]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/as-iosched.c
Merge ../linus
[mirror_ubuntu-zesty-kernel.git] / block / as-iosched.c
1 /*
2 * Anticipatory & deadline i/o scheduler.
3 *
4 * Copyright (C) 2002 Jens Axboe <axboe@suse.de>
5 * Nick Piggin <nickpiggin@yahoo.com.au>
6 *
7 */
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/bio.h>
13 #include <linux/config.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/compiler.h>
18 #include <linux/hash.h>
19 #include <linux/rbtree.h>
20 #include <linux/interrupt.h>
21
22 #define REQ_SYNC 1
23 #define REQ_ASYNC 0
24
25 /*
26 * See Documentation/block/as-iosched.txt
27 */
28
29 /*
30 * max time before a read is submitted.
31 */
32 #define default_read_expire (HZ / 8)
33
34 /*
35 * ditto for writes, these limits are not hard, even
36 * if the disk is capable of satisfying them.
37 */
38 #define default_write_expire (HZ / 4)
39
40 /*
41 * read_batch_expire describes how long we will allow a stream of reads to
42 * persist before looking to see whether it is time to switch over to writes.
43 */
44 #define default_read_batch_expire (HZ / 2)
45
46 /*
47 * write_batch_expire describes how long we want a stream of writes to run for.
48 * This is not a hard limit, but a target we set for the auto-tuning thingy.
49 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
50 * a short amount of time...
51 */
52 #define default_write_batch_expire (HZ / 8)
53
54 /*
55 * max time we may wait to anticipate a read (default around 6ms)
56 */
57 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
58
59 /*
60 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
61 * however huge values tend to interfere and not decay fast enough. A program
62 * might be in a non-io phase of operation. Waiting on user input for example,
63 * or doing a lengthy computation. A small penalty can be justified there, and
64 * will still catch out those processes that constantly have large thinktimes.
65 */
66 #define MAX_THINKTIME (HZ/50UL)
67
68 /* Bits in as_io_context.state */
69 enum as_io_states {
70 AS_TASK_RUNNING=0, /* Process has not exited */
71 AS_TASK_IOSTARTED, /* Process has started some IO */
72 AS_TASK_IORUNNING, /* Process has completed some IO */
73 };
74
75 enum anticipation_status {
76 ANTIC_OFF=0, /* Not anticipating (normal operation) */
77 ANTIC_WAIT_REQ, /* The last read has not yet completed */
78 ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
79 last read (which has completed) */
80 ANTIC_FINISHED, /* Anticipating but have found a candidate
81 * or timed out */
82 };
83
84 struct as_data {
85 /*
86 * run time data
87 */
88
89 struct request_queue *q; /* the "owner" queue */
90
91 /*
92 * requests (as_rq s) are present on both sort_list and fifo_list
93 */
94 struct rb_root sort_list[2];
95 struct list_head fifo_list[2];
96
97 struct as_rq *next_arq[2]; /* next in sort order */
98 sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
99 struct list_head *hash; /* request hash */
100
101 unsigned long exit_prob; /* probability a task will exit while
102 being waited on */
103 unsigned long exit_no_coop; /* probablility an exited task will
104 not be part of a later cooperating
105 request */
106 unsigned long new_ttime_total; /* mean thinktime on new proc */
107 unsigned long new_ttime_mean;
108 u64 new_seek_total; /* mean seek on new proc */
109 sector_t new_seek_mean;
110
111 unsigned long current_batch_expires;
112 unsigned long last_check_fifo[2];
113 int changed_batch; /* 1: waiting for old batch to end */
114 int new_batch; /* 1: waiting on first read complete */
115 int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */
116 int write_batch_count; /* max # of reqs in a write batch */
117 int current_write_count; /* how many requests left this batch */
118 int write_batch_idled; /* has the write batch gone idle? */
119 mempool_t *arq_pool;
120
121 enum anticipation_status antic_status;
122 unsigned long antic_start; /* jiffies: when it started */
123 struct timer_list antic_timer; /* anticipatory scheduling timer */
124 struct work_struct antic_work; /* Deferred unplugging */
125 struct io_context *io_context; /* Identify the expected process */
126 int ioc_finished; /* IO associated with io_context is finished */
127 int nr_dispatched;
128
129 /*
130 * settings that change how the i/o scheduler behaves
131 */
132 unsigned long fifo_expire[2];
133 unsigned long batch_expire[2];
134 unsigned long antic_expire;
135 };
136
137 #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo)
138
139 /*
140 * per-request data.
141 */
142 enum arq_state {
143 AS_RQ_NEW=0, /* New - not referenced and not on any lists */
144 AS_RQ_QUEUED, /* In the request queue. It belongs to the
145 scheduler */
146 AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
147 driver now */
148 AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
149 AS_RQ_REMOVED,
150 AS_RQ_MERGED,
151 AS_RQ_POSTSCHED, /* when they shouldn't be */
152 };
153
154 struct as_rq {
155 /*
156 * rbtree index, key is the starting offset
157 */
158 struct rb_node rb_node;
159 sector_t rb_key;
160
161 struct request *request;
162
163 struct io_context *io_context; /* The submitting task */
164
165 /*
166 * request hash, key is the ending offset (for back merge lookup)
167 */
168 struct list_head hash;
169 unsigned int on_hash;
170
171 /*
172 * expire fifo
173 */
174 struct list_head fifo;
175 unsigned long expires;
176
177 unsigned int is_sync;
178 enum arq_state state;
179 };
180
181 #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private)
182
183 static kmem_cache_t *arq_pool;
184
185 /*
186 * IO Context helper functions
187 */
188
189 /* Called to deallocate the as_io_context */
190 static void free_as_io_context(struct as_io_context *aic)
191 {
192 kfree(aic);
193 }
194
195 /* Called when the task exits */
196 static void exit_as_io_context(struct as_io_context *aic)
197 {
198 WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
199 clear_bit(AS_TASK_RUNNING, &aic->state);
200 }
201
202 static struct as_io_context *alloc_as_io_context(void)
203 {
204 struct as_io_context *ret;
205
206 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
207 if (ret) {
208 ret->dtor = free_as_io_context;
209 ret->exit = exit_as_io_context;
210 ret->state = 1 << AS_TASK_RUNNING;
211 atomic_set(&ret->nr_queued, 0);
212 atomic_set(&ret->nr_dispatched, 0);
213 spin_lock_init(&ret->lock);
214 ret->ttime_total = 0;
215 ret->ttime_samples = 0;
216 ret->ttime_mean = 0;
217 ret->seek_total = 0;
218 ret->seek_samples = 0;
219 ret->seek_mean = 0;
220 }
221
222 return ret;
223 }
224
225 /*
226 * If the current task has no AS IO context then create one and initialise it.
227 * Then take a ref on the task's io context and return it.
