = tmp;
344 }
345 }
346 static void append_line(char **contents, size_t *len, char *line, ssize_t linelen)
347 {
348 size_t newlen = *len + linelen;
349 dorealloc(contents, *len, newlen + 1);
350 memcpy(*contents + *len, line, linelen+1);
351 *len = newlen;
352 }
353
354 static char *slurp_file(const char *from, int fd)
355 {
356 char *line = NULL;
357 char *contents = NULL;
358 FILE *f = fdopen(fd, "r");
359 size_t len = 0, fulllen = 0;
360 ssize_t linelen;
361
362 if (!f)
363 return NULL;
364
365 while ((linelen = getline(&line, &len, f)) != -1) {
366 append_line(&contents, &fulllen, line, linelen);
367 }
368 fclose(f);
369
370 if (contents)
371 drop_trailing_newlines(contents);
372 free(line);
373 return contents;
374 }
375
376 static bool write_string(const char *fnam, const char *string, int fd)
377 {
378 FILE *f;
379 size_t len, ret;
380
381 if (!(f = fdopen(fd, "w")))
382 return false;
383 len = strlen(string);
384 ret = fwrite(string, 1, len, f);
385 if (ret != len) {
386 fprintf(stderr, "Error writing to file: %s\n", strerror(errno));
387 fclose(f);
388 return false;
389 }
390 if (fclose(f) < 0) {
391 fprintf(stderr, "Error writing to file: %s\n", strerror(errno));
392 return false;
393 }
394 return true;
395 }
396
397 struct cgfs_files {
398 char *name;
399 uint32_t uid, gid;
400 uint32_t mode;
401 };
402
403 #define ALLOC_NUM 20
404 static bool store_hierarchy(char *stridx, char *h)
405 {
406 if (num_hierarchies % ALLOC_NUM == 0) {
407 size_t n = (num_hierarchies / ALLOC_NUM) + 1;
408 n *= ALLOC_NUM;
409 char **tmp = realloc(hierarchies, n * sizeof(char *));
410 if (!tmp) {
411 fprintf(stderr, "Out of memory\n");
412 exit(1);
413 }
414 hierarchies = tmp;
415 }
416
417 hierarchies[num_hierarchies++] = must_copy_string(h);
418 return true;
419 }
420
421 static void print_subsystems(void)
422 {
423 int i;
424
425 fprintf(stderr, "hierarchies:\n");
426 for (i = 0; i < num_hierarchies; i++) {
427 if (hierarchies[i])
428 fprintf(stderr, " %d: %s\n", i, hierarchies[i]);
429 }
430 }
431
432 static bool in_comma_list(const char *needle, const char *haystack)
433 {
434 const char *s = haystack, *e;
435 size_t nlen = strlen(needle);
436
437 while (*s && (e = strchr(s, ','))) {
438 if (nlen != e - s) {
439 s = e + 1;
440 continue;
441 }
442 if (strncmp(needle, s, nlen) == 0)
443 return true;
444 s = e + 1;
445 }
446 if (strcmp(needle, s) == 0)
447 return true;
448 return false;
449 }
450
451 /* do we need to do any massaging here? I'm not sure... */
452 /* Return the mounted controller and store the corresponding open file descriptor
453 * referring to the controller mountpoint in the private lxcfs namespace in
454 * @cfd.
455 */
456 static char *find_mounted_controller(const char *controller, int *cfd)
457 {
458 int i;
459
460 for (i = 0; i < num_hierarchies; i++) {
461 if (!hierarchies[i])
462 continue;
463 if (strcmp(hierarchies[i], controller) == 0) {
464 *cfd = fd_hierarchies[i];
465 return hierarchies[i];
466 }
467 if (in_comma_list(controller, hierarchies[i])) {
468 *cfd = fd_hierarchies[i];
469 return hierarchies[i];
470 }
471 }
472
473 return NULL;
474 }
475
476 bool cgfs_set_value(const char *controller, const char *cgroup, const char *file,
477 const char *value)
478 {
479 int ret, fd, cfd;
480 size_t len;
481 char *fnam, *tmpc;
482
483 tmpc = find_mounted_controller(controller, &cfd);
484 if (!tmpc)
485 return false;
486
487 /* Make sure we pass a relative path to *at() family of functions.
488 * . + /cgroup + / + file + \0
489 */
490 len = strlen(cgroup) + strlen(file) + 3;
491 fnam = alloca(len);
492 ret = snprintf(fnam, len, "%s%s/%s", *cgroup == '/' ? "." : "", cgroup, file);
493 if (ret < 0 || (size_t)ret >= len)
494 return false;
495
496 fd = openat(cfd, fnam, O_WRONLY);
497 if (fd < 0)
498 return false;
499
500 return write_string(fnam, value, fd);
501 }
502
503 // Chown all the files in the cgroup directory. We do this when we create
504 // a cgroup on behalf of a user.
505 static void chown_all_cgroup_files(const char *dirname, uid_t uid, gid_t gid, int fd)
506 {
507 struct dirent *direntp;
508 char path[MAXPATHLEN];
509 size_t len;
510 DIR *d;
511 int fd1, ret;
512
513 len = strlen(dirname);
514 if (len >= MAXPATHLEN) {
515 fprintf(stderr, "chown_all_cgroup_files: pathname too long: %s\n", dirname);
516 return;
517 }
518
519 fd1 = openat(fd, dirname, O_DIRECTORY);
520 if (fd1 < 0)
521 return;
522
523 d = fdopendir(fd1);
524 if (!d) {
525 fprintf(stderr, "chown_all_cgroup_files: failed to open %s\n", dirname);
526 return;
527 }
528
529 while ((direntp = readdir(d))) {
530 if (!strcmp(direntp->d_name, ".") || !strcmp(direntp->d_name, ".."))
531 continue;
532 ret = snprintf(path, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
533 if (ret < 0 || ret >= MAXPATHLEN) {
534 fprintf(stderr, "chown_all_cgroup_files: pathname too long under %s\n", dirname);
535 continue;
536 }
537 if (fchownat(fd, path, uid, gid, 0) < 0)
538 fprintf(stderr, "Failed to chown file %s to %u:%u", path, uid, gid);
539 }
540 closedir(d);
541 }
542
543 int cgfs_create(const char *controller, const char *cg, uid_t uid, gid_t gid)
544 {
545 int cfd;
546 size_t len;
547 char *dirnam, *tmpc;
548
549 tmpc = find_mounted_controller(controller, &cfd);
550 if (!tmpc)
551 return -EINVAL;
552
553 /* Make sure we pass a relative path to *at() family of functions.
554 * . + /cg + \0
555 */
556 len = strlen(cg) + 2;
557 dirnam = alloca(len);
558 snprintf(dirnam, len, "%s%s", *cg == '/' ? "." : "", cg);
559
560 if (mkdirat(cfd, dirnam, 0755) < 0)
561 return -errno;
562
563 if (uid == 0 && gid == 0)
564 return 0;
565
566 if (fchownat(cfd, dirnam, uid, gid, 0) < 0)
567 return -errno;
568
569 chown_all_cgroup_files(dirnam, uid, gid, cfd);
570
571 return 0;
572 }
573
574 static bool recursive_rmdir(const char *dirname, int fd, const int cfd)
575 {
576 struct dirent *direntp;
577 DIR *dir;
578 bool ret = false;
579 char pathname[MAXPATHLEN];
580 int dupfd;
581
582 dupfd = dup(fd); // fdopendir() does bad things once it uses an fd.
583 if (dupfd < 0)
584 return false;
585
586 dir = fdopendir(dupfd);
587 if (!dir) {
588 lxcfs_debug("Failed to open %s: %s.\n", dirname, strerror(errno));
589 close(dupfd);
590 return false;
591 }
592
593 while ((direntp = readdir(dir))) {
594 struct stat mystat;
595 int rc;
596
597 if (!strcmp(direntp->d_name, ".") ||
598 !strcmp(direntp->d_name, ".."))
599 continue;
600
601 rc = snprintf(pathname, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
602 if (rc < 0 || rc >= MAXPATHLEN) {
603 fprintf(stderr, "pathname too long\n");
604 continue;
605 }
606
607 rc = fstatat(cfd, pathname, &mystat, AT_SYMLINK_NOFOLLOW);
608 if (rc) {
609 lxcfs_debug("Failed to stat %s: %s.\n", pathname, strerror(errno));
610 continue;
611 }
612 if (S_ISDIR(mystat.st_mode))
613 if (!recursive_rmdir(pathname, fd, cfd))
614 lxcfs_debug("Error removing %s.\n", pathname);
615 }
616
617 ret = true;
618 if (closedir(dir) < 0) {
619 fprintf(stderr, "%s: failed to close directory %s: %s\n", __func__, dirname, strerror(errno));
620 ret = false;
621 }
622
623 if (unlinkat(cfd, dirname, AT_REMOVEDIR) < 0) {
624 lxcfs_debug("Failed to delete %s: %s.\n", dirname, strerror(errno));
625 ret = false;
626 }
627
628 close(dupfd);
629
630 return ret;
631 }
632
633 bool cgfs_remove(const char *controller, const char *cg)
634 {
635 int fd, cfd;
636 size_t len;
637 char *dirnam, *tmpc;
638 bool bret;
639
640 tmpc = find_mounted_controller(controller, &cfd);
641 if (!tmpc)
642 return false;
643
644 /* Make sure we pass a relative path to *at() family of functions.
645 * . + /cg + \0
646 */
647 len = strlen(cg) + 2;
648 dirnam = alloca(len);
649 snprintf(dirnam, len, "%s%s", *cg == '/' ? "." : "", cg);
650
651 fd = openat(cfd, dirnam, O_DIRECTORY);
652 if (fd < 0)
653 return false;
654
655 bret = recursive_rmdir(dirnam, fd, cfd);
656 close(fd);
657 return bret;
658 }
659
660 bool cgfs_chmod_file(const char *controller, const char *file, mode_t mode)
661 {
662 int cfd;
663 size_t len;
664 char *pathname, *tmpc;
665
666 tmpc = find_mounted_controller(controller, &cfd);
667 if (!tmpc)
668 return false;
669
670 /* Make sure we pass a relative path to *at() family of functions.
671 * . + /file + \0
672 */
673 len = strlen(file) + 2;
674 pathname = alloca(len);
675 snprintf(pathname, len, "%s%s", *file == '/' ? "." : "", file);
676 if (fchmodat(cfd, pathname, mode, 0) < 0)
677 return false;
678 return true;
679 }
680
681 static int chown_tasks_files(const char *dirname, uid_t uid, gid_t gid, int fd)
682 {
683 size_t len;
684 char *fname;
685
686 len = strlen(dirname) + strlen("/cgroup.procs") + 1;
687 fname = alloca(len);
688 snprintf(fname, len, "%s/tasks", dirname);
689 if (fchownat(fd, fname, uid, gid, 0) != 0)
690 return -errno;
691 snprintf(fname, len, "%s/cgroup.procs", dirname);
692 if (fchownat(fd, fname, uid, gid, 0) != 0)
693 return -errno;
694 return 0;
695 }
696
697 int cgfs_chown_file(const char *controller, const char *file, uid_t uid, gid_t gid)
698 {
699 int cfd;
700 size_t len;
701 char *pathname, *tmpc;
702
703 tmpc = find_mounted_controller(controller, &cfd);
704 if (!tmpc)
705 return -EINVAL;
706
707 /* Make sure we pass a relative path to *at() family of functions.
708 * . + /file + \0
709 */
710 len = strlen(file) + 2;
711 pathname = alloca(len);
712 snprintf(pathname, len, "%s%s", *file == '/' ? "." : "", file);
713 if (fchownat(cfd, pathname, uid, gid, 0) < 0)
714 return -errno;
715
716 if (is_dir(pathname, cfd))
717 // like cgmanager did, we want to chown the tasks file as well
718 return chown_tasks_files(pathname, uid, gid, cfd);
719
720 return 0;
721 }
722
723 FILE *open_pids_file(const char *controller, const char *cgroup)
724 {
725 int fd, cfd;
726 size_t len;
727 char *pathname, *tmpc;
728
729 tmpc = find_mounted_controller(controller, &cfd);
730 if (!tmpc)
731 return NULL;
732
733 /* Make sure we pass a relative path to *at() family of functions.
734 * . + /cgroup + / "cgroup.procs" + \0
735 */
736 len = strlen(cgroup) + strlen("cgroup.procs") + 3;
737 pathname = alloca(len);
738 snprintf(pathname, len, "%s%s/cgroup.procs", *cgroup == '/' ? "." : "", cgroup);
739
740 fd = openat(cfd, pathname, O_WRONLY);
741 if (fd < 0)
742 return NULL;
743
744 return fdopen(fd, "w");
745 }
746
747 static bool cgfs_iterate_cgroup(const char *controller, const char *cgroup, bool directories,
748 void ***list, size_t typesize,
749 void* (*iterator)(const char*, const char*, const char*))
750 {
751 int cfd, fd, ret;
752 size_t len;
753 char *cg, *tmpc;
754 char pathname[MAXPATHLEN];
755 size_t sz = 0, asz = 0;
756 struct dirent *dirent;
757 DIR *dir;
758
759 tmpc = find_mounted_controller(controller, &cfd);
760 *list = NULL;
761 if (!tmpc)
762 return false;
763
764 /* Make sure we pass a relative path to *at() family of functions. */
765 len = strlen(cgroup) + 1 /* . */ + 1 /* \0 */;
766 cg = alloca(len);
767 ret = snprintf(cg, len, "%s%s", *cgroup == '/' ? "." : "", cgroup);
768 if (ret < 0 || (size_t)ret >= len) {
769 fprintf(stderr, "%s: pathname too long under %s\n", __func__, cgroup);
770 return false;
771 }
772
773 fd = openat(cfd, cg, O_DIRECTORY);
774 if (fd < 0)
775 return false;
776
777 dir = fdopendir(fd);
778 if (!dir)
779 return false;
780
781 while ((dirent = readdir(dir))) {
782 struct stat mystat;
783
784 if (!strcmp(dirent->d_name, ".") ||
785 !strcmp(dirent->d_name, ".."))
786 continue;
787
788 ret = snprintf(pathname, MAXPATHLEN, "%s/%s", cg, dirent->d_name);
789 if (ret < 0 || ret >= MAXPATHLEN) {
790 fprintf(stderr, "%s: pathname too long under %s\n", __func__, cg);
791 continue;
792 }
793
794 ret = fstatat(cfd, pathname, &mystat, AT_SYMLINK_NOFOLLOW);
795 if (ret) {
796 fprintf(stderr, "%s: failed to stat %s: %s\n", __func__, pathname, strerror(errno));
797 continue;
798 }
799 if ((!directories && !S_ISREG(mystat.st_mode)) ||
800 (directories && !S_ISDIR(mystat.st_mode)))
801 continue;
802
803 if (sz+2 >= asz) {
804 void **tmp;
805 asz += BATCH_SIZE;
806 do {
807 tmp = realloc(*list, asz * typesize);
808 } while (!tmp);
809 *list = tmp;
810 }
811 (*list)[sz] = (*iterator)(controller, cg, dirent->d_name);
812 (*list)[sz+1] = NULL;
813 sz++;
814 }
815 if (closedir(dir) < 0) {
816 fprintf(stderr, "%s: failed closedir for %s: %s\n", __func__, cgroup, strerror(errno));
817 return false;
818 }
819 return true;
820 }
821
822 static void *make_children_list_entry(const char *controller, const char *cgroup, const char *dir_entry)
823 {
824 char *dup;
825 do {
826 dup = strdup(dir_entry);
827 } while (!dup);
828 return dup;
829 }
830
831 bool cgfs_list_children(const char *controller, const char *cgroup, char ***list)
832 {
833 return cgfs_iterate_cgroup(controller, cgroup, true, (void***)list, sizeof(*list), &make_children_list_entry);
834 }
835
836 void free_key(struct cgfs_files *k)
837 {
838 if (!k)
839 return;
840 free(k->name);
841 free(k);
842 }
843
844 void free_keys(struct cgfs_files **keys)
845 {
846 int i;
847
848 if (!keys)
849 return;
850 for (i = 0; keys[i]; i++) {
851 free_key(keys[i]);
852 }
853 free(keys);
854 }
855
856 bool cgfs_get_value(const char *controller, const char *cgroup, const char *file, char **value)
857 {
858 int ret, fd, cfd;
859 size_t len;
860 char *fnam, *tmpc;
861
862 tmpc = find_mounted_controller(controller, &cfd);
863 if (!tmpc)
864 return false;
865
866 /* Make sure we pass a relative path to *at() family of functions.
867 * . + /cgroup + / + file + \0
868 */
869 len = strlen(cgroup) + strlen(file) + 3;
870 fnam = alloca(len);
871 ret = snprintf(fnam, len, "%s%s/%s", *cgroup == '/' ? "." : "", cgroup, file);
872 if (ret < 0 || (size_t)ret >= len)
873 return NULL;
874
875 fd = openat(cfd, fnam, O_RDONLY);
876 if (fd < 0)
877 return NULL;
878
879 *value = slurp_file(fnam, fd);
880 return *value != NULL;
881 }
882
883 struct cgfs_files *cgfs_get_key(const char *controller, const char *cgroup, const char *file)
884 {
885 int ret, cfd;
886 size_t len;
887 char *fnam, *tmpc;
888 struct stat sb;
889 struct cgfs_files *newkey;
890
891 tmpc = find_mounted_controller(controller, &cfd);
892 if (!tmpc)
893 return false;
894
895 if (file && *file == '/')
896 file++;
897
898 if (file && strchr(file, '/'))
899 return NULL;
900
901 /* Make sure we pass a relative path to *at() family of functions.
