]> git.proxmox.com Git - mirror_lxcfs.git/blob - bindings.c
Use clone instead of fork for PID translation
[mirror_lxcfs.git] / bindings.c
1 /* lxcfs
2 *
3 * Copyright © 2014-2016 Canonical, Inc
4 * Author: Serge Hallyn <serge.hallyn@ubuntu.com>
5 *
6 * See COPYING file for details.
7 */
8
9 #define FUSE_USE_VERSION 26
10
11 #include <stdio.h>
12 #include <dirent.h>
13 #include <fcntl.h>
14 #include <fuse.h>
15 #include <unistd.h>
16 #include <errno.h>
17 #include <stdbool.h>
18 #include <time.h>
19 #include <string.h>
20 #include <stdlib.h>
21 #include <libgen.h>
22 #include <sched.h>
23 #include <pthread.h>
24 #include <linux/sched.h>
25 #include <sys/param.h>
26 #include <sys/socket.h>
27 #include <sys/mount.h>
28 #include <sys/epoll.h>
29 #include <wait.h>
30
31 #include "bindings.h"
32
33 #include "config.h" // for VERSION
34
35 enum {
36 LXC_TYPE_CGDIR,
37 LXC_TYPE_CGFILE,
38 LXC_TYPE_PROC_MEMINFO,
39 LXC_TYPE_PROC_CPUINFO,
40 LXC_TYPE_PROC_UPTIME,
41 LXC_TYPE_PROC_STAT,
42 LXC_TYPE_PROC_DISKSTATS,
43 LXC_TYPE_PROC_SWAPS,
44 };
45
46 struct file_info {
47 char *controller;
48 char *cgroup;
49 char *file;
50 int type;
51 char *buf; // unused as of yet
52 int buflen;
53 int size; //actual data size
54 int cached;
55 };
56
57 /* reserve buffer size, for cpuall in /proc/stat */
58 #define BUF_RESERVE_SIZE 256
59
60 /*
61 * A table caching which pid is init for a pid namespace.
62 * When looking up which pid is init for $qpid, we first
63 * 1. Stat /proc/$qpid/ns/pid.
64 * 2. Check whether the ino_t is in our store.
65 * a. if not, fork a child in qpid's ns to send us
66 * ucred.pid = 1, and read the initpid. Cache
67 * initpid and creation time for /proc/initpid
68 * in a new store entry.
69 * b. if so, verify that /proc/initpid still matches
70 * what we have saved. If not, clear the store
71 * entry and go back to a. If so, return the
72 * cached initpid.
73 */
74 struct pidns_init_store {
75 ino_t ino; // inode number for /proc/$pid/ns/pid
76 pid_t initpid; // the pid of nit in that ns
77 long int ctime; // the time at which /proc/$initpid was created
78 struct pidns_init_store *next;
79 long int lastcheck;
80 };
81
82 /* lol - look at how they are allocated in the kernel */
83 #define PIDNS_HASH_SIZE 4096
84 #define HASH(x) ((x) % PIDNS_HASH_SIZE)
85
86 static struct pidns_init_store *pidns_hash_table[PIDNS_HASH_SIZE];
87 static pthread_mutex_t pidns_store_mutex = PTHREAD_MUTEX_INITIALIZER;
88 static void lock_mutex(pthread_mutex_t *l)
89 {
90 int ret;
91
92 if ((ret = pthread_mutex_lock(l)) != 0) {
93 fprintf(stderr, "pthread_mutex_lock returned:%d %s\n", ret, strerror(ret));
94 exit(1);
95 }
96 }
97
98 static void unlock_mutex(pthread_mutex_t *l)
99 {
100 int ret;
101
102 if ((ret = pthread_mutex_unlock(l)) != 0) {
103 fprintf(stderr, "pthread_mutex_unlock returned:%d %s\n", ret, strerror(ret));
104 exit(1);
105 }
106 }
107
108 static void store_lock(void)
109 {
110 lock_mutex(&pidns_store_mutex);
111 }
112
113 static void store_unlock(void)
114 {
115 unlock_mutex(&pidns_store_mutex);
116 }
117
118 /* Must be called under store_lock */
119 static bool initpid_still_valid(struct pidns_init_store *e, struct stat *nsfdsb)
120 {
121 struct stat initsb;
122 char fnam[100];
123
124 snprintf(fnam, 100, "/proc/%d", e->initpid);
125 if (stat(fnam, &initsb) < 0)
126 return false;
127 #if DEBUG
128 fprintf(stderr, "comparing ctime %ld %ld for pid %d\n",
129 e->ctime, initsb.st_ctime, e->initpid);
130 #endif
131 if (e->ctime != initsb.st_ctime)
132 return false;
133 return true;
134 }
135
136 /* Must be called under store_lock */
137 static void remove_initpid(struct pidns_init_store *e)
138 {
139 struct pidns_init_store *tmp;
140 int h;
141
142 #if DEBUG
143 fprintf(stderr, "remove_initpid: removing entry for %d\n", e->initpid);
144 #endif
145 h = HASH(e->ino);
146 if (pidns_hash_table[h] == e) {
147 pidns_hash_table[h] = e->next;
148 free(e);
149 return;
150 }
151
152 tmp = pidns_hash_table[h];
153 while (tmp) {
154 if (tmp->next == e) {
155 tmp->next = e->next;
156 free(e);
157 return;
158 }
159 tmp = tmp->next;
160 }
161 }
162
163 #define PURGE_SECS 5
164 /* Must be called under store_lock */
165 static void prune_initpid_store(void)
166 {
167 static long int last_prune = 0;
168 struct pidns_init_store *e, *prev, *delme;
169 long int now, threshold;
170 int i;
171
172 if (!last_prune) {
173 last_prune = time(NULL);
174 return;
175 }
176 now = time(NULL);
177 if (now < last_prune + PURGE_SECS)
178 return;
179 #if DEBUG
180 fprintf(stderr, "pruning\n");
181 #endif
182 last_prune = now;
183 threshold = now - 2 * PURGE_SECS;
184
185 for (i = 0; i < PIDNS_HASH_SIZE; i++) {
186 for (prev = NULL, e = pidns_hash_table[i]; e; ) {
187 if (e->lastcheck < threshold) {
188 #if DEBUG
189 fprintf(stderr, "Removing cached entry for %d\n", e->initpid);
190 #endif
191 delme = e;
192 if (prev)
193 prev->next = e->next;
194 else
195 pidns_hash_table[i] = e->next;
196 e = e->next;
197 free(delme);
198 } else {
199 prev = e;
200 e = e->next;
201 }
202 }
203 }
204 }
205
206 /* Must be called under store_lock */
207 static void save_initpid(struct stat *sb, pid_t pid)
208 {
209 struct pidns_init_store *e;
210 char fpath[100];
211 struct stat procsb;
212 int h;
213
214 #if DEBUG
215 fprintf(stderr, "save_initpid: adding entry for %d\n", pid);
216 #endif
217 snprintf(fpath, 100, "/proc/%d", pid);
218 if (stat(fpath, &procsb) < 0)
219 return;
220 do {
221 e = malloc(sizeof(*e));
222 } while (!e);
223 e->ino = sb->st_ino;
224 e->initpid = pid;
225 e->ctime = procsb.st_ctime;
226 h = HASH(e->ino);
227 e->next = pidns_hash_table[h];
228 e->lastcheck = time(NULL);
229 pidns_hash_table[h] = e;
230 }
231
232 /*
233 * Given the stat(2) info for a nsfd pid inode, lookup the init_pid_store
234 * entry for the inode number and creation time. Verify that the init pid
235 * is still valid. If not, remove it. Return the entry if valid, NULL
236 * otherwise.
237 * Must be called under store_lock
238 */
239 static struct pidns_init_store *lookup_verify_initpid(struct stat *sb)
240 {
241 int h = HASH(sb->st_ino);
242 struct pidns_init_store *e = pidns_hash_table[h];
243
244 while (e) {
245 if (e->ino == sb->st_ino) {
246 if (initpid_still_valid(e, sb)) {
247 e->lastcheck = time(NULL);
248 return e;
249 }
250 remove_initpid(e);
251 return NULL;
252 }
253 e = e->next;
254 }
255
256 return NULL;
257 }
258
259 static int is_dir(const char *path)
260 {
261 struct stat statbuf;
262 int ret = stat(path, &statbuf);
263 if (ret == 0 && S_ISDIR(statbuf.st_mode))
264 return 1;
265 return 0;
266 }
267
268 static char *must_copy_string(const char *str)
269 {
270 char *dup = NULL;
271 if (!str)
272 return NULL;
273 do {
274 dup = strdup(str);
275 } while (!dup);
276
277 return dup;
278 }
279
280 static inline void drop_trailing_newlines(char *s)
281 {
282 int l;
283
284 for (l=strlen(s); l>0 && s[l-1] == '\n'; l--)
285 s[l-1] = '\0';
286 }
287
288 #define BATCH_SIZE 50
289 static void dorealloc(char **mem, size_t oldlen, size_t newlen)
290 {
291 int newbatches = (newlen / BATCH_SIZE) + 1;
292 int oldbatches = (oldlen / BATCH_SIZE) + 1;
293
294 if (!*mem || newbatches > oldbatches) {
295 char *tmp;
296 do {
297 tmp = realloc(*mem, newbatches * BATCH_SIZE);
298 } while (!tmp);
299 *mem = tmp;
300 }
301 }
302 static void append_line(char **contents, size_t *len, char *line, ssize_t linelen)
303 {
304 size_t newlen = *len + linelen;
305 dorealloc(contents, *len, newlen + 1);
306 memcpy(*contents + *len, line, linelen+1);
307 *len = newlen;
308 }
309
310 static char *slurp_file(const char *from)
311 {
312 char *line = NULL;
313 char *contents = NULL;
314 FILE *f = fopen(from, "r");
315 size_t len = 0, fulllen = 0;
316 ssize_t linelen;
317
318 if (!f)
319 return NULL;
320
321 while ((linelen = getline(&line, &len, f)) != -1) {
322 append_line(&contents, &fulllen, line, linelen);
323 }
324 fclose(f);
325
326 if (contents)
327 drop_trailing_newlines(contents);
328 free(line);
329 return contents;
330 }
331
332 static bool write_string(const char *fnam, const char *string)
333 {
334 FILE *f;
335 size_t len, ret;
336
337 if (!(f = fopen(fnam, "w")))
338 return false;
339 len = strlen(string);
340 ret = fwrite(string, 1, len, f);
341 if (ret != len) {
342 fprintf(stderr, "Error writing to file: %s\n", strerror(errno));
343 fclose(f);
344 return false;
345 }
346 if (fclose(f) < 0) {
347 fprintf(stderr, "Error writing to file: %s\n", strerror(errno));
348 return false;
349 }
350 return true;
351 }
352
353 /*
354 * hierarchies, i.e. 'cpu,cpuacct'
355 */
356 char **hierarchies;
357 int num_hierarchies;
358
359 struct cgfs_files {
360 char *name;
361 uint32_t uid, gid;
362 uint32_t mode;
363 };
364
365 #define ALLOC_NUM 20
366 static bool store_hierarchy(char *stridx, char *h)
367 {
368 if (num_hierarchies % ALLOC_NUM == 0) {
369 size_t n = (num_hierarchies / ALLOC_NUM) + 1;
370 n *= ALLOC_NUM;
371 char **tmp = realloc(hierarchies, n * sizeof(char *));
372 if (!tmp) {
373 fprintf(stderr, "Out of memory\n");
374 exit(1);
375 }
376 hierarchies = tmp;
377 }
378
379 hierarchies[num_hierarchies++] = must_copy_string(h);
380 return true;
381 }
382
383 static void print_subsystems(void)
384 {
385 int i;
386
387 fprintf(stderr, "hierarchies:");
388 for (i = 0; i < num_hierarchies; i++) {
389 if (hierarchies[i])
390 fprintf(stderr, " %d: %s\n", i, hierarchies[i]);
391 }
392 }
393
394 static bool in_comma_list(const char *needle, const char *haystack)
395 {
396 const char *s = haystack, *e;
397 size_t nlen = strlen(needle);
398
399 while (*s && (e = index(s, ','))) {
400 if (nlen != e - s) {
401 s = e + 1;
402 continue;
403 }
404 if (strncmp(needle, s, nlen) == 0)
405 return true;
406 s = e + 1;
407 }
408 if (strcmp(needle, s) == 0)
409 return true;
410 return false;
411 }
412
413 /* do we need to do any massaging here? I'm not sure... */
414 static char *find_mounted_controller(const char *controller)
415 {
416 int i;
417
418 for (i = 0; i < num_hierarchies; i++) {
419 if (!hierarchies[i])
420 continue;
421 if (strcmp(hierarchies[i], controller) == 0)
422 return hierarchies[i];
423 if (in_comma_list(controller, hierarchies[i]))
424 return hierarchies[i];
425 }
426
427 return NULL;
428 }
429
430 bool cgfs_set_value(const char *controller, const char *cgroup, const char *file,
431 const char *value)
432 {
433 size_t len;
434 char *fnam, *tmpc = find_mounted_controller(controller);
435
436 if (!tmpc)
437 return false;
438 /* basedir / tmpc / cgroup / file \0 */
439 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(file) + 4;
440 fnam = alloca(len);
441 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, file);
442
443 return write_string(fnam, value);
444 }
445
446 // Chown all the files in the cgroup directory. We do this when we create
447 // a cgroup on behalf of a user.
448 static void chown_all_cgroup_files(const char *dirname, uid_t uid, gid_t gid)
449 {
450 struct dirent dirent, *direntp;
451 char path[MAXPATHLEN];
452 size_t len;
453 DIR *d;
454 int ret;
455
456 len = strlen(dirname);
457 if (len >= MAXPATHLEN) {
458 fprintf(stderr, "chown_all_cgroup_files: pathname too long: %s\n", dirname);
459 return;
460 }
461
462 d = opendir(dirname);
463 if (!d) {
464 fprintf(stderr, "chown_all_cgroup_files: failed to open %s\n", dirname);
465 return;
466 }
467
468 while (readdir_r(d, &dirent, &direntp) == 0 && direntp) {
469 if (!strcmp(direntp->d_name, ".") || !strcmp(direntp->d_name, ".."))
470 continue;
471 ret = snprintf(path, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
472 if (ret < 0 || ret >= MAXPATHLEN) {
473 fprintf(stderr, "chown_all_cgroup_files: pathname too long under %s\n", dirname);
474 continue;
475 }
476 if (chown(path, uid, gid) < 0)
477 fprintf(stderr, "Failed to chown file %s to %u:%u", path, uid, gid);
478 }
479 closedir(d);
480 }
481
482 int cgfs_create(const char *controller, const char *cg, uid_t uid, gid_t gid)
483 {
484 size_t len;
485 char *dirnam, *tmpc = find_mounted_controller(controller);
486
487 if (!tmpc)
488 return -EINVAL;
489 /* basedir / tmpc / cg \0 */
490 len = strlen(basedir) + strlen(tmpc) + strlen(cg) + 3;
491 dirnam = alloca(len);
492 snprintf(dirnam, len, "%s/%s/%s", basedir,tmpc, cg);
493
494 if (mkdir(dirnam, 0755) < 0)
495 return -errno;
496
497 if (uid == 0 && gid == 0)
498 return 0;
499
500 if (chown(dirnam, uid, gid) < 0)
501 return -errno;
502
503 chown_all_cgroup_files(dirnam, uid, gid);
504
505 return 0;
506 }
507
508 static bool recursive_rmdir(const char *dirname)
509 {
510 struct dirent dirent, *direntp;
511 DIR *dir;
512 bool ret = false;
513 char pathname[MAXPATHLEN];
514
515 dir = opendir(dirname);
516 if (!dir) {
517 #if DEBUG
518 fprintf(stderr, "%s: failed to open %s: %s\n", __func__, dirname, strerror(errno));
519 #endif
520 return false;
521 }
522
523 while (!readdir_r(dir, &dirent, &direntp)) {
524 struct stat mystat;
525 int rc;
526
527 if (!direntp)
528 break;
529
530 if (!strcmp(direntp->d_name, ".") ||
531 !strcmp(direntp->d_name, ".."))