228 */
229 static struct io_context *as_get_io_context(void)
230 {
231 struct io_context *ioc = get_io_context(GFP_ATOMIC);
232 if (ioc && !ioc->aic) {
233 ioc->aic = alloc_as_io_context();
234 if (!ioc->aic) {
235 put_io_context(ioc);
236 ioc = NULL;
237 }
238 }
239 return ioc;
240 }
241
242 static void as_put_io_context(struct as_rq *arq)
243 {
244 struct as_io_context *aic;
245
246 if (unlikely(!arq->io_context))
247 return;
248
249 aic = arq->io_context->aic;
250
251 if (arq->is_sync == REQ_SYNC && aic) {
252 spin_lock(&aic->lock);
253 set_bit(AS_TASK_IORUNNING, &aic->state);
254 aic->last_end_request = jiffies;
255 spin_unlock(&aic->lock);
256 }
257
258 put_io_context(arq->io_context);
259 }
260
261 /*
262 * the back merge hash support functions
263 */
264 static const int as_hash_shift = 6;
265 #define AS_HASH_BLOCK(sec) ((sec) >> 3)
266 #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift))
267 #define AS_HASH_ENTRIES (1 << as_hash_shift)
268 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
269 #define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash)
270
271 static inline void __as_del_arq_hash(struct as_rq *arq)
272 {
273 arq->on_hash = 0;
274 list_del_init(&arq->hash);
275 }
276
277 static inline void as_del_arq_hash(struct as_rq *arq)
278 {
279 if (arq->on_hash)
280 __as_del_arq_hash(arq);
281 }
282
283 static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq)
284 {
285 struct request *rq = arq->request;
286
287 BUG_ON(arq->on_hash);
288
289 arq->on_hash = 1;
290 list_add(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]);
291 }
292
293 /*
294 * move hot entry to front of chain
295 */
296 static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq)
297 {
298 struct request *rq = arq->request;
299 struct list_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))];
300
301 if (!arq->on_hash) {
302 WARN_ON(1);
303 return;
304 }
305
306 if (arq->hash.prev != head) {
307 list_del(&arq->hash);
308 list_add(&arq->hash, head);
309 }
310 }
311
312 static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset)
313 {
314 struct list_head *hash_list = &ad->hash[AS_HASH_FN(offset)];
315 struct list_head *entry, *next = hash_list->next;
316
317 while ((entry = next) != hash_list) {
318 struct as_rq *arq = list_entry_hash(entry);
319 struct request *__rq = arq->request;
320
321 next = entry->next;
322
323 BUG_ON(!arq->on_hash);
324
325 if (!rq_mergeable(__rq)) {
326 as_del_arq_hash(arq);
327 continue;
328 }
329
330 if (rq_hash_key(__rq) == offset)
331 return __rq;
332 }
333
334 return NULL;
335 }
336
337 /*
338 * rb tree support functions
339 */
340 #define RB_NONE (2)
341 #define RB_EMPTY(root) ((root)->rb_node == NULL)
342 #define ON_RB(node) ((node)->rb_color != RB_NONE)
343 #define RB_CLEAR(node) ((node)->rb_color = RB_NONE)
344 #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node)
345 #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync])
346 #define rq_rb_key(rq) (rq)->sector
347
348 /*
349 * as_find_first_arq finds the first (lowest sector numbered) request
350 * for the specified data_dir. Used to sweep back to the start of the disk
351 * (1-way elevator) after we process the last (highest sector) request.
352 */
353 static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir)
354 {
355 struct rb_node *n = ad->sort_list[data_dir].rb_node;
356
357 if (n == NULL)
358 return NULL;
359
360 for (;;) {
361 if (n->rb_left == NULL)
362 return rb_entry_arq(n);
363
364 n = n->rb_left;
365 }
366 }
367
368 /*
369 * Add the request to the rb tree if it is unique. If there is an alias (an
370 * existing request against the same sector), which can happen when using
371 * direct IO, then return the alias.
372 */
373 static struct as_rq *as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
374 {
375 struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node;
376 struct rb_node *parent = NULL;
377 struct as_rq *__arq;
378 struct request *rq = arq->request;
379
380 arq->rb_key = rq_rb_key(rq);
381
382 while (*p) {
383 parent = *p;
384 __arq = rb_entry_arq(parent);
385
386 if (arq->rb_key < __arq->rb_key)
387 p = &(*p)->rb_left;
388 else if (arq->rb_key > __arq->rb_key)
389 p = &(*p)->rb_right;
390 else
391 return __arq;
392 }
393
394 rb_link_node(&arq->rb_node, parent, p);
395 rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
396
397 return NULL;
398 }
399
400 static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq)
401 {
402 if (!ON_RB(&arq->rb_node)) {
403 WARN_ON(1);
404 return;
405 }
406
407 rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
408 RB_CLEAR(&arq->rb_node);
409 }
410
411 static struct request *
412 as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir)
413 {
414 struct rb_node *n = ad->sort_list[data_dir].rb_node;
415 struct as_rq *arq;
416
417 while (n) {
418 arq = rb_entry_arq(n);
419
420 if (sector < arq->rb_key)
421 n = n->rb_left;
422 else if (sector > arq->rb_key)
423 n = n->rb_right;
424 else
425 return arq->request;
426 }
427
428 return NULL;
429 }
430
431 /*
432 * IO Scheduler proper
433 */
434
435 #define MAXBACK (1024 * 1024) /*
436 * Maximum distance the disk will go backward
437 * for a request.
438 */
439
440 #define BACK_PENALTY 2
441
442 /*
443 * as_choose_req selects the preferred one of two requests of the same data_dir
444 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
445 */
446 static struct as_rq *
447 as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2)
448 {
449 int data_dir;
450 sector_t last, s1, s2, d1, d2;
451 int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
452 const sector_t maxback = MAXBACK;
453
454 if (arq1 == NULL || arq1 == arq2)
455 return arq2;
456 if (arq2 == NULL)
457 return arq1;
458
459 data_dir = arq1->is_sync;
460
461 last = ad->last_sector[data_dir];
462 s1 = arq1->request->sector;
463 s2 = arq2->request->sector;
464
465 BUG_ON(data_dir != arq2->is_sync);
466
467 /*
468 * Strict one way elevator _except_ in the case where we allow
469 * short backward seeks which are biased as twice the cost of a
470 * similar forward seek.
471 */
472 if (s1 >= last)
473 d1 = s1 - last;
474 else if (s1+maxback >= last)
475 d1 = (last - s1)*BACK_PENALTY;
476 else {
477 r1_wrap = 1;
478 d1 = 0; /* shut up, gcc */
479 }
480
481 if (s2 >= last)
482 d2 = s2 - last;
483 else if (s2+maxback >= last)
484 d2 = (last - s2)*BACK_PENALTY;
485 else {
486 r2_wrap = 1;
487 d2 = 0;
488 }
489
490 /* Found required data */
491 if (!r1_wrap && r2_wrap)
492 return arq1;
493 else if (!r2_wrap && r1_wrap)
494 return arq2;
495 else if (r1_wrap && r2_wrap) {
496 /* both behind the head */
497 if (s1 <= s2)
498 return arq1;
499 else
500 return arq2;
501 }
502
503 /* Both requests in front of the head */
504 if (d1 < d2)
505 return arq1;
506 else if (d2 < d1)
507 return arq2;
508 else {
509 if (s1 >= s2)
510 return arq1;
511 else
512 return arq2;
513 }
514 }
515
516 /*
517 * as_find_next_arq finds the next request after @prev in elevator order.