902 * . + /cgroup + / + file + \0
903 */
904 len = strlen(cgroup) + 3;
905 if (file)
906 len += strlen(file) + 1;
907 fnam = alloca(len);
908 snprintf(fnam, len, "%s%s%s%s", *cgroup == '/' ? "." : "", cgroup,
909 file ? "/" : "", file ? file : "");
910
911 ret = fstatat(cfd, fnam, &sb, 0);
912 if (ret < 0)
913 return NULL;
914
915 do {
916 newkey = malloc(sizeof(struct cgfs_files));
917 } while (!newkey);
918 if (file)
919 newkey->name = must_copy_string(file);
920 else if (strrchr(cgroup, '/'))
921 newkey->name = must_copy_string(strrchr(cgroup, '/'));
922 else
923 newkey->name = must_copy_string(cgroup);
924 newkey->uid = sb.st_uid;
925 newkey->gid = sb.st_gid;
926 newkey->mode = sb.st_mode;
927
928 return newkey;
929 }
930
931 static void *make_key_list_entry(const char *controller, const char *cgroup, const char *dir_entry)
932 {
933 struct cgfs_files *entry = cgfs_get_key(controller, cgroup, dir_entry);
934 if (!entry) {
935 fprintf(stderr, "%s: Error getting files under %s:%s\n",
936 __func__, controller, cgroup);
937 }
938 return entry;
939 }
940
941 bool cgfs_list_keys(const char *controller, const char *cgroup, struct cgfs_files ***keys)
942 {
943 return cgfs_iterate_cgroup(controller, cgroup, false, (void***)keys, sizeof(*keys), &make_key_list_entry);
944 }
945
946 bool is_child_cgroup(const char *controller, const char *cgroup, const char *f)
947 {
948 int cfd;
949 size_t len;
950 char *fnam, *tmpc;
951 int ret;
952 struct stat sb;
953
954 tmpc = find_mounted_controller(controller, &cfd);
955 if (!tmpc)
956 return false;
957
958 /* Make sure we pass a relative path to *at() family of functions.
959 * . + /cgroup + / + f + \0
960 */
961 len = strlen(cgroup) + strlen(f) + 3;
962 fnam = alloca(len);
963 ret = snprintf(fnam, len, "%s%s/%s", *cgroup == '/' ? "." : "", cgroup, f);
964 if (ret < 0 || (size_t)ret >= len)
965 return false;
966
967 ret = fstatat(cfd, fnam, &sb, 0);
968 if (ret < 0 || !S_ISDIR(sb.st_mode))
969 return false;
970
971 return true;
972 }
973
974 #define SEND_CREDS_OK 0
975 #define SEND_CREDS_NOTSK 1
976 #define SEND_CREDS_FAIL 2
977 static bool recv_creds(int sock, struct ucred *cred, char *v);
978 static int wait_for_pid(pid_t pid);
979 static int send_creds(int sock, struct ucred *cred, char v, bool pingfirst);
980 static int send_creds_clone_wrapper(void *arg);
981
982 /*
983 * clone a task which switches to @task's namespace and writes '1'.
984 * over a unix sock so we can read the task's reaper's pid in our
985 * namespace
986 *
987 * Note: glibc's fork() does not respect pidns, which can lead to failed
988 * assertions inside glibc (and thus failed forks) if the child's pid in
989 * the pidns and the parent pid outside are identical. Using clone prevents
990 * this issue.
991 */
992 static void write_task_init_pid_exit(int sock, pid_t target)
993 {
994 char fnam[100];
995 pid_t pid;
996 int fd, ret;
997 size_t stack_size = sysconf(_SC_PAGESIZE);
998 void *stack = alloca(stack_size);
999
1000 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", (int)target);
1001 if (ret < 0 || ret >= sizeof(fnam))
1002 _exit(1);
1003
1004 fd = open(fnam, O_RDONLY);
1005 if (fd < 0) {
1006 perror("write_task_init_pid_exit open of ns/pid");
1007 _exit(1);
1008 }
1009 if (setns(fd, 0)) {
1010 perror("write_task_init_pid_exit setns 1");
1011 close(fd);
1012 _exit(1);
1013 }
1014 pid = clone(send_creds_clone_wrapper, stack + stack_size, SIGCHLD, &sock);
1015 if (pid < 0)
1016 _exit(1);
1017 if (pid != 0) {
1018 if (!wait_for_pid(pid))
1019 _exit(1);
1020 _exit(0);
1021 }
1022 }
1023
1024 static int send_creds_clone_wrapper(void *arg) {
1025 struct ucred cred;
1026 char v;
1027 int sock = *(int *)arg;
1028
1029 /* we are the child */
1030 cred.uid = 0;
1031 cred.gid = 0;
1032 cred.pid = 1;
1033 v = '1';
1034 if (send_creds(sock, &cred, v, true) != SEND_CREDS_OK)
1035 return 1;
1036 return 0;
1037 }
1038
1039 static pid_t get_init_pid_for_task(pid_t task)
1040 {
1041 int sock[2];
1042 pid_t pid;
1043 pid_t ret = -1;
1044 char v = '0';
1045 struct ucred cred;
1046
1047 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
1048 perror("socketpair");
1049 return -1;
1050 }
1051
1052 pid = fork();
1053 if (pid < 0)
1054 goto out;
1055 if (!pid) {
1056 close(sock[1]);
1057 write_task_init_pid_exit(sock[0], task);
1058 _exit(0);
1059 }
1060
1061 if (!recv_creds(sock[1], &cred, &v))
1062 goto out;
1063 ret = cred.pid;
1064
1065 out:
1066 close(sock[0]);
1067 close(sock[1]);
1068 if (pid > 0)
1069 wait_for_pid(pid);
1070 return ret;
1071 }
1072
1073 static pid_t lookup_initpid_in_store(pid_t qpid)
1074 {
1075 pid_t answer = 0;
1076 struct stat sb;
1077 struct pidns_init_store *e;
1078 char fnam[100];
1079
1080 snprintf(fnam, 100, "/proc/%d/ns/pid", qpid);
1081 store_lock();
1082 if (stat(fnam, &sb) < 0)
1083 goto out;
1084 e = lookup_verify_initpid(&sb);
1085 if (e) {
1086 answer = e->initpid;
1087 goto out;
1088 }
1089 answer = get_init_pid_for_task(qpid);
1090 if (answer > 0)
1091 save_initpid(&sb, answer);
1092
1093 out:
1094 /* we prune at end in case we are returning
1095 * the value we were about to return */
1096 prune_initpid_store();
1097 store_unlock();
1098 return answer;
1099 }
1100
1101 static int wait_for_pid(pid_t pid)
1102 {
1103 int status, ret;
1104
1105 if (pid <= 0)
1106 return -1;
1107
1108 again:
1109 ret = waitpid(pid, &status, 0);
1110 if (ret == -1) {
1111 if (errno == EINTR)
1112 goto again;
1113 return -1;
1114 }
1115 if (ret != pid)
1116 goto again;
1117 if (!WIFEXITED(status) || WEXITSTATUS(status) != 0)
1118 return -1;
1119 return 0;
1120 }
1121
1122
1123 /*
1124 * append pid to *src.
1125 * src: a pointer to a char* in which ot append the pid.
1126 * sz: the number of characters printed so far, minus trailing \0.
1127 * asz: the allocated size so far
1128 * pid: the pid to append
1129 */
1130 static void must_strcat_pid(char **src, size_t *sz, size_t *asz, pid_t pid)
1131 {
1132 char tmp[30];
1133
1134 int tmplen = sprintf(tmp, "%d\n", (int)pid);
1135
1136 if (!*src || tmplen + *sz + 1 >= *asz) {
1137 char *tmp;
1138 do {
1139 tmp = realloc(*src, *asz + BUF_RESERVE_SIZE);
1140 } while (!tmp);
1141 *src = tmp;
1142 *asz += BUF_RESERVE_SIZE;
1143 }
1144 memcpy((*src) +*sz , tmp, tmplen+1); /* include the \0 */
1145 *sz += tmplen;
1146 }
1147
1148 /*
1149 * Given a open file * to /proc/pid/{u,g}id_map, and an id
1150 * valid in the caller's namespace, return the id mapped into
1151 * pid's namespace.
1152 * Returns the mapped id, or -1 on error.
1153 */
1154 unsigned int
1155 convert_id_to_ns(FILE *idfile, unsigned int in_id)
1156 {
1157 unsigned int nsuid, // base id for a range in the idfile's namespace
1158 hostuid, // base id for a range in the caller's namespace
1159 count; // number of ids in this range
1160 char line[400];
1161 int ret;
1162
1163 fseek(idfile, 0L, SEEK_SET);
1164 while (fgets(line, 400, idfile)) {
1165 ret = sscanf(line, "%u %u %u\n", &nsuid, &hostuid, &count);
1166 if (ret != 3)
1167 continue;
1168 if (hostuid + count < hostuid || nsuid + count < nsuid) {
1169 /*
1170 * uids wrapped around - unexpected as this is a procfile,
1171 * so just bail.
1172 */
1173 fprintf(stderr, "pid wrapparound at entry %u %u %u in %s\n",
1174 nsuid, hostuid, count, line);
1175 return -1;
1176 }
1177 if (hostuid <= in_id && hostuid+count > in_id) {
1178 /*
1179 * now since hostuid <= in_id < hostuid+count, and
1180 * hostuid+count and nsuid+count do not wrap around,
1181 * we know that nsuid+(in_id-hostuid) which must be
1182 * less that nsuid+(count) must not wrap around
1183 */
1184 return (in_id - hostuid) + nsuid;
1185 }
1186 }
1187
1188 // no answer found
1189 return -1;
1190 }
1191
1192 /*
1193 * for is_privileged_over,
1194 * specify whether we require the calling uid to be root in his
1195 * namespace
1196 */
1197 #define NS_ROOT_REQD true
1198 #define NS_ROOT_OPT false
1199
1200 #define PROCLEN 100
1201
1202 static bool is_privileged_over(pid_t pid, uid_t uid, uid_t victim, bool req_ns_root)
1203 {
1204 char fpath[PROCLEN];
1205 int ret;
1206 bool answer = false;
1207 uid_t nsuid;
1208
1209 if (victim == -1 || uid == -1)
1210 return false;
1211
1212 /*
1213 * If the request is one not requiring root in the namespace,
1214 * then having the same uid suffices. (i.e. uid 1000 has write
1215 * access to files owned by uid 1000
1216 */
1217 if (!req_ns_root && uid == victim)
1218 return true;
1219
1220 ret = snprintf(fpath, PROCLEN, "/proc/%d/uid_map", pid);
1221 if (ret < 0 || ret >= PROCLEN)
1222 return false;
1223 FILE *f = fopen(fpath, "r");
1224 if (!f)
1225 return false;
1226
1227 /* if caller's not root in his namespace, reject */
1228 nsuid = convert_id_to_ns(f, uid);
1229 if (nsuid)
1230 goto out;
1231
1232 /*
1233 * If victim is not mapped into caller's ns, reject.
1234 * XXX I'm not sure this check is needed given that fuse
1235 * will be sending requests where the vfs has converted
1236 */
1237 nsuid = convert_id_to_ns(f, victim);
1238 if (nsuid == -1)
1239 goto out;
1240
1241 answer = true;
1242
1243 out:
1244 fclose(f);
1245 return answer;
1246 }
1247
1248 static bool perms_include(int fmode, mode_t req_mode)
1249 {
1250 mode_t r;
1251
1252 switch (req_mode & O_ACCMODE) {
1253 case O_RDONLY:
1254 r = S_IROTH;
1255 break;
1256 case O_WRONLY:
1257 r = S_IWOTH;
1258 break;
1259 case O_RDWR:
1260 r = S_IROTH | S_IWOTH;
1261 break;
1262 default:
1263 return false;
1264 }
1265 return ((fmode & r) == r);
1266 }
1267
1268
1269 /*
1270 * taskcg is a/b/c
1271 * querycg is /a/b/c/d/e
1272 * we return 'd'
1273 */
1274 static char *get_next_cgroup_dir(const char *taskcg, const char *querycg)
1275 {
1276 char *start, *end;
1277
1278 if (strlen(taskcg) <= strlen(querycg)) {
1279 fprintf(stderr, "%s: I was fed bad input\n", __func__);
1280 return NULL;
1281 }
1282
1283 if ((strcmp(querycg, "/") == 0) || (strcmp(querycg, "./") == 0))
1284 start = strdup(taskcg + 1);
1285 else
1286 start = strdup(taskcg + strlen(querycg) + 1);
1287 if (!start)
1288 return NULL;
1289 end = strchr(start, '/');
1290 if (end)
1291 *end = '\0';
1292 return start;
1293 }
1294
1295 static void stripnewline(char *x)
1296 {
1297 size_t l = strlen(x);
1298 if (l && x[l-1] == '\n')
1299 x[l-1] = '\0';
1300 }
1301
1302 static char *get_pid_cgroup(pid_t pid, const char *contrl)
1303 {
1304 int cfd;
1305 char fnam[PROCLEN];
1306 FILE *f;
1307 char *answer = NULL;
1308 char *line = NULL;
1309 size_t len = 0;
1310 int ret;
1311 const char *h = find_mounted_controller(contrl, &cfd);
1312 if (!h)
1313 return NULL;
1314
1315 ret = snprintf(fnam, PROCLEN, "/proc/%d/cgroup", pid);
1316 if (ret < 0 || ret >= PROCLEN)
1317 return NULL;
1318 if (!(f = fopen(fnam, "r")))
1319 return NULL;
1320
1321 while (getline(&line, &len, f) != -1) {
1322 char *c1, *c2;
1323 if (!line[0])
1324 continue;
1325 c1 = strchr(line, ':');
1326 if (!c1)
1327 goto out;
1328 c1++;
1329 c2 = strchr(c1, ':');
1330 if (!c2)
1331 goto out;
1332 *c2 = '\0';
1333 if (strcmp(c1, h) != 0)
1334 continue;
1335 c2++;
1336 stripnewline(c2);
1337 do {
1338 answer = strdup(c2);
1339 } while (!answer);
1340 break;
1341 }
1342
1343 out:
1344 fclose(f);
1345 free(line);
1346 return answer;
1347 }
1348
1349 /*
1350 * check whether a fuse context may access a cgroup dir or file
1351 *
1352 * If file is not null, it is a cgroup file to check under cg.
1353 * If file is null, then we are checking perms on cg itself.
1354 *
1355 * For files we can check the mode of the list_keys result.
1356 * For cgroups, we must make assumptions based on the files under the
1357 * cgroup, because cgmanager doesn't tell us ownership/perms of cgroups
1358 * yet.
1359 */
1360 static bool fc_may_access(struct fuse_context *fc, const char *contrl, const char *cg, const char *file, mode_t mode)
1361 {
1362 struct cgfs_files *k = NULL;
1363 bool ret = false;
1364
1365 k = cgfs_get_key(contrl, cg, file);
1366 if (!k)
1367 return false;
1368
1369 if (is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_OPT)) {
1370 if (perms_include(k->mode >> 6, mode)) {
1371 ret = true;
1372 goto out;
1373 }
1374 }
1375 if (fc->gid == k->gid) {
1376 if (perms_include(k->mode >> 3, mode)) {
1377 ret = true;
1378 goto out;
1379 }
1380 }
1381 ret = perms_include(k->mode, mode);
1382
1383 out:
1384 free_key(k);
1385 return ret;
1386 }
1387
1388 #define INITSCOPE "/init.scope"
1389 static void prune_init_slice(char *cg)
1390 {
1391 char *point;
1392 size_t cg_len = strlen(cg), initscope_len = strlen(INITSCOPE);
1393
1394 if (cg_len < initscope_len)
1395 return;
1396
1397 point = cg + cg_len - initscope_len;
1398 if (strcmp(point, INITSCOPE) == 0) {
1399 if (point == cg)
1400 *(point+1) = '\0';
1401 else
1402 *point = '\0';
1403 }
1404 }
1405
1406 /*
1407 * If pid is in /a/b/c/d, he may only act on things under cg=/a/b/c/d.
1408 * If pid is in /a, he may act on /a/b, but not on /b.
1409 * if the answer is false and nextcg is not NULL, then *nextcg will point
1410 * to a string containing the next cgroup directory under cg, which must be
1411 * freed by the caller.
1412 */
1413 static bool caller_is_in_ancestor(pid_t pid, const char *contrl, const char *cg, char **nextcg)
1414 {
1415 bool answer = false;
1416 char *c2 = get_pid_cgroup(pid, contrl);
1417 char *linecmp;
1418
1419 if (!c2)
1420 return false;
1421 prune_init_slice(c2);
1422
1423 /*
1424 * callers pass in '/' or './' (openat()) for root cgroup, otherwise
1425 * they pass in a cgroup without leading '/'
1426 *
1427 * The original line here was:
1428 * linecmp = *cg == '/' ? c2 : c2+1;
1429 * TODO: I'm not sure why you'd want to increment when *cg != '/'?