532 continue;
533
534 rc = snprintf(pathname, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
535 if (rc < 0 || rc >= MAXPATHLEN) {
536 fprintf(stderr, "pathname too long\n");
537 continue;
538 }
539
540 ret = lstat(pathname, &mystat);
541 if (ret) {
542 #if DEBUG
543 fprintf(stderr, "%s: failed to stat %s: %s\n", __func__, pathname, strerror(errno));
544 #endif
545 continue;
546 }
547 if (S_ISDIR(mystat.st_mode)) {
548 if (!recursive_rmdir(pathname)) {
549 #if DEBUG
550 fprintf(stderr, "Error removing %s\n", pathname);
551 #endif
552 }
553 }
554 }
555
556 ret = true;
557 if (closedir(dir) < 0) {
558 fprintf(stderr, "%s: failed to close directory %s: %s\n", __func__, dirname, strerror(errno));
559 ret = false;
560 }
561
562 if (rmdir(dirname) < 0) {
563 #if DEBUG
564 fprintf(stderr, "%s: failed to delete %s: %s\n", __func__, dirname, strerror(errno));
565 #endif
566 ret = false;
567 }
568
569 return ret;
570 }
571
572 bool cgfs_remove(const char *controller, const char *cg)
573 {
574 size_t len;
575 char *dirnam, *tmpc = find_mounted_controller(controller);
576
577 if (!tmpc)
578 return false;
579 /* basedir / tmpc / cg \0 */
580 len = strlen(basedir) + strlen(tmpc) + strlen(cg) + 3;
581 dirnam = alloca(len);
582 snprintf(dirnam, len, "%s/%s/%s", basedir,tmpc, cg);
583 return recursive_rmdir(dirnam);
584 }
585
586 bool cgfs_chmod_file(const char *controller, const char *file, mode_t mode)
587 {
588 size_t len;
589 char *pathname, *tmpc = find_mounted_controller(controller);
590
591 if (!tmpc)
592 return false;
593 /* basedir / tmpc / file \0 */
594 len = strlen(basedir) + strlen(tmpc) + strlen(file) + 3;
595 pathname = alloca(len);
596 snprintf(pathname, len, "%s/%s/%s", basedir, tmpc, file);
597 if (chmod(pathname, mode) < 0)
598 return false;
599 return true;
600 }
601
602 static int chown_tasks_files(const char *dirname, uid_t uid, gid_t gid)
603 {
604 size_t len;
605 char *fname;
606
607 len = strlen(dirname) + strlen("/cgroup.procs") + 1;
608 fname = alloca(len);
609 snprintf(fname, len, "%s/tasks", dirname);
610 if (chown(fname, uid, gid) != 0)
611 return -errno;
612 snprintf(fname, len, "%s/cgroup.procs", dirname);
613 if (chown(fname, uid, gid) != 0)
614 return -errno;
615 return 0;
616 }
617
618 int cgfs_chown_file(const char *controller, const char *file, uid_t uid, gid_t gid)
619 {
620 size_t len;
621 char *pathname, *tmpc = find_mounted_controller(controller);
622
623 if (!tmpc)
624 return -EINVAL;
625 /* basedir / tmpc / file \0 */
626 len = strlen(basedir) + strlen(tmpc) + strlen(file) + 3;
627 pathname = alloca(len);
628 snprintf(pathname, len, "%s/%s/%s", basedir, tmpc, file);
629 if (chown(pathname, uid, gid) < 0)
630 return -errno;
631
632 if (is_dir(pathname))
633 // like cgmanager did, we want to chown the tasks file as well
634 return chown_tasks_files(pathname, uid, gid);
635
636 return 0;
637 }
638
639 FILE *open_pids_file(const char *controller, const char *cgroup)
640 {
641 size_t len;
642 char *pathname, *tmpc = find_mounted_controller(controller);
643
644 if (!tmpc)
645 return NULL;
646 /* basedir / tmpc / cgroup / "cgroup.procs" \0 */
647 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 4 + strlen("cgroup.procs");
648 pathname = alloca(len);
649 snprintf(pathname, len, "%s/%s/%s/cgroup.procs", basedir, tmpc, cgroup);
650 return fopen(pathname, "w");
651 }
652
653 static bool cgfs_iterate_cgroup(const char *controller, const char *cgroup, bool directories,
654 void ***list, size_t typesize,
655 void* (*iterator)(const char*, const char*, const char*))
656 {
657 size_t len;
658 char *dirname, *tmpc = find_mounted_controller(controller);
659 char pathname[MAXPATHLEN];
660 size_t sz = 0, asz = 0;
661 struct dirent dirent, *direntp;
662 DIR *dir;
663 int ret;
664
665 *list = NULL;
666 if (!tmpc)
667 return false;
668
669 /* basedir / tmpc / cgroup \0 */
670 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 3;
671 dirname = alloca(len);
672 snprintf(dirname, len, "%s/%s/%s", basedir, tmpc, cgroup);
673
674 dir = opendir(dirname);
675 if (!dir)
676 return false;
677
678 while (!readdir_r(dir, &dirent, &direntp)) {
679 struct stat mystat;
680 int rc;
681
682 if (!direntp)
683 break;
684
685 if (!strcmp(direntp->d_name, ".") ||
686 !strcmp(direntp->d_name, ".."))
687 continue;
688
689 rc = snprintf(pathname, MAXPATHLEN, "%s/%s", dirname, direntp->d_name);
690 if (rc < 0 || rc >= MAXPATHLEN) {
691 fprintf(stderr, "%s: pathname too long under %s\n", __func__, dirname);
692 continue;
693 }
694
695 ret = lstat(pathname, &mystat);
696 if (ret) {
697 fprintf(stderr, "%s: failed to stat %s: %s\n", __func__, pathname, strerror(errno));
698 continue;
699 }
700 if ((!directories && !S_ISREG(mystat.st_mode)) ||
701 (directories && !S_ISDIR(mystat.st_mode)))
702 continue;
703
704 if (sz+2 >= asz) {
705 void **tmp;
706 asz += BATCH_SIZE;
707 do {
708 tmp = realloc(*list, asz * typesize);
709 } while (!tmp);
710 *list = tmp;
711 }
712 (*list)[sz] = (*iterator)(controller, cgroup, direntp->d_name);
713 (*list)[sz+1] = NULL;
714 sz++;
715 }
716 if (closedir(dir) < 0) {
717 fprintf(stderr, "%s: failed closedir for %s: %s\n", __func__, dirname, strerror(errno));
718 return false;
719 }
720 return true;
721 }
722
723 static void *make_children_list_entry(const char *controller, const char *cgroup, const char *dir_entry)
724 {
725 char *dup;
726 do {
727 dup = strdup(dir_entry);
728 } while (!dup);
729 return dup;
730 }
731
732 bool cgfs_list_children(const char *controller, const char *cgroup, char ***list)
733 {
734 return cgfs_iterate_cgroup(controller, cgroup, true, (void***)list, sizeof(*list), &make_children_list_entry);
735 }
736
737 void free_key(struct cgfs_files *k)
738 {
739 if (!k)
740 return;
741 free(k->name);
742 free(k);
743 }
744
745 void free_keys(struct cgfs_files **keys)
746 {
747 int i;
748
749 if (!keys)
750 return;
751 for (i = 0; keys[i]; i++) {
752 free_key(keys[i]);
753 }
754 free(keys);
755 }
756
757 bool cgfs_get_value(const char *controller, const char *cgroup, const char *file, char **value)
758 {
759 size_t len;
760 char *fnam, *tmpc = find_mounted_controller(controller);
761
762 if (!tmpc)
763 return false;
764 /* basedir / tmpc / cgroup / file \0 */
765 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(file) + 4;
766 fnam = alloca(len);
767 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, file);
768
769 *value = slurp_file(fnam);
770 return *value != NULL;
771 }
772
773 struct cgfs_files *cgfs_get_key(const char *controller, const char *cgroup, const char *file)
774 {
775 size_t len;
776 char *fnam, *tmpc = find_mounted_controller(controller);
777 struct stat sb;
778 struct cgfs_files *newkey;
779 int ret;
780
781 if (!tmpc)
782 return false;
783
784 if (file && *file == '/')
785 file++;
786
787 if (file && index(file, '/'))
788 return NULL;
789
790 /* basedir / tmpc / cgroup / file \0 */
791 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + 3;
792 if (file)
793 len += strlen(file) + 1;
794 fnam = alloca(len);
795 snprintf(fnam, len, "%s/%s/%s%s%s", basedir, tmpc, cgroup,
796 file ? "/" : "", file ? file : "");
797
798 ret = stat(fnam, &sb);
799 if (ret < 0)
800 return NULL;
801
802 do {
803 newkey = malloc(sizeof(struct cgfs_files));
804 } while (!newkey);
805 if (file)
806 newkey->name = must_copy_string(file);
807 else if (rindex(cgroup, '/'))
808 newkey->name = must_copy_string(rindex(cgroup, '/'));
809 else
810 newkey->name = must_copy_string(cgroup);
811 newkey->uid = sb.st_uid;
812 newkey->gid = sb.st_gid;
813 newkey->mode = sb.st_mode;
814
815 return newkey;
816 }
817
818 static void *make_key_list_entry(const char *controller, const char *cgroup, const char *dir_entry)
819 {
820 struct cgfs_files *entry = cgfs_get_key(controller, cgroup, dir_entry);
821 if (!entry) {
822 fprintf(stderr, "%s: Error getting files under %s:%s\n",
823 __func__, controller, cgroup);
824 }
825 return entry;
826 }
827
828 bool cgfs_list_keys(const char *controller, const char *cgroup, struct cgfs_files ***keys)
829 {
830 return cgfs_iterate_cgroup(controller, cgroup, false, (void***)keys, sizeof(*keys), &make_key_list_entry);
831 }
832
833 bool is_child_cgroup(const char *controller, const char *cgroup, const char *f)
834 { size_t len;
835 char *fnam, *tmpc = find_mounted_controller(controller);
836 int ret;
837 struct stat sb;
838
839 if (!tmpc)
840 return false;
841 /* basedir / tmpc / cgroup / f \0 */
842 len = strlen(basedir) + strlen(tmpc) + strlen(cgroup) + strlen(f) + 4;
843 fnam = alloca(len);
844 snprintf(fnam, len, "%s/%s/%s/%s", basedir, tmpc, cgroup, f);
845
846 ret = stat(fnam, &sb);
847 if (ret < 0 || !S_ISDIR(sb.st_mode))
848 return false;
849 return true;
850 }
851
852 #define SEND_CREDS_OK 0
853 #define SEND_CREDS_NOTSK 1
854 #define SEND_CREDS_FAIL 2
855 static bool recv_creds(int sock, struct ucred *cred, char *v);
856 static int wait_for_pid(pid_t pid);
857 static int send_creds(int sock, struct ucred *cred, char v, bool pingfirst);
858 static int send_creds_clone_wrapper(void *arg);
859
860 /*
861 * clone a task which switches to @task's namespace and writes '1'.
862 * over a unix sock so we can read the task's reaper's pid in our
863 * namespace
864 *
865 * Note: glibc's fork() does not respect pidns, which can lead to failed
866 * assertions inside glibc (and thus failed forks) if the child's pid in
867 * the pidns and the parent pid outside are identical. Using clone prevents
868 * this issue.
869 */
870 static void write_task_init_pid_exit(int sock, pid_t target)
871 {
872 char fnam[100];
873 pid_t pid;
874 int fd, ret;
875 size_t stack_size = sysconf(_SC_PAGESIZE);
876 void *stack = alloca(stack_size);
877
878 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", (int)target);
879 if (ret < 0 || ret >= sizeof(fnam))
880 _exit(1);
881
882 fd = open(fnam, O_RDONLY);
883 if (fd < 0) {
884 perror("write_task_init_pid_exit open of ns/pid");
885 _exit(1);
886 }
887 if (setns(fd, 0)) {
888 perror("write_task_init_pid_exit setns 1");
889 close(fd);
890 _exit(1);
891 }
892 pid = clone(send_creds_clone_wrapper, stack + stack_size, SIGCHLD, &sock);
893 if (pid < 0)
894 _exit(1);
895 if (pid != 0) {
896 if (!wait_for_pid(pid))
897 _exit(1);
898 _exit(0);
899 }
900 }
901
902 static int send_creds_clone_wrapper(void *arg) {
903 struct ucred cred;
904 char v;
905 int sock = *(int *)arg;
906
907 /* we are the child */
908 cred.uid = 0;
909 cred.gid = 0;
910 cred.pid = 1;
911 v = '1';
912 if (send_creds(sock, &cred, v, true) != SEND_CREDS_OK)
913 return 1;
914 return 0;
915 }
916
917 static pid_t get_init_pid_for_task(pid_t task)
918 {
919 int sock[2];
920 pid_t pid;
921 pid_t ret = -1;
922 char v = '0';
923 struct ucred cred;
924
925 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
926 perror("socketpair");
927 return -1;
928 }
929
930 pid = fork();
931 if (pid < 0)
932 goto out;
933 if (!pid) {
934 close(sock[1]);
935 write_task_init_pid_exit(sock[0], task);
936 _exit(0);
937 }
938
939 if (!recv_creds(sock[1], &cred, &v))
940 goto out;
941 ret = cred.pid;
942
943 out:
944 close(sock[0]);
945 close(sock[1]);
946 if (pid > 0)
947 wait_for_pid(pid);
948 return ret;
949 }
950
951 static pid_t lookup_initpid_in_store(pid_t qpid)
952 {
953 pid_t answer = 0;
954 struct stat sb;
955 struct pidns_init_store *e;
956 char fnam[100];
957
958 snprintf(fnam, 100, "/proc/%d/ns/pid", qpid);
959 store_lock();
960 if (stat(fnam, &sb) < 0)
961 goto out;
962 e = lookup_verify_initpid(&sb);
963 if (e) {
964 answer = e->initpid;
965 goto out;
966 }
967 answer = get_init_pid_for_task(qpid);
968 if (answer > 0)
969 save_initpid(&sb, answer);
970
971 out:
972 /* we prune at end in case we are returning
973 * the value we were about to return */
974 prune_initpid_store();
975 store_unlock();
976 return answer;
977 }
978
979 static int wait_for_pid(pid_t pid)
980 {
981 int status, ret;
982
983 if (pid <= 0)
984 return -1;
985
986 again:
987 ret = waitpid(pid, &status, 0);
988 if (ret == -1) {
989 if (errno == EINTR)
990 goto again;
991 return -1;
992 }
993 if (ret != pid)
994 goto again;
995 if (!WIFEXITED(status) || WEXITSTATUS(status) != 0)
996 return -1;
997 return 0;
998 }
999
1000
1001 /*
1002 * append pid to *src.
1003 * src: a pointer to a char* in which ot append the pid.
1004 * sz: the number of characters printed so far, minus trailing \0.
1005 * asz: the allocated size so far
1006 * pid: the pid to append
1007 */
1008 static void must_strcat_pid(char **src, size_t *sz, size_t *asz, pid_t pid)
1009 {
1010 char tmp[30];
1011
1012 int tmplen = sprintf(tmp, "%d\n", (int)pid);
1013
1014 if (!*src || tmplen + *sz + 1 >= *asz) {
1015 char *tmp;
1016 do {
1017 tmp = realloc(*src, *asz + BUF_RESERVE_SIZE);
1018 } while (!tmp);
1019 *src = tmp;
1020 *asz += BUF_RESERVE_SIZE;
1021 }
1022 memcpy((*src) +*sz , tmp, tmplen+1); /* include the \0 */
1023 *sz += tmplen;
1024 }
1025
1026 /*
1027 * Given a open file * to /proc/pid/{u,g}id_map, and an id
1028 * valid in the caller's namespace, return the id mapped into
1029 * pid's namespace.