518 * this with as_choose_req form the basis for how the scheduler chooses
519 * what request to process next. Anticipation works on top of this.
520 */
521 static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last)
522 {
523 const int data_dir = last->is_sync;
524 struct as_rq *ret;
525 struct rb_node *rbnext = rb_next(&last->rb_node);
526 struct rb_node *rbprev = rb_prev(&last->rb_node);
527 struct as_rq *arq_next, *arq_prev;
528
529 BUG_ON(!ON_RB(&last->rb_node));
530
531 if (rbprev)
532 arq_prev = rb_entry_arq(rbprev);
533 else
534 arq_prev = NULL;
535
536 if (rbnext)
537 arq_next = rb_entry_arq(rbnext);
538 else {
539 arq_next = as_find_first_arq(ad, data_dir);
540 if (arq_next == last)
541 arq_next = NULL;
542 }
543
544 ret = as_choose_req(ad, arq_next, arq_prev);
545
546 return ret;
547 }
548
549 /*
550 * anticipatory scheduling functions follow
551 */
552
553 /*
554 * as_antic_expired tells us when we have anticipated too long.
555 * The funny "absolute difference" math on the elapsed time is to handle
556 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
557 */
558 static int as_antic_expired(struct as_data *ad)
559 {
560 long delta_jif;
561
562 delta_jif = jiffies - ad->antic_start;
563 if (unlikely(delta_jif < 0))
564 delta_jif = -delta_jif;
565 if (delta_jif < ad->antic_expire)
566 return 0;
567
568 return 1;
569 }
570
571 /*
572 * as_antic_waitnext starts anticipating that a nice request will soon be
573 * submitted. See also as_antic_waitreq
574 */
575 static void as_antic_waitnext(struct as_data *ad)
576 {
577 unsigned long timeout;
578
579 BUG_ON(ad->antic_status != ANTIC_OFF
580 && ad->antic_status != ANTIC_WAIT_REQ);
581
582 timeout = ad->antic_start + ad->antic_expire;
583
584 mod_timer(&ad->antic_timer, timeout);
585
586 ad->antic_status = ANTIC_WAIT_NEXT;
587 }
588
589 /*
590 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
591 * until the request that we're anticipating on has finished. This means we
592 * are timing from when the candidate process wakes up hopefully.
593 */
594 static void as_antic_waitreq(struct as_data *ad)
595 {
596 BUG_ON(ad->antic_status == ANTIC_FINISHED);
597 if (ad->antic_status == ANTIC_OFF) {
598 if (!ad->io_context || ad->ioc_finished)
599 as_antic_waitnext(ad);
600 else
601 ad->antic_status = ANTIC_WAIT_REQ;
602 }
603 }
604
605 /*
606 * This is called directly by the functions in this file to stop anticipation.
607 * We kill the timer and schedule a call to the request_fn asap.
608 */
609 static void as_antic_stop(struct as_data *ad)
610 {
611 int status = ad->antic_status;
612
613 if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
614 if (status == ANTIC_WAIT_NEXT)
615 del_timer(&ad->antic_timer);
616 ad->antic_status = ANTIC_FINISHED;
617 /* see as_work_handler */
618 kblockd_schedule_work(&ad->antic_work);
619 }
620 }
621
622 /*
623 * as_antic_timeout is the timer function set by as_antic_waitnext.
624 */
625 static void as_antic_timeout(unsigned long data)
626 {
627 struct request_queue *q = (struct request_queue *)data;
628 struct as_data *ad = q->elevator->elevator_data;
629 unsigned long flags;
630
631 spin_lock_irqsave(q->queue_lock, flags);
632 if (ad->antic_status == ANTIC_WAIT_REQ
633 || ad->antic_status == ANTIC_WAIT_NEXT) {
634 struct as_io_context *aic = ad->io_context->aic;
635
636 ad->antic_status = ANTIC_FINISHED;
637 kblockd_schedule_work(&ad->antic_work);
638
639 if (aic->ttime_samples == 0) {
640 /* process anticipated on has exited or timed out*/
641 ad->exit_prob = (7*ad->exit_prob + 256)/8;
642 }
643 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
644 /* process not "saved" by a cooperating request */
645 ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
646 }
647 }
648 spin_unlock_irqrestore(q->queue_lock, flags);
649 }
650
651 static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
652 unsigned long ttime)
653 {
654 /* fixed point: 1.0 == 1<<8 */
655 if (aic->ttime_samples == 0) {
656 ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
657 ad->new_ttime_mean = ad->new_ttime_total / 256;
658
659 ad->exit_prob = (7*ad->exit_prob)/8;
660 }
661 aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
662 aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
663 aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
664 }
665
666 static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
667 sector_t sdist)
668 {
669 u64 total;
670
671 if (aic->seek_samples == 0) {
672 ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
673 ad->new_seek_mean = ad->new_seek_total / 256;
674 }
675
676 /*
677 * Don't allow the seek distance to get too large from the
678 * odd fragment, pagein, etc
679 */
680 if (aic->seek_samples <= 60) /* second&third seek */
681 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
682 else
683 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
684
685 aic->seek_samples = (7*aic->seek_samples + 256) / 8;
686 aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
687 total = aic->seek_total + (aic->seek_samples/2);
688 do_div(total, aic->seek_samples);
689 aic->seek_mean = (sector_t)total;
690 }
691
692 /*
693 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
694 * updates @aic->ttime_mean based on that. It is called when a new
695 * request is queued.
696 */
697 static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
698 struct request *rq)
699 {
700 struct as_rq *arq = RQ_DATA(rq);
701 int data_dir = arq->is_sync;
702 unsigned long thinktime = 0;
703 sector_t seek_dist;
704
705 if (aic == NULL)
706 return;
707
708 if (data_dir == REQ_SYNC) {
709 unsigned long in_flight = atomic_read(&aic->nr_queued)
710 + atomic_read(&aic->nr_dispatched);
711 spin_lock(&aic->lock);
712 if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
713 test_bit(AS_TASK_IOSTARTED, &aic->state)) {
714 /* Calculate read -> read thinktime */
715 if (test_bit(AS_TASK_IORUNNING, &aic->state)
716 && in_flight == 0) {
717 thinktime = jiffies - aic->last_end_request;
718 thinktime = min(thinktime, MAX_THINKTIME-1);
719 }
720 as_update_thinktime(ad, aic, thinktime);
721
722 /* Calculate read -> read seek distance */
723 if (aic->last_request_pos < rq->sector)
724 seek_dist = rq->sector - aic->last_request_pos;
725 else
726 seek_dist = aic->last_request_pos - rq->sector;
727 as_update_seekdist(ad, aic, seek_dist);
728 }
729 aic->last_request_pos = rq->sector + rq->nr_sectors;
730 set_bit(AS_TASK_IOSTARTED, &aic->state);
731 spin_unlock(&aic->lock);
732 }
733 }
734
735 /*
736 * as_close_req decides if one request is considered "close" to the
737 * previous one issued.