1430 * Serge, do you know?
1431 */
1432 if (*cg == '/' || !strncmp(cg, "./", 2))
1433 linecmp = c2;
1434 else
1435 linecmp = c2 + 1;
1436 if (strncmp(linecmp, cg, strlen(linecmp)) != 0) {
1437 if (nextcg) {
1438 *nextcg = get_next_cgroup_dir(linecmp, cg);
1439 }
1440 goto out;
1441 }
1442 answer = true;
1443
1444 out:
1445 free(c2);
1446 return answer;
1447 }
1448
1449 /*
1450 * If pid is in /a/b/c, he may see that /a exists, but not /b or /a/c.
1451 */
1452 static bool caller_may_see_dir(pid_t pid, const char *contrl, const char *cg)
1453 {
1454 bool answer = false;
1455 char *c2, *task_cg;
1456 size_t target_len, task_len;
1457
1458 if (strcmp(cg, "/") == 0 || strcmp(cg, "./") == 0)
1459 return true;
1460
1461 c2 = get_pid_cgroup(pid, contrl);
1462 if (!c2)
1463 return false;
1464 prune_init_slice(c2);
1465
1466 task_cg = c2 + 1;
1467 target_len = strlen(cg);
1468 task_len = strlen(task_cg);
1469 if (task_len == 0) {
1470 /* Task is in the root cg, it can see everything. This case is
1471 * not handled by the strmcps below, since they test for the
1472 * last /, but that is the first / that we've chopped off
1473 * above.
1474 */
1475 answer = true;
1476 goto out;
1477 }
1478 if (strcmp(cg, task_cg) == 0) {
1479 answer = true;
1480 goto out;
1481 }
1482 if (target_len < task_len) {
1483 /* looking up a parent dir */
1484 if (strncmp(task_cg, cg, target_len) == 0 && task_cg[target_len] == '/')
1485 answer = true;
1486 goto out;
1487 }
1488 if (target_len > task_len) {
1489 /* looking up a child dir */
1490 if (strncmp(task_cg, cg, task_len) == 0 && cg[task_len] == '/')
1491 answer = true;
1492 goto out;
1493 }
1494
1495 out:
1496 free(c2);
1497 return answer;
1498 }
1499
1500 /*
1501 * given /cgroup/freezer/a/b, return "freezer".
1502 * the returned char* should NOT be freed.
1503 */
1504 static char *pick_controller_from_path(struct fuse_context *fc, const char *path)
1505 {
1506 const char *p1;
1507 char *contr, *slash;
1508
1509 if (strlen(path) < 9)
1510 return NULL;
1511 if (*(path+7) != '/')
1512 return NULL;
1513 p1 = path+8;
1514 contr = strdupa(p1);
1515 if (!contr)
1516 return NULL;
1517 slash = strstr(contr, "/");
1518 if (slash)
1519 *slash = '\0';
1520
1521 int i;
1522 for (i = 0; i < num_hierarchies; i++) {
1523 if (hierarchies[i] && strcmp(hierarchies[i], contr) == 0)
1524 return hierarchies[i];
1525 }
1526 return NULL;
1527 }
1528
1529 /*
1530 * Find the start of cgroup in /cgroup/controller/the/cgroup/path
1531 * Note that the returned value may include files (keynames) etc
1532 */
1533 static const char *find_cgroup_in_path(const char *path)
1534 {
1535 const char *p1;
1536
1537 if (strlen(path) < 9)
1538 return NULL;
1539 p1 = strstr(path+8, "/");
1540 if (!p1)
1541 return NULL;
1542 return p1+1;
1543 }
1544
1545 /*
1546 * split the last path element from the path in @cg.
1547 * @dir is newly allocated and should be freed, @last not
1548 */
1549 static void get_cgdir_and_path(const char *cg, char **dir, char **last)
1550 {
1551 char *p;
1552
1553 do {
1554 *dir = strdup(cg);
1555 } while (!*dir);
1556 *last = strrchr(cg, '/');
1557 if (!*last) {
1558 *last = NULL;
1559 return;
1560 }
1561 p = strrchr(*dir, '/');
1562 *p = '\0';
1563 }
1564
1565 /*
1566 * FUSE ops for /cgroup
1567 */
1568
1569 int cg_getattr(const char *path, struct stat *sb)
1570 {
1571 struct timespec now;
1572 struct fuse_context *fc = fuse_get_context();
1573 char * cgdir = NULL;
1574 char *last = NULL, *path1, *path2;
1575 struct cgfs_files *k = NULL;
1576 const char *cgroup;
1577 const char *controller = NULL;
1578 int ret = -ENOENT;
1579
1580
1581 if (!fc)
1582 return -EIO;
1583
1584 memset(sb, 0, sizeof(struct stat));
1585
1586 if (clock_gettime(CLOCK_REALTIME, &now) < 0)
1587 return -EINVAL;
1588
1589 sb->st_uid = sb->st_gid = 0;
1590 sb->st_atim = sb->st_mtim = sb->st_ctim = now;
1591 sb->st_size = 0;
1592
1593 if (strcmp(path, "/cgroup") == 0) {
1594 sb->st_mode = S_IFDIR | 00755;
1595 sb->st_nlink = 2;
1596 return 0;
1597 }
1598
1599 controller = pick_controller_from_path(fc, path);
1600 if (!controller)
1601 return -EIO;
1602 cgroup = find_cgroup_in_path(path);
1603 if (!cgroup) {
1604 /* this is just /cgroup/controller, return it as a dir */
1605 sb->st_mode = S_IFDIR | 00755;
1606 sb->st_nlink = 2;
1607 return 0;
1608 }
1609
1610 get_cgdir_and_path(cgroup, &cgdir, &last);
1611
1612 if (!last) {
1613 path1 = "/";
1614 path2 = cgdir;
1615 } else {
1616 path1 = cgdir;
1617 path2 = last;
1618 }
1619
1620 pid_t initpid = lookup_initpid_in_store(fc->pid);
1621 if (initpid <= 0)
1622 initpid = fc->pid;
1623 /* check that cgcopy is either a child cgroup of cgdir, or listed in its keys.
1624 * Then check that caller's cgroup is under path if last is a child
1625 * cgroup, or cgdir if last is a file */
1626
1627 if (is_child_cgroup(controller, path1, path2)) {
1628 if (!caller_may_see_dir(initpid, controller, cgroup)) {
1629 ret = -ENOENT;
1630 goto out;
1631 }
1632 if (!caller_is_in_ancestor(initpid, controller, cgroup, NULL)) {
1633 /* this is just /cgroup/controller, return it as a dir */
1634 sb->st_mode = S_IFDIR | 00555;
1635 sb->st_nlink = 2;
1636 ret = 0;
1637 goto out;
1638 }
1639 if (!fc_may_access(fc, controller, cgroup, NULL, O_RDONLY)) {
1640 ret = -EACCES;
1641 goto out;
1642 }
1643
1644 // get uid, gid, from '/tasks' file and make up a mode
1645 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
1646 sb->st_mode = S_IFDIR | 00755;
1647 k = cgfs_get_key(controller, cgroup, NULL);
1648 if (!k) {
1649 sb->st_uid = sb->st_gid = 0;
1650 } else {
1651 sb->st_uid = k->uid;
1652 sb->st_gid = k->gid;
1653 }
1654 free_key(k);
1655 sb->st_nlink = 2;
1656 ret = 0;
1657 goto out;
1658 }
1659
1660 if ((k = cgfs_get_key(controller, path1, path2)) != NULL) {
1661 sb->st_mode = S_IFREG | k->mode;
1662 sb->st_nlink = 1;
1663 sb->st_uid = k->uid;
1664 sb->st_gid = k->gid;
1665 sb->st_size = 0;
1666 free_key(k);
1667 if (!caller_is_in_ancestor(initpid, controller, path1, NULL)) {
1668 ret = -ENOENT;
1669 goto out;
1670 }
1671 if (!fc_may_access(fc, controller, path1, path2, O_RDONLY)) {
1672 ret = -EACCES;
1673 goto out;
1674 }
1675
1676 ret = 0;
1677 }
1678
1679 out:
1680 free(cgdir);
1681 return ret;
1682 }
1683
1684 int cg_opendir(const char *path, struct fuse_file_info *fi)
1685 {
1686 struct fuse_context *fc = fuse_get_context();
1687 const char *cgroup;
1688 struct file_info *dir_info;
1689 char *controller = NULL;
1690
1691 if (!fc)
1692 return -EIO;
1693
1694 if (strcmp(path, "/cgroup") == 0) {
1695 cgroup = NULL;
1696 controller = NULL;
1697 } else {
1698 // return list of keys for the controller, and list of child cgroups
1699 controller = pick_controller_from_path(fc, path);
1700 if (!controller)
1701 return -EIO;
1702
1703 cgroup = find_cgroup_in_path(path);
1704 if (!cgroup) {
1705 /* this is just /cgroup/controller, return its contents */
1706 cgroup = "/";
1707 }
1708 }
1709
1710 pid_t initpid = lookup_initpid_in_store(fc->pid);
1711 if (initpid <= 0)
1712 initpid = fc->pid;
1713 if (cgroup) {
1714 if (!caller_may_see_dir(initpid, controller, cgroup))
1715 return -ENOENT;
1716 if (!fc_may_access(fc, controller, cgroup, NULL, O_RDONLY))
1717 return -EACCES;
1718 }
1719
1720 /* we'll free this at cg_releasedir */
1721 dir_info = malloc(sizeof(*dir_info));
1722 if (!dir_info)
1723 return -ENOMEM;
1724 dir_info->controller = must_copy_string(controller);
1725 dir_info->cgroup = must_copy_string(cgroup);
1726 dir_info->type = LXC_TYPE_CGDIR;
1727 dir_info->buf = NULL;
1728 dir_info->file = NULL;
1729 dir_info->buflen = 0;
1730
1731 fi->fh = (unsigned long)dir_info;
1732 return 0;
1733 }
1734
1735 int cg_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset,
1736 struct fuse_file_info *fi)
1737 {
1738 struct file_info *d = (struct file_info *)fi->fh;
1739 struct cgfs_files **list = NULL;
1740 int i, ret;
1741 char *nextcg = NULL;
1742 struct fuse_context *fc = fuse_get_context();
1743 char **clist = NULL;
1744
1745 if (filler(buf, ".", NULL, 0) != 0 || filler(buf, "..", NULL, 0) != 0)
1746 return -EIO;
1747
1748 if (d->type != LXC_TYPE_CGDIR) {
1749 fprintf(stderr, "Internal error: file cache info used in readdir\n");
1750 return -EIO;
1751 }
1752 if (!d->cgroup && !d->controller) {
1753 // ls /var/lib/lxcfs/cgroup - just show list of controllers
1754 int i;
1755
1756 for (i = 0; i < num_hierarchies; i++) {
1757 if (hierarchies[i] && filler(buf, hierarchies[i], NULL, 0) != 0) {
1758 return -EIO;
1759 }
1760 }
1761 return 0;
1762 }
1763
1764 if (!cgfs_list_keys(d->controller, d->cgroup, &list)) {
1765 // not a valid cgroup
1766 ret = -EINVAL;
1767 goto out;
1768 }
1769
1770 pid_t initpid = lookup_initpid_in_store(fc->pid);
1771 if (initpid <= 0)
1772 initpid = fc->pid;
1773 if (!caller_is_in_ancestor(initpid, d->controller, d->cgroup, &nextcg)) {
1774 if (nextcg) {
1775 ret = filler(buf, nextcg, NULL, 0);
1776 free(nextcg);
1777 if (ret != 0) {
1778 ret = -EIO;
1779 goto out;
1780 }
1781 }
1782 ret = 0;
1783 goto out;
1784 }
1785
1786 for (i = 0; list[i]; i++) {
1787 if (filler(buf, list[i]->name, NULL, 0) != 0) {
1788 ret = -EIO;
1789 goto out;
1790 }
1791 }
1792
1793 // now get the list of child cgroups
1794
1795 if (!cgfs_list_children(d->controller, d->cgroup, &clist)) {
1796 ret = 0;
1797 goto out;
1798 }
1799 if (clist) {
1800 for (i = 0; clist[i]; i++) {
1801 if (filler(buf, clist[i], NULL, 0) != 0) {
1802 ret = -EIO;
1803 goto out;
1804 }
1805 }
1806 }
1807 ret = 0;
1808
1809 out:
1810 free_keys(list);
1811 if (clist) {
1812 for (i = 0; clist[i]; i++)
1813 free(clist[i]);
1814 free(clist);
1815 }
1816 return ret;
1817 }
1818
1819 static void do_release_file_info(struct fuse_file_info *fi)
1820 {
1821 struct file_info *f = (struct file_info *)fi->fh;
1822
1823 if (!f)
1824 return;
1825
1826 fi->fh = 0;
1827
1828 free(f->controller);
1829 f->controller = NULL;
1830 free(f->cgroup);
1831 f->cgroup = NULL;
1832 free(f->file);
1833 f->file = NULL;
1834 free(f->buf);
1835 f->buf = NULL;
1836 free(f);
1837 }
1838
1839 int cg_releasedir(const char *path, struct fuse_file_info *fi)
1840 {
1841 do_release_file_info(fi);
1842 return 0;
1843 }
1844
1845 int cg_open(const char *path, struct fuse_file_info *fi)
1846 {
1847 const char *cgroup;
1848 char *last = NULL, *path1, *path2, * cgdir = NULL, *controller;
1849 struct cgfs_files *k = NULL;
1850 struct file_info *file_info;
1851 struct fuse_context *fc = fuse_get_context();
1852 int ret;
1853
1854 if (!fc)
1855 return -EIO;
1856
1857 controller = pick_controller_from_path(fc, path);
1858 if (!controller)
1859 return -EIO;
1860 cgroup = find_cgroup_in_path(path);
1861 if (!cgroup)
1862 return -EINVAL;
1863
1864 get_cgdir_and_path(cgroup, &cgdir, &last);
1865 if (!last) {
1866 path1 = "/";
1867 path2 = cgdir;
1868 } else {
1869 path1 = cgdir;
1870 path2 = last;
1871 }
1872
1873 k = cgfs_get_key(controller, path1, path2);
1874 if (!k) {
1875 ret = -EINVAL;
1876 goto out;
1877 }
1878 free_key(k);
1879
1880 pid_t initpid = lookup_initpid_in_store(fc->pid);
1881 if (initpid <= 0)
1882 initpid = fc->pid;
1883 if (!caller_may_see_dir(initpid, controller, path1)) {
1884 ret = -ENOENT;
1885 goto out;
1886 }
1887 if (!fc_may_access(fc, controller, path1, path2, fi->flags)) {
1888 ret = -EACCES;
1889 goto out;
1890 }
1891
1892 /* we'll free this at cg_release */
1893 file_info = malloc(sizeof(*file_info));
1894 if (!file_info) {
1895 ret = -ENOMEM;
1896 goto out;
1897 }
1898 file_info->controller = must_copy_string(controller);
1899 file_info->cgroup = must_copy_string(path1);
1900 file_info->file = must_copy_string(path2);
1901 file_info->type = LXC_TYPE_CGFILE;
1902 file_info->buf = NULL;
1903 file_info->buflen = 0;
1904
1905 fi->fh = (unsigned long)file_info;
1906 ret = 0;
1907
1908 out:
1909 free(cgdir);
1910 return ret;
1911 }
1912
1913 int cg_access(const char *path, int mode)
1914 {
1915 int ret;
1916 const char *cgroup;
1917 char *path1, *path2, *controller;
1918 char *last = NULL, *cgdir = NULL;
1919 struct cgfs_files *k = NULL;
1920 struct fuse_context *fc = fuse_get_context();
1921
1922 if (strcmp(path, "/cgroup") == 0) {
1923 if ((mode & W_OK) == 0)
1924 return -EACCES;
1925 return 0;
1926 }
1927
1928 if (!fc)
1929 return -EIO;
1930
1931 controller = pick_controller_from_path(fc, path);
1932 if (!controller)
1933 return -EIO;
1934 cgroup = find_cgroup_in_path(path);
1935 if (!cgroup) {
1936 // access("/sys/fs/cgroup/systemd", mode) - rx allowed, w not
1937 if ((mode & W_OK) == 0)
1938 return 0;
1939 return -EACCES;
1940 }
1941
1942 get_cgdir_and_path(cgroup, &cgdir, &last);
1943 if (!last) {
1944 path1 = "/";
1945 path2 = cgdir;
1946 } else {
1947 path1 = cgdir;
1948 path2 = last;
1949 }
1950
1951 k = cgfs_get_key(controller, path1, path2);
1952 if (!k) {
1953 if ((mode & W_OK) == 0)
1954 ret = 0;
1955 else
1956 ret = -EACCES;
1957 goto out;
1958 }
1959 free_key(k);
1960
1961 pid_t initpid = lookup_initpid_in_store(fc->pid);
1962 if (initpid <= 0)
1963 initpid = fc->pid;
1964 if (!caller_may_see_dir(initpid, controller, path1)) {
1965 ret = -ENOENT;
1966 goto out;
1967 }
1968 if (!fc_may_access(fc, controller, path1, path2, mode)) {
1969 ret = -EACCES;
1970 goto out;
1971 }
1972
1973 ret = 0;
1974
1975 out:
1976 free(cgdir);
1977 return ret;
1978 }
1979
1980 int cg_release(const char *path, struct fuse_file_info *fi)
1981 {
1982 do_release_file_info(fi);
1983 return 0;
1984 }
1985
1986 #define POLLIN_SET ( EPOLLIN | EPOLLHUP | EPOLLRDHUP )
1987
1988 static bool wait_for_sock(int sock, int timeout)
1989 {
1990 struct epoll_event ev;
1991 int epfd, ret, now, starttime, deltatime, saved_errno;
1992
1993 if ((starttime = time(NULL)) < 0)
1994 return false;
1995
1996 if ((epfd = epoll_create(1)) < 0) {
1997 fprintf(stderr, "Failed to create epoll socket: %m\n");
1998 return false;
1999 }
2000
2001 ev.events = POLLIN_SET;
2002 ev.data.fd = sock;
2003 if (epoll_ctl(epfd, EPOLL_CTL_ADD, sock, &ev) < 0) {
2004 fprintf(stderr, "Failed adding socket to epoll: %m\n");
2005 close(epfd);
2006 return false;
2007 }
2008
2009 again:
2010 if ((now = time(NULL)) < 0) {
2011 close(epfd);
2012 return false;
2013 }
2014
2015 deltatime = (starttime + timeout) - now;
2016 if (deltatime < 0) { // timeout
2017 errno = 0;
2018 close(epfd);
2019 return false;
2020 }
2021 ret = epoll_wait(epfd, &ev, 1, 1000*deltatime + 1);
2022 if (ret < 0 && errno == EINTR)
2023 goto again;
2024 saved_errno = errno;
2025 close(epfd);
2026
2027 if (ret <= 0) {
2028 errno = saved_errno;
2029 return false;
2030 }
2031 return true;
2032 }
2033
2034 static int msgrecv(int sockfd, void *buf, size_t len)
2035 {
2036 if (!wait_for_sock(sockfd, 2))
2037 return -1;
2038 return recv(sockfd, buf, len, MSG_DONTWAIT);
2039 }
2040
2041 static int send_creds(int sock, struct ucred *cred, char v, bool pingfirst)
2042 {
2043 struct msghdr msg = { 0 };
2044 struct iovec iov;
2045 struct cmsghdr *cmsg;
2046 char cmsgbuf[CMSG_SPACE(sizeof(*cred))];
2047 char buf[1];
2048 buf[0] = 'p';
2049
2050 if (pingfirst) {
2051 if (msgrecv(sock, buf, 1) != 1) {
2052 fprintf(stderr, "%s: Error getting reply from server over socketpair\n",
2053 __func__);
2054 return SEND_CREDS_FAIL;
2055 }
2056 }
2057
2058 msg.msg_control = cmsgbuf;
2059 msg.msg_controllen = sizeof(cmsgbuf);
2060
2061 cmsg = CMSG_FIRSTHDR(&msg);
2062 cmsg->cmsg_len = CMSG_LEN(sizeof(struct ucred));
2063 cmsg->cmsg_level = SOL_SOCKET;
2064 cmsg->cmsg_type = SCM_CREDENTIALS;
2065 memcpy(CMSG_DATA(cmsg), cred, sizeof(*cred));
2066
2067 msg.msg_name = NULL;
2068 msg.msg_namelen = 0;
2069
2070 buf[0] = v;
2071 iov.iov_base = buf;
2072 iov.iov_len = sizeof(buf);
2073 msg.msg_iov = &iov;
2074 msg.msg_iovlen = 1;
2075
2076 if (sendmsg(sock, &msg, 0) < 0) {
2077 fprintf(stderr, "%s: failed at sendmsg: %s\n", __func__,
2078 strerror(errno));
2079 if (errno == 3)
2080 return SEND_CREDS_NOTSK;
2081 return SEND_CREDS_FAIL;
2082 }
2083
2084 return SEND_CREDS_OK;
2085 }
2086
2087 static bool recv_creds(int sock, struct ucred *cred, char *v)
2088 {
2089 struct msghdr msg = { 0 };
2090 struct iovec iov;
2091 struct cmsghdr *cmsg;
2092 char cmsgbuf[CMSG_SPACE(sizeof(*cred))];
2093 char buf[1];
2094 int ret;
2095 int optval = 1;
2096
2097 *v = '1';
2098
2099 cred->pid = -1;
2100 cred->uid = -1;
2101 cred->gid = -1;
2102
2103 if (setsockopt(sock, SOL_SOCKET, SO_PASSCRED, &optval, sizeof(optval)) == -1) {
2104 fprintf(stderr, "Failed to set passcred: %s\n", strerror(errno));
2105 return false;
2106 }
2107 buf[0] = '1';
2108 if (write(sock, buf, 1) != 1) {
2109 fprintf(stderr, "Failed to start write on scm fd: %s\n", strerror(errno));
2110 return false;
2111 }
2112
2113 msg.msg_name = NULL;
2114 msg.msg_namelen = 0;
2115 msg.msg_control = cmsgbuf;
2116 msg.msg_controllen = sizeof(cmsgbuf);
2117
2118 iov.iov_base = buf;
2119 iov.iov_len = sizeof(buf);
2120 msg.msg_iov = &iov;
2121 msg.msg_iovlen = 1;
2122
2123 if (!wait_for_sock(sock, 2)) {
2124 fprintf(stderr, "Timed out waiting for scm_cred: %s\n",
2125 strerror(errno));
2126 return false;
2127 }
2128 ret = recvmsg(sock, &msg, MSG_DONTWAIT);
2129 if (ret < 0) {
2130 fprintf(stderr, "Failed to receive scm_cred: %s\n",
2131 strerror(errno));
2132 return false;
2133 }
2134
2135 cmsg = CMSG_FIRSTHDR(&msg);
2136
2137 if (cmsg && cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred)) &&
2138 cmsg->cmsg_level == SOL_SOCKET &&
2139 cmsg->cmsg_type == SCM_CREDENTIALS) {
2140 memcpy(cred, CMSG_DATA(cmsg), sizeof(*cred));
2141 }
2142 *v = buf[0];
2143
2144 return true;
2145 }
2146
2147 struct pid_ns_clone_args {
2148 int *cpipe;
2149 int sock;
2150 pid_t tpid;
2151 int (*wrapped) (int, pid_t); // pid_from_ns or pid_to_ns
2152 };
2153
2154 /*
2155 * pid_ns_clone_wrapper - wraps pid_to_ns or pid_from_ns for usage
2156 * with clone(). This simply writes '1' as ACK back to the parent
2157 * before calling the actual wrapped function.
2158 */
2159 static int pid_ns_clone_wrapper(void *arg) {
2160 struct pid_ns_clone_args* args = (struct pid_ns_clone_args *) arg;
2161 char b = '1';
2162
2163 close(args->cpipe[0]);
2164 if (write(args->cpipe[1], &b, sizeof(char)) < 0) {
2165 fprintf(stderr, "%s (child): error on write: %s\n",
2166 __func__, strerror(errno));
2167 }
2168 close(args->cpipe[1]);
2169 return args->wrapped(args->sock, args->tpid);
2170 }
2171
2172 /*
2173 * pid_to_ns - reads pids from a ucred over a socket, then writes the
2174 * int value back over the socket. This shifts the pid from the
2175 * sender's pidns into tpid's pidns.
2176 */
2177 static int pid_to_ns(int sock, pid_t tpid)
2178 {
2179 char v = '0';
2180 struct ucred cred;
2181
2182 while (recv_creds(sock, &cred, &v)) {
2183 if (v == '1')
2184 return 0;
2185 if (write(sock, &cred.pid, sizeof(pid_t)) != sizeof(pid_t))
2186 return 1;
2187 }
2188 return 0;
2189 }
2190
2191
2192 /*
2193 * pid_to_ns_wrapper: when you setns into a pidns, you yourself remain
2194 * in your old pidns. Only children which you clone will be in the target
2195 * pidns. So the pid_to_ns_wrapper does the setns, then clones a child to
2196 * actually convert pids.
2197 *
2198 * Note: glibc's fork() does not respect pidns, which can lead to failed
2199 * assertions inside glibc (and thus failed forks) if the child's pid in
2200 * the pidns and the parent pid outside are identical. Using clone prevents
2201 * this issue.
2202 */
2203 static void pid_to_ns_wrapper(int sock, pid_t tpid)
2204 {
2205 int newnsfd = -1, ret, cpipe[2];
2206 char fnam[100];
2207 pid_t cpid;
2208 char v;
2209
2210 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", tpid);
2211 if (ret < 0 || ret >= sizeof(fnam))
2212 _exit(1);
2213 newnsfd = open(fnam, O_RDONLY);
2214 if (newnsfd < 0)
2215 _exit(1);
2216 if (setns(newnsfd, 0) < 0)
2217 _exit(1);
2218 close(newnsfd);
2219
2220 if (pipe(cpipe) < 0)
2221 _exit(1);
2222
2223 struct pid_ns_clone_args args = {
2224 .cpipe = cpipe,
2225 .sock = sock,
2226 .tpid = tpid,
2227 .wrapped = &pid_to_ns
2228 };
2229 size_t stack_size = sysconf(_SC_PAGESIZE);
2230 void *stack = alloca(stack_size);
2231
2232 cpid = clone(pid_ns_clone_wrapper, stack + stack_size, SIGCHLD, &args);
2233 if (cpid < 0)
2234 _exit(1);
2235
2236 // give the child 1 second to be done forking and
2237 // write its ack
2238 if (!wait_for_sock(cpipe[0], 1))
2239 _exit(1);
2240 ret = read(cpipe[0], &v, 1);
2241 if (ret != sizeof(char) || v != '1')
2242 _exit(1);
2243
2244 if (!wait_for_pid(cpid))
2245 _exit(1);
2246 _exit(0);
2247 }
2248
2249 /*
2250 * To read cgroup files with a particular pid, we will setns into the child
2251 * pidns, open a pipe, fork a child - which will be the first to really be in
2252 * the child ns - which does the cgfs_get_value and writes the data to the pipe.
2253 */
2254 bool do_read_pids(pid_t tpid, const char *contrl, const char *cg, const char *file, char **d)
2255 {
2256 int sock[2] = {-1, -1};
2257 char *tmpdata = NULL;
2258 int ret;
2259 pid_t qpid, cpid = -1;
2260 bool answer = false;
2261 char v = '0';
2262 struct ucred cred;
2263 size_t sz = 0, asz = 0;
2264
2265 if (!cgfs_get_value(contrl, cg, file, &tmpdata))
2266 return false;
2267
2268 /*
2269 * Now we read the pids from returned data one by one, pass
2270 * them into a child in the target namespace, read back the
2271 * translated pids, and put them into our to-return data
2272 */
2273
2274 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
2275 perror("socketpair");
2276 free(tmpdata);
2277 return false;
2278 }
2279
2280 cpid = fork();
2281 if (cpid == -1)
2282 goto out;
2283
2284 if (!cpid) // child - exits when done
2285 pid_to_ns_wrapper(sock[1], tpid);
2286
2287 char *ptr = tmpdata;
2288 cred.uid = 0;
2289 cred.gid = 0;
2290 while (sscanf(ptr, "%d\n", &qpid) == 1) {
2291 cred.pid = qpid;
2292 ret = send_creds(sock[0], &cred, v, true);
2293
2294 if (ret == SEND_CREDS_NOTSK)
2295 goto next;
2296 if (ret == SEND_CREDS_FAIL)
2297 goto out;
2298
2299 // read converted results
2300 if (!wait_for_sock(sock[0], 2)) {
2301 fprintf(stderr, "%s: timed out waiting for pid from child: %s\n",
2302 __func__, strerror(errno));
2303 goto out;
2304 }
2305 if (read(sock[0], &qpid, sizeof(qpid)) != sizeof(qpid)) {
2306 fprintf(stderr, "%s: error reading pid from child: %s\n",
2307 __func__, strerror(errno));
2308 goto out;
2309 }
2310 must_strcat_pid(d, &sz, &asz, qpid);
2311 next:
2312 ptr = strchr(ptr, '\n');
2313 if (!ptr)
2314 break;
2315 ptr++;
2316 }
2317
2318 cred.pid = getpid();
2319 v = '1';
2320 if (send_creds(sock[0], &cred, v, true) != SEND_CREDS_OK) {
2321 // failed to ask child to exit
2322 fprintf(stderr, "%s: failed to ask child to exit: %s\n",
2323 __func__, strerror(errno));
2324 goto out;
2325 }
2326
2327 answer = true;
2328
2329 out:
2330 free(tmpdata);
2331 if (cpid != -1)
2332 wait_for_pid(cpid);
2333 if (sock[0] != -1) {
2334 close(sock[0]);
2335 close(sock[1]);
2336 }
2337 return answer;
2338 }
2339
2340 int cg_read(const char *path, char *buf, size_t size, off_t offset,
2341 struct fuse_file_info *fi)
2342 {
2343 struct fuse_context *fc = fuse_get_context();
2344 struct file_info *f = (struct file_info *)fi->fh;
2345 struct cgfs_files *k = NULL;
2346 char *data = NULL;
2347 int ret, s;
2348 bool r;
2349
2350 if (f->type != LXC_TYPE_CGFILE) {
2351 fprintf(stderr, "Internal error: directory cache info used in cg_read\n");
2352 return -EIO;
2353 }
2354
2355 if (offset)
2356 return 0;
2357
2358 if (!fc)
2359 return -EIO;
2360
2361 if (!f->controller)
2362 return -EINVAL;
2363
2364 if ((k = cgfs_get_key(f->controller, f->cgroup, f->file)) == NULL) {
2365 return -EINVAL;
2366 }
2367 free_key(k);
2368
2369
2370 if (!fc_may_access(fc, f->controller, f->cgroup, f->file, O_RDONLY)) {
2371 ret = -EACCES;
2372 goto out;
2373 }
2374
2375 if (strcmp(f->file, "tasks") == 0 ||
2376 strcmp(f->file, "/tasks") == 0 ||
2377 strcmp(f->file, "/cgroup.procs") == 0 ||
2378 strcmp(f->file, "cgroup.procs") == 0)
2379 // special case - we have to translate the pids
2380 r = do_read_pids(fc->pid, f->controller, f->cgroup, f->file, &data);
2381 else
2382 r = cgfs_get_value(f->controller, f->cgroup, f->file, &data);
2383
2384 if (!r) {
2385 ret = -EINVAL;
2386 goto out;
2387 }
2388
2389 if (!data) {
2390 ret = 0;
2391 goto out;
2392 }
2393 s = strlen(data);
2394 if (s > size)
2395 s = size;
2396 memcpy(buf, data, s);
2397 if (s > 0 && s < size && data[s-1] != '\n')
2398 buf[s++] = '\n';
2399
2400 ret = s;
2401
2402 out:
2403 free(data);
2404 return ret;
2405 }
2406
2407 static int pid_from_ns(int sock, pid_t tpid)
2408 {
2409 pid_t vpid;
2410 struct ucred cred;
2411 char v;
2412 int ret;
2413
2414 cred.uid = 0;
2415 cred.gid = 0;
2416 while (1) {
2417 if (!wait_for_sock(sock, 2)) {
2418 fprintf(stderr, "%s: timeout reading from parent\n", __func__);
2419 return 1;
2420 }
2421 if ((ret = read(sock, &vpid, sizeof(pid_t))) != sizeof(pid_t)) {
2422 fprintf(stderr, "%s: bad read from parent: %s\n",
2423 __func__, strerror(errno));
2424 return 1;
2425 }
2426 if (vpid == -1) // done
2427 break;
2428 v = '0';
2429 cred.pid = vpid;
2430 if (send_creds(sock, &cred, v, true) != SEND_CREDS_OK) {
2431 v = '1';
2432 cred.pid = getpid();
2433 if (send_creds(sock, &cred, v, false) != SEND_CREDS_OK)
2434 return 1;
2435 }
2436 }
2437 return 0;
2438 }
2439
2440 static void pid_from_ns_wrapper(int sock, pid_t tpid)
2441 {
2442 int newnsfd = -1, ret, cpipe[2];
2443 char fnam[100];
2444 pid_t cpid;
2445 char v;
2446
2447 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", tpid);
2448 if (ret < 0 || ret >= sizeof(fnam))
2449 _exit(1);
2450 newnsfd = open(fnam, O_RDONLY);
2451 if (newnsfd < 0)
2452 _exit(1);
2453 if (setns(newnsfd, 0) < 0)
2454 _exit(1);
2455 close(newnsfd);
2456
2457 if (pipe(cpipe) < 0)
2458 _exit(1);
2459
2460 struct pid_ns_clone_args args = {
2461 .cpipe = cpipe,
2462 .sock = sock,
2463 .tpid = tpid,
2464 .wrapped = &pid_from_ns
2465 };
2466 size_t stack_size = sysconf(_SC_PAGESIZE);
2467 void *stack = alloca(stack_size);
2468
2469 cpid = clone(pid_ns_clone_wrapper, stack + stack_size, SIGCHLD, &args);
2470 if (cpid < 0)
2471 _exit(1);
2472
2473 // give the child 1 second to be done forking and
2474 // write its ack
2475 if (!wait_for_sock(cpipe[0], 1))
2476 _exit(1);
2477 ret = read(cpipe[0], &v, 1);
2478 if (ret != sizeof(char) || v != '1')
2479 _exit(1);
2480
2481 if (!wait_for_pid(cpid))
2482 _exit(1);
2483 _exit(0);
2484 }
2485
2486 /*
2487 * Given host @uid, return the uid to which it maps in
2488 * @pid's user namespace, or -1 if none.