1030 * Returns the mapped id, or -1 on error.
1031 */
1032 unsigned int
1033 convert_id_to_ns(FILE *idfile, unsigned int in_id)
1034 {
1035 unsigned int nsuid, // base id for a range in the idfile's namespace
1036 hostuid, // base id for a range in the caller's namespace
1037 count; // number of ids in this range
1038 char line[400];
1039 int ret;
1040
1041 fseek(idfile, 0L, SEEK_SET);
1042 while (fgets(line, 400, idfile)) {
1043 ret = sscanf(line, "%u %u %u\n", &nsuid, &hostuid, &count);
1044 if (ret != 3)
1045 continue;
1046 if (hostuid + count < hostuid || nsuid + count < nsuid) {
1047 /*
1048 * uids wrapped around - unexpected as this is a procfile,
1049 * so just bail.
1050 */
1051 fprintf(stderr, "pid wrapparound at entry %u %u %u in %s\n",
1052 nsuid, hostuid, count, line);
1053 return -1;
1054 }
1055 if (hostuid <= in_id && hostuid+count > in_id) {
1056 /*
1057 * now since hostuid <= in_id < hostuid+count, and
1058 * hostuid+count and nsuid+count do not wrap around,
1059 * we know that nsuid+(in_id-hostuid) which must be
1060 * less that nsuid+(count) must not wrap around
1061 */
1062 return (in_id - hostuid) + nsuid;
1063 }
1064 }
1065
1066 // no answer found
1067 return -1;
1068 }
1069
1070 /*
1071 * for is_privileged_over,
1072 * specify whether we require the calling uid to be root in his
1073 * namespace
1074 */
1075 #define NS_ROOT_REQD true
1076 #define NS_ROOT_OPT false
1077
1078 #define PROCLEN 100
1079
1080 static bool is_privileged_over(pid_t pid, uid_t uid, uid_t victim, bool req_ns_root)
1081 {
1082 char fpath[PROCLEN];
1083 int ret;
1084 bool answer = false;
1085 uid_t nsuid;
1086
1087 if (victim == -1 || uid == -1)
1088 return false;
1089
1090 /*
1091 * If the request is one not requiring root in the namespace,
1092 * then having the same uid suffices. (i.e. uid 1000 has write
1093 * access to files owned by uid 1000
1094 */
1095 if (!req_ns_root && uid == victim)
1096 return true;
1097
1098 ret = snprintf(fpath, PROCLEN, "/proc/%d/uid_map", pid);
1099 if (ret < 0 || ret >= PROCLEN)
1100 return false;
1101 FILE *f = fopen(fpath, "r");
1102 if (!f)
1103 return false;
1104
1105 /* if caller's not root in his namespace, reject */
1106 nsuid = convert_id_to_ns(f, uid);
1107 if (nsuid)
1108 goto out;
1109
1110 /*
1111 * If victim is not mapped into caller's ns, reject.
1112 * XXX I'm not sure this check is needed given that fuse
1113 * will be sending requests where the vfs has converted
1114 */
1115 nsuid = convert_id_to_ns(f, victim);
1116 if (nsuid == -1)
1117 goto out;
1118
1119 answer = true;
1120
1121 out:
1122 fclose(f);
1123 return answer;
1124 }
1125
1126 static bool perms_include(int fmode, mode_t req_mode)
1127 {
1128 mode_t r;
1129
1130 switch (req_mode & O_ACCMODE) {
1131 case O_RDONLY:
1132 r = S_IROTH;
1133 break;
1134 case O_WRONLY:
1135 r = S_IWOTH;
1136 break;
1137 case O_RDWR:
1138 r = S_IROTH | S_IWOTH;
1139 break;
1140 default:
1141 return false;
1142 }
1143 return ((fmode & r) == r);
1144 }
1145
1146
1147 /*
1148 * taskcg is a/b/c
1149 * querycg is /a/b/c/d/e
1150 * we return 'd'
1151 */
1152 static char *get_next_cgroup_dir(const char *taskcg, const char *querycg)
1153 {
1154 char *start, *end;
1155
1156 if (strlen(taskcg) <= strlen(querycg)) {
1157 fprintf(stderr, "%s: I was fed bad input\n", __func__);
1158 return NULL;
1159 }
1160
1161 if (strcmp(querycg, "/") == 0)
1162 start = strdup(taskcg + 1);
1163 else
1164 start = strdup(taskcg + strlen(querycg) + 1);
1165 if (!start)
1166 return NULL;
1167 end = strchr(start, '/');
1168 if (end)
1169 *end = '\0';
1170 return start;
1171 }
1172
1173 static void stripnewline(char *x)
1174 {
1175 size_t l = strlen(x);
1176 if (l && x[l-1] == '\n')
1177 x[l-1] = '\0';
1178 }
1179
1180 static char *get_pid_cgroup(pid_t pid, const char *contrl)
1181 {
1182 char fnam[PROCLEN];
1183 FILE *f;
1184 char *answer = NULL;
1185 char *line = NULL;
1186 size_t len = 0;
1187 int ret;
1188 const char *h = find_mounted_controller(contrl);
1189 if (!h)
1190 return NULL;
1191
1192 ret = snprintf(fnam, PROCLEN, "/proc/%d/cgroup", pid);
1193 if (ret < 0 || ret >= PROCLEN)
1194 return NULL;
1195 if (!(f = fopen(fnam, "r")))
1196 return NULL;
1197
1198 while (getline(&line, &len, f) != -1) {
1199 char *c1, *c2;
1200 if (!line[0])
1201 continue;
1202 c1 = strchr(line, ':');
1203 if (!c1)
1204 goto out;
1205 c1++;
1206 c2 = strchr(c1, ':');
1207 if (!c2)
1208 goto out;
1209 *c2 = '\0';
1210 if (strcmp(c1, h) != 0)
1211 continue;
1212 c2++;
1213 stripnewline(c2);
1214 do {
1215 answer = strdup(c2);
1216 } while (!answer);
1217 break;
1218 }
1219
1220 out:
1221 fclose(f);
1222 free(line);
1223 return answer;
1224 }
1225
1226 /*
1227 * check whether a fuse context may access a cgroup dir or file
1228 *
1229 * If file is not null, it is a cgroup file to check under cg.
1230 * If file is null, then we are checking perms on cg itself.
1231 *
1232 * For files we can check the mode of the list_keys result.
1233 * For cgroups, we must make assumptions based on the files under the
1234 * cgroup, because cgmanager doesn't tell us ownership/perms of cgroups
1235 * yet.
1236 */
1237 static bool fc_may_access(struct fuse_context *fc, const char *contrl, const char *cg, const char *file, mode_t mode)
1238 {
1239 struct cgfs_files *k = NULL;
1240 bool ret = false;
1241
1242 k = cgfs_get_key(contrl, cg, file);
1243 if (!k)
1244 return false;
1245
1246 if (is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_OPT)) {
1247 if (perms_include(k->mode >> 6, mode)) {
1248 ret = true;
1249 goto out;
1250 }
1251 }
1252 if (fc->gid == k->gid) {
1253 if (perms_include(k->mode >> 3, mode)) {
1254 ret = true;
1255 goto out;
1256 }
1257 }
1258 ret = perms_include(k->mode, mode);
1259
1260 out:
1261 free_key(k);
1262 return ret;
1263 }
1264
1265 #define INITSCOPE "/init.scope"
1266 static void prune_init_slice(char *cg)
1267 {
1268 char *point;
1269 size_t cg_len = strlen(cg), initscope_len = strlen(INITSCOPE);
1270
1271 if (cg_len < initscope_len)
1272 return;
1273
1274 point = cg + cg_len - initscope_len;
1275 if (strcmp(point, INITSCOPE) == 0) {
1276 if (point == cg)
1277 *(point+1) = '\0';
1278 else
1279 *point = '\0';
1280 }
1281 }
1282
1283 /*
1284 * If pid is in /a/b/c/d, he may only act on things under cg=/a/b/c/d.
1285 * If pid is in /a, he may act on /a/b, but not on /b.
1286 * if the answer is false and nextcg is not NULL, then *nextcg will point
1287 * to a string containing the next cgroup directory under cg, which must be
1288 * freed by the caller.
1289 */
1290 static bool caller_is_in_ancestor(pid_t pid, const char *contrl, const char *cg, char **nextcg)
1291 {
1292 bool answer = false;
1293 char *c2 = get_pid_cgroup(pid, contrl);
1294 char *linecmp;
1295
1296 if (!c2)
1297 return false;
1298 prune_init_slice(c2);
1299
1300 /*
1301 * callers pass in '/' for root cgroup, otherwise they pass
1302 * in a cgroup without leading '/'
1303 */
1304 linecmp = *cg == '/' ? c2 : c2+1;
1305 if (strncmp(linecmp, cg, strlen(linecmp)) != 0) {
1306 if (nextcg) {
1307 *nextcg = get_next_cgroup_dir(linecmp, cg);
1308 }
1309 goto out;
1310 }
1311 answer = true;
1312
1313 out:
1314 free(c2);
1315 return answer;
1316 }
1317
1318 /*
1319 * If pid is in /a/b/c, he may see that /a exists, but not /b or /a/c.
1320 */
1321 static bool caller_may_see_dir(pid_t pid, const char *contrl, const char *cg)
1322 {
1323 bool answer = false;
1324 char *c2, *task_cg;
1325 size_t target_len, task_len;
1326
1327 if (strcmp(cg, "/") == 0)
1328 return true;
1329
1330 c2 = get_pid_cgroup(pid, contrl);
1331 if (!c2)
1332 return false;
1333 prune_init_slice(c2);
1334
1335 task_cg = c2 + 1;
1336 target_len = strlen(cg);
1337 task_len = strlen(task_cg);
1338 if (task_len == 0) {
1339 /* Task is in the root cg, it can see everything. This case is
1340 * not handled by the strmcps below, since they test for the
1341 * last /, but that is the first / that we've chopped off
1342 * above.
1343 */
1344 answer = true;
1345 goto out;
1346 }
1347 if (strcmp(cg, task_cg) == 0) {
1348 answer = true;
1349 goto out;
1350 }
1351 if (target_len < task_len) {
1352 /* looking up a parent dir */
1353 if (strncmp(task_cg, cg, target_len) == 0 && task_cg[target_len] == '/')
1354 answer = true;
1355 goto out;
1356 }
1357 if (target_len > task_len) {
1358 /* looking up a child dir */
1359 if (strncmp(task_cg, cg, task_len) == 0 && cg[task_len] == '/')
1360 answer = true;
1361 goto out;
1362 }
1363
1364 out:
1365 free(c2);
1366 return answer;
1367 }
1368
1369 /*
1370 * given /cgroup/freezer/a/b, return "freezer".
1371 * the returned char* should NOT be freed.
1372 */
1373 static char *pick_controller_from_path(struct fuse_context *fc, const char *path)
1374 {
1375 const char *p1;
1376 char *contr, *slash;
1377
1378 if (strlen(path) < 9)
1379 return NULL;
1380 if (*(path+7) != '/')
1381 return NULL;
1382 p1 = path+8;
1383 contr = strdupa(p1);
1384 if (!contr)
1385 return NULL;
1386 slash = strstr(contr, "/");
1387 if (slash)
1388 *slash = '\0';
1389
1390 int i;
1391 for (i = 0; i < num_hierarchies; i++) {
1392 if (hierarchies[i] && strcmp(hierarchies[i], contr) == 0)
1393 return hierarchies[i];
1394 }
1395 return NULL;
1396 }
1397
1398 /*
1399 * Find the start of cgroup in /cgroup/controller/the/cgroup/path
1400 * Note that the returned value may include files (keynames) etc
1401 */
1402 static const char *find_cgroup_in_path(const char *path)
1403 {
1404 const char *p1;
1405
1406 if (strlen(path) < 9)
1407 return NULL;
1408 p1 = strstr(path+8, "/");
1409 if (!p1)
1410 return NULL;
1411 return p1+1;
1412 }
1413
1414 /*
1415 * split the last path element from the path in @cg.
1416 * @dir is newly allocated and should be freed, @last not
1417 */
1418 static void get_cgdir_and_path(const char *cg, char **dir, char **last)
1419 {
1420 char *p;
1421
1422 do {
1423 *dir = strdup(cg);
1424 } while (!*dir);
1425 *last = strrchr(cg, '/');
1426 if (!*last) {
1427 *last = NULL;
1428 return;
1429 }
1430 p = strrchr(*dir, '/');
1431 *p = '\0';
1432 }
1433
1434 /*
1435 * FUSE ops for /cgroup
1436 */
1437
1438 int cg_getattr(const char *path, struct stat *sb)
1439 {
1440 struct timespec now;
1441 struct fuse_context *fc = fuse_get_context();
1442 char * cgdir = NULL;
1443 char *last = NULL, *path1, *path2;
1444 struct cgfs_files *k = NULL;
1445 const char *cgroup;
1446 const char *controller = NULL;
1447 int ret = -ENOENT;
1448
1449
1450 if (!fc)
1451 return -EIO;
1452
1453 memset(sb, 0, sizeof(struct stat));
1454
1455 if (clock_gettime(CLOCK_REALTIME, &now) < 0)
1456 return -EINVAL;
1457
1458 sb->st_uid = sb->st_gid = 0;
1459 sb->st_atim = sb->st_mtim = sb->st_ctim = now;
1460 sb->st_size = 0;
1461
1462 if (strcmp(path, "/cgroup") == 0) {
1463 sb->st_mode = S_IFDIR | 00755;
1464 sb->st_nlink = 2;
1465 return 0;
1466 }
1467
1468 controller = pick_controller_from_path(fc, path);
1469 if (!controller)
1470 return -EIO;
1471 cgroup = find_cgroup_in_path(path);
1472 if (!cgroup) {
1473 /* this is just /cgroup/controller, return it as a dir */
1474 sb->st_mode = S_IFDIR | 00755;
1475 sb->st_nlink = 2;
1476 return 0;
1477 }
1478
1479 get_cgdir_and_path(cgroup, &cgdir, &last);
1480
1481 if (!last) {
1482 path1 = "/";
1483 path2 = cgdir;
1484 } else {
1485 path1 = cgdir;
1486 path2 = last;
1487 }
1488
1489 pid_t initpid = lookup_initpid_in_store(fc->pid);
1490 if (initpid <= 0)
1491 initpid = fc->pid;
1492 /* check that cgcopy is either a child cgroup of cgdir, or listed in its keys.