738 */
739 static int as_close_req(struct as_data *ad, struct as_io_context *aic,
740 struct as_rq *arq)
741 {
742 unsigned long delay; /* milliseconds */
743 sector_t last = ad->last_sector[ad->batch_data_dir];
744 sector_t next = arq->request->sector;
745 sector_t delta; /* acceptable close offset (in sectors) */
746 sector_t s;
747
748 if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
749 delay = 0;
750 else
751 delay = ((jiffies - ad->antic_start) * 1000) / HZ;
752
753 if (delay == 0)
754 delta = 8192;
755 else if (delay <= 20 && delay <= ad->antic_expire)
756 delta = 8192 << delay;
757 else
758 return 1;
759
760 if ((last <= next + (delta>>1)) && (next <= last + delta))
761 return 1;
762
763 if (last < next)
764 s = next - last;
765 else
766 s = last - next;
767
768 if (aic->seek_samples == 0) {
769 /*
770 * Process has just started IO. Use past statistics to
771 * gauge success possibility
772 */
773 if (ad->new_seek_mean > s) {
774 /* this request is better than what we're expecting */
775 return 1;
776 }
777
778 } else {
779 if (aic->seek_mean > s) {
780 /* this request is better than what we're expecting */
781 return 1;
782 }
783 }
784
785 return 0;
786 }
787
788 /*
789 * as_can_break_anticipation returns true if we have been anticipating this
790 * request.
791 *
792 * It also returns true if the process against which we are anticipating
793 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
794 * dispatch it ASAP, because we know that application will not be submitting
795 * any new reads.
796 *
797 * If the task which has submitted the request has exited, break anticipation.
798 *
799 * If this task has queued some other IO, do not enter enticipation.
800 */
801 static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq)
802 {
803 struct io_context *ioc;
804 struct as_io_context *aic;
805
806 ioc = ad->io_context;
807 BUG_ON(!ioc);
808
809 if (arq && ioc == arq->io_context) {
810 /* request from same process */
811 return 1;
812 }
813
814 if (ad->ioc_finished && as_antic_expired(ad)) {
815 /*
816 * In this situation status should really be FINISHED,
817 * however the timer hasn't had the chance to run yet.
818 */
819 return 1;
820 }
821
822 aic = ioc->aic;
823 if (!aic)
824 return 0;
825
826 if (atomic_read(&aic->nr_queued) > 0) {
827 /* process has more requests queued */
828 return 1;
829 }
830
831 if (atomic_read(&aic->nr_dispatched) > 0) {
832 /* process has more requests dispatched */
833 return 1;
834 }
835
836 if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, aic, arq)) {
837 /*
838 * Found a close request that is not one of ours.
839 *
840 * This makes close requests from another process update
841 * our IO history. Is generally useful when there are
842 * two or more cooperating processes working in the same
843 * area.
844 */
845 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
846 if (aic->ttime_samples == 0)
847 ad->exit_prob = (7*ad->exit_prob + 256)/8;
848
849 ad->exit_no_coop = (7*ad->exit_no_coop)/8;
850 }
851
852 as_update_iohist(ad, aic, arq->request);
853 return 1;
854 }
855
856 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
857 /* process anticipated on has exited */
858 if (aic->ttime_samples == 0)
859 ad->exit_prob = (7*ad->exit_prob + 256)/8;
860
861 if (ad->exit_no_coop > 128)
862 return 1;
863 }
864
865 if (aic->ttime_samples == 0) {
866 if (ad->new_ttime_mean > ad->antic_expire)
867 return 1;
868 if (ad->exit_prob * ad->exit_no_coop > 128*256)
869 return 1;
870 } else if (aic->ttime_mean > ad->antic_expire) {
871 /* the process thinks too much between requests */
872 return 1;
873 }
874
875 return 0;
876 }
877
878 /*
879 * as_can_anticipate indicates weather we should either run arq
880 * or keep anticipating a better request.
881 */
882 static int as_can_anticipate(struct as_data *ad, struct as_rq *arq)
883 {
884 if (!ad->io_context)
885 /*
886 * Last request submitted was a write
887 */
888 return 0;
889
890 if (ad->antic_status == ANTIC_FINISHED)
891 /*
892 * Don't restart if we have just finished. Run the next request
893 */
894 return 0;
895
896 if (as_can_break_anticipation(ad, arq))
897 /*
898 * This request is a good candidate. Don't keep anticipating,
899 * run it.
900 */
901 return 0;
902
903 /*
904 * OK from here, we haven't finished, and don't have a decent request!
905 * Status is either ANTIC_OFF so start waiting,
906 * ANTIC_WAIT_REQ so continue waiting for request to finish
907 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
908 */
909
910 return 1;
911 }
912
913 /*
914 * as_update_arq must be called whenever a request (arq) is added to
915 * the sort_list. This function keeps caches up to date, and checks if the
916 * request might be one we are "anticipating"
917 */
918 static void as_update_arq(struct as_data *ad, struct as_rq *arq)
919 {
920 const int data_dir = arq->is_sync;
921
922 /* keep the next_arq cache up to date */
923 ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]);
924
925 /*
926 * have we been anticipating this request?
927 * or does it come from the same process as the one we are anticipating
928 * for?
929 */
930 if (ad->antic_status == ANTIC_WAIT_REQ
931 || ad->antic_status == ANTIC_WAIT_NEXT) {
932 if (as_can_break_anticipation(ad, arq))
933 as_antic_stop(ad);
934 }
935 }
936
937 /*
938 * Gathers timings and resizes the write batch automatically
939 */
940 static void update_write_batch(struct as_data *ad)
941 {
942 unsigned long batch = ad->batch_expire[REQ_ASYNC];
943 long write_time;
944
945 write_time = (jiffies - ad->current_batch_expires) + batch;
946 if (write_time < 0)
947 write_time = 0;
948
949 if (write_time > batch && !ad->write_batch_idled) {
950 if (write_time > batch * 3)
951 ad->write_batch_count /= 2;
952 else
953 ad->write_batch_count--;
954 } else if (write_time < batch && ad->current_write_count == 0) {
955 if (batch > write_time * 3)
956 ad->write_batch_count *= 2;
957 else
958 ad->write_batch_count++;
959 }
960
961 if (ad->write_batch_count < 1)
962 ad->write_batch_count = 1;
963 }
964
965 /*
966 * as_completed_request is to be called when a request has completed and
967 * returned something to the requesting process, be it an error or data.