2489 */
2490 bool hostuid_to_ns(uid_t uid, pid_t pid, uid_t *answer)
2491 {
2492 FILE *f;
2493 char line[400];
2494
2495 sprintf(line, "/proc/%d/uid_map", pid);
2496 if ((f = fopen(line, "r")) == NULL) {
2497 return false;
2498 }
2499
2500 *answer = convert_id_to_ns(f, uid);
2501 fclose(f);
2502
2503 if (*answer == -1)
2504 return false;
2505 return true;
2506 }
2507
2508 /*
2509 * get_pid_creds: get the real uid and gid of @pid from
2510 * /proc/$$/status
2511 * (XXX should we use euid here?)
2512 */
2513 void get_pid_creds(pid_t pid, uid_t *uid, gid_t *gid)
2514 {
2515 char line[400];
2516 uid_t u;
2517 gid_t g;
2518 FILE *f;
2519
2520 *uid = -1;
2521 *gid = -1;
2522 sprintf(line, "/proc/%d/status", pid);
2523 if ((f = fopen(line, "r")) == NULL) {
2524 fprintf(stderr, "Error opening %s: %s\n", line, strerror(errno));
2525 return;
2526 }
2527 while (fgets(line, 400, f)) {
2528 if (strncmp(line, "Uid:", 4) == 0) {
2529 if (sscanf(line+4, "%u", &u) != 1) {
2530 fprintf(stderr, "bad uid line for pid %u\n", pid);
2531 fclose(f);
2532 return;
2533 }
2534 *uid = u;
2535 } else if (strncmp(line, "Gid:", 4) == 0) {
2536 if (sscanf(line+4, "%u", &g) != 1) {
2537 fprintf(stderr, "bad gid line for pid %u\n", pid);
2538 fclose(f);
2539 return;
2540 }
2541 *gid = g;
2542 }
2543 }
2544 fclose(f);
2545 }
2546
2547 /*
2548 * May the requestor @r move victim @v to a new cgroup?
2549 * This is allowed if
2550 * . they are the same task
2551 * . they are ownedy by the same uid
2552 * . @r is root on the host, or
2553 * . @v's uid is mapped into @r's where @r is root.
2554 */
2555 bool may_move_pid(pid_t r, uid_t r_uid, pid_t v)
2556 {
2557 uid_t v_uid, tmpuid;
2558 gid_t v_gid;
2559
2560 if (r == v)
2561 return true;
2562 if (r_uid == 0)
2563 return true;
2564 get_pid_creds(v, &v_uid, &v_gid);
2565 if (r_uid == v_uid)
2566 return true;
2567 if (hostuid_to_ns(r_uid, r, &tmpuid) && tmpuid == 0
2568 && hostuid_to_ns(v_uid, r, &tmpuid))
2569 return true;
2570 return false;
2571 }
2572
2573 static bool do_write_pids(pid_t tpid, uid_t tuid, const char *contrl, const char *cg,
2574 const char *file, const char *buf)
2575 {
2576 int sock[2] = {-1, -1};
2577 pid_t qpid, cpid = -1;
2578 FILE *pids_file = NULL;
2579 bool answer = false, fail = false;
2580
2581 pids_file = open_pids_file(contrl, cg);
2582 if (!pids_file)
2583 return false;
2584
2585 /*
2586 * write the pids to a socket, have helper in writer's pidns
2587 * call movepid for us
2588 */
2589 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
2590 perror("socketpair");
2591 goto out;
2592 }
2593
2594 cpid = fork();
2595 if (cpid == -1)
2596 goto out;
2597
2598 if (!cpid) { // child
2599 fclose(pids_file);
2600 pid_from_ns_wrapper(sock[1], tpid);
2601 }
2602
2603 const char *ptr = buf;
2604 while (sscanf(ptr, "%d", &qpid) == 1) {
2605 struct ucred cred;
2606 char v;
2607
2608 if (write(sock[0], &qpid, sizeof(qpid)) != sizeof(qpid)) {
2609 fprintf(stderr, "%s: error writing pid to child: %s\n",
2610 __func__, strerror(errno));
2611 goto out;
2612 }
2613
2614 if (recv_creds(sock[0], &cred, &v)) {
2615 if (v == '0') {
2616 if (!may_move_pid(tpid, tuid, cred.pid)) {
2617 fail = true;
2618 break;
2619 }
2620 if (fprintf(pids_file, "%d", (int) cred.pid) < 0)
2621 fail = true;
2622 }
2623 }
2624
2625 ptr = strchr(ptr, '\n');
2626 if (!ptr)
2627 break;
2628 ptr++;
2629 }
2630
2631 /* All good, write the value */
2632 qpid = -1;
2633 if (write(sock[0], &qpid ,sizeof(qpid)) != sizeof(qpid))
2634 fprintf(stderr, "Warning: failed to ask child to exit\n");
2635
2636 if (!fail)
2637 answer = true;
2638
2639 out:
2640 if (cpid != -1)
2641 wait_for_pid(cpid);
2642 if (sock[0] != -1) {
2643 close(sock[0]);
2644 close(sock[1]);
2645 }
2646 if (pids_file) {
2647 if (fclose(pids_file) != 0)
2648 answer = false;
2649 }
2650 return answer;
2651 }
2652
2653 int cg_write(const char *path, const char *buf, size_t size, off_t offset,
2654 struct fuse_file_info *fi)
2655 {
2656 struct fuse_context *fc = fuse_get_context();
2657 char *localbuf = NULL;
2658 struct cgfs_files *k = NULL;
2659 struct file_info *f = (struct file_info *)fi->fh;
2660 bool r;
2661
2662 if (f->type != LXC_TYPE_CGFILE) {
2663 fprintf(stderr, "Internal error: directory cache info used in cg_write\n");
2664 return -EIO;
2665 }
2666
2667 if (offset)
2668 return 0;
2669
2670 if (!fc)
2671 return -EIO;
2672
2673 localbuf = alloca(size+1);
2674 localbuf[size] = '\0';
2675 memcpy(localbuf, buf, size);
2676
2677 if ((k = cgfs_get_key(f->controller, f->cgroup, f->file)) == NULL) {
2678 size = -EINVAL;
2679 goto out;
2680 }
2681
2682 if (!fc_may_access(fc, f->controller, f->cgroup, f->file, O_WRONLY)) {
2683 size = -EACCES;
2684 goto out;
2685 }
2686
2687 if (strcmp(f->file, "tasks") == 0 ||
2688 strcmp(f->file, "/tasks") == 0 ||
2689 strcmp(f->file, "/cgroup.procs") == 0 ||
2690 strcmp(f->file, "cgroup.procs") == 0)
2691 // special case - we have to translate the pids
2692 r = do_write_pids(fc->pid, fc->uid, f->controller, f->cgroup, f->file, localbuf);
2693 else
2694 r = cgfs_set_value(f->controller, f->cgroup, f->file, localbuf);
2695
2696 if (!r)
2697 size = -EINVAL;
2698
2699 out:
2700 free_key(k);
2701 return size;
2702 }
2703
2704 int cg_chown(const char *path, uid_t uid, gid_t gid)
2705 {
2706 struct fuse_context *fc = fuse_get_context();
2707 char *cgdir = NULL, *last = NULL, *path1, *path2, *controller;
2708 struct cgfs_files *k = NULL;
2709 const char *cgroup;
2710 int ret;
2711
2712 if (!fc)
2713 return -EIO;
2714
2715 if (strcmp(path, "/cgroup") == 0)
2716 return -EINVAL;
2717
2718 controller = pick_controller_from_path(fc, path);
2719 if (!controller)
2720 return -EINVAL;
2721 cgroup = find_cgroup_in_path(path);
2722 if (!cgroup)
2723 /* this is just /cgroup/controller */
2724 return -EINVAL;
2725
2726 get_cgdir_and_path(cgroup, &cgdir, &last);
2727
2728 if (!last) {
2729 path1 = "/";
2730 path2 = cgdir;
2731 } else {
2732 path1 = cgdir;
2733 path2 = last;
2734 }
2735
2736 if (is_child_cgroup(controller, path1, path2)) {
2737 // get uid, gid, from '/tasks' file and make up a mode
2738 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
2739 k = cgfs_get_key(controller, cgroup, "tasks");
2740
2741 } else
2742 k = cgfs_get_key(controller, path1, path2);
2743
2744 if (!k) {
2745 ret = -EINVAL;
2746 goto out;
2747 }
2748
2749 /*
2750 * This being a fuse request, the uid and gid must be valid
2751 * in the caller's namespace. So we can just check to make
2752 * sure that the caller is root in his uid, and privileged
2753 * over the file's current owner.
2754 */
2755 if (!is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_REQD)) {
2756 ret = -EACCES;
2757 goto out;
2758 }
2759
2760 ret = cgfs_chown_file(controller, cgroup, uid, gid);
2761
2762 out:
2763 free_key(k);
2764 free(cgdir);
2765
2766 return ret;
2767 }
2768
2769 int cg_chmod(const char *path, mode_t mode)
2770 {
2771 struct fuse_context *fc = fuse_get_context();
2772 char * cgdir = NULL, *last = NULL, *path1, *path2, *controller;
2773 struct cgfs_files *k = NULL;
2774 const char *cgroup;
2775 int ret;
2776
2777 if (!fc)
2778 return -EIO;
2779
2780 if (strcmp(path, "/cgroup") == 0)
2781 return -EINVAL;
2782
2783 controller = pick_controller_from_path(fc, path);
2784 if (!controller)
2785 return -EINVAL;
2786 cgroup = find_cgroup_in_path(path);
2787 if (!cgroup)
2788 /* this is just /cgroup/controller */
2789 return -EINVAL;
2790
2791 get_cgdir_and_path(cgroup, &cgdir, &last);
2792
2793 if (!last) {
2794 path1 = "/";
2795 path2 = cgdir;
2796 } else {
2797 path1 = cgdir;
2798 path2 = last;
2799 }
2800
2801 if (is_child_cgroup(controller, path1, path2)) {
2802 // get uid, gid, from '/tasks' file and make up a mode
2803 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
2804 k = cgfs_get_key(controller, cgroup, "tasks");
2805
2806 } else
2807 k = cgfs_get_key(controller, path1, path2);
2808
2809 if (!k) {
2810 ret = -EINVAL;
2811 goto out;
2812 }
2813
2814 /*
2815 * This being a fuse request, the uid and gid must be valid
2816 * in the caller's namespace. So we can just check to make
2817 * sure that the caller is root in his uid, and privileged
2818 * over the file's current owner.
2819 */
2820 if (!is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_OPT)) {
2821 ret = -EPERM;
2822 goto out;
2823 }
2824
2825 if (!cgfs_chmod_file(controller, cgroup, mode)) {
2826 ret = -EINVAL;
2827 goto out;
2828 }
2829
2830 ret = 0;
2831 out:
2832 free_key(k);
2833 free(cgdir);
2834 return ret;
2835 }
2836
2837 int cg_mkdir(const char *path, mode_t mode)
2838 {
2839 struct fuse_context *fc = fuse_get_context();
2840 char *last = NULL, *path1, *cgdir = NULL, *controller, *next = NULL;
2841 const char *cgroup;
2842 int ret;
2843
2844 if (!fc)
2845 return -EIO;
2846
2847
2848 controller = pick_controller_from_path(fc, path);
2849 if (!controller)
2850 return -EINVAL;
2851
2852 cgroup = find_cgroup_in_path(path);
2853 if (!cgroup)
2854 return -EINVAL;
2855
2856 get_cgdir_and_path(cgroup, &cgdir, &last);
2857 if (!last)
2858 path1 = "/";
2859 else
2860 path1 = cgdir;
2861
2862 pid_t initpid = lookup_initpid_in_store(fc->pid);
2863 if (initpid <= 0)
2864 initpid = fc->pid;
2865 if (!caller_is_in_ancestor(initpid, controller, path1, &next)) {
2866 if (!next)
2867 ret = -EINVAL;
2868 else if (last && strcmp(next, last) == 0)
2869 ret = -EEXIST;
2870 else
2871 ret = -ENOENT;
2872 goto out;
2873 }
2874
2875 if (!fc_may_access(fc, controller, path1, NULL, O_RDWR)) {
2876 ret = -EACCES;
2877 goto out;
2878 }
2879 if (!caller_is_in_ancestor(initpid, controller, path1, NULL)) {
2880 ret = -EACCES;
2881 goto out;
2882 }
2883
2884 ret = cgfs_create(controller, cgroup, fc->uid, fc->gid);
2885
2886 out:
2887 free(cgdir);
2888 free(next);
2889 return ret;
2890 }
2891
2892 int cg_rmdir(const char *path)
2893 {
2894 struct fuse_context *fc = fuse_get_context();
2895 char *last = NULL, *cgdir = NULL, *controller, *next = NULL;
2896 const char *cgroup;
2897 int ret;
2898
2899 if (!fc)
2900 return -EIO;
2901
2902 controller = pick_controller_from_path(fc, path);
2903 if (!controller)
2904 return -EINVAL;
2905
2906 cgroup = find_cgroup_in_path(path);
2907 if (!cgroup)
2908 return -EINVAL;
2909
2910 get_cgdir_and_path(cgroup, &cgdir, &last);
2911 if (!last) {
2912 ret = -EINVAL;
2913 goto out;
2914 }
2915
2916 pid_t initpid = lookup_initpid_in_store(fc->pid);
2917 if (initpid <= 0)
2918 initpid = fc->pid;
2919 if (!caller_is_in_ancestor(initpid, controller, cgroup, &next)) {
2920 if (!last || strcmp(next, last) == 0)
2921 ret = -EBUSY;
2922 else
2923 ret = -ENOENT;
2924 goto out;
2925 }
2926
2927 if (!fc_may_access(fc, controller, cgdir, NULL, O_WRONLY)) {
2928 ret = -EACCES;
2929 goto out;
2930 }
2931 if (!caller_is_in_ancestor(initpid, controller, cgroup, NULL)) {
2932 ret = -EACCES;
2933 goto out;
2934 }
2935
2936 if (!cgfs_remove(controller, cgroup)) {
2937 ret = -EINVAL;
2938 goto out;
2939 }
2940
2941 ret = 0;
2942
2943 out:
2944 free(cgdir);
2945 free(next);
2946 return ret;
2947 }
2948
2949 static bool startswith(const char *line, const char *pref)
2950 {
2951 if (strncmp(line, pref, strlen(pref)) == 0)
2952 return true;
2953 return false;
2954 }
2955
2956 static void parse_memstat(char *memstat, unsigned long *cached,
2957 unsigned long *active_anon, unsigned long *inactive_anon,
2958 unsigned long *active_file, unsigned long *inactive_file,
2959 unsigned long *unevictable)
2960 {
2961 char *eol;
2962
2963 while (*memstat) {
2964 if (startswith(memstat, "cache")) {
2965 sscanf(memstat + 11, "%lu", cached);
2966 *cached /= 1024;
2967 } else if (startswith(memstat, "active_anon")) {
2968 sscanf(memstat + 11, "%lu", active_anon);
2969 *active_anon /= 1024;
2970 } else if (startswith(memstat, "inactive_anon")) {
2971 sscanf(memstat + 11, "%lu", inactive_anon);
2972 *inactive_anon /= 1024;
2973 } else if (startswith(memstat, "active_file")) {
2974 sscanf(memstat + 11, "%lu", active_file);
2975 *active_file /= 1024;
2976 } else if (startswith(memstat, "inactive_file")) {
2977 sscanf(memstat + 11, "%lu", inactive_file);
2978 *inactive_file /= 1024;
2979 } else if (startswith(memstat, "unevictable")) {
2980 sscanf(memstat + 11, "%lu", unevictable);
2981 *unevictable /= 1024;
2982 }
2983 eol = strchr(memstat, '\n');
2984 if (!eol)
2985 return;
2986 memstat = eol+1;
2987 }
2988 }
2989
2990 static void get_blkio_io_value(char *str, unsigned major, unsigned minor, char *iotype, unsigned long *v)
2991 {
2992 char *eol;
2993 char key[32];
2994
2995 memset(key, 0, 32);
2996 snprintf(key, 32, "%u:%u %s", major, minor, iotype);
2997
2998 size_t len = strlen(key);
2999 *v = 0;
3000
3001 while (*str) {
3002 if (startswith(str, key)) {
3003 sscanf(str + len, "%lu", v);
3004 return;
3005 }
3006 eol = strchr(str, '\n');
3007 if (!eol)
3008 return;
3009 str = eol+1;
3010 }
3011 }
3012
3013 static int read_file(const char *path, char *buf, size_t size,
3014 struct file_info *d)
3015 {
3016 size_t linelen = 0, total_len = 0, rv = 0;
3017 char *line = NULL;
3018 char *cache = d->buf;
3019 size_t cache_size = d->buflen;
3020 FILE *f = fopen(path, "r");
3021 if (!f)
3022 return 0;
3023
3024 while (getline(&line, &linelen, f) != -1) {
3025 ssize_t l = snprintf(cache, cache_size, "%s", line);