1493 * Then check that caller's cgroup is under path if last is a child
1494 * cgroup, or cgdir if last is a file */
1495
1496 if (is_child_cgroup(controller, path1, path2)) {
1497 if (!caller_may_see_dir(initpid, controller, cgroup)) {
1498 ret = -ENOENT;
1499 goto out;
1500 }
1501 if (!caller_is_in_ancestor(initpid, controller, cgroup, NULL)) {
1502 /* this is just /cgroup/controller, return it as a dir */
1503 sb->st_mode = S_IFDIR | 00555;
1504 sb->st_nlink = 2;
1505 ret = 0;
1506 goto out;
1507 }
1508 if (!fc_may_access(fc, controller, cgroup, NULL, O_RDONLY)) {
1509 ret = -EACCES;
1510 goto out;
1511 }
1512
1513 // get uid, gid, from '/tasks' file and make up a mode
1514 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
1515 sb->st_mode = S_IFDIR | 00755;
1516 k = cgfs_get_key(controller, cgroup, NULL);
1517 if (!k) {
1518 sb->st_uid = sb->st_gid = 0;
1519 } else {
1520 sb->st_uid = k->uid;
1521 sb->st_gid = k->gid;
1522 }
1523 free_key(k);
1524 sb->st_nlink = 2;
1525 ret = 0;
1526 goto out;
1527 }
1528
1529 if ((k = cgfs_get_key(controller, path1, path2)) != NULL) {
1530 sb->st_mode = S_IFREG | k->mode;
1531 sb->st_nlink = 1;
1532 sb->st_uid = k->uid;
1533 sb->st_gid = k->gid;
1534 sb->st_size = 0;
1535 free_key(k);
1536 if (!caller_is_in_ancestor(initpid, controller, path1, NULL)) {
1537 ret = -ENOENT;
1538 goto out;
1539 }
1540 if (!fc_may_access(fc, controller, path1, path2, O_RDONLY)) {
1541 ret = -EACCES;
1542 goto out;
1543 }
1544
1545 ret = 0;
1546 }
1547
1548 out:
1549 free(cgdir);
1550 return ret;
1551 }
1552
1553 int cg_opendir(const char *path, struct fuse_file_info *fi)
1554 {
1555 struct fuse_context *fc = fuse_get_context();
1556 const char *cgroup;
1557 struct file_info *dir_info;
1558 char *controller = NULL;
1559
1560 if (!fc)
1561 return -EIO;
1562
1563 if (strcmp(path, "/cgroup") == 0) {
1564 cgroup = NULL;
1565 controller = NULL;
1566 } else {
1567 // return list of keys for the controller, and list of child cgroups
1568 controller = pick_controller_from_path(fc, path);
1569 if (!controller)
1570 return -EIO;
1571
1572 cgroup = find_cgroup_in_path(path);
1573 if (!cgroup) {
1574 /* this is just /cgroup/controller, return its contents */
1575 cgroup = "/";
1576 }
1577 }
1578
1579 pid_t initpid = lookup_initpid_in_store(fc->pid);
1580 if (initpid <= 0)
1581 initpid = fc->pid;
1582 if (cgroup) {
1583 if (!caller_may_see_dir(initpid, controller, cgroup))
1584 return -ENOENT;
1585 if (!fc_may_access(fc, controller, cgroup, NULL, O_RDONLY))
1586 return -EACCES;
1587 }
1588
1589 /* we'll free this at cg_releasedir */
1590 dir_info = malloc(sizeof(*dir_info));
1591 if (!dir_info)
1592 return -ENOMEM;
1593 dir_info->controller = must_copy_string(controller);
1594 dir_info->cgroup = must_copy_string(cgroup);
1595 dir_info->type = LXC_TYPE_CGDIR;
1596 dir_info->buf = NULL;
1597 dir_info->file = NULL;
1598 dir_info->buflen = 0;
1599
1600 fi->fh = (unsigned long)dir_info;
1601 return 0;
1602 }
1603
1604 int cg_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset,
1605 struct fuse_file_info *fi)
1606 {
1607 struct file_info *d = (struct file_info *)fi->fh;
1608 struct cgfs_files **list = NULL;
1609 int i, ret;
1610 char *nextcg = NULL;
1611 struct fuse_context *fc = fuse_get_context();
1612 char **clist = NULL;
1613
1614 if (d->type != LXC_TYPE_CGDIR) {
1615 fprintf(stderr, "Internal error: file cache info used in readdir\n");
1616 return -EIO;
1617 }
1618 if (!d->cgroup && !d->controller) {
1619 // ls /var/lib/lxcfs/cgroup - just show list of controllers
1620 int i;
1621
1622 for (i = 0; i < num_hierarchies; i++) {
1623 if (hierarchies[i] && filler(buf, hierarchies[i], NULL, 0) != 0) {
1624 return -EIO;
1625 }
1626 }
1627 return 0;
1628 }
1629
1630 if (!cgfs_list_keys(d->controller, d->cgroup, &list)) {
1631 // not a valid cgroup
1632 ret = -EINVAL;
1633 goto out;
1634 }
1635
1636 pid_t initpid = lookup_initpid_in_store(fc->pid);
1637 if (initpid <= 0)
1638 initpid = fc->pid;
1639 if (!caller_is_in_ancestor(initpid, d->controller, d->cgroup, &nextcg)) {
1640 if (nextcg) {
1641 ret = filler(buf, nextcg, NULL, 0);
1642 free(nextcg);
1643 if (ret != 0) {
1644 ret = -EIO;
1645 goto out;
1646 }
1647 }
1648 ret = 0;
1649 goto out;
1650 }
1651
1652 for (i = 0; list[i]; i++) {
1653 if (filler(buf, list[i]->name, NULL, 0) != 0) {
1654 ret = -EIO;
1655 goto out;
1656 }
1657 }
1658
1659 // now get the list of child cgroups
1660
1661 if (!cgfs_list_children(d->controller, d->cgroup, &clist)) {
1662 ret = 0;
1663 goto out;
1664 }
1665 if (clist) {
1666 for (i = 0; clist[i]; i++) {
1667 if (filler(buf, clist[i], NULL, 0) != 0) {
1668 ret = -EIO;
1669 goto out;
1670 }
1671 }
1672 }
1673 ret = 0;
1674
1675 out:
1676 free_keys(list);
1677 if (clist) {
1678 for (i = 0; clist[i]; i++)
1679 free(clist[i]);
1680 free(clist);
1681 }
1682 return ret;
1683 }
1684
1685 static void do_release_file_info(struct file_info *f)
1686 {
1687 if (!f)
1688 return;
1689 free(f->controller);
1690 free(f->cgroup);
1691 free(f->file);
1692 free(f->buf);
1693 free(f);
1694 }
1695
1696 int cg_releasedir(const char *path, struct fuse_file_info *fi)
1697 {
1698 struct file_info *d = (struct file_info *)fi->fh;
1699
1700 do_release_file_info(d);
1701 return 0;
1702 }
1703
1704 int cg_open(const char *path, struct fuse_file_info *fi)
1705 {
1706 const char *cgroup;
1707 char *last = NULL, *path1, *path2, * cgdir = NULL, *controller;
1708 struct cgfs_files *k = NULL;
1709 struct file_info *file_info;
1710 struct fuse_context *fc = fuse_get_context();
1711 int ret;
1712
1713 if (!fc)
1714 return -EIO;
1715
1716 controller = pick_controller_from_path(fc, path);
1717 if (!controller)
1718 return -EIO;
1719 cgroup = find_cgroup_in_path(path);
1720 if (!cgroup)
1721 return -EINVAL;
1722
1723 get_cgdir_and_path(cgroup, &cgdir, &last);
1724 if (!last) {
1725 path1 = "/";
1726 path2 = cgdir;
1727 } else {
1728 path1 = cgdir;
1729 path2 = last;
1730 }
1731
1732 k = cgfs_get_key(controller, path1, path2);
1733 if (!k) {
1734 ret = -EINVAL;
1735 goto out;
1736 }
1737 free_key(k);
1738
1739 pid_t initpid = lookup_initpid_in_store(fc->pid);
1740 if (initpid <= 0)
1741 initpid = fc->pid;
1742 if (!caller_may_see_dir(initpid, controller, path1)) {
1743 ret = -ENOENT;
1744 goto out;
1745 }
1746 if (!fc_may_access(fc, controller, path1, path2, fi->flags)) {
1747 // should never get here
1748 ret = -EACCES;
1749 goto out;
1750 }
1751
1752 /* we'll free this at cg_release */
1753 file_info = malloc(sizeof(*file_info));
1754 if (!file_info) {
1755 ret = -ENOMEM;
1756 goto out;
1757 }
1758 file_info->controller = must_copy_string(controller);
1759 file_info->cgroup = must_copy_string(path1);
1760 file_info->file = must_copy_string(path2);
1761 file_info->type = LXC_TYPE_CGFILE;
1762 file_info->buf = NULL;
1763 file_info->buflen = 0;
1764
1765 fi->fh = (unsigned long)file_info;
1766 ret = 0;
1767
1768 out:
1769 free(cgdir);
1770 return ret;
1771 }
1772
1773 int cg_release(const char *path, struct fuse_file_info *fi)
1774 {
1775 struct file_info *f = (struct file_info *)fi->fh;
1776
1777 do_release_file_info(f);
1778 return 0;
1779 }
1780
1781 #define POLLIN_SET ( EPOLLIN | EPOLLHUP | EPOLLRDHUP )
1782
1783 static bool wait_for_sock(int sock, int timeout)
1784 {
1785 struct epoll_event ev;
1786 int epfd, ret, now, starttime, deltatime, saved_errno;
1787
1788 if ((starttime = time(NULL)) < 0)
1789 return false;
1790
1791 if ((epfd = epoll_create(1)) < 0) {
1792 fprintf(stderr, "Failed to create epoll socket: %m\n");
1793 return false;
1794 }
1795
1796 ev.events = POLLIN_SET;
1797 ev.data.fd = sock;
1798 if (epoll_ctl(epfd, EPOLL_CTL_ADD, sock, &ev) < 0) {
1799 fprintf(stderr, "Failed adding socket to epoll: %m\n");
1800 close(epfd);
1801 return false;
1802 }
1803
1804 again:
1805 if ((now = time(NULL)) < 0) {
1806 close(epfd);
1807 return false;
1808 }
1809
1810 deltatime = (starttime + timeout) - now;
1811 if (deltatime < 0) { // timeout
1812 errno = 0;
1813 close(epfd);
1814 return false;
1815 }
1816 ret = epoll_wait(epfd, &ev, 1, 1000*deltatime + 1);
1817 if (ret < 0 && errno == EINTR)
1818 goto again;
1819 saved_errno = errno;
1820 close(epfd);
1821
1822 if (ret <= 0) {
1823 errno = saved_errno;
1824 return false;
1825 }
1826 return true;
1827 }
1828
1829 static int msgrecv(int sockfd, void *buf, size_t len)
1830 {
1831 if (!wait_for_sock(sockfd, 2))
1832 return -1;
1833 return recv(sockfd, buf, len, MSG_DONTWAIT);
1834 }
1835
1836 static int send_creds(int sock, struct ucred *cred, char v, bool pingfirst)
1837 {
1838 struct msghdr msg = { 0 };
1839 struct iovec iov;
1840 struct cmsghdr *cmsg;
1841 char cmsgbuf[CMSG_SPACE(sizeof(*cred))];
1842 char buf[1];
1843 buf[0] = 'p';
1844
1845 if (pingfirst) {
1846 if (msgrecv(sock, buf, 1) != 1) {
1847 fprintf(stderr, "%s: Error getting reply from server over socketpair\n",
1848 __func__);
1849 return SEND_CREDS_FAIL;
1850 }
1851 }
1852
1853 msg.msg_control = cmsgbuf;
1854 msg.msg_controllen = sizeof(cmsgbuf);
1855
1856 cmsg = CMSG_FIRSTHDR(&msg);
1857 cmsg->cmsg_len = CMSG_LEN(sizeof(struct ucred));
1858 cmsg->cmsg_level = SOL_SOCKET;
1859 cmsg->cmsg_type = SCM_CREDENTIALS;
1860 memcpy(CMSG_DATA(cmsg), cred, sizeof(*cred));
1861
1862 msg.msg_name = NULL;
1863 msg.msg_namelen = 0;
1864
1865 buf[0] = v;
1866 iov.iov_base = buf;
1867 iov.iov_len = sizeof(buf);
1868 msg.msg_iov = &iov;
1869 msg.msg_iovlen = 1;
1870
1871 if (sendmsg(sock, &msg, 0) < 0) {
1872 fprintf(stderr, "%s: failed at sendmsg: %s\n", __func__,
1873 strerror(errno));
1874 if (errno == 3)
1875 return SEND_CREDS_NOTSK;
1876 return SEND_CREDS_FAIL;
1877 }
1878
1879 return SEND_CREDS_OK;
1880 }
1881
1882 static bool recv_creds(int sock, struct ucred *cred, char *v)
1883 {
1884 struct msghdr msg = { 0 };
1885 struct iovec iov;
1886 struct cmsghdr *cmsg;
1887 char cmsgbuf[CMSG_SPACE(sizeof(*cred))];
1888 char buf[1];
1889 int ret;
1890 int optval = 1;
1891
1892 *v = '1';
1893
1894 cred->pid = -1;
1895 cred->uid = -1;
1896 cred->gid = -1;
1897
1898 if (setsockopt(sock, SOL_SOCKET, SO_PASSCRED, &optval, sizeof(optval)) == -1) {
1899 fprintf(stderr, "Failed to set passcred: %s\n", strerror(errno));
1900 return false;
1901 }
1902 buf[0] = '1';
1903 if (write(sock, buf, 1) != 1) {
1904 fprintf(stderr, "Failed to start write on scm fd: %s\n", strerror(errno));
1905 return false;
1906 }
1907
1908 msg.msg_name = NULL;
1909 msg.msg_namelen = 0;
1910 msg.msg_control = cmsgbuf;
1911 msg.msg_controllen = sizeof(cmsgbuf);
1912
1913 iov.iov_base = buf;
1914 iov.iov_len = sizeof(buf);
1915 msg.msg_iov = &iov;
1916 msg.msg_iovlen = 1;
1917
1918 if (!wait_for_sock(sock, 2)) {
1919 fprintf(stderr, "Timed out waiting for scm_cred: %s\n",
1920 strerror(errno));
1921 return false;
1922 }
1923 ret = recvmsg(sock, &msg, MSG_DONTWAIT);
1924 if (ret < 0) {
1925 fprintf(stderr, "Failed to receive scm_cred: %s\n",
1926 strerror(errno));
1927 return false;
1928 }
1929
1930 cmsg = CMSG_FIRSTHDR(&msg);
1931
1932 if (cmsg && cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred)) &&
1933 cmsg->cmsg_level == SOL_SOCKET &&
1934 cmsg->cmsg_type == SCM_CREDENTIALS) {
1935 memcpy(cred, CMSG_DATA(cmsg), sizeof(*cred));
1936 }
1937 *v = buf[0];
1938
1939 return true;
1940 }
1941
1942 struct pid_ns_clone_args {
1943 int *cpipe;
1944 int sock;
1945 pid_t tpid;
1946 int (*wrapped) (int, pid_t); // pid_from_ns or pid_to_ns
1947 };
1948
1949 /*
1950 * pid_ns_clone_wrapper - wraps pid_to_ns or pid_from_ns for usage
1951 * with clone(). This simply writes '1' as ACK back to the parent
1952 * before calling the actual wrapped function.
1953 */
1954 static int pid_ns_clone_wrapper(void *arg) {
1955 struct pid_ns_clone_args* args = (struct pid_ns_clone_args *) arg;
1956 char b = '1';
1957
1958 close(args->cpipe[0]);
1959 if (write(args->cpipe[1], &b, sizeof(char)) < 0) {
1960 fprintf(stderr, "%s (child): error on write: %s\n",
1961 __func__, strerror(errno));
1962 }
1963 close(args->cpipe[1]);
1964 return args->wrapped(args->sock, args->tpid);
1965 }
1966
1967 /*
1968 * pid_to_ns - reads pids from a ucred over a socket, then writes the
1969 * int value back over the socket. This shifts the pid from the
1970 * sender's pidns into tpid's pidns.
1971 */
1972 static int pid_to_ns(int sock, pid_t tpid)
1973 {
1974 char v = '0';
1975 struct ucred cred;
1976
1977 while (recv_creds(sock, &cred, &v)) {
1978 if (v == '1')
1979 return 0;
1980 if (write(sock, &cred.pid, sizeof(pid_t)) != sizeof(pid_t))
1981 return 1;
1982 }
1983 return 0;
1984 }
1985
1986
1987 /*
1988 * pid_to_ns_wrapper: when you setns into a pidns, you yourself remain
1989 * in your old pidns. Only children which you clone will be in the target
1990 * pidns. So the pid_to_ns_wrapper does the setns, then clones a child to
1991 * actually convert pids.
1992 *
1993 * Note: glibc's fork() does not respect pidns, which can lead to failed
1994 * assertions inside glibc (and thus failed forks) if the child's pid in
1995 * the pidns and the parent pid outside are identical. Using clone prevents
1996 * this issue.