968 */
969 static void as_completed_request(request_queue_t *q, struct request *rq)
970 {
971 struct as_data *ad = q->elevator->elevator_data;
972 struct as_rq *arq = RQ_DATA(rq);
973
974 WARN_ON(!list_empty(&rq->queuelist));
975
976 if (arq->state != AS_RQ_REMOVED) {
977 printk("arq->state %d\n", arq->state);
978 WARN_ON(1);
979 goto out;
980 }
981
982 if (ad->changed_batch && ad->nr_dispatched == 1) {
983 kblockd_schedule_work(&ad->antic_work);
984 ad->changed_batch = 0;
985
986 if (ad->batch_data_dir == REQ_SYNC)
987 ad->new_batch = 1;
988 }
989 WARN_ON(ad->nr_dispatched == 0);
990 ad->nr_dispatched--;
991
992 /*
993 * Start counting the batch from when a request of that direction is
994 * actually serviced. This should help devices with big TCQ windows
995 * and writeback caches
996 */
997 if (ad->new_batch && ad->batch_data_dir == arq->is_sync) {
998 update_write_batch(ad);
999 ad->current_batch_expires = jiffies +
1000 ad->batch_expire[REQ_SYNC];
1001 ad->new_batch = 0;
1002 }
1003
1004 if (ad->io_context == arq->io_context && ad->io_context) {
1005 ad->antic_start = jiffies;
1006 ad->ioc_finished = 1;
1007 if (ad->antic_status == ANTIC_WAIT_REQ) {
1008 /*
1009 * We were waiting on this request, now anticipate
1010 * the next one
1011 */
1012 as_antic_waitnext(ad);
1013 }
1014 }
1015
1016 as_put_io_context(arq);
1017 out:
1018 arq->state = AS_RQ_POSTSCHED;
1019 }
1020
1021 /*
1022 * as_remove_queued_request removes a request from the pre dispatch queue
1023 * without updating refcounts. It is expected the caller will drop the
1024 * reference unless it replaces the request at somepart of the elevator
1025 * (ie. the dispatch queue)
1026 */
1027 static void as_remove_queued_request(request_queue_t *q, struct request *rq)
1028 {
1029 struct as_rq *arq = RQ_DATA(rq);
1030 const int data_dir = arq->is_sync;
1031 struct as_data *ad = q->elevator->elevator_data;
1032
1033 WARN_ON(arq->state != AS_RQ_QUEUED);
1034
1035 if (arq->io_context && arq->io_context->aic) {
1036 BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued));
1037 atomic_dec(&arq->io_context->aic->nr_queued);
1038 }
1039
1040 /*
1041 * Update the "next_arq" cache if we are about to remove its
1042 * entry
1043 */
1044 if (ad->next_arq[data_dir] == arq)
1045 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1046
1047 list_del_init(&arq->fifo);
1048 as_del_arq_hash(arq);
1049 as_del_arq_rb(ad, arq);
1050 }
1051
1052 /*
1053 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
1054 * 1 otherwise. It is ratelimited so that we only perform the check once per
1055 * `fifo_expire' interval. Otherwise a large number of expired requests
1056 * would create a hopeless seekstorm.
1057 *
1058 * See as_antic_expired comment.
1059 */
1060 static int as_fifo_expired(struct as_data *ad, int adir)
1061 {
1062 struct as_rq *arq;
1063 long delta_jif;
1064
1065 delta_jif = jiffies - ad->last_check_fifo[adir];
1066 if (unlikely(delta_jif < 0))
1067 delta_jif = -delta_jif;
1068 if (delta_jif < ad->fifo_expire[adir])
1069 return 0;
1070
1071 ad->last_check_fifo[adir] = jiffies;
1072
1073 if (list_empty(&ad->fifo_list[adir]))
1074 return 0;
1075
1076 arq = list_entry_fifo(ad->fifo_list[adir].next);
1077
1078 return time_after(jiffies, arq->expires);
1079 }
1080
1081 /*
1082 * as_batch_expired returns true if the current batch has expired. A batch
1083 * is a set of reads or a set of writes.
1084 */
1085 static inline int as_batch_expired(struct as_data *ad)
1086 {
1087 if (ad->changed_batch || ad->new_batch)
1088 return 0;
1089
1090 if (ad->batch_data_dir == REQ_SYNC)
1091 /* TODO! add a check so a complete fifo gets written? */
1092 return time_after(jiffies, ad->current_batch_expires);
1093
1094 return time_after(jiffies, ad->current_batch_expires)
1095 || ad->current_write_count == 0;
1096 }
1097
1098 /*
1099 * move an entry to dispatch queue
1100 */
1101 static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq)
1102 {
1103 struct request *rq = arq->request;
1104 const int data_dir = arq->is_sync;
1105
1106 BUG_ON(!ON_RB(&arq->rb_node));
1107
1108 as_antic_stop(ad);
1109 ad->antic_status = ANTIC_OFF;
1110
1111 /*
1112 * This has to be set in order to be correctly updated by
1113 * as_find_next_arq
1114 */
1115 ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
1116
1117 if (data_dir == REQ_SYNC) {
1118 /* In case we have to anticipate after this */
1119 copy_io_context(&ad->io_context, &arq->io_context);
1120 } else {
1121 if (ad->io_context) {
1122 put_io_context(ad->io_context);
1123 ad->io_context = NULL;
1124 }
1125
1126 if (ad->current_write_count != 0)
1127 ad->current_write_count--;
1128 }
1129 ad->ioc_finished = 0;
1130
1131 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1132
1133 /*
1134 * take it off the sort and fifo list, add to dispatch queue
1135 */
1136 while (!list_empty(&rq->queuelist)) {
1137 struct request *__rq = list_entry_rq(rq->queuelist.next);
1138 struct as_rq *__arq = RQ_DATA(__rq);
1139
1140 list_del(&__rq->queuelist);
1141
1142 elv_dispatch_add_tail(ad->q, __rq);
1143
1144 if (__arq->io_context && __arq->io_context->aic)
1145 atomic_inc(&__arq->io_context->aic->nr_dispatched);
1146
1147 WARN_ON(__arq->state != AS_RQ_QUEUED);
1148 __arq->state = AS_RQ_DISPATCHED;
1149
1150 ad->nr_dispatched++;
1151 }
1152
1153 as_remove_queued_request(ad->q, rq);
1154 WARN_ON(arq->state != AS_RQ_QUEUED);
1155
1156 elv_dispatch_sort(ad->q, rq);
1157
1158 arq->state = AS_RQ_DISPATCHED;
1159 if (arq->io_context && arq->io_context->aic)
1160 atomic_inc(&arq->io_context->aic->nr_dispatched);
1161 ad->nr_dispatched++;
1162 }
1163
1164 /*
1165 * as_dispatch_request selects the best request according to
1166 * read/write expire, batch expire, etc, and moves it to the dispatch
1167 * queue. Returns 1 if a request was found, 0 otherwise.
1168 */
1169 static int as_dispatch_request(request_queue_t *q, int force)
1170 {
1171 struct as_data *ad = q->elevator->elevator_data;
1172 struct as_rq *arq;
1173 const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
1174 const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
1175
1176 if (unlikely(force)) {
1177 /*
1178 * Forced dispatch, accounting is useless. Reset
1179 * accounting states and dump fifo_lists. Note that
1180 * batch_data_dir is reset to REQ_SYNC to avoid
1181 * screwing write batch accounting as write batch
1182 * accounting occurs on W->R transition.