3026 if (l < 0) {
3027 perror("Error writing to cache");
3028 rv = 0;
3029 goto err;
3030 }
3031 if (l >= cache_size) {
3032 fprintf(stderr, "Internal error: truncated write to cache\n");
3033 rv = 0;
3034 goto err;
3035 }
3036 cache += l;
3037 cache_size -= l;
3038 total_len += l;
3039 }
3040
3041 d->size = total_len;
3042 if (total_len > size)
3043 total_len = size;
3044
3045 /* read from off 0 */
3046 memcpy(buf, d->buf, total_len);
3047 rv = total_len;
3048 err:
3049 fclose(f);
3050 free(line);
3051 return rv;
3052 }
3053
3054 /*
3055 * FUSE ops for /proc
3056 */
3057
3058 static unsigned long get_memlimit(const char *cgroup)
3059 {
3060 char *memlimit_str = NULL;
3061 unsigned long memlimit = -1;
3062
3063 if (cgfs_get_value("memory", cgroup, "memory.limit_in_bytes", &memlimit_str))
3064 memlimit = strtoul(memlimit_str, NULL, 10);
3065
3066 free(memlimit_str);
3067
3068 return memlimit;
3069 }
3070
3071 static unsigned long get_min_memlimit(const char *cgroup)
3072 {
3073 char *copy = strdupa(cgroup);
3074 unsigned long memlimit = 0, retlimit;
3075
3076 retlimit = get_memlimit(copy);
3077
3078 while (strcmp(copy, "/") != 0) {
3079 copy = dirname(copy);
3080 memlimit = get_memlimit(copy);
3081 if (memlimit != -1 && memlimit < retlimit)
3082 retlimit = memlimit;
3083 };
3084
3085 return retlimit;
3086 }
3087
3088 static int proc_meminfo_read(char *buf, size_t size, off_t offset,
3089 struct fuse_file_info *fi)
3090 {
3091 struct fuse_context *fc = fuse_get_context();
3092 struct file_info *d = (struct file_info *)fi->fh;
3093 char *cg;
3094 char *memusage_str = NULL, *memstat_str = NULL,
3095 *memswlimit_str = NULL, *memswusage_str = NULL,
3096 *memswlimit_default_str = NULL, *memswusage_default_str = NULL;
3097 unsigned long memlimit = 0, memusage = 0, memswlimit = 0, memswusage = 0,
3098 cached = 0, hosttotal = 0, active_anon = 0, inactive_anon = 0,
3099 active_file = 0, inactive_file = 0, unevictable = 0;
3100 char *line = NULL;
3101 size_t linelen = 0, total_len = 0, rv = 0;
3102 char *cache = d->buf;
3103 size_t cache_size = d->buflen;
3104 FILE *f = NULL;
3105
3106 if (offset){
3107 if (offset > d->size)
3108 return -EINVAL;
3109 if (!d->cached)
3110 return 0;
3111 int left = d->size - offset;
3112 total_len = left > size ? size: left;
3113 memcpy(buf, cache + offset, total_len);
3114 return total_len;
3115 }
3116
3117 pid_t initpid = lookup_initpid_in_store(fc->pid);
3118 if (initpid <= 0)
3119 initpid = fc->pid;
3120 cg = get_pid_cgroup(initpid, "memory");
3121 if (!cg)
3122 return read_file("/proc/meminfo", buf, size, d);
3123 prune_init_slice(cg);
3124
3125 memlimit = get_min_memlimit(cg);
3126 if (!cgfs_get_value("memory", cg, "memory.usage_in_bytes", &memusage_str))
3127 goto err;
3128 if (!cgfs_get_value("memory", cg, "memory.stat", &memstat_str))
3129 goto err;
3130
3131 // Following values are allowed to fail, because swapaccount might be turned
3132 // off for current kernel
3133 if(cgfs_get_value("memory", cg, "memory.memsw.limit_in_bytes", &memswlimit_str) &&
3134 cgfs_get_value("memory", cg, "memory.memsw.usage_in_bytes", &memswusage_str))
3135 {
3136 /* If swapaccounting is turned on, then default value is assumed to be that of cgroup / */
3137 if (!cgfs_get_value("memory", "/", "memory.memsw.limit_in_bytes", &memswlimit_default_str))
3138 goto err;
3139 if (!cgfs_get_value("memory", "/", "memory.memsw.usage_in_bytes", &memswusage_default_str))
3140 goto err;
3141
3142 memswlimit = strtoul(memswlimit_str, NULL, 10);
3143 memswusage = strtoul(memswusage_str, NULL, 10);
3144
3145 if (!strcmp(memswlimit_str, memswlimit_default_str))
3146 memswlimit = 0;
3147 if (!strcmp(memswusage_str, memswusage_default_str))
3148 memswusage = 0;
3149
3150 memswlimit = memswlimit / 1024;
3151 memswusage = memswusage / 1024;
3152 }
3153
3154 memusage = strtoul(memusage_str, NULL, 10);
3155 memlimit /= 1024;
3156 memusage /= 1024;
3157
3158 parse_memstat(memstat_str, &cached, &active_anon,
3159 &inactive_anon, &active_file, &inactive_file,
3160 &unevictable);
3161
3162 f = fopen("/proc/meminfo", "r");
3163 if (!f)
3164 goto err;
3165
3166 while (getline(&line, &linelen, f) != -1) {
3167 ssize_t l;
3168 char *printme, lbuf[100];
3169
3170 memset(lbuf, 0, 100);
3171 if (startswith(line, "MemTotal:")) {
3172 sscanf(line+14, "%lu", &hosttotal);
3173 if (hosttotal < memlimit)
3174 memlimit = hosttotal;
3175 snprintf(lbuf, 100, "MemTotal: %8lu kB\n", memlimit);
3176 printme = lbuf;
3177 } else if (startswith(line, "MemFree:")) {
3178 snprintf(lbuf, 100, "MemFree: %8lu kB\n", memlimit - memusage);
3179 printme = lbuf;
3180 } else if (startswith(line, "MemAvailable:")) {
3181 snprintf(lbuf, 100, "MemAvailable: %8lu kB\n", memlimit - memusage);
3182 printme = lbuf;
3183 } else if (startswith(line, "SwapTotal:") && memswlimit > 0) {
3184 snprintf(lbuf, 100, "SwapTotal: %8lu kB\n", memswlimit - memlimit);
3185 printme = lbuf;
3186 } else if (startswith(line, "SwapFree:") && memswlimit > 0 && memswusage > 0) {
3187 unsigned long swaptotal = memswlimit - memlimit,
3188 swapusage = memswusage - memusage,
3189 swapfree = swapusage < swaptotal ? swaptotal - swapusage : 0;
3190 snprintf(lbuf, 100, "SwapFree: %8lu kB\n", swapfree);
3191 printme = lbuf;
3192 } else if (startswith(line, "Slab:")) {
3193 snprintf(lbuf, 100, "Slab: %8lu kB\n", 0UL);
3194 printme = lbuf;
3195 } else if (startswith(line, "Buffers:")) {
3196 snprintf(lbuf, 100, "Buffers: %8lu kB\n", 0UL);
3197 printme = lbuf;
3198 } else if (startswith(line, "Cached:")) {
3199 snprintf(lbuf, 100, "Cached: %8lu kB\n", cached);
3200 printme = lbuf;
3201 } else if (startswith(line, "SwapCached:")) {
3202 snprintf(lbuf, 100, "SwapCached: %8lu kB\n", 0UL);
3203 printme = lbuf;
3204 } else if (startswith(line, "Active")) {
3205 snprintf(lbuf, 100, "Active: %8lu kB\n",
3206 active_anon + active_file);
3207 printme = lbuf;
3208 } else if (startswith(line, "Inactive")) {
3209 snprintf(lbuf, 100, "Inactive: %8lu kB\n",
3210 inactive_anon + inactive_file);
3211 printme = lbuf;
3212 } else if (startswith(line, "Active(anon)")) {
3213 snprintf(lbuf, 100, "Active(anon): %8lu kB\n", active_anon);
3214 printme = lbuf;
3215 } else if (startswith(line, "Inactive(anon)")) {
3216 snprintf(lbuf, 100, "Inactive(anon): %8lu kB\n", inactive_anon);
3217 printme = lbuf;
3218 } else if (startswith(line, "Active(file)")) {
3219 snprintf(lbuf, 100, "Active(file): %8lu kB\n", active_file);
3220 printme = lbuf;
3221 } else if (startswith(line, "Inactive(file)")) {
3222 snprintf(lbuf, 100, "Inactive(file): %8lu kB\n", inactive_file);
3223 printme = lbuf;
3224 } else if (startswith(line, "Unevictable")) {
3225 snprintf(lbuf, 100, "Unevictable: %8lu kB\n", unevictable);
3226 printme = lbuf;
3227 } else if (startswith(line, "SReclaimable")) {
3228 snprintf(lbuf, 100, "SReclaimable: %8lu kB\n", 0UL);
3229 printme = lbuf;
3230 } else if (startswith(line, "SUnreclaim")) {
3231 snprintf(lbuf, 100, "SUnreclaim: %8lu kB\n", 0UL);
3232 printme = lbuf;
3233 } else
3234 printme = line;
3235
3236 l = snprintf(cache, cache_size, "%s", printme);
3237 if (l < 0) {
3238 perror("Error writing to cache");
3239 rv = 0;
3240 goto err;
3241
3242 }
3243 if (l >= cache_size) {
3244 fprintf(stderr, "Internal error: truncated write to cache\n");
3245 rv = 0;
3246 goto err;
3247 }
3248
3249 cache += l;
3250 cache_size -= l;
3251 total_len += l;
3252 }
3253
3254 d->cached = 1;
3255 d->size = total_len;
3256 if (total_len > size ) total_len = size;
3257 memcpy(buf, d->buf, total_len);
3258
3259 rv = total_len;
3260 err:
3261 if (f)
3262 fclose(f);
3263 free(line);
3264 free(cg);
3265 free(memusage_str);
3266 free(memswlimit_str);
3267 free(memswusage_str);
3268 free(memstat_str);
3269 free(memswlimit_default_str);
3270 free(memswusage_default_str);
3271 return rv;
3272 }
3273
3274 /*
3275 * Read the cpuset.cpus for cg
3276 * Return the answer in a newly allocated string which must be freed
3277 */
3278 static char *get_cpuset(const char *cg)
3279 {
3280 char *answer;
3281
3282 if (!cgfs_get_value("cpuset", cg, "cpuset.cpus", &answer))
3283 return NULL;
3284 return answer;
3285 }
3286
3287 bool cpu_in_cpuset(int cpu, const char *cpuset);
3288
3289 static bool cpuline_in_cpuset(const char *line, const char *cpuset)
3290 {
3291 int cpu;
3292
3293 if (sscanf(line, "processor : %d", &cpu) != 1)
3294 return false;
3295 return cpu_in_cpuset(cpu, cpuset);
3296 }
3297
3298 /*
3299 * check whether this is a '^processor" line in /proc/cpuinfo
3300 */
3301 static bool is_processor_line(const char *line)
3302 {
3303 int cpu;
3304
3305 if (sscanf(line, "processor : %d", &cpu) == 1)
3306 return true;
3307 return false;
3308 }
3309
3310 static int proc_cpuinfo_read(char *buf, size_t size, off_t offset,
3311 struct fuse_file_info *fi)
3312 {
3313 struct fuse_context *fc = fuse_get_context();
3314 struct file_info *d = (struct file_info *)fi->fh;
3315 char *cg;
3316 char *cpuset = NULL;
3317 char *line = NULL;
3318 size_t linelen = 0, total_len = 0, rv = 0;
3319 bool am_printing = false, firstline = true, is_s390x = false;
3320 int curcpu = -1, cpu;
3321 char *cache = d->buf;
3322 size_t cache_size = d->buflen;
3323 FILE *f = NULL;
3324
3325 if (offset){
3326 if (offset > d->size)
3327 return -EINVAL;
3328 if (!d->cached)
3329 return 0;
3330 int left = d->size - offset;
3331 total_len = left > size ? size: left;
3332 memcpy(buf, cache + offset, total_len);
3333 return total_len;
3334 }
3335
3336 pid_t initpid = lookup_initpid_in_store(fc->pid);
3337 if (initpid <= 0)
3338 initpid = fc->pid;
3339 cg = get_pid_cgroup(initpid, "cpuset");
3340 if (!cg)
3341 return read_file("proc/cpuinfo", buf, size, d);
3342 prune_init_slice(cg);
3343
3344 cpuset = get_cpuset(cg);
3345 if (!cpuset)
3346 goto err;
3347
3348 f = fopen("/proc/cpuinfo", "r");
3349 if (!f)
3350 goto err;
3351
3352 while (getline(&line, &linelen, f) != -1) {
3353 ssize_t l;
3354 if (firstline) {
3355 firstline = false;
3356 if (strstr(line, "IBM/S390") != NULL) {
3357 is_s390x = true;
3358 am_printing = true;
3359 continue;
3360 }
3361 }
3362 if (strncmp(line, "# processors:", 12) == 0)
3363 continue;
3364 if (is_processor_line(line)) {
3365 am_printing = cpuline_in_cpuset(line, cpuset);
3366 if (am_printing) {
3367 curcpu ++;
3368 l = snprintf(cache, cache_size, "processor : %d\n", curcpu);
3369 if (l < 0) {
3370 perror("Error writing to cache");
3371 rv = 0;
3372 goto err;
3373 }
3374 if (l >= cache_size) {
3375 fprintf(stderr, "Internal error: truncated write to cache\n");
3376 rv = 0;
3377 goto err;
3378 }
3379 cache += l;
3380 cache_size -= l;
3381 total_len += l;
3382 }
3383 continue;
3384 } else if (is_s390x && sscanf(line, "processor %d:", &cpu) == 1) {
3385 char *p;
3386 if (!cpu_in_cpuset(cpu, cpuset))
3387 continue;
3388 curcpu ++;
3389 p = strchr(line, ':');
3390 if (!p || !*p)
3391 goto err;
3392 p++;
3393 l = snprintf(cache, cache_size, "processor %d:%s", curcpu, p);
3394 if (l < 0) {
3395 perror("Error writing to cache");
3396 rv = 0;
3397 goto err;
3398 }
3399 if (l >= cache_size) {
3400 fprintf(stderr, "Internal error: truncated write to cache\n");
3401 rv = 0;
3402 goto err;
3403 }
3404 cache += l;
3405 cache_size -= l;
3406 total_len += l;
3407 continue;
3408
3409 }
3410 if (am_printing) {
3411 l = snprintf(cache, cache_size, "%s", line);
3412 if (l < 0) {
3413 perror("Error writing to cache");
3414 rv = 0;
3415 goto err;
3416 }
3417 if (l >= cache_size) {
3418 fprintf(stderr, "Internal error: truncated write to cache\n");
3419 rv = 0;
3420 goto err;
3421 }
3422 cache += l;
3423 cache_size -= l;
3424 total_len += l;
3425 }
3426 }
3427
3428 if (is_s390x) {
3429 char *origcache = d->buf;
3430 ssize_t l;
3431 do {
3432 d->buf = malloc(d->buflen);
3433 } while (!d->buf);
3434 cache = d->buf;
3435 cache_size = d->buflen;
3436 total_len = 0;
3437 l = snprintf(cache, cache_size, "vendor_id : IBM/S390\n");
3438 if (l < 0 || l >= cache_size) {
3439 free(origcache);
3440 goto err;
3441 }
3442 cache_size -= l;
3443 cache += l;
3444 total_len += l;
3445 l = snprintf(cache, cache_size, "# processors : %d\n", curcpu + 1);
3446 if (l < 0 || l >= cache_size) {
3447 free(origcache);
3448 goto err;
3449 }
3450 cache_size -= l;
3451 cache += l;
3452 total_len += l;
3453 l = snprintf(cache, cache_size, "%s", origcache);
3454 free(origcache);
3455 if (l < 0 || l >= cache_size)
3456 goto err;
3457 total_len += l;
3458 }
3459
3460 d->cached = 1;
3461 d->size = total_len;
3462 if (total_len > size ) total_len = size;
3463
3464 /* read from off 0 */
3465 memcpy(buf, d->buf, total_len);
3466 rv = total_len;
3467 err:
3468 if (f)
3469 fclose(f);
3470 free(line);
3471 free(cpuset);
3472 free(cg);
3473 return rv;
3474 }
3475
3476 static int proc_stat_read(char *buf, size_t size, off_t offset,
3477 struct fuse_file_info *fi)
3478 {
3479 struct fuse_context *fc = fuse_get_context();
3480 struct file_info *d = (struct file_info *)fi->fh;
3481 char *cg;
3482 char *cpuset = NULL;
3483 char *line = NULL;
3484 size_t linelen = 0, total_len = 0, rv = 0;
3485 int curcpu = -1; /* cpu numbering starts at 0 */
3486 unsigned long user = 0, nice = 0, system = 0, idle = 0, iowait = 0, irq = 0, softirq = 0, steal = 0, guest = 0;