1997 */
1998 static void pid_to_ns_wrapper(int sock, pid_t tpid)
1999 {
2000 int newnsfd = -1, ret, cpipe[2];
2001 char fnam[100];
2002 pid_t cpid;
2003 char v;
2004
2005 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", tpid);
2006 if (ret < 0 || ret >= sizeof(fnam))
2007 _exit(1);
2008 newnsfd = open(fnam, O_RDONLY);
2009 if (newnsfd < 0)
2010 _exit(1);
2011 if (setns(newnsfd, 0) < 0)
2012 _exit(1);
2013 close(newnsfd);
2014
2015 if (pipe(cpipe) < 0)
2016 _exit(1);
2017
2018 struct pid_ns_clone_args args = {
2019 .cpipe = cpipe,
2020 .sock = sock,
2021 .tpid = tpid,
2022 .wrapped = &pid_to_ns
2023 };
2024 size_t stack_size = sysconf(_SC_PAGESIZE);
2025 void *stack = alloca(stack_size);
2026
2027 cpid = clone(pid_ns_clone_wrapper, stack + stack_size, SIGCHLD, &args);
2028 if (cpid < 0)
2029 _exit(1);
2030
2031 // give the child 1 second to be done forking and
2032 // write its ack
2033 if (!wait_for_sock(cpipe[0], 1))
2034 _exit(1);
2035 ret = read(cpipe[0], &v, 1);
2036 if (ret != sizeof(char) || v != '1')
2037 _exit(1);
2038
2039 if (!wait_for_pid(cpid))
2040 _exit(1);
2041 _exit(0);
2042 }
2043
2044 /*
2045 * To read cgroup files with a particular pid, we will setns into the child
2046 * pidns, open a pipe, fork a child - which will be the first to really be in
2047 * the child ns - which does the cgfs_get_value and writes the data to the pipe.
2048 */
2049 bool do_read_pids(pid_t tpid, const char *contrl, const char *cg, const char *file, char **d)
2050 {
2051 int sock[2] = {-1, -1};
2052 char *tmpdata = NULL;
2053 int ret;
2054 pid_t qpid, cpid = -1;
2055 bool answer = false;
2056 char v = '0';
2057 struct ucred cred;
2058 size_t sz = 0, asz = 0;
2059
2060 if (!cgfs_get_value(contrl, cg, file, &tmpdata))
2061 return false;
2062
2063 /*
2064 * Now we read the pids from returned data one by one, pass
2065 * them into a child in the target namespace, read back the
2066 * translated pids, and put them into our to-return data
2067 */
2068
2069 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
2070 perror("socketpair");
2071 free(tmpdata);
2072 return false;
2073 }
2074
2075 cpid = fork();
2076 if (cpid == -1)
2077 goto out;
2078
2079 if (!cpid) // child - exits when done
2080 pid_to_ns_wrapper(sock[1], tpid);
2081
2082 char *ptr = tmpdata;
2083 cred.uid = 0;
2084 cred.gid = 0;
2085 while (sscanf(ptr, "%d\n", &qpid) == 1) {
2086 cred.pid = qpid;
2087 ret = send_creds(sock[0], &cred, v, true);
2088
2089 if (ret == SEND_CREDS_NOTSK)
2090 goto next;
2091 if (ret == SEND_CREDS_FAIL)
2092 goto out;
2093
2094 // read converted results
2095 if (!wait_for_sock(sock[0], 2)) {
2096 fprintf(stderr, "%s: timed out waiting for pid from child: %s\n",
2097 __func__, strerror(errno));
2098 goto out;
2099 }
2100 if (read(sock[0], &qpid, sizeof(qpid)) != sizeof(qpid)) {
2101 fprintf(stderr, "%s: error reading pid from child: %s\n",
2102 __func__, strerror(errno));
2103 goto out;
2104 }
2105 must_strcat_pid(d, &sz, &asz, qpid);
2106 next:
2107 ptr = strchr(ptr, '\n');
2108 if (!ptr)
2109 break;
2110 ptr++;
2111 }
2112
2113 cred.pid = getpid();
2114 v = '1';
2115 if (send_creds(sock[0], &cred, v, true) != SEND_CREDS_OK) {
2116 // failed to ask child to exit
2117 fprintf(stderr, "%s: failed to ask child to exit: %s\n",
2118 __func__, strerror(errno));
2119 goto out;
2120 }
2121
2122 answer = true;
2123
2124 out:
2125 free(tmpdata);
2126 if (cpid != -1)
2127 wait_for_pid(cpid);
2128 if (sock[0] != -1) {
2129 close(sock[0]);
2130 close(sock[1]);
2131 }
2132 return answer;
2133 }
2134
2135 int cg_read(const char *path, char *buf, size_t size, off_t offset,
2136 struct fuse_file_info *fi)
2137 {
2138 struct fuse_context *fc = fuse_get_context();
2139 struct file_info *f = (struct file_info *)fi->fh;
2140 struct cgfs_files *k = NULL;
2141 char *data = NULL;
2142 int ret, s;
2143 bool r;
2144
2145 if (f->type != LXC_TYPE_CGFILE) {
2146 fprintf(stderr, "Internal error: directory cache info used in cg_read\n");
2147 return -EIO;
2148 }
2149
2150 if (offset)
2151 return 0;
2152
2153 if (!fc)
2154 return -EIO;
2155
2156 if (!f->controller)
2157 return -EINVAL;
2158
2159 if ((k = cgfs_get_key(f->controller, f->cgroup, f->file)) == NULL) {
2160 return -EINVAL;
2161 }
2162 free_key(k);
2163
2164
2165 if (!fc_may_access(fc, f->controller, f->cgroup, f->file, O_RDONLY)) { // should never get here
2166 ret = -EACCES;
2167 goto out;
2168 }
2169
2170 if (strcmp(f->file, "tasks") == 0 ||
2171 strcmp(f->file, "/tasks") == 0 ||
2172 strcmp(f->file, "/cgroup.procs") == 0 ||
2173 strcmp(f->file, "cgroup.procs") == 0)
2174 // special case - we have to translate the pids
2175 r = do_read_pids(fc->pid, f->controller, f->cgroup, f->file, &data);
2176 else
2177 r = cgfs_get_value(f->controller, f->cgroup, f->file, &data);
2178
2179 if (!r) {
2180 ret = -EINVAL;
2181 goto out;
2182 }
2183
2184 if (!data) {
2185 ret = 0;
2186 goto out;
2187 }
2188 s = strlen(data);
2189 if (s > size)
2190 s = size;
2191 memcpy(buf, data, s);
2192 if (s > 0 && s < size && data[s-1] != '\n')
2193 buf[s++] = '\n';
2194
2195 ret = s;
2196
2197 out:
2198 free(data);
2199 return ret;
2200 }
2201
2202 static int pid_from_ns(int sock, pid_t tpid)
2203 {
2204 pid_t vpid;
2205 struct ucred cred;
2206 char v;
2207 int ret;
2208
2209 cred.uid = 0;
2210 cred.gid = 0;
2211 while (1) {
2212 if (!wait_for_sock(sock, 2)) {
2213 fprintf(stderr, "%s: timeout reading from parent\n", __func__);
2214 return 1;
2215 }
2216 if ((ret = read(sock, &vpid, sizeof(pid_t))) != sizeof(pid_t)) {
2217 fprintf(stderr, "%s: bad read from parent: %s\n",
2218 __func__, strerror(errno));
2219 return 1;
2220 }
2221 if (vpid == -1) // done
2222 break;
2223 v = '0';
2224 cred.pid = vpid;
2225 if (send_creds(sock, &cred, v, true) != SEND_CREDS_OK) {
2226 v = '1';
2227 cred.pid = getpid();
2228 if (send_creds(sock, &cred, v, false) != SEND_CREDS_OK)
2229 return 1;
2230 }
2231 }
2232 return 0;
2233 }
2234
2235 static void pid_from_ns_wrapper(int sock, pid_t tpid)
2236 {
2237 int newnsfd = -1, ret, cpipe[2];
2238 char fnam[100];
2239 pid_t cpid;
2240 char v;
2241 size_t stack_size = sysconf(_SC_PAGESIZE);
2242 void *stack;
2243
2244 ret = snprintf(fnam, sizeof(fnam), "/proc/%d/ns/pid", tpid);
2245 if (ret < 0 || ret >= sizeof(fnam))
2246 _exit(1);
2247 newnsfd = open(fnam, O_RDONLY);
2248 if (newnsfd < 0)
2249 _exit(1);
2250 if (setns(newnsfd, 0) < 0)
2251 _exit(1);
2252 close(newnsfd);
2253
2254 if (pipe(cpipe) < 0)
2255 _exit(1);
2256
2257 struct pid_ns_clone_args args = {
2258 .cpipe = cpipe,
2259 .sock = sock,
2260 .tpid = tpid,
2261 .wrapped = &pid_from_ns
2262 };
2263
2264 loop:
2265 stack = alloca(stack_size);
2266
2267 cpid = clone(pid_ns_clone_wrapper, stack + stack_size, SIGCHLD, &args);
2268
2269 if (cpid < 0)
2270 _exit(1);
2271
2272 // give the child 1 second to be done forking and
2273 // write its ack
2274 if (!wait_for_sock(cpipe[0], 1))
2275 goto again;
2276 ret = read(cpipe[0], &v, 1);
2277 if (ret != sizeof(char) || v != '1') {
2278 goto again;
2279 }
2280
2281 if (!wait_for_pid(cpid))
2282 _exit(1);
2283 _exit(0);
2284
2285 again:
2286 kill(cpid, SIGKILL);
2287 wait_for_pid(cpid);
2288 goto loop;
2289 }
2290
2291 /*
2292 * Given host @uid, return the uid to which it maps in
2293 * @pid's user namespace, or -1 if none.
2294 */
2295 bool hostuid_to_ns(uid_t uid, pid_t pid, uid_t *answer)
2296 {
2297 FILE *f;
2298 char line[400];
2299
2300 sprintf(line, "/proc/%d/uid_map", pid);
2301 if ((f = fopen(line, "r")) == NULL) {
2302 return false;
2303 }
2304
2305 *answer = convert_id_to_ns(f, uid);
2306 fclose(f);
2307
2308 if (*answer == -1)
2309 return false;
2310 return true;
2311 }
2312
2313 /*
2314 * get_pid_creds: get the real uid and gid of @pid from
2315 * /proc/$$/status
2316 * (XXX should we use euid here?)
2317 */
2318 void get_pid_creds(pid_t pid, uid_t *uid, gid_t *gid)
2319 {
2320 char line[400];
2321 uid_t u;
2322 gid_t g;
2323 FILE *f;
2324
2325 *uid = -1;
2326 *gid = -1;
2327 sprintf(line, "/proc/%d/status", pid);
2328 if ((f = fopen(line, "r")) == NULL) {
2329 fprintf(stderr, "Error opening %s: %s\n", line, strerror(errno));
2330 return;
2331 }
2332 while (fgets(line, 400, f)) {
2333 if (strncmp(line, "Uid:", 4) == 0) {
2334 if (sscanf(line+4, "%u", &u) != 1) {
2335 fprintf(stderr, "bad uid line for pid %u\n", pid);
2336 fclose(f);
2337 return;
2338 }
2339 *uid = u;
2340 } else if (strncmp(line, "Gid:", 4) == 0) {
2341 if (sscanf(line+4, "%u", &g) != 1) {
2342 fprintf(stderr, "bad gid line for pid %u\n", pid);
2343 fclose(f);
2344 return;
2345 }
2346 *gid = g;
2347 }
2348 }
2349 fclose(f);
2350 }
2351
2352 /*
2353 * May the requestor @r move victim @v to a new cgroup?
2354 * This is allowed if
2355 * . they are the same task
2356 * . they are ownedy by the same uid
2357 * . @r is root on the host, or
2358 * . @v's uid is mapped into @r's where @r is root.
2359 */
2360 bool may_move_pid(pid_t r, uid_t r_uid, pid_t v)
2361 {
2362 uid_t v_uid, tmpuid;
2363 gid_t v_gid;
2364
2365 if (r == v)
2366 return true;
2367 if (r_uid == 0)
2368 return true;
2369 get_pid_creds(v, &v_uid, &v_gid);
2370 if (r_uid == v_uid)
2371 return true;
2372 if (hostuid_to_ns(r_uid, r, &tmpuid) && tmpuid == 0
2373 && hostuid_to_ns(v_uid, r, &tmpuid))
2374 return true;
2375 return false;
2376 }
2377
2378 static bool do_write_pids(pid_t tpid, uid_t tuid, const char *contrl, const char *cg,
2379 const char *file, const char *buf)
2380 {
2381 int sock[2] = {-1, -1};
2382 pid_t qpid, cpid = -1;
2383 FILE *pids_file = NULL;
2384 bool answer = false, fail = false;
2385
2386 pids_file = open_pids_file(contrl, cg);
2387 if (!pids_file)
2388 return false;
2389
2390 /*
2391 * write the pids to a socket, have helper in writer's pidns
2392 * call movepid for us
2393 */
2394 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, sock) < 0) {
2395 perror("socketpair");
2396 goto out;
2397 }
2398
2399 cpid = fork();
2400 if (cpid == -1)
2401 goto out;
2402
2403 if (!cpid) { // child
2404 fclose(pids_file);
2405 pid_from_ns_wrapper(sock[1], tpid);
2406 }
2407
2408 const char *ptr = buf;
2409 while (sscanf(ptr, "%d", &qpid) == 1) {
2410 struct ucred cred;
2411 char v;
2412
2413 if (write(sock[0], &qpid, sizeof(qpid)) != sizeof(qpid)) {
2414 fprintf(stderr, "%s: error writing pid to child: %s\n",
2415 __func__, strerror(errno));
2416 goto out;
2417 }
2418
2419 if (recv_creds(sock[0], &cred, &v)) {
2420 if (v == '0') {
2421 if (!may_move_pid(tpid, tuid, cred.pid)) {
2422 fail = true;
2423 break;
2424 }
2425 if (fprintf(pids_file, "%d", (int) cred.pid) < 0)
2426 fail = true;
2427 }
2428 }
2429
2430 ptr = strchr(ptr, '\n');
2431 if (!ptr)
2432 break;
2433 ptr++;
2434 }
2435
2436 /* All good, write the value */
2437 qpid = -1;
2438 if (write(sock[0], &qpid ,sizeof(qpid)) != sizeof(qpid))
2439 fprintf(stderr, "Warning: failed to ask child to exit\n");
2440
2441 if (!fail)
2442 answer = true;
2443
2444 out:
2445 if (cpid != -1)
2446 wait_for_pid(cpid);
2447 if (sock[0] != -1) {
2448 close(sock[0]);
2449 close(sock[1]);
2450 }
2451 if (pids_file) {
2452 if (fclose(pids_file) != 0)
2453 answer = false;
2454 }
2455 return answer;
2456 }
2457
2458 int cg_write(const char *path, const char *buf, size_t size, off_t offset,
2459 struct fuse_file_info *fi)
2460 {
2461 struct fuse_context *fc = fuse_get_context();
2462 char *localbuf = NULL;
2463 struct cgfs_files *k = NULL;
2464 struct file_info *f = (struct file_info *)fi->fh;
2465 bool r;
2466
2467 if (f->type != LXC_TYPE_CGFILE) {
2468 fprintf(stderr, "Internal error: directory cache info used in cg_write\n");
2469 return -EIO;
2470 }
2471
2472 if (offset)
2473 return 0;
2474
2475 if (!fc)
2476 return -EIO;
2477
2478 localbuf = alloca(size+1);
2479 localbuf[size] = '\0';
2480 memcpy(localbuf, buf, size);
2481
2482 if ((k = cgfs_get_key(f->controller, f->cgroup, f->file)) == NULL) {
2483 size = -EINVAL;
2484 goto out;
2485 }
2486
2487 if (!fc_may_access(fc, f->controller, f->cgroup, f->file, O_WRONLY)) {
2488 size = -EACCES;
2489 goto out;
2490 }
2491
2492 if (strcmp(f->file, "tasks") == 0 ||
2493 strcmp(f->file, "/tasks") == 0 ||
2494 strcmp(f->file, "/cgroup.procs") == 0 ||
2495 strcmp(f->file, "cgroup.procs") == 0)
2496 // special case - we have to translate the pids
2497 r = do_write_pids(fc->pid, fc->uid, f->controller, f->cgroup, f->file, localbuf);
2498 else
2499 r = cgfs_set_value(f->controller, f->cgroup, f->file, localbuf);
2500
2501 if (!r)
2502 size = -EINVAL;
2503
2504 out:
2505 free_key(k);
2506 return size;
2507 }
2508
2509 int cg_chown(const char *path, uid_t uid, gid_t gid)
2510 {
2511 struct fuse_context *fc = fuse_get_context();
2512 char *cgdir = NULL, *last = NULL, *path1, *path2, *controller;
2513 struct cgfs_files *k = NULL;
2514 const char *cgroup;
2515 int ret;
2516
2517 if (!fc)
2518 return -EIO;
2519
2520 if (strcmp(path, "/cgroup") == 0)
2521 return -EINVAL;
2522
2523 controller = pick_controller_from_path(fc, path);
2524 if (!controller)
2525 return -EINVAL;
2526 cgroup = find_cgroup_in_path(path);
2527 if (!cgroup)
2528 /* this is just /cgroup/controller */
2529 return -EINVAL;
2530
2531 get_cgdir_and_path(cgroup, &cgdir, &last);
2532
2533 if (!last) {
2534 path1 = "/";
2535 path2 = cgdir;
2536 } else {
2537 path1 = cgdir;
2538 path2 = last;
2539 }
2540
2541 if (is_child_cgroup(controller, path1, path2)) {
2542 // get uid, gid, from '/tasks' file and make up a mode
2543 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
2544 k = cgfs_get_key(controller, cgroup, "tasks");
2545
2546 } else
2547 k = cgfs_get_key(controller, path1, path2);
2548
2549 if (!k) {
2550 ret = -EINVAL;
2551 goto out;
2552 }
2553
2554 /*
2555 * This being a fuse request, the uid and gid must be valid
2556 * in the caller's namespace. So we can just check to make
2557 * sure that the caller is root in his uid, and privileged
2558 * over the file's current owner.