1183 */
1184 int dispatched = 0;
1185
1186 ad->batch_data_dir = REQ_SYNC;
1187 ad->changed_batch = 0;
1188 ad->new_batch = 0;
1189
1190 while (ad->next_arq[REQ_SYNC]) {
1191 as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]);
1192 dispatched++;
1193 }
1194 ad->last_check_fifo[REQ_SYNC] = jiffies;
1195
1196 while (ad->next_arq[REQ_ASYNC]) {
1197 as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]);
1198 dispatched++;
1199 }
1200 ad->last_check_fifo[REQ_ASYNC] = jiffies;
1201
1202 return dispatched;
1203 }
1204
1205 /* Signal that the write batch was uncontended, so we can't time it */
1206 if (ad->batch_data_dir == REQ_ASYNC && !reads) {
1207 if (ad->current_write_count == 0 || !writes)
1208 ad->write_batch_idled = 1;
1209 }
1210
1211 if (!(reads || writes)
1212 || ad->antic_status == ANTIC_WAIT_REQ
1213 || ad->antic_status == ANTIC_WAIT_NEXT
1214 || ad->changed_batch)
1215 return 0;
1216
1217 if (!(reads && writes && as_batch_expired(ad))) {
1218 /*
1219 * batch is still running or no reads or no writes
1220 */
1221 arq = ad->next_arq[ad->batch_data_dir];
1222
1223 if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
1224 if (as_fifo_expired(ad, REQ_SYNC))
1225 goto fifo_expired;
1226
1227 if (as_can_anticipate(ad, arq)) {
1228 as_antic_waitreq(ad);
1229 return 0;
1230 }
1231 }
1232
1233 if (arq) {
1234 /* we have a "next request" */
1235 if (reads && !writes)
1236 ad->current_batch_expires =
1237 jiffies + ad->batch_expire[REQ_SYNC];
1238 goto dispatch_request;
1239 }
1240 }
1241
1242 /*
1243 * at this point we are not running a batch. select the appropriate
1244 * data direction (read / write)
1245 */
1246
1247 if (reads) {
1248 BUG_ON(RB_EMPTY(&ad->sort_list[REQ_SYNC]));
1249
1250 if (writes && ad->batch_data_dir == REQ_SYNC)
1251 /*
1252 * Last batch was a read, switch to writes
1253 */
1254 goto dispatch_writes;
1255
1256 if (ad->batch_data_dir == REQ_ASYNC) {
1257 WARN_ON(ad->new_batch);
1258 ad->changed_batch = 1;
1259 }
1260 ad->batch_data_dir = REQ_SYNC;
1261 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1262 ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1263 goto dispatch_request;
1264 }
1265
1266 /*
1267 * the last batch was a read
1268 */
1269
1270 if (writes) {
1271 dispatch_writes:
1272 BUG_ON(RB_EMPTY(&ad->sort_list[REQ_ASYNC]));
1273
1274 if (ad->batch_data_dir == REQ_SYNC) {
1275 ad->changed_batch = 1;
1276
1277 /*
1278 * new_batch might be 1 when the queue runs out of
1279 * reads. A subsequent submission of a write might
1280 * cause a change of batch before the read is finished.
1281 */
1282 ad->new_batch = 0;
1283 }
1284 ad->batch_data_dir = REQ_ASYNC;
1285 ad->current_write_count = ad->write_batch_count;
1286 ad->write_batch_idled = 0;
1287 arq = ad->next_arq[ad->batch_data_dir];
1288 goto dispatch_request;
1289 }
1290
1291 BUG();
1292 return 0;
1293
1294 dispatch_request:
1295 /*
1296 * If a request has expired, service it.
1297 */
1298
1299 if (as_fifo_expired(ad, ad->batch_data_dir)) {
1300 fifo_expired:
1301 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1302 BUG_ON(arq == NULL);
1303 }
1304
1305 if (ad->changed_batch) {
1306 WARN_ON(ad->new_batch);
1307
1308 if (ad->nr_dispatched)
1309 return 0;
1310
1311 if (ad->batch_data_dir == REQ_ASYNC)
1312 ad->current_batch_expires = jiffies +
1313 ad->batch_expire[REQ_ASYNC];
1314 else
1315 ad->new_batch = 1;
1316
1317 ad->changed_batch = 0;
1318 }
1319
1320 /*
1321 * arq is the selected appropriate request.
1322 */
1323 as_move_to_dispatch(ad, arq);
1324
1325 return 1;
1326 }
1327
1328 /*
1329 * Add arq to a list behind alias
1330 */
1331 static inline void
1332 as_add_aliased_request(struct as_data *ad, struct as_rq *arq,
1333 struct as_rq *alias)
1334 {
1335 struct request *req = arq->request;
1336 struct list_head *insert = alias->request->queuelist.prev;
1337
1338 /*
1339 * Transfer list of aliases
1340 */
1341 while (!list_empty(&req->queuelist)) {
1342 struct request *__rq = list_entry_rq(req->queuelist.next);
1343 struct as_rq *__arq = RQ_DATA(__rq);
1344
1345 list_move_tail(&__rq->queuelist, &alias->request->queuelist);
1346
1347 WARN_ON(__arq->state != AS_RQ_QUEUED);
1348 }
1349
1350 /*
1351 * Another request with the same start sector on the rbtree.
1352 * Link this request to that sector. They are untangled in
1353 * as_move_to_dispatch
1354 */
1355 list_add(&arq->request->queuelist, insert);
1356
1357 /*
1358 * Don't want to have to handle merges.
1359 */
1360 as_del_arq_hash(arq);
1361 arq->request->flags |= REQ_NOMERGE;
1362 }
1363
1364 /*
1365 * add arq to rbtree and fifo
1366 */
1367 static void as_add_request(request_queue_t *q, struct request *rq)
1368 {
1369 struct as_data *ad = q->elevator->elevator_data;
1370 struct as_rq *arq = RQ_DATA(rq);
1371 struct as_rq *alias;
1372 int data_dir;
1373
1374 arq->state = AS_RQ_NEW;
1375
1376 if (rq_data_dir(arq->request) == READ
1377 || current->flags&PF_SYNCWRITE)
1378 arq->is_sync = 1;
1379 else
1380 arq->is_sync = 0;
1381 data_dir = arq->is_sync;
1382
1383 arq->io_context = as_get_io_context();
1384
1385 if (arq->io_context) {
1386 as_update_iohist(ad, arq->io_context->aic, arq->request);
1387 atomic_inc(&arq->io_context->aic->nr_queued);
1388 }
1389
1390 alias = as_add_arq_rb(ad, arq);
1391 if (!alias) {
1392 /*
1393 * set expire time (only used for reads) and add to fifo list
1394 */
1395 arq->expires = jiffies + ad->fifo_expire[data_dir];
1396 list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]);
1397
1398 if (rq_mergeable(arq->request))
1399 as_add_arq_hash(ad, arq);
1400 as_update_arq(ad, arq); /* keep state machine up to date */
1401
1402 } else {
1403 as_add_aliased_request(ad, arq, alias);
1404
1405 /*
1406 * have we been anticipating this request?
1407 * or does it come from the same process as the one we are
1408 * anticipating for?