3487 unsigned long user_sum = 0, nice_sum = 0, system_sum = 0, idle_sum = 0, iowait_sum = 0,
3488 irq_sum = 0, softirq_sum = 0, steal_sum = 0, guest_sum = 0;
3489 #define CPUALL_MAX_SIZE BUF_RESERVE_SIZE
3490 char cpuall[CPUALL_MAX_SIZE];
3491 /* reserve for cpu all */
3492 char *cache = d->buf + CPUALL_MAX_SIZE;
3493 size_t cache_size = d->buflen - CPUALL_MAX_SIZE;
3494 FILE *f = NULL;
3495
3496 if (offset){
3497 if (offset > d->size)
3498 return -EINVAL;
3499 if (!d->cached)
3500 return 0;
3501 int left = d->size - offset;
3502 total_len = left > size ? size: left;
3503 memcpy(buf, d->buf + offset, total_len);
3504 return total_len;
3505 }
3506
3507 pid_t initpid = lookup_initpid_in_store(fc->pid);
3508 if (initpid <= 0)
3509 initpid = fc->pid;
3510 cg = get_pid_cgroup(initpid, "cpuset");
3511 if (!cg)
3512 return read_file("/proc/stat", buf, size, d);
3513 prune_init_slice(cg);
3514
3515 cpuset = get_cpuset(cg);
3516 if (!cpuset)
3517 goto err;
3518
3519 f = fopen("/proc/stat", "r");
3520 if (!f)
3521 goto err;
3522
3523 //skip first line
3524 if (getline(&line, &linelen, f) < 0) {
3525 fprintf(stderr, "proc_stat_read read first line failed\n");
3526 goto err;
3527 }
3528
3529 while (getline(&line, &linelen, f) != -1) {
3530 ssize_t l;
3531 int cpu;
3532 char cpu_char[10]; /* That's a lot of cores */
3533 char *c;
3534
3535 if (strlen(line) == 0)
3536 continue;
3537 if (sscanf(line, "cpu%9[^ ]", cpu_char) != 1) {
3538 /* not a ^cpuN line containing a number N, just print it */
3539 l = snprintf(cache, cache_size, "%s", line);
3540 if (l < 0) {
3541 perror("Error writing to cache");
3542 rv = 0;
3543 goto err;
3544 }
3545 if (l >= cache_size) {
3546 fprintf(stderr, "Internal error: truncated write to cache\n");
3547 rv = 0;
3548 goto err;
3549 }
3550 cache += l;
3551 cache_size -= l;
3552 total_len += l;
3553 continue;
3554 }
3555
3556 if (sscanf(cpu_char, "%d", &cpu) != 1)
3557 continue;
3558 if (!cpu_in_cpuset(cpu, cpuset))
3559 continue;
3560 curcpu ++;
3561
3562 c = strchr(line, ' ');
3563 if (!c)
3564 continue;
3565 l = snprintf(cache, cache_size, "cpu%d%s", curcpu, c);
3566 if (l < 0) {
3567 perror("Error writing to cache");
3568 rv = 0;
3569 goto err;
3570
3571 }
3572 if (l >= cache_size) {
3573 fprintf(stderr, "Internal error: truncated write to cache\n");
3574 rv = 0;
3575 goto err;
3576 }
3577
3578 cache += l;
3579 cache_size -= l;
3580 total_len += l;
3581
3582 if (sscanf(line, "%*s %lu %lu %lu %lu %lu %lu %lu %lu %lu", &user, &nice, &system, &idle, &iowait, &irq,
3583 &softirq, &steal, &guest) != 9)
3584 continue;
3585 user_sum += user;
3586 nice_sum += nice;
3587 system_sum += system;
3588 idle_sum += idle;
3589 iowait_sum += iowait;
3590 irq_sum += irq;
3591 softirq_sum += softirq;
3592 steal_sum += steal;
3593 guest_sum += guest;
3594 }
3595
3596 cache = d->buf;
3597
3598 int cpuall_len = snprintf(cpuall, CPUALL_MAX_SIZE, "%s %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
3599 "cpu ", user_sum, nice_sum, system_sum, idle_sum, iowait_sum, irq_sum, softirq_sum, steal_sum, guest_sum);
3600 if (cpuall_len > 0 && cpuall_len < CPUALL_MAX_SIZE){
3601 memcpy(cache, cpuall, cpuall_len);
3602 cache += cpuall_len;
3603 } else{
3604 /* shouldn't happen */
3605 fprintf(stderr, "proc_stat_read copy cpuall failed, cpuall_len=%d\n", cpuall_len);
3606 cpuall_len = 0;
3607 }
3608
3609 memmove(cache, d->buf + CPUALL_MAX_SIZE, total_len);
3610 total_len += cpuall_len;
3611 d->cached = 1;
3612 d->size = total_len;
3613 if (total_len > size ) total_len = size;
3614
3615 memcpy(buf, d->buf, total_len);
3616 rv = total_len;
3617
3618 err:
3619 if (f)
3620 fclose(f);
3621 free(line);
3622 free(cpuset);
3623 free(cg);
3624 return rv;
3625 }
3626
3627 static long int getreaperage(pid_t pid)
3628 {
3629 char fnam[100];
3630 struct stat sb;
3631 int ret;
3632 pid_t qpid;
3633
3634 qpid = lookup_initpid_in_store(pid);
3635 if (qpid <= 0)
3636 return 0;
3637
3638 ret = snprintf(fnam, 100, "/proc/%d", qpid);
3639 if (ret < 0 || ret >= 100)
3640 return 0;
3641
3642 if (lstat(fnam, &sb) < 0)
3643 return 0;
3644
3645 return time(NULL) - sb.st_ctime;
3646 }
3647
3648 static unsigned long get_reaper_busy(pid_t task)
3649 {
3650 pid_t initpid = lookup_initpid_in_store(task);
3651 char *cgroup = NULL, *usage_str = NULL;
3652 unsigned long usage = 0;
3653
3654 if (initpid <= 0)
3655 return 0;
3656
3657 cgroup = get_pid_cgroup(initpid, "cpuacct");
3658 if (!cgroup)
3659 goto out;
3660 prune_init_slice(cgroup);
3661 if (!cgfs_get_value("cpuacct", cgroup, "cpuacct.usage", &usage_str))
3662 goto out;
3663 usage = strtoul(usage_str, NULL, 10);
3664 usage /= 1000000000;
3665
3666 out:
3667 free(cgroup);
3668 free(usage_str);
3669 return usage;
3670 }
3671
3672 #if RELOADTEST
3673 void iwashere(void)
3674 {
3675 int fd;
3676
3677 fd = creat("/tmp/lxcfs-iwashere", 0644);
3678 if (fd >= 0)
3679 close(fd);
3680 }
3681 #endif
3682
3683 /*
3684 * We read /proc/uptime and reuse its second field.
3685 * For the first field, we use the mtime for the reaper for
3686 * the calling pid as returned by getreaperage
3687 */
3688 static int proc_uptime_read(char *buf, size_t size, off_t offset,
3689 struct fuse_file_info *fi)
3690 {
3691 struct fuse_context *fc = fuse_get_context();
3692 struct file_info *d = (struct file_info *)fi->fh;
3693 long int reaperage = getreaperage(fc->pid);
3694 unsigned long int busytime = get_reaper_busy(fc->pid), idletime;
3695 char *cache = d->buf;
3696 ssize_t total_len = 0;
3697
3698 #if RELOADTEST
3699 iwashere();
3700 #endif
3701
3702 if (offset){
3703 if (offset > d->size)
3704 return -EINVAL;
3705 if (!d->cached)
3706 return 0;
3707 int left = d->size - offset;
3708 total_len = left > size ? size: left;
3709 memcpy(buf, cache + offset, total_len);
3710 return total_len;
3711 }
3712
3713 idletime = reaperage - busytime;
3714 if (idletime > reaperage)
3715 idletime = reaperage;
3716
3717 total_len = snprintf(d->buf, d->size, "%ld.0 %lu.0\n", reaperage, idletime);
3718 if (total_len < 0){
3719 perror("Error writing to cache");
3720 return 0;
3721 }
3722
3723 d->size = (int)total_len;
3724 d->cached = 1;
3725
3726 if (total_len > size) total_len = size;
3727
3728 memcpy(buf, d->buf, total_len);
3729 return total_len;
3730 }
3731
3732 static int proc_diskstats_read(char *buf, size_t size, off_t offset,
3733 struct fuse_file_info *fi)
3734 {
3735 char dev_name[72];
3736 struct fuse_context *fc = fuse_get_context();
3737 struct file_info *d = (struct file_info *)fi->fh;
3738 char *cg;
3739 char *io_serviced_str = NULL, *io_merged_str = NULL, *io_service_bytes_str = NULL,
3740 *io_wait_time_str = NULL, *io_service_time_str = NULL;
3741 unsigned long read = 0, write = 0;
3742 unsigned long read_merged = 0, write_merged = 0;
3743 unsigned long read_sectors = 0, write_sectors = 0;
3744 unsigned long read_ticks = 0, write_ticks = 0;
3745 unsigned long ios_pgr = 0, tot_ticks = 0, rq_ticks = 0;
3746 unsigned long rd_svctm = 0, wr_svctm = 0, rd_wait = 0, wr_wait = 0;
3747 char *cache = d->buf;
3748 size_t cache_size = d->buflen;
3749 char *line = NULL;
3750 size_t linelen = 0, total_len = 0, rv = 0;
3751 unsigned int major = 0, minor = 0;
3752 int i = 0;
3753 FILE *f = NULL;
3754
3755 if (offset){
3756 if (offset > d->size)
3757 return -EINVAL;
3758 if (!d->cached)
3759 return 0;
3760 int left = d->size - offset;
3761 total_len = left > size ? size: left;
3762 memcpy(buf, cache + offset, total_len);
3763 return total_len;
3764 }
3765
3766 pid_t initpid = lookup_initpid_in_store(fc->pid);
3767 if (initpid <= 0)
3768 initpid = fc->pid;
3769 cg = get_pid_cgroup(initpid, "blkio");
3770 if (!cg)
3771 return read_file("/proc/diskstats", buf, size, d);
3772 prune_init_slice(cg);
3773
3774 if (!cgfs_get_value("blkio", cg, "blkio.io_serviced_recursive", &io_serviced_str))
3775 goto err;
3776 if (!cgfs_get_value("blkio", cg, "blkio.io_merged_recursive", &io_merged_str))
3777 goto err;
3778 if (!cgfs_get_value("blkio", cg, "blkio.io_service_bytes_recursive", &io_service_bytes_str))
3779 goto err;
3780 if (!cgfs_get_value("blkio", cg, "blkio.io_wait_time_recursive", &io_wait_time_str))
3781 goto err;
3782 if (!cgfs_get_value("blkio", cg, "blkio.io_service_time_recursive", &io_service_time_str))
3783 goto err;
3784
3785
3786 f = fopen("/proc/diskstats", "r");
3787 if (!f)
3788 goto err;
3789
3790 while (getline(&line, &linelen, f) != -1) {
3791 ssize_t l;
3792 char lbuf[256];
3793
3794 i = sscanf(line, "%u %u %71s", &major, &minor, dev_name);
3795 if (i != 3)
3796 continue;
3797
3798 get_blkio_io_value(io_serviced_str, major, minor, "Read", &read);
3799 get_blkio_io_value(io_serviced_str, major, minor, "Write", &write);
3800 get_blkio_io_value(io_merged_str, major, minor, "Read", &read_merged);
3801 get_blkio_io_value(io_merged_str, major, minor, "Write", &write_merged);
3802 get_blkio_io_value(io_service_bytes_str, major, minor, "Read", &read_sectors);
3803 read_sectors = read_sectors/512;
3804 get_blkio_io_value(io_service_bytes_str, major, minor, "Write", &write_sectors);
3805 write_sectors = write_sectors/512;
3806
3807 get_blkio_io_value(io_service_time_str, major, minor, "Read", &rd_svctm);
3808 rd_svctm = rd_svctm/1000000;
3809 get_blkio_io_value(io_wait_time_str, major, minor, "Read", &rd_wait);
3810 rd_wait = rd_wait/1000000;
3811 read_ticks = rd_svctm + rd_wait;
3812
3813 get_blkio_io_value(io_service_time_str, major, minor, "Write", &wr_svctm);
3814 wr_svctm = wr_svctm/1000000;
3815 get_blkio_io_value(io_wait_time_str, major, minor, "Write", &wr_wait);
3816 wr_wait = wr_wait/1000000;
3817 write_ticks = wr_svctm + wr_wait;
3818
3819 get_blkio_io_value(io_service_time_str, major, minor, "Total", &tot_ticks);
3820 tot_ticks = tot_ticks/1000000;
3821
3822 memset(lbuf, 0, 256);
3823 if (read || write || read_merged || write_merged || read_sectors || write_sectors || read_ticks || write_ticks)
3824 snprintf(lbuf, 256, "%u %u %s %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
3825 major, minor, dev_name, read, read_merged, read_sectors, read_ticks,
3826 write, write_merged, write_sectors, write_ticks, ios_pgr, tot_ticks, rq_ticks);
3827 else
3828 continue;
3829
3830 l = snprintf(cache, cache_size, "%s", lbuf);
3831 if (l < 0) {
3832 perror("Error writing to fuse buf");
3833 rv = 0;
3834 goto err;
3835 }
3836 if (l >= cache_size) {
3837 fprintf(stderr, "Internal error: truncated write to cache\n");
3838 rv = 0;
3839 goto err;
3840 }
3841 cache += l;
3842 cache_size -= l;
3843 total_len += l;
3844 }
3845
3846 d->cached = 1;
3847 d->size = total_len;
3848 if (total_len > size ) total_len = size;
3849 memcpy(buf, d->buf, total_len);
3850
3851 rv = total_len;
3852 err:
3853 free(cg);
3854 if (f)
3855 fclose(f);
3856 free(line);
3857 free(io_serviced_str);
3858 free(io_merged_str);
3859 free(io_service_bytes_str);
3860 free(io_wait_time_str);
3861 free(io_service_time_str);
3862 return rv;
3863 }
3864
3865 static int proc_swaps_read(char *buf, size_t size, off_t offset,
3866 struct fuse_file_info *fi)
3867 {
3868 struct fuse_context *fc = fuse_get_context();
3869 struct file_info *d = (struct file_info *)fi->fh;
3870 char *cg = NULL;
3871 char *memswlimit_str = NULL, *memlimit_str = NULL, *memusage_str = NULL, *memswusage_str = NULL,
3872 *memswlimit_default_str = NULL, *memswusage_default_str = NULL;
3873 unsigned long memswlimit = 0, memlimit = 0, memusage = 0, memswusage = 0, swap_total = 0, swap_free = 0;
3874 ssize_t total_len = 0, rv = 0;
3875 ssize_t l = 0;
3876 char *cache = d->buf;
3877
3878 if (offset) {
3879 if (offset > d->size)
3880 return -EINVAL;
3881 if (!d->cached)
3882 return 0;
3883 int left = d->size - offset;
3884 total_len = left > size ? size: left;
3885 memcpy(buf, cache + offset, total_len);
3886 return total_len;
3887 }
3888
3889 pid_t initpid = lookup_initpid_in_store(fc->pid);
3890 if (initpid <= 0)
3891 initpid = fc->pid;
3892 cg = get_pid_cgroup(initpid, "memory");
3893 if (!cg)
3894 return read_file("/proc/swaps", buf, size, d);
3895 prune_init_slice(cg);
3896
3897 if (!cgfs_get_value("memory", cg, "memory.limit_in_bytes", &memlimit_str))
3898 goto err;
3899
3900 if (!cgfs_get_value("memory", cg, "memory.usage_in_bytes", &memusage_str))
3901 goto err;
3902
3903 memlimit = strtoul(memlimit_str, NULL, 10);
3904 memusage = strtoul(memusage_str, NULL, 10);
3905
3906 if (cgfs_get_value("memory", cg, "memory.memsw.usage_in_bytes", &memswusage_str) &&
3907 cgfs_get_value("memory", cg, "memory.memsw.limit_in_bytes", &memswlimit_str)) {
3908
3909 /* If swap accounting is turned on, then default value is assumed to be that of cgroup / */
3910 if (!cgfs_get_value("memory", "/", "memory.memsw.limit_in_bytes", &memswlimit_default_str))
3911 goto err;
3912 if (!cgfs_get_value("memory", "/", "memory.memsw.usage_in_bytes", &memswusage_default_str))
3913 goto err;
3914
3915 memswlimit = strtoul(memswlimit_str, NULL, 10);
3916 memswusage = strtoul(memswusage_str, NULL, 10);
3917
3918 if (!strcmp(memswlimit_str, memswlimit_default_str))
3919 memswlimit = 0;
3920 if (!strcmp(memswusage_str, memswusage_default_str))
3921 memswusage = 0;
3922
3923 swap_total = (memswlimit - memlimit) / 1024;
3924 swap_free = (memswusage - memusage) / 1024;
3925 }
3926
3927 total_len = snprintf(d->buf, d->size, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