2559 */
2560 if (!is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_REQD)) {
2561 ret = -EACCES;
2562 goto out;
2563 }
2564
2565 ret = cgfs_chown_file(controller, cgroup, uid, gid);
2566
2567 out:
2568 free_key(k);
2569 free(cgdir);
2570
2571 return ret;
2572 }
2573
2574 int cg_chmod(const char *path, mode_t mode)
2575 {
2576 struct fuse_context *fc = fuse_get_context();
2577 char * cgdir = NULL, *last = NULL, *path1, *path2, *controller;
2578 struct cgfs_files *k = NULL;
2579 const char *cgroup;
2580 int ret;
2581
2582 if (!fc)
2583 return -EIO;
2584
2585 if (strcmp(path, "/cgroup") == 0)
2586 return -EINVAL;
2587
2588 controller = pick_controller_from_path(fc, path);
2589 if (!controller)
2590 return -EINVAL;
2591 cgroup = find_cgroup_in_path(path);
2592 if (!cgroup)
2593 /* this is just /cgroup/controller */
2594 return -EINVAL;
2595
2596 get_cgdir_and_path(cgroup, &cgdir, &last);
2597
2598 if (!last) {
2599 path1 = "/";
2600 path2 = cgdir;
2601 } else {
2602 path1 = cgdir;
2603 path2 = last;
2604 }
2605
2606 if (is_child_cgroup(controller, path1, path2)) {
2607 // get uid, gid, from '/tasks' file and make up a mode
2608 // That is a hack, until cgmanager gains a GetCgroupPerms fn.
2609 k = cgfs_get_key(controller, cgroup, "tasks");
2610
2611 } else
2612 k = cgfs_get_key(controller, path1, path2);
2613
2614 if (!k) {
2615 ret = -EINVAL;
2616 goto out;
2617 }
2618
2619 /*
2620 * This being a fuse request, the uid and gid must be valid
2621 * in the caller's namespace. So we can just check to make
2622 * sure that the caller is root in his uid, and privileged
2623 * over the file's current owner.
2624 */
2625 if (!is_privileged_over(fc->pid, fc->uid, k->uid, NS_ROOT_OPT)) {
2626 ret = -EPERM;
2627 goto out;
2628 }
2629
2630 if (!cgfs_chmod_file(controller, cgroup, mode)) {
2631 ret = -EINVAL;
2632 goto out;
2633 }
2634
2635 ret = 0;
2636 out:
2637 free_key(k);
2638 free(cgdir);
2639 return ret;
2640 }
2641
2642 int cg_mkdir(const char *path, mode_t mode)
2643 {
2644 struct fuse_context *fc = fuse_get_context();
2645 char *last = NULL, *path1, *cgdir = NULL, *controller, *next = NULL;
2646 const char *cgroup;
2647 int ret;
2648
2649 if (!fc)
2650 return -EIO;
2651
2652
2653 controller = pick_controller_from_path(fc, path);
2654 if (!controller)
2655 return -EINVAL;
2656
2657 cgroup = find_cgroup_in_path(path);
2658 if (!cgroup)
2659 return -EINVAL;
2660
2661 get_cgdir_and_path(cgroup, &cgdir, &last);
2662 if (!last)
2663 path1 = "/";
2664 else
2665 path1 = cgdir;
2666
2667 pid_t initpid = lookup_initpid_in_store(fc->pid);
2668 if (initpid <= 0)
2669 initpid = fc->pid;
2670 if (!caller_is_in_ancestor(initpid, controller, path1, &next)) {
2671 if (!next)
2672 ret = -EINVAL;
2673 else if (last && strcmp(next, last) == 0)
2674 ret = -EEXIST;
2675 else
2676 ret = -ENOENT;
2677 goto out;
2678 }
2679
2680 if (!fc_may_access(fc, controller, path1, NULL, O_RDWR)) {
2681 ret = -EACCES;
2682 goto out;
2683 }
2684 if (!caller_is_in_ancestor(initpid, controller, path1, NULL)) {
2685 ret = -EACCES;
2686 goto out;
2687 }
2688
2689 ret = cgfs_create(controller, cgroup, fc->uid, fc->gid);
2690
2691 out:
2692 free(cgdir);
2693 free(next);
2694 return ret;
2695 }
2696
2697 int cg_rmdir(const char *path)
2698 {
2699 struct fuse_context *fc = fuse_get_context();
2700 char *last = NULL, *cgdir = NULL, *controller, *next = NULL;
2701 const char *cgroup;
2702 int ret;
2703
2704 if (!fc)
2705 return -EIO;
2706
2707 controller = pick_controller_from_path(fc, path);
2708 if (!controller)
2709 return -EINVAL;
2710
2711 cgroup = find_cgroup_in_path(path);
2712 if (!cgroup)
2713 return -EINVAL;
2714
2715 get_cgdir_and_path(cgroup, &cgdir, &last);
2716 if (!last) {
2717 ret = -EINVAL;
2718 goto out;
2719 }
2720
2721 pid_t initpid = lookup_initpid_in_store(fc->pid);
2722 if (initpid <= 0)
2723 initpid = fc->pid;
2724 if (!caller_is_in_ancestor(initpid, controller, cgroup, &next)) {
2725 if (!last || strcmp(next, last) == 0)
2726 ret = -EBUSY;
2727 else
2728 ret = -ENOENT;
2729 goto out;
2730 }
2731
2732 if (!fc_may_access(fc, controller, cgdir, NULL, O_WRONLY)) {
2733 ret = -EACCES;
2734 goto out;
2735 }
2736 if (!caller_is_in_ancestor(initpid, controller, cgroup, NULL)) {
2737 ret = -EACCES;
2738 goto out;
2739 }
2740
2741 if (!cgfs_remove(controller, cgroup)) {
2742 ret = -EINVAL;
2743 goto out;
2744 }
2745
2746 ret = 0;
2747
2748 out:
2749 free(cgdir);
2750 free(next);
2751 return ret;
2752 }
2753
2754 static bool startswith(const char *line, const char *pref)
2755 {
2756 if (strncmp(line, pref, strlen(pref)) == 0)
2757 return true;
2758 return false;
2759 }
2760
2761 static void get_mem_cached(char *memstat, unsigned long *v)
2762 {
2763 char *eol;
2764
2765 *v = 0;
2766 while (*memstat) {
2767 if (startswith(memstat, "total_cache")) {
2768 sscanf(memstat + 11, "%lu", v);
2769 *v /= 1024;
2770 return;
2771 }
2772 eol = strchr(memstat, '\n');
2773 if (!eol)
2774 return;
2775 memstat = eol+1;
2776 }
2777 }
2778
2779 static void get_blkio_io_value(char *str, unsigned major, unsigned minor, char *iotype, unsigned long *v)
2780 {
2781 char *eol;
2782 char key[32];
2783
2784 memset(key, 0, 32);
2785 snprintf(key, 32, "%u:%u %s", major, minor, iotype);
2786
2787 size_t len = strlen(key);
2788 *v = 0;
2789
2790 while (*str) {
2791 if (startswith(str, key)) {
2792 sscanf(str + len, "%lu", v);
2793 return;
2794 }
2795 eol = strchr(str, '\n');
2796 if (!eol)
2797 return;
2798 str = eol+1;
2799 }
2800 }
2801
2802 static int read_file(const char *path, char *buf, size_t size,
2803 struct file_info *d)
2804 {
2805 size_t linelen = 0, total_len = 0, rv = 0;
2806 char *line = NULL;
2807 char *cache = d->buf;
2808 size_t cache_size = d->buflen;
2809 FILE *f = fopen(path, "r");
2810 if (!f)
2811 return 0;
2812
2813 while (getline(&line, &linelen, f) != -1) {
2814 size_t l = snprintf(cache, cache_size, "%s", line);
2815 if (l < 0) {
2816 perror("Error writing to cache");
2817 rv = 0;
2818 goto err;
2819 }
2820 if (l >= cache_size) {
2821 fprintf(stderr, "Internal error: truncated write to cache\n");
2822 rv = 0;
2823 goto err;
2824 }
2825 cache += l;
2826 cache_size -= l;
2827 total_len += l;
2828 }
2829
2830 d->size = total_len;
2831 if (total_len > size ) total_len = size;
2832
2833 /* read from off 0 */
2834 memcpy(buf, d->buf, total_len);
2835 rv = total_len;
2836 err:
2837 fclose(f);
2838 free(line);
2839 return rv;
2840 }
2841
2842 /*
2843 * FUSE ops for /proc
2844 */
2845
2846 static unsigned long get_memlimit(const char *cgroup)
2847 {
2848 char *memlimit_str = NULL;
2849 unsigned long memlimit = -1;
2850
2851 if (cgfs_get_value("memory", cgroup, "memory.limit_in_bytes", &memlimit_str))
2852 memlimit = strtoul(memlimit_str, NULL, 10);
2853
2854 free(memlimit_str);
2855
2856 return memlimit;
2857 }
2858
2859 static unsigned long get_min_memlimit(const char *cgroup)
2860 {
2861 char *copy = strdupa(cgroup);
2862 unsigned long memlimit = 0, retlimit;
2863
2864 retlimit = get_memlimit(copy);
2865
2866 while (strcmp(copy, "/") != 0) {
2867 copy = dirname(copy);
2868 memlimit = get_memlimit(copy);
2869 if (memlimit != -1 && memlimit < retlimit)
2870 retlimit = memlimit;
2871 };
2872
2873 return retlimit;
2874 }
2875
2876 static int proc_meminfo_read(char *buf, size_t size, off_t offset,
2877 struct fuse_file_info *fi)
2878 {
2879 struct fuse_context *fc = fuse_get_context();
2880 struct file_info *d = (struct file_info *)fi->fh;
2881 char *cg;
2882 char *memusage_str = NULL, *memstat_str = NULL,
2883 *memswlimit_str = NULL, *memswusage_str = NULL,
2884 *memswlimit_default_str = NULL, *memswusage_default_str = NULL;
2885 unsigned long memlimit = 0, memusage = 0, memswlimit = 0, memswusage = 0,
2886 cached = 0, hosttotal = 0;
2887 char *line = NULL;
2888 size_t linelen = 0, total_len = 0, rv = 0;
2889 char *cache = d->buf;
2890 size_t cache_size = d->buflen;
2891 FILE *f = NULL;
2892
2893 if (offset){
2894 if (offset > d->size)
2895 return -EINVAL;
2896 if (!d->cached)
2897 return 0;
2898 int left = d->size - offset;
2899 total_len = left > size ? size: left;
2900 memcpy(buf, cache + offset, total_len);
2901 return total_len;
2902 }
2903
2904 pid_t initpid = lookup_initpid_in_store(fc->pid);
2905 if (initpid <= 0)
2906 initpid = fc->pid;
2907 cg = get_pid_cgroup(initpid, "memory");
2908 if (!cg)
2909 return read_file("/proc/meminfo", buf, size, d);
2910
2911 memlimit = get_min_memlimit(cg);
2912 if (!cgfs_get_value("memory", cg, "memory.usage_in_bytes", &memusage_str))
2913 goto err;
2914 if (!cgfs_get_value("memory", cg, "memory.stat", &memstat_str))
2915 goto err;
2916
2917 // Following values are allowed to fail, because swapaccount might be turned
2918 // off for current kernel
2919 if(cgfs_get_value("memory", cg, "memory.memsw.limit_in_bytes", &memswlimit_str) &&
2920 cgfs_get_value("memory", cg, "memory.memsw.usage_in_bytes", &memswusage_str))
2921 {
2922 /* If swapaccounting is turned on, then default value is assumed to be that of cgroup / */
2923 if (!cgfs_get_value("memory", "/", "memory.memsw.limit_in_bytes", &memswlimit_default_str))
2924 goto err;
2925 if (!cgfs_get_value("memory", "/", "memory.memsw.usage_in_bytes", &memswusage_default_str))
2926 goto err;
2927
2928 memswlimit = strtoul(memswlimit_str, NULL, 10);
2929 memswusage = strtoul(memswusage_str, NULL, 10);
2930
2931 if (!strcmp(memswlimit_str, memswlimit_default_str))
2932 memswlimit = 0;
2933 if (!strcmp(memswusage_str, memswusage_default_str))
2934 memswusage = 0;
2935
2936 memswlimit = memswlimit / 1024;
2937 memswusage = memswusage / 1024;
2938 }
2939
2940 memusage = strtoul(memusage_str, NULL, 10);
2941 memlimit /= 1024;
2942 memusage /= 1024;
2943
2944 get_mem_cached(memstat_str, &cached);
2945
2946 f = fopen("/proc/meminfo", "r");
2947 if (!f)
2948 goto err;
2949
2950 while (getline(&line, &linelen, f) != -1) {
2951 size_t l;
2952 char *printme, lbuf[100];
2953
2954 memset(lbuf, 0, 100);
2955 if (startswith(line, "MemTotal:")) {
2956 sscanf(line+14, "%lu", &hosttotal);
2957 if (hosttotal < memlimit)
2958 memlimit = hosttotal;
2959 snprintf(lbuf, 100, "MemTotal: %8lu kB\n", memlimit);
2960 printme = lbuf;
2961 } else if (startswith(line, "MemFree:")) {
2962 snprintf(lbuf, 100, "MemFree: %8lu kB\n", memlimit - memusage);
2963 printme = lbuf;
2964 } else if (startswith(line, "MemAvailable:")) {
2965 snprintf(lbuf, 100, "MemAvailable: %8lu kB\n", memlimit - memusage);