1409 */
1410 if (ad->antic_status == ANTIC_WAIT_REQ
1411 || ad->antic_status == ANTIC_WAIT_NEXT) {
1412 if (as_can_break_anticipation(ad, arq))
1413 as_antic_stop(ad);
1414 }
1415 }
1416
1417 arq->state = AS_RQ_QUEUED;
1418 }
1419
1420 static void as_activate_request(request_queue_t *q, struct request *rq)
1421 {
1422 struct as_rq *arq = RQ_DATA(rq);
1423
1424 WARN_ON(arq->state != AS_RQ_DISPATCHED);
1425 arq->state = AS_RQ_REMOVED;
1426 if (arq->io_context && arq->io_context->aic)
1427 atomic_dec(&arq->io_context->aic->nr_dispatched);
1428 }
1429
1430 static void as_deactivate_request(request_queue_t *q, struct request *rq)
1431 {
1432 struct as_rq *arq = RQ_DATA(rq);
1433
1434 WARN_ON(arq->state != AS_RQ_REMOVED);
1435 arq->state = AS_RQ_DISPATCHED;
1436 if (arq->io_context && arq->io_context->aic)
1437 atomic_inc(&arq->io_context->aic->nr_dispatched);
1438 }
1439
1440 /*
1441 * as_queue_empty tells us if there are requests left in the device. It may
1442 * not be the case that a driver can get the next request even if the queue
1443 * is not empty - it is used in the block layer to check for plugging and
1444 * merging opportunities
1445 */
1446 static int as_queue_empty(request_queue_t *q)
1447 {
1448 struct as_data *ad = q->elevator->elevator_data;
1449
1450 return list_empty(&ad->fifo_list[REQ_ASYNC])
1451 && list_empty(&ad->fifo_list[REQ_SYNC]);
1452 }
1453
1454 static struct request *as_former_request(request_queue_t *q,
1455 struct request *rq)
1456 {
1457 struct as_rq *arq = RQ_DATA(rq);
1458 struct rb_node *rbprev = rb_prev(&arq->rb_node);
1459 struct request *ret = NULL;
1460
1461 if (rbprev)
1462 ret = rb_entry_arq(rbprev)->request;
1463
1464 return ret;
1465 }
1466
1467 static struct request *as_latter_request(request_queue_t *q,
1468 struct request *rq)
1469 {
1470 struct as_rq *arq = RQ_DATA(rq);
1471 struct rb_node *rbnext = rb_next(&arq->rb_node);
1472 struct request *ret = NULL;
1473
1474 if (rbnext)
1475 ret = rb_entry_arq(rbnext)->request;
1476
1477 return ret;
1478 }
1479
1480 static int
1481 as_merge(request_queue_t *q, struct request **req, struct bio *bio)
1482 {
1483 struct as_data *ad = q->elevator->elevator_data;
1484 sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1485 struct request *__rq;
1486 int ret;
1487
1488 /*
1489 * see if the merge hash can satisfy a back merge
1490 */
1491 __rq = as_find_arq_hash(ad, bio->bi_sector);
1492 if (__rq) {
1493 BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector);
1494
1495 if (elv_rq_merge_ok(__rq, bio)) {
1496 ret = ELEVATOR_BACK_MERGE;
1497 goto out;
1498 }
1499 }
1500
1501 /*
1502 * check for front merge
1503 */
1504 __rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio));
1505 if (__rq) {
1506 BUG_ON(rb_key != rq_rb_key(__rq));
1507
1508 if (elv_rq_merge_ok(__rq, bio)) {
1509 ret = ELEVATOR_FRONT_MERGE;
1510 goto out;
1511 }
1512 }
1513
1514 return ELEVATOR_NO_MERGE;
1515 out:
1516 if (ret) {
1517 if (rq_mergeable(__rq))
1518 as_hot_arq_hash(ad, RQ_DATA(__rq));
1519 }
1520 *req = __rq;
1521 return ret;
1522 }
1523
1524 static void as_merged_request(request_queue_t *q, struct request *req)
1525 {
1526 struct as_data *ad = q->elevator->elevator_data;
1527 struct as_rq *arq = RQ_DATA(req);
1528
1529 /*
1530 * hash always needs to be repositioned, key is end sector
1531 */
1532 as_del_arq_hash(arq);
1533 as_add_arq_hash(ad, arq);
1534
1535 /*
1536 * if the merge was a front merge, we need to reposition request
1537 */
1538 if (rq_rb_key(req) != arq->rb_key) {
1539 struct as_rq *alias, *next_arq = NULL;
1540
1541 if (ad->next_arq[arq->is_sync] == arq)
1542 next_arq = as_find_next_arq(ad, arq);
1543
1544 /*
1545 * Note! We should really be moving any old aliased requests
1546 * off this request and try to insert them into the rbtree. We
1547 * currently don't bother. Ditto the next function.
1548 */
1549 as_del_arq_rb(ad, arq);
1550 if ((alias = as_add_arq_rb(ad, arq))) {
1551 list_del_init(&arq->fifo);
1552 as_add_aliased_request(ad, arq, alias);
1553 if (next_arq)
1554 ad->next_arq[arq->is_sync] = next_arq;
1555 }
1556 /*
1557 * Note! At this stage of this and the next function, our next
1558 * request may not be optimal - eg the request may have "grown"
1559 * behind the disk head. We currently don't bother adjusting.
1560 */
1561 }
1562 }
1563
1564 static void as_merged_requests(request_queue_t *q, struct request *req,
1565 struct request *next)
1566 {
1567 struct as_data *ad = q->elevator->elevator_data;
1568 struct as_rq *arq = RQ_DATA(req);
1569 struct as_rq *anext = RQ_DATA(next);
1570
1571 BUG_ON(!arq);
1572 BUG_ON(!anext);
1573
1574 /*
1575 * reposition arq (this is the merged request) in hash, and in rbtree
1576 * in case of a front merge
1577 */
1578 as_del_arq_hash(arq);
1579 as_add_arq_hash(ad, arq);
1580
1581 if (rq_rb_key(req) != arq->rb_key) {
1582 struct as_rq *alias, *next_arq = NULL;
1583
1584 if (ad->next_arq[arq->is_sync] == arq)
1585 next_arq = as_find_next_arq(ad, arq);
1586
1587 as_del_arq_rb(ad, arq);
1588 if ((alias = as_add_arq_rb(ad, arq))) {
1589 list_del_init(&arq->fifo);
1590 as_add_aliased_request(ad, arq, alias);
1591 if (next_arq)
1592 ad->next_arq[arq->is_sync] = next_arq;
1593 }
1594 }
1595
1596 /*
1597 * if anext expires before arq, assign its expire time to arq
1598 * and move into anext position (anext will be deleted) in fifo
1599 */
1600 if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) {
1601 if (time_before(anext->expires, arq->expires)) {
1602 list_move(&arq->fifo, &anext->fifo);
1603 arq->expires = anext->expires;
1604 /*
1605 * Don't copy here but swap, because when anext is
1606 * removed below, it must contain the unused context
1607 */
1608 swap_io_context(&arq->io_context, &anext->io_context);
1609 }
1610 }
1611
1612 /*
1613 * Transfer list of aliases
1614 */
1615 while (!list_empty(&next->queuelist)) {
1616 struct request *__rq = list_entry_rq(next->queuelist.next);
1617 struct as_rq *__arq = RQ_DATA(__rq);
1618
1619 list_move_tail(&__rq->queuelist, &req->queuelist);
1620
1621 WARN_ON(__arq->state != AS_RQ_QUEUED);
1622 }
1623
1624 /*
1625 * kill knowledge of next, this one is a goner
1626 */
1627 as_remove_queued_request(q, next);
1628 as_put_io_context(anext);
1629
1630 anext->state = AS_RQ_MERGED;
1631 }
1632
1633 /*
1634 * This is executed in a "deferred" process context, by kblockd. It calls the
1635 * driver's request_fn so the driver can submit that request.