3928
3929 /* When no mem + swap limit is specified or swapaccount=0*/
3930 if (!memswlimit) {
3931 char *line = NULL;
3932 size_t linelen = 0;
3933 FILE *f = fopen("/proc/meminfo", "r");
3934
3935 if (!f)
3936 goto err;
3937
3938 while (getline(&line, &linelen, f) != -1) {
3939 if (startswith(line, "SwapTotal:")) {
3940 sscanf(line, "SwapTotal: %8lu kB", &swap_total);
3941 } else if (startswith(line, "SwapFree:")) {
3942 sscanf(line, "SwapFree: %8lu kB", &swap_free);
3943 }
3944 }
3945
3946 free(line);
3947 fclose(f);
3948 }
3949
3950 if (swap_total > 0) {
3951 l = snprintf(d->buf + total_len, d->size - total_len,
3952 "none%*svirtual\t\t%lu\t%lu\t0\n", 36, " ",
3953 swap_total, swap_free);
3954 total_len += l;
3955 }
3956
3957 if (total_len < 0 || l < 0) {
3958 perror("Error writing to cache");
3959 rv = 0;
3960 goto err;
3961 }
3962
3963 d->cached = 1;
3964 d->size = (int)total_len;
3965
3966 if (total_len > size) total_len = size;
3967 memcpy(buf, d->buf, total_len);
3968 rv = total_len;
3969
3970 err:
3971 free(cg);
3972 free(memswlimit_str);
3973 free(memlimit_str);
3974 free(memusage_str);
3975 free(memswusage_str);
3976 free(memswusage_default_str);
3977 free(memswlimit_default_str);
3978 return rv;
3979 }
3980
3981 static off_t get_procfile_size(const char *which)
3982 {
3983 FILE *f = fopen(which, "r");
3984 char *line = NULL;
3985 size_t len = 0;
3986 ssize_t sz, answer = 0;
3987 if (!f)
3988 return 0;
3989
3990 while ((sz = getline(&line, &len, f)) != -1)
3991 answer += sz;
3992 fclose (f);
3993 free(line);
3994
3995 return answer;
3996 }
3997
3998 int proc_getattr(const char *path, struct stat *sb)
3999 {
4000 struct timespec now;
4001
4002 memset(sb, 0, sizeof(struct stat));
4003 if (clock_gettime(CLOCK_REALTIME, &now) < 0)
4004 return -EINVAL;
4005 sb->st_uid = sb->st_gid = 0;
4006 sb->st_atim = sb->st_mtim = sb->st_ctim = now;
4007 if (strcmp(path, "/proc") == 0) {
4008 sb->st_mode = S_IFDIR | 00555;
4009 sb->st_nlink = 2;
4010 return 0;
4011 }
4012 if (strcmp(path, "/proc/meminfo") == 0 ||
4013 strcmp(path, "/proc/cpuinfo") == 0 ||
4014 strcmp(path, "/proc/uptime") == 0 ||
4015 strcmp(path, "/proc/stat") == 0 ||
4016 strcmp(path, "/proc/diskstats") == 0 ||
4017 strcmp(path, "/proc/swaps") == 0) {
4018 sb->st_size = 0;
4019 sb->st_mode = S_IFREG | 00444;
4020 sb->st_nlink = 1;
4021 return 0;
4022 }
4023
4024 return -ENOENT;
4025 }
4026
4027 int proc_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset,
4028 struct fuse_file_info *fi)
4029 {
4030 if (filler(buf, ".", NULL, 0) != 0 ||
4031 filler(buf, "..", NULL, 0) != 0 ||
4032 filler(buf, "cpuinfo", NULL, 0) != 0 ||
4033 filler(buf, "meminfo", NULL, 0) != 0 ||
4034 filler(buf, "stat", NULL, 0) != 0 ||
4035 filler(buf, "uptime", NULL, 0) != 0 ||
4036 filler(buf, "diskstats", NULL, 0) != 0 ||
4037 filler(buf, "swaps", NULL, 0) != 0)
4038 return -EINVAL;
4039 return 0;
4040 }
4041
4042 int proc_open(const char *path, struct fuse_file_info *fi)
4043 {
4044 int type = -1;
4045 struct file_info *info;
4046
4047 if (strcmp(path, "/proc/meminfo") == 0)
4048 type = LXC_TYPE_PROC_MEMINFO;
4049 else if (strcmp(path, "/proc/cpuinfo") == 0)
4050 type = LXC_TYPE_PROC_CPUINFO;
4051 else if (strcmp(path, "/proc/uptime") == 0)
4052 type = LXC_TYPE_PROC_UPTIME;
4053 else if (strcmp(path, "/proc/stat") == 0)
4054 type = LXC_TYPE_PROC_STAT;
4055 else if (strcmp(path, "/proc/diskstats") == 0)
4056 type = LXC_TYPE_PROC_DISKSTATS;
4057 else if (strcmp(path, "/proc/swaps") == 0)
4058 type = LXC_TYPE_PROC_SWAPS;
4059 if (type == -1)
4060 return -ENOENT;
4061
4062 info = malloc(sizeof(*info));
4063 if (!info)
4064 return -ENOMEM;
4065
4066 memset(info, 0, sizeof(*info));
4067 info->type = type;
4068
4069 info->buflen = get_procfile_size(path) + BUF_RESERVE_SIZE;
4070 do {
4071 info->buf = malloc(info->buflen);
4072 } while (!info->buf);
4073 memset(info->buf, 0, info->buflen);
4074 /* set actual size to buffer size */
4075 info->size = info->buflen;
4076
4077 fi->fh = (unsigned long)info;
4078 return 0;
4079 }
4080
4081 int proc_access(const char *path, int mask)
4082 {
4083 if (strcmp(path, "/proc") == 0 && access(path, R_OK) == 0)
4084 return 0;
4085
4086 /* these are all read-only */
4087 if ((mask & ~R_OK) != 0)
4088 return -EACCES;
4089 return 0;
4090 }
4091
4092 int proc_release(const char *path, struct fuse_file_info *fi)
4093 {
4094 do_release_file_info(fi);
4095 return 0;
4096 }
4097
4098 int proc_read(const char *path, char *buf, size_t size, off_t offset,
4099 struct fuse_file_info *fi)
4100 {
4101 struct file_info *f = (struct file_info *) fi->fh;
4102
4103 switch (f->type) {
4104 case LXC_TYPE_PROC_MEMINFO:
4105 return proc_meminfo_read(buf, size, offset, fi);
4106 case LXC_TYPE_PROC_CPUINFO:
4107 return proc_cpuinfo_read(buf, size, offset, fi);
4108 case LXC_TYPE_PROC_UPTIME:
4109 return proc_uptime_read(buf, size, offset, fi);
4110 case LXC_TYPE_PROC_STAT:
4111 return proc_stat_read(buf, size, offset, fi);
4112 case LXC_TYPE_PROC_DISKSTATS:
4113 return proc_diskstats_read(buf, size, offset, fi);
4114 case LXC_TYPE_PROC_SWAPS:
4115 return proc_swaps_read(buf, size, offset, fi);
4116 default:
4117 return -EINVAL;
4118 }
4119 }
4120
4121 /*
4122 * Functions needed to setup cgroups in the __constructor__.
4123 */
4124
4125 static bool mkdir_p(const char *dir, mode_t mode)
4126 {
4127 const char *tmp = dir;
4128 const char *orig = dir;
4129 char *makeme;
4130
4131 do {
4132 dir = tmp + strspn(tmp, "/");
4133 tmp = dir + strcspn(dir, "/");
4134 makeme = strndup(orig, dir - orig);
4135 if (!makeme)
4136 return false;
4137 if (mkdir(makeme, mode) && errno != EEXIST) {
4138 fprintf(stderr, "failed to create directory '%s': %s",
4139 makeme, strerror(errno));
4140 free(makeme);
4141 return false;
4142 }
4143 free(makeme);
4144 } while(tmp != dir);
4145
4146 return true;
4147 }
4148
4149 static bool umount_if_mounted(void)
4150 {
4151 if (umount2(BASEDIR, MNT_DETACH) < 0 && errno != EINVAL) {
4152 fprintf(stderr, "failed to unmount %s: %s.\n", BASEDIR, strerror(errno));
4153 return false;
4154 }
4155 return true;
4156 }
4157
4158 static int pivot_enter(void)
4159 {
4160 int ret = -1, oldroot = -1, newroot = -1;
4161
4162 oldroot = open("/", O_DIRECTORY | O_RDONLY);
4163 if (oldroot < 0) {
4164 fprintf(stderr, "%s: Failed to open old root for fchdir.\n", __func__);
4165 return ret;
4166 }
4167
4168 newroot = open(ROOTDIR, O_DIRECTORY | O_RDONLY);
4169 if (newroot < 0) {
4170 fprintf(stderr, "%s: Failed to open new root for fchdir.\n", __func__);
4171 goto err;
4172 }
4173
4174 /* change into new root fs */
4175 if (fchdir(newroot) < 0) {
4176 fprintf(stderr, "%s: Failed to change directory to new rootfs: %s.\n", __func__, ROOTDIR);
4177 goto err;
4178 }
4179
4180 /* pivot_root into our new root fs */
4181 if (pivot_root(".", ".") < 0) {
4182 fprintf(stderr, "%s: pivot_root() syscall failed: %s.\n", __func__, strerror(errno));
4183 goto err;
4184 }
4185
4186 /*
4187 * At this point the old-root is mounted on top of our new-root.
4188 * To unmounted it we must not be chdir'd into it, so escape back
4189 * to the old-root.
4190 */
4191 if (fchdir(oldroot) < 0) {
4192 fprintf(stderr, "%s: Failed to enter old root.\n", __func__);
4193 goto err;
4194 }
4195 if (umount2(".", MNT_DETACH) < 0) {
4196 fprintf(stderr, "%s: Failed to detach old root.\n", __func__);
4197 goto err;
4198 }
4199
4200 if (fchdir(newroot) < 0) {
4201 fprintf(stderr, "%s: Failed to re-enter new root.\n", __func__);
4202 goto err;
4203 }
4204
4205 ret = 0;
4206
4207 err:
4208 if (oldroot > 0)
4209 close(oldroot);
4210 if (newroot > 0)
4211 close(newroot);
4212 return ret;
4213 }
4214
4215 /* Prepare our new clean root. */
4216 static int pivot_prepare(void)
4217 {
4218 if (mkdir(ROOTDIR, 0700) < 0 && errno != EEXIST) {
4219 fprintf(stderr, "%s: Failed to create directory for new root.\n", __func__);
4220 return -1;
4221 }
4222
4223 if (mount("/", ROOTDIR, NULL, MS_BIND, 0) < 0) {
4224 fprintf(stderr, "%s: Failed to bind-mount / for new root: %s.\n", __func__, strerror(errno));
4225 return -1;
4226 }
4227
4228 if (mount(RUNTIME_PATH, ROOTDIR RUNTIME_PATH, NULL, MS_BIND, 0) < 0) {
4229 fprintf(stderr, "%s: Failed to bind-mount /run into new root: %s.\n", __func__, strerror(errno));
4230 return -1;
4231 }
4232
4233 if (mount(BASEDIR, ROOTDIR BASEDIR, NULL, MS_REC | MS_MOVE, 0) < 0) {
4234 printf("%s: failed to move " BASEDIR " into new root: %s.\n", __func__, strerror(errno));
4235 return -1;
4236 }
4237
4238 return 0;
4239 }
4240
4241 static bool pivot_new_root(void)
4242 {
4243 /* Prepare new root. */
4244 if (pivot_prepare() < 0)
4245 return false;
4246
4247 /* Pivot into new root. */
4248 if (pivot_enter() < 0)
4249 return false;
4250
4251 return true;
4252 }
4253
4254 static bool setup_cgfs_dir(void)
4255 {
4256 if (!mkdir_p(BASEDIR, 0700)) {
4257 fprintf(stderr, "Failed to create lxcfs cgroup mountpoint.\n");
4258 return false;
4259 }
4260
4261 if (!umount_if_mounted()) {
4262 fprintf(stderr, "Failed to clean up old lxcfs cgroup mountpoint.\n");
4263 return false;
4264 }
4265
4266 if (unshare(CLONE_NEWNS) < 0) {
4267 fprintf(stderr, "%s: Failed to unshare mount namespace: %s.\n", __func__, strerror(errno));
4268 return false;
4269 }
4270
4271 if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, 0) < 0) {
4272 fprintf(stderr, "%s: Failed to remount / private: %s.\n", __func__, strerror(errno));
4273 return false;
4274 }
4275
4276 if (mount("tmpfs", BASEDIR, "tmpfs", 0, "size=100000,mode=700") < 0) {
4277 fprintf(stderr, "Failed to mount tmpfs over lxcfs cgroup mountpoint.\n");
4278 return false;
4279 }
4280
4281 return true;
4282 }
4283
4284 static bool do_mount_cgroups(void)
4285 {
4286 char *target;
4287 size_t clen, len;
4288 int i, ret;
4289
4290 for (i = 0; i < num_hierarchies; i++) {
4291 char *controller = hierarchies[i];
4292 clen = strlen(controller);
4293 len = strlen(BASEDIR) + clen + 2;
4294 target = malloc(len);
4295 if (!target)
4296 return false;
4297 ret = snprintf(target, len, "%s/%s", BASEDIR, controller);
4298 if (ret < 0 || ret >= len) {
4299 free(target);
4300 return false;
4301 }
4302 if (mkdir(target, 0755) < 0 && errno != EEXIST) {
4303 free(target);
4304 return false;
4305 }
4306 if (mount(controller, target, "cgroup", 0, controller) < 0) {
4307 fprintf(stderr, "Failed mounting cgroup %s\n", controller);
4308 free(target);
4309 return false;
4310 }
4311
4312 fd_hierarchies[i] = open(target, O_DIRECTORY);
4313 if (fd_hierarchies[i] < 0) {
4314 free(target);
4315 return false;
4316 }
4317 free(target);
4318 }
4319 return true;
4320 }
4321
4322 static bool cgfs_setup_controllers(void)
4323 {
4324 if (!setup_cgfs_dir())
4325 return false;
4326
4327 if (!do_mount_cgroups()) {
4328 fprintf(stderr, "Failed to set up private lxcfs cgroup mounts.\n");
4329 return false;
4330 }
4331
4332 if (!pivot_new_root())
4333 return false;
4334
4335 return true;
4336 }
4337
4338 static int preserve_ns(int pid)
4339 {
4340 int ret;
4341 size_t len = 5 /* /proc */ + 21 /* /int_as_str */ + 7 /* /ns/mnt */ + 1 /* \0 */;
4342 char path[len];
4343
4344 ret = snprintf(path, len, "/proc/%d/ns/mnt", pid);
4345 if (ret < 0 || (size_t)ret >= len)
4346 return -1;
4347
4348 return open(path, O_RDONLY | O_CLOEXEC);
4349 }
4350
4351 static void __attribute__((constructor)) collect_and_mount_subsystems(void)
4352 {
4353 FILE *f;
4354 char *line = NULL;
4355 size_t len = 0;
4356 int i, init_ns = -1;
4357
4358 if ((f = fopen("/proc/self/cgroup", "r")) == NULL) {
4359 fprintf(stderr, "Error opening /proc/self/cgroup: %s\n", strerror(errno));
4360 return;
4361 }
4362 while (getline(&line, &len, f) != -1) {
4363 char *p, *p2;
4364
4365 p = strchr(line, ':');
4366 if (!p)
4367 goto out;
4368 *(p++) = '\0';
4369
4370 p2 = strrchr(p, ':');
4371 if (!p2)
4372 goto out;
4373 *p2 = '\0';
4374
4375 /* With cgroupv2 /proc/self/cgroup can contain entries of the
4376 * form: 0::/ This will cause lxcfs to fail the cgroup mounts
4377 * because it parses out the empty string "" and later on passes
4378 * it to mount(). Let's skip such entries.
4379 */
4380 if (!strcmp(p, ""))
4381 continue;
4382
4383 if (!store_hierarchy(line, p))
4384 goto out;
4385 }
4386
4387 /* Preserve initial namespace. */
4388 init_ns = preserve_ns(getpid());
4389 if (init_ns < 0)
4390 goto out;
4391
4392 fd_hierarchies = malloc(sizeof(int *) * num_hierarchies);
4393 if (!fd_hierarchies)
4394 goto out;
4395
4396 for (i = 0; i < num_hierarchies; i++)
4397 fd_hierarchies[i] = -1;
4398
4399 /* This function calls unshare(CLONE_NEWNS) our initial mount namespace
4400 * to privately mount lxcfs cgroups. */
4401 if (!cgfs_setup_controllers())
4402 goto out;
4403
4404 if (setns(init_ns, 0) < 0)
4405 goto out;
4406
4407 print_subsystems();
4408
4409 out:
4410 free(line);
4411 fclose(f);
4412 if (init_ns >= 0)
4413 close(init_ns);
4414 }
4415
4416 static void __attribute__((destructor)) free_subsystems(void)
4417 {
4418 int i;
4419
4420 for (i = 0; i < num_hierarchies; i++) {
4421 if (hierarchies[i])
4422 free(hierarchies[i]);
4423 if (fd_hierarchies && fd_hierarchies[i] >= 0)
4424 close(fd_hierarchies[i]);
4425 }
4426 free(hierarchies);
4427 free(fd_hierarchies);
4428 }