2966 printme = lbuf;
2967 } else if (startswith(line, "SwapTotal:") && memswlimit > 0) {
2968 snprintf(lbuf, 100, "SwapTotal: %8lu kB\n", memswlimit - memlimit);
2969 printme = lbuf;
2970 } else if (startswith(line, "SwapFree:") && memswlimit > 0 && memswusage > 0) {
2971 snprintf(lbuf, 100, "SwapFree: %8lu kB\n",
2972 (memswlimit - memlimit) - (memswusage - memusage));
2973 printme = lbuf;
2974 } else if (startswith(line, "Buffers:")) {
2975 snprintf(lbuf, 100, "Buffers: %8lu kB\n", 0UL);
2976 printme = lbuf;
2977 } else if (startswith(line, "Cached:")) {
2978 snprintf(lbuf, 100, "Cached: %8lu kB\n", cached);
2979 printme = lbuf;
2980 } else if (startswith(line, "SwapCached:")) {
2981 snprintf(lbuf, 100, "SwapCached: %8lu kB\n", 0UL);
2982 printme = lbuf;
2983 } else
2984 printme = line;
2985
2986 l = snprintf(cache, cache_size, "%s", printme);
2987 if (l < 0) {
2988 perror("Error writing to cache");
2989 rv = 0;
2990 goto err;
2991
2992 }
2993 if (l >= cache_size) {
2994 fprintf(stderr, "Internal error: truncated write to cache\n");
2995 rv = 0;
2996 goto err;
2997 }
2998
2999 cache += l;
3000 cache_size -= l;
3001 total_len += l;
3002 }
3003
3004 d->cached = 1;
3005 d->size = total_len;
3006 if (total_len > size ) total_len = size;
3007 memcpy(buf, d->buf, total_len);
3008
3009 rv = total_len;
3010 err:
3011 if (f)
3012 fclose(f);
3013 free(line);
3014 free(cg);
3015 free(memusage_str);
3016 free(memswlimit_str);
3017 free(memswusage_str);
3018 free(memstat_str);
3019 free(memswlimit_default_str);
3020 free(memswusage_default_str);
3021 return rv;
3022 }
3023
3024 /*
3025 * Read the cpuset.cpus for cg
3026 * Return the answer in a newly allocated string which must be freed
3027 */
3028 static char *get_cpuset(const char *cg)
3029 {
3030 char *answer;
3031
3032 if (!cgfs_get_value("cpuset", cg, "cpuset.cpus", &answer))
3033 return NULL;
3034 return answer;
3035 }
3036
3037 bool cpu_in_cpuset(int cpu, const char *cpuset);
3038
3039 static bool cpuline_in_cpuset(const char *line, const char *cpuset)
3040 {
3041 int cpu;
3042
3043 if (sscanf(line, "processor : %d", &cpu) != 1)
3044 return false;
3045 return cpu_in_cpuset(cpu, cpuset);
3046 }
3047
3048 /*
3049 * check whether this is a '^processor" line in /proc/cpuinfo
3050 */
3051 static bool is_processor_line(const char *line)
3052 {
3053 int cpu;
3054
3055 if (sscanf(line, "processor : %d", &cpu) == 1)
3056 return true;
3057 return false;
3058 }
3059
3060 static int proc_cpuinfo_read(char *buf, size_t size, off_t offset,
3061 struct fuse_file_info *fi)
3062 {
3063 struct fuse_context *fc = fuse_get_context();
3064 struct file_info *d = (struct file_info *)fi->fh;
3065 char *cg;
3066 char *cpuset = NULL;
3067 char *line = NULL;
3068 size_t linelen = 0, total_len = 0, rv = 0;
3069 bool am_printing = false;
3070 int curcpu = -1;
3071 char *cache = d->buf;
3072 size_t cache_size = d->buflen;
3073 FILE *f = NULL;
3074
3075 if (offset){
3076 if (offset > d->size)
3077 return -EINVAL;
3078 if (!d->cached)
3079 return 0;
3080 int left = d->size - offset;
3081 total_len = left > size ? size: left;
3082 memcpy(buf, cache + offset, total_len);
3083 return total_len;
3084 }
3085
3086 pid_t initpid = lookup_initpid_in_store(fc->pid);
3087 if (initpid <= 0)
3088 initpid = fc->pid;
3089 cg = get_pid_cgroup(initpid, "cpuset");
3090 if (!cg)
3091 return read_file("proc/cpuinfo", buf, size, d);
3092
3093 cpuset = get_cpuset(cg);
3094 if (!cpuset)
3095 goto err;
3096
3097 f = fopen("/proc/cpuinfo", "r");
3098 if (!f)
3099 goto err;
3100
3101 while (getline(&line, &linelen, f) != -1) {
3102 size_t l;
3103 if (is_processor_line(line)) {
3104 am_printing = cpuline_in_cpuset(line, cpuset);
3105 if (am_printing) {
3106 curcpu ++;
3107 l = snprintf(cache, cache_size, "processor : %d\n", curcpu);
3108 if (l < 0) {
3109 perror("Error writing to cache");
3110 rv = 0;
3111 goto err;
3112 }
3113 if (l >= cache_size) {
3114 fprintf(stderr, "Internal error: truncated write to cache\n");
3115 rv = 0;
3116 goto err;
3117 }
3118 cache += l;
3119 cache_size -= l;
3120 total_len += l;
3121 }
3122 continue;
3123 }
3124 if (am_printing) {
3125 l = snprintf(cache, cache_size, "%s", line);
3126 if (l < 0) {
3127 perror("Error writing to cache");
3128 rv = 0;
3129 goto err;
3130 }
3131 if (l >= cache_size) {
3132 fprintf(stderr, "Internal error: truncated write to cache\n");
3133 rv = 0;
3134 goto err;
3135 }
3136 cache += l;
3137 cache_size -= l;
3138 total_len += l;
3139 }
3140 }
3141
3142 d->cached = 1;
3143 d->size = total_len;
3144 if (total_len > size ) total_len = size;
3145
3146 /* read from off 0 */
3147 memcpy(buf, d->buf, total_len);
3148 rv = total_len;
3149 err:
3150 if (f)
3151 fclose(f);
3152 free(line);
3153 free(cpuset);
3154 free(cg);
3155 return rv;
3156 }
3157
3158 static int proc_stat_read(char *buf, size_t size, off_t offset,
3159 struct fuse_file_info *fi)
3160 {
3161 struct fuse_context *fc = fuse_get_context();
3162 struct file_info *d = (struct file_info *)fi->fh;
3163 char *cg;
3164 char *cpuset = NULL;
3165 char *line = NULL;
3166 size_t linelen = 0, total_len = 0, rv = 0;
3167 int curcpu = -1; /* cpu numbering starts at 0 */
3168 unsigned long user = 0, nice = 0, system = 0, idle = 0, iowait = 0, irq = 0, softirq = 0, steal = 0, guest = 0;
3169 unsigned long user_sum = 0, nice_sum = 0, system_sum = 0, idle_sum = 0, iowait_sum = 0,
3170 irq_sum = 0, softirq_sum = 0, steal_sum = 0, guest_sum = 0;
3171 #define CPUALL_MAX_SIZE BUF_RESERVE_SIZE
3172 char cpuall[CPUALL_MAX_SIZE];
3173 /* reserve for cpu all */
3174 char *cache = d->buf + CPUALL_MAX_SIZE;
3175 size_t cache_size = d->buflen - CPUALL_MAX_SIZE;
3176 FILE *f = NULL;
3177
3178 if (offset){
3179 if (offset > d->size)
3180 return -EINVAL;
3181 if (!d->cached)
3182 return 0;
3183 int left = d->size - offset;
3184 total_len = left > size ? size: left;
3185 memcpy(buf, d->buf + offset, total_len);
3186 return total_len;
3187 }
3188
3189 pid_t initpid = lookup_initpid_in_store(fc->pid);
3190 if (initpid <= 0)
3191 initpid = fc->pid;
3192 cg = get_pid_cgroup(initpid, "cpuset");
3193 if (!cg)
3194 return read_file("/proc/stat", buf, size, d);
3195
3196 cpuset = get_cpuset(cg);
3197 if (!cpuset)
3198 goto err;
3199
3200 f = fopen("/proc/stat", "r");
3201 if (!f)
3202 goto err;
3203
3204 //skip first line
3205 if (getline(&line, &linelen, f) < 0) {
3206 fprintf(stderr, "proc_stat_read read first line failed\n");
3207 goto err;
3208 }
3209
3210 while (getline(&line, &linelen, f) != -1) {
3211 size_t l;
3212 int cpu;
3213 char cpu_char[10]; /* That's a lot of cores */
3214 char *c;
3215
3216 if (sscanf(line, "cpu%9[^ ]", cpu_char) != 1) {
3217 /* not a ^cpuN line containing a number N, just print it */
3218 l = snprintf(cache, cache_size, "%s", line);
3219 if (l < 0) {
3220 perror("Error writing to cache");
3221 rv = 0;
3222 goto err;
3223 }
3224 if (l >= cache_size) {
3225 fprintf(stderr, "Internal error: truncated write to cache\n");
3226 rv = 0;
3227 goto err;
3228 }
3229 cache += l;
3230 cache_size -= l;
3231 total_len += l;
3232 continue;
3233 }
3234
3235 if (sscanf(cpu_char, "%d", &cpu) != 1)
3236 continue;
3237 if (!cpu_in_cpuset(cpu, cpuset))
3238 continue;
3239 curcpu ++;
3240
3241 c = strchr(line, ' ');
3242 if (!c)
3243 continue;
3244 l = snprintf(cache, cache_size, "cpu%d%s", curcpu, c);
3245 if (l < 0) {
3246 perror("Error writing to cache");
3247 rv = 0;
3248 goto err;
3249
3250 }
3251 if (l >= cache_size) {
3252 fprintf(stderr, "Internal error: truncated write to cache\n");
3253 rv = 0;
3254 goto err;
3255 }
3256
3257 cache += l;
3258 cache_size -= l;
3259 total_len += l;
3260
3261 if (sscanf(line, "%*s %lu %lu %lu %lu %lu %lu %lu %lu %lu", &user, &nice, &system, &idle, &iowait, &irq,
3262 &softirq, &steal, &guest) != 9)
3263 continue;
3264 user_sum += user;
3265 nice_sum += nice;
3266 system_sum += system;
3267 idle_sum += idle;
3268 iowait_sum += iowait;
3269 irq_sum += irq;
3270 softirq_sum += softirq;
3271 steal_sum += steal;
3272 guest_sum += guest;
3273 }
3274
3275 cache = d->buf;
3276
3277 int cpuall_len = snprintf(cpuall, CPUALL_MAX_SIZE, "%s %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
3278 "cpu ", user_sum, nice_sum, system_sum, idle_sum, iowait_sum, irq_sum, softirq_sum, steal_sum, guest_sum);
3279 if (cpuall_len > 0 && cpuall_len < CPUALL_MAX_SIZE){
3280 memcpy(cache, cpuall, cpuall_len);
3281 cache += cpuall_len;
3282 } else{
3283 /* shouldn't happen */
3284 fprintf(stderr, "proc_stat_read copy cpuall failed, cpuall_len=%d\n", cpuall_len);
3285 cpuall_len = 0;
3286 }
3287
3288 memmove(cache, d->buf + CPUALL_MAX_SIZE, total_len);
3289 total_len += cpuall_len;
3290 d->cached = 1;
3291 d->size = total_len;
3292 if (total_len > size ) total_len = size;
3293
3294 memcpy(buf, d->buf, total_len);
3295 rv = total_len;
3296
3297 err:
3298 if (f)
3299 fclose(f);
3300 free(line);
3301 free(cpuset);
3302 free(cg);
3303 return rv;
3304 }
3305
3306 static long int getreaperage(pid_t pid)
3307 {
3308 char fnam[100];
3309 struct stat sb;
3310 int ret;
3311 pid_t qpid;
3312
3313 qpid = lookup_initpid_in_store(pid);
3314 if (qpid <= 0)
3315 return 0;
3316
3317 ret = snprintf(fnam, 100, "/proc/%d", qpid);
3318 if (ret < 0 || ret >= 100)
3319 return 0;
3320
3321 if (lstat(fnam, &sb) < 0)
3322 return 0;
3323
3324 return time(NULL) - sb.st_ctime;
3325 }
3326
3327 static unsigned long get_reaper_busy(pid_t task)
3328 {
3329 pid_t initpid = lookup_initpid_in_store(task);
3330 char *cgroup = NULL, *usage_str = NULL;
3331 unsigned long usage = 0;
3332
3333 if (initpid <= 0)
3334 return 0;
3335
3336 cgroup = get_pid_cgroup(initpid, "cpuacct");
3337 if (!cgroup)
3338 goto out;
3339 if (!cgfs_get_value("cpuacct", cgroup, "cpuacct.usage", &usage_str))
3340 goto out;
3341 usage = strtoul(usage_str, NULL, 10);
3342 usage /= 1000000000;
3343
3344 out:
3345 free(cgroup);
3346 free(usage_str);
3347 return usage;
3348 }
3349
3350 #if RELOADTEST
3351 void iwashere(void)
3352 {
3353 char *name, *cwd = get_current_dir_name();
3354 size_t len;
3355 int fd;
3356
3357 if (!cwd)
3358 exit(1);
3359 len = strlen(cwd) + strlen("/iwashere") + 1;
3360 name = alloca(len);
3361 snprintf(name, len, "%s/iwashere", cwd);
3362 free(cwd);
3363 fd = creat(name, 0755);
3364 if (fd >= 0)
3365 close(fd);
3366 }
3367 #endif
3368
3369 /*
3370 * We read /proc/uptime and reuse its second field.
3371 * For the first field, we use the mtime for the reaper for
3372 * the calling pid as returned by getreaperage
3373 */
3374 static int proc_uptime_read(char *buf, size_t size, off_t offset,
3375 struct fuse_file_info *fi)
3376 {
3377 struct fuse_context *fc = fuse_get_context();
3378 struct file_info *d = (struct file_info *)fi->fh;
3379 long int reaperage = getreaperage(fc->pid);
3380 unsigned long int busytime = get_reaper_busy(fc->pid), idletime;
3381 char *cache = d->buf;
3382 size_t total_len = 0;
3383
3384 #if RELOADTEST
3385 iwashere();
3386 #endif
3387
3388 if (offset){
3389 if (offset > d->size)
3390 return -EINVAL;
3391 if (!d->cached)
3392 return 0;
3393 int left = d->size - offset;
3394 total_len = left > size ? size: left;
3395 memcpy(buf, cache + offset, total_len);
3396 return total_len;
3397 }
3398
3399 idletime = reaperage - busytime;
3400 if (idletime > reaperage)
3401 idletime = reaperage;
3402
3403 total_len = snprintf(d->buf, d->size, "%ld.0 %lu.0\n", reaperage, idletime);
3404 if (total_len < 0){
3405 perror("Error writing to cache");
3406 return 0;
3407 }
3408
3409 d->size = (int)total_len;
3410 d->cached = 1;
3411
3412 if (total_len > size) total_len = size;
3413
3414 memcpy(buf, d->buf, total_len);
3415 return total_len;
3416 }
3417
3418 static int proc_diskstats_read(char *buf, size_t size, off_t offset,
3419 struct fuse_file_info *fi)
3420 {
3421 char dev_name[72];
3422 struct fuse_context *fc = fuse_get_context();
3423 struct file_info *d = (struct file_info *)fi->fh;
3424 char *cg;
3425 char *io_serviced_str = NULL, *io_merged_str = NULL, *io_service_bytes_str = NULL,
3426 *io_wait_time_str = NULL, *io_service_time_str = NULL;
3427 unsigned long read = 0, write = 0;
3428 unsigned long read_merged = 0, write_merged = 0;
3429 unsigned long read_sectors = 0, write_sectors = 0;
3430 unsigned long read_ticks = 0, write_ticks = 0;
3431 unsigned long ios_pgr = 0, tot_ticks = 0, rq_ticks = 0;
3432 unsigned long rd_svctm = 0, wr_svctm = 0, rd_wait = 0, wr_wait = 0;
3433 char *cache = d->buf;
3434 size_t cache_size = d->buflen;
3435 char *line = NULL;
3436 size_t linelen = 0, total_len = 0, rv = 0;
3437 unsigned int major = 0, minor = 0;
3438 int i = 0;
3439 FILE *f = NULL;
3440
3441 if (offset){
3442 if (offset > d->size)
3443 return -EINVAL;
3444 if (!d->cached)
3445 return 0;
3446 int left = d->size - offset;
3447 total_len = left > size ? size: left;
3448 memcpy(buf, cache + offset, total_len);
3449 return total_len;
3450 }
3451
3452 pid_t initpid = lookup_initpid_in_store(fc->pid);
3453 if (initpid <= 0)
3454 initpid = fc->pid;
3455 cg = get_pid_cgroup(initpid, "blkio");
3456 if (!cg)
3457 return read_file("/proc/diskstats", buf, size, d);
3458
3459 if (!cgfs_get_value("blkio", cg, "blkio.io_serviced", &io_serviced_str))
3460 goto err;
3461 if (!cgfs_get_value("blkio", cg, "blkio.io_merged", &io_merged_str))
3462 goto err;
3463 if (!cgfs_get_value("blkio", cg, "blkio.io_service_bytes", &io_service_bytes_str))
3464 goto err;
3465 if (!cgfs_get_value("blkio", cg, "blkio.io_wait_time", &io_wait_time_str))
3466 goto err;
3467 if (!cgfs_get_value("blkio", cg, "blkio.io_service_time", &io_service_time_str))
3468 goto err;
3469
3470
3471 f = fopen("/proc/diskstats", "r");
3472 if (!f)
3473 goto err;
3474
3475 while (getline(&line, &linelen, f) != -1) {
3476 size_t l;
3477 char *printme, lbuf[256];
3478
3479 i = sscanf(line, "%u %u %71s", &major, &minor, dev_name);
3480 if(i == 3){
3481 get_blkio_io_value(io_serviced_str, major, minor, "Read", &read);
3482 get_blkio_io_value(io_serviced_str, major, minor, "Write", &write);
3483 get_blkio_io_value(io_merged_str, major, minor, "Read", &read_merged);
3484 get_blkio_io_value(io_merged_str, major, minor, "Write", &write_merged);
3485 get_blkio_io_value(io_service_bytes_str, major, minor, "Read", &read_sectors);
3486 read_sectors = read_sectors/512;
3487 get_blkio_io_value(io_service_bytes_str, major, minor, "Write", &write_sectors);
3488 write_sectors = write_sectors/512;
3489
3490 get_blkio_io_value(io_service_time_str, major, minor, "Read", &rd_svctm);
3491 rd_svctm = rd_svctm/1000000;
3492 get_blkio_io_value(io_wait_time_str, major, minor, "Read", &rd_wait);
3493 rd_wait = rd_wait/1000000;
3494 read_ticks = rd_svctm + rd_wait;
3495
3496 get_blkio_io_value(io_service_time_str, major, minor, "Write", &wr_svctm);
3497 wr_svctm = wr_svctm/1000000;
3498 get_blkio_io_value(io_wait_time_str, major, minor, "Write", &wr_wait);
3499 wr_wait = wr_wait/1000000;
3500 write_ticks = wr_svctm + wr_wait;
3501
3502 get_blkio_io_value(io_service_time_str, major, minor, "Total", &tot_ticks);
3503 tot_ticks = tot_ticks/1000000;
3504 }else{
3505 continue;
3506 }
3507
3508 memset(lbuf, 0, 256);
3509 if (read || write || read_merged || write_merged || read_sectors || write_sectors || read_ticks || write_ticks) {
3510 snprintf(lbuf, 256, "%u %u %s %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
3511 major, minor, dev_name, read, read_merged, read_sectors, read_ticks,
3512 write, write_merged, write_sectors, write_ticks, ios_pgr, tot_ticks, rq_ticks);
3513 printme = lbuf;
3514 } else
3515 continue;
3516
3517 l = snprintf(cache, cache_size, "%s", printme);
3518 if (l < 0) {
3519 perror("Error writing to fuse buf");
3520 rv = 0;
3521 goto err;
3522 }
3523 if (l >= cache_size) {
3524 fprintf(stderr, "Internal error: truncated write to cache\n");
3525 rv = 0;
3526 goto err;
3527 }
3528 cache += l;
3529 cache_size -= l;
3530 total_len += l;
3531 }
3532
3533 d->cached = 1;
3534 d->size = total_len;
3535 if (total_len > size ) total_len = size;
3536 memcpy(buf, d->buf, total_len);
3537
3538 rv = total_len;
3539 err:
3540 free(cg);
3541 if (f)
3542 fclose(f);
3543 free(line);
3544 free(io_serviced_str);
3545 free(io_merged_str);
3546 free(io_service_bytes_str);
3547 free(io_wait_time_str);
3548 free(io_service_time_str);
3549 return rv;
3550 }
3551
3552 static int proc_swaps_read(char *buf, size_t size, off_t offset,
3553 struct fuse_file_info *fi)
3554 {
3555 struct fuse_context *fc = fuse_get_context();
3556 struct file_info *d = (struct file_info *)fi->fh;
3557 char *cg = NULL;
3558 char *memswlimit_str = NULL, *memlimit_str = NULL, *memusage_str = NULL, *memswusage_str = NULL,
3559 *memswlimit_default_str = NULL, *memswusage_default_str = NULL;
3560 unsigned long memswlimit = 0, memlimit = 0, memusage = 0, memswusage = 0, swap_total = 0, swap_free = 0;
3561 size_t total_len = 0, rv = 0;
3562 char *cache = d->buf;
3563
3564 if (offset) {
3565 if (offset > d->size)
3566 return -EINVAL;
3567 if (!d->cached)
3568 return 0;
3569 int left = d->size - offset;
3570 total_len = left > size ? size: left;
3571 memcpy(buf, cache + offset, total_len);
3572 return total_len;
3573 }
3574
3575 pid_t initpid = lookup_initpid_in_store(fc->pid);
3576 if (initpid <= 0)
3577 initpid = fc->pid;
3578 cg = get_pid_cgroup(initpid, "memory");
3579 if (!cg)
3580 return read_file("/proc/swaps", buf, size, d);
3581
3582 if (!cgfs_get_value("memory", cg, "memory.limit_in_bytes", &memlimit_str))
3583 goto err;
3584
3585 if (!cgfs_get_value("memory", cg, "memory.usage_in_bytes", &memusage_str))
3586 goto err;
3587
3588 memlimit = strtoul(memlimit_str, NULL, 10);
3589 memusage = strtoul(memusage_str, NULL, 10);
3590
3591 if (cgfs_get_value("memory", cg, "memory.memsw.usage_in_bytes", &memswusage_str) &&
3592 cgfs_get_value("memory", cg, "memory.memsw.limit_in_bytes", &memswlimit_str)) {
3593
3594 /* If swap accounting is turned on, then default value is assumed to be that of cgroup / */
3595 if (!cgfs_get_value("memory", "/", "memory.memsw.limit_in_bytes", &memswlimit_default_str))
3596 goto err;
3597 if (!cgfs_get_value("memory", "/", "memory.memsw.usage_in_bytes", &memswusage_default_str))
3598 goto err;
3599
3600 memswlimit = strtoul(memswlimit_str, NULL, 10);
3601 memswusage = strtoul(memswusage_str, NULL, 10);
3602
3603 if (!strcmp(memswlimit_str, memswlimit_default_str))
3604 memswlimit = 0;
3605 if (!strcmp(memswusage_str, memswusage_default_str))
3606 memswusage = 0;
3607
3608 swap_total = (memswlimit - memlimit) / 1024;
3609 swap_free = (memswusage - memusage) / 1024;
3610 }
3611
3612 total_len = snprintf(d->buf, d->size, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
3613
3614 /* When no mem + swap limit is specified or swapaccount=0*/
3615 if (!memswlimit) {
3616 char *line = NULL;
3617 size_t linelen = 0;
3618 FILE *f = fopen("/proc/meminfo", "r");
3619
3620 if (!f)
3621 goto err;
3622
3623 while (getline(&line, &linelen, f) != -1) {
3624 if (startswith(line, "SwapTotal:")) {
3625 sscanf(line, "SwapTotal: %8lu kB", &swap_total);
3626 } else if (startswith(line, "SwapFree:")) {
3627 sscanf(line, "SwapFree: %8lu kB", &swap_free);
3628 }
3629 }
3630
3631 free(line);
3632 fclose(f);
3633 }
3634
3635 if (swap_total > 0) {
3636 total_len += snprintf(d->buf + total_len, d->size - total_len,
3637 "none%*svirtual\t\t%lu\t%lu\t0\n", 36, " ",
3638 swap_total, swap_free);
3639 }
3640
3641 if (total_len < 0) {
3642 perror("Error writing to cache");
3643 rv = 0;
3644 goto err;
3645 }
3646
3647 d->cached = 1;
3648 d->size = (int)total_len;
3649
3650 if (total_len > size) total_len = size;
3651 memcpy(buf, d->buf, total_len);
3652 rv = total_len;
3653
3654 err:
3655 free(cg);
3656 free(memswlimit_str);
3657 free(memlimit_str);
3658 free(memusage_str);
3659 free(memswusage_str);
3660 free(memswusage_default_str);
3661 free(memswlimit_default_str);
3662 return rv;
3663 }
3664
3665 static off_t get_procfile_size(const char *which)
3666 {
3667 FILE *f = fopen(which, "r");
3668 char *line = NULL;
3669 size_t len = 0;
3670 ssize_t sz, answer = 0;
3671 if (!f)
3672 return 0;
3673
3674 while ((sz = getline(&line, &len, f)) != -1)
3675 answer += sz;
3676 fclose (f);
3677 free(line);
3678
3679 return answer;
3680 }
3681
3682 int proc_getattr(const char *path, struct stat *sb)
3683 {
3684 struct timespec now;
3685
3686 memset(sb, 0, sizeof(struct stat));
3687 if (clock_gettime(CLOCK_REALTIME, &now) < 0)
3688 return -EINVAL;
3689 sb->st_uid = sb->st_gid = 0;
3690 sb->st_atim = sb->st_mtim = sb->st_ctim = now;
3691 if (strcmp(path, "/proc") == 0) {
3692 sb->st_mode = S_IFDIR | 00555;
3693 sb->st_nlink = 2;
3694 return 0;
3695 }
3696 if (strcmp(path, "/proc/meminfo") == 0 ||
3697 strcmp(path, "/proc/cpuinfo") == 0 ||
3698 strcmp(path, "/proc/uptime") == 0 ||
3699 strcmp(path, "/proc/stat") == 0 ||
3700 strcmp(path, "/proc/diskstats") == 0 ||
3701 strcmp(path, "/proc/swaps") == 0) {
3702 sb->st_size = 0;
3703 sb->st_mode = S_IFREG | 00444;
3704 sb->st_nlink = 1;
3705 return 0;
3706 }
3707
3708 return -ENOENT;
3709 }
3710
3711 int proc_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset,
3712 struct fuse_file_info *fi)
3713 {
3714 if (filler(buf, "cpuinfo", NULL, 0) != 0 ||
3715 filler(buf, "meminfo", NULL, 0) != 0 ||
3716 filler(buf, "stat", NULL, 0) != 0 ||
3717 filler(buf, "uptime", NULL, 0) != 0 ||
3718 filler(buf, "diskstats", NULL, 0) != 0 ||
3719 filler(buf, "swaps", NULL, 0) != 0)
3720 return -EINVAL;
3721 return 0;
3722 }
3723
3724 int proc_open(const char *path, struct fuse_file_info *fi)
3725 {
3726 int type = -1;
3727 struct file_info *info;
3728
3729 if (strcmp(path, "/proc/meminfo") == 0)
3730 type = LXC_TYPE_PROC_MEMINFO;
3731 else if (strcmp(path, "/proc/cpuinfo") == 0)
3732 type = LXC_TYPE_PROC_CPUINFO;
3733 else if (strcmp(path, "/proc/uptime") == 0)
3734 type = LXC_TYPE_PROC_UPTIME;
3735 else if (strcmp(path, "/proc/stat") == 0)
3736 type = LXC_TYPE_PROC_STAT;
3737 else if (strcmp(path, "/proc/diskstats") == 0)
3738 type = LXC_TYPE_PROC_DISKSTATS;
3739 else if (strcmp(path, "/proc/swaps") == 0)
3740 type = LXC_TYPE_PROC_SWAPS;
3741 if (type == -1)
3742 return -ENOENT;
3743
3744 info = malloc(sizeof(*info));
3745 if (!info)
3746 return -ENOMEM;
3747
3748 memset(info, 0, sizeof(*info));
3749 info->type = type;
3750
3751 info->buflen = get_procfile_size(path) + BUF_RESERVE_SIZE;
3752 do {
3753 info->buf = malloc(info->buflen);
3754 } while (!info->buf);
3755 memset(info->buf, 0, info->buflen);
3756 /* set actual size to buffer size */
3757 info->size = info->buflen;
3758
3759 fi->fh = (unsigned long)info;
3760 return 0;
3761 }
3762
3763 int proc_release(const char *path, struct fuse_file_info *fi)
3764 {
3765 struct file_info *f = (struct file_info *)fi->fh;
3766
3767 do_release_file_info(f);
3768 return 0;
3769 }
3770
3771 int proc_read(const char *path, char *buf, size_t size, off_t offset,
3772 struct fuse_file_info *fi)
3773 {
3774 struct file_info *f = (struct file_info *) fi->fh;
3775
3776 switch (f->type) {
3777 case LXC_TYPE_PROC_MEMINFO:
3778 return proc_meminfo_read(buf, size, offset, fi);
3779 case LXC_TYPE_PROC_CPUINFO:
3780 return proc_cpuinfo_read(buf, size, offset, fi);
3781 case LXC_TYPE_PROC_UPTIME:
3782 return proc_uptime_read(buf, size, offset, fi);
3783 case LXC_TYPE_PROC_STAT:
3784 return proc_stat_read(buf, size, offset, fi);
3785 case LXC_TYPE_PROC_DISKSTATS:
3786 return proc_diskstats_read(buf, size, offset, fi);
3787 case LXC_TYPE_PROC_SWAPS:
3788 return proc_swaps_read(buf, size, offset, fi);
3789 default:
3790 return -EINVAL;
3791 }
3792 }
3793
3794 static void __attribute__((constructor)) collect_subsystems(void)
3795 {
3796 FILE *f;
3797 char *line = NULL;
3798 size_t len = 0;
3799
3800 if ((f = fopen("/proc/self/cgroup", "r")) == NULL) {
3801 fprintf(stderr, "Error opening /proc/self/cgroup: %s\n", strerror(errno));
3802 return;
3803 }
3804 while (getline(&line, &len, f) != -1) {
3805 char *p, *p2;
3806
3807 p = strchr(line, ':');
3808 if (!p)
3809 goto out;
3810 *(p++) = '\0';
3811
3812 p2 = strrchr(p, ':');
3813 if (!p2)
3814 goto out;
3815 *p2 = '\0';
3816
3817 if (!store_hierarchy(line, p))
3818 goto out;
3819 }
3820
3821 print_subsystems();
3822
3823 out:
3824 free(line);
3825 fclose(f);
3826 }
3827
3828 static void __attribute__((destructor)) free_subsystems(void)
3829 {
3830 int i;
3831
3832 for (i = 0; i < num_hierarchies; i++)
3833 if (hierarchies[i])
3834 free(hierarchies[i]);
3835 free(hierarchies);
3836 }