1636 *
1637 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1638 * state before calling, and don't rely on any state over calls.
1639 *
1640 * FIXME! dispatch queue is not a queue at all!
1641 */
1642 static void as_work_handler(void *data)
1643 {
1644 struct request_queue *q = data;
1645 unsigned long flags;
1646
1647 spin_lock_irqsave(q->queue_lock, flags);
1648 if (!as_queue_empty(q))
1649 q->request_fn(q);
1650 spin_unlock_irqrestore(q->queue_lock, flags);
1651 }
1652
1653 static void as_put_request(request_queue_t *q, struct request *rq)
1654 {
1655 struct as_data *ad = q->elevator->elevator_data;
1656 struct as_rq *arq = RQ_DATA(rq);
1657
1658 if (!arq) {
1659 WARN_ON(1);
1660 return;
1661 }
1662
1663 if (unlikely(arq->state != AS_RQ_POSTSCHED &&
1664 arq->state != AS_RQ_PRESCHED &&
1665 arq->state != AS_RQ_MERGED)) {
1666 printk("arq->state %d\n", arq->state);
1667 WARN_ON(1);
1668 }
1669
1670 mempool_free(arq, ad->arq_pool);
1671 rq->elevator_private = NULL;
1672 }
1673
1674 static int as_set_request(request_queue_t *q, struct request *rq,
1675 struct bio *bio, gfp_t gfp_mask)
1676 {
1677 struct as_data *ad = q->elevator->elevator_data;
1678 struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask);
1679
1680 if (arq) {
1681 memset(arq, 0, sizeof(*arq));
1682 RB_CLEAR(&arq->rb_node);
1683 arq->request = rq;
1684 arq->state = AS_RQ_PRESCHED;
1685 arq->io_context = NULL;
1686 INIT_LIST_HEAD(&arq->hash);
1687 arq->on_hash = 0;
1688 INIT_LIST_HEAD(&arq->fifo);
1689 rq->elevator_private = arq;
1690 return 0;
1691 }
1692
1693 return 1;
1694 }
1695
1696 static int as_may_queue(request_queue_t *q, int rw, struct bio *bio)
1697 {
1698 int ret = ELV_MQUEUE_MAY;
1699 struct as_data *ad = q->elevator->elevator_data;
1700 struct io_context *ioc;
1701 if (ad->antic_status == ANTIC_WAIT_REQ ||
1702 ad->antic_status == ANTIC_WAIT_NEXT) {
1703 ioc = as_get_io_context();
1704 if (ad->io_context == ioc)
1705 ret = ELV_MQUEUE_MUST;
1706 put_io_context(ioc);
1707 }
1708
1709 return ret;
1710 }
1711
1712 static void as_exit_queue(elevator_t *e)
1713 {
1714 struct as_data *ad = e->elevator_data;
1715
1716 del_timer_sync(&ad->antic_timer);
1717 kblockd_flush();
1718
1719 BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
1720 BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
1721
1722 mempool_destroy(ad->arq_pool);
1723 put_io_context(ad->io_context);
1724 kfree(ad->hash);
1725 kfree(ad);
1726 }
1727
1728 /*
1729 * initialize elevator private data (as_data), and alloc a arq for
1730 * each request on the free lists
1731 */
1732 static int as_init_queue(request_queue_t *q, elevator_t *e)
1733 {
1734 struct as_data *ad;
1735 int i;
1736
1737 if (!arq_pool)
1738 return -ENOMEM;
1739
1740 ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node);
1741 if (!ad)
1742 return -ENOMEM;
1743 memset(ad, 0, sizeof(*ad));
1744
1745 ad->q = q; /* Identify what queue the data belongs to */
1746
1747 ad->hash = kmalloc_node(sizeof(struct list_head)*AS_HASH_ENTRIES,
1748 GFP_KERNEL, q->node);
1749 if (!ad->hash) {
1750 kfree(ad);
1751 return -ENOMEM;
1752 }
1753
1754 ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1755 mempool_free_slab, arq_pool, q->node);
1756 if (!ad->arq_pool) {
1757 kfree(ad->hash);
1758 kfree(ad);
1759 return -ENOMEM;
1760 }
1761
1762 /* anticipatory scheduling helpers */
1763 ad->antic_timer.function = as_antic_timeout;
1764 ad->antic_timer.data = (unsigned long)q;
1765 init_timer(&ad->antic_timer);
1766 INIT_WORK(&ad->antic_work, as_work_handler, q);
1767
1768 for (i = 0; i < AS_HASH_ENTRIES; i++)
1769 INIT_LIST_HEAD(&ad->hash[i]);
1770
1771 INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
1772 INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
1773 ad->sort_list[REQ_SYNC] = RB_ROOT;
1774 ad->sort_list[REQ_ASYNC] = RB_ROOT;
1775 ad->fifo_expire[REQ_SYNC] = default_read_expire;
1776 ad->fifo_expire[REQ_ASYNC] = default_write_expire;
1777 ad->antic_expire = default_antic_expire;
1778 ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
1779 ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
1780 e->elevator_data = ad;
1781
1782 ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
1783 ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
1784 if (ad->write_batch_count < 2)
1785 ad->write_batch_count = 2;
1786
1787 return 0;
1788 }
1789
1790 /*
1791 * sysfs parts below
1792 */
1793 struct as_fs_entry {
1794 struct attribute attr;
1795 ssize_t (*show)(struct as_data *, char *);
1796 ssize_t (*store)(struct as_data *, const char *, size_t);
1797 };
1798
1799 static ssize_t
1800 as_var_show(unsigned int var, char *page)
1801 {
1802 return sprintf(page, "%d\n", var);
1803 }
1804
1805 static ssize_t
1806 as_var_store(unsigned long *var, const char *page, size_t count)
1807 {
1808 char *p = (char *) page;
1809
1810 *var = simple_strtoul(p, &p, 10);
1811 return count;
1812 }
1813
1814 static ssize_t as_est_show(struct as_data *ad, char *page)
1815 {
1816 int pos = 0;
1817
1818 pos += sprintf(page+pos, "%lu %% exit probability\n",
1819 100*ad->exit_prob/256);
1820 pos += sprintf(page+pos, "%lu %% probability of exiting without a "
1821 "cooperating process submitting IO\n",
1822 100*ad->exit_no_coop/256);
1823 pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
1824 pos += sprintf(page+pos, "%llu sectors new seek distance\n",
1825 (unsigned long long)ad->new_seek_mean);
1826
1827 return pos;
1828 }
1829
1830 #define SHOW_FUNCTION(__FUNC, __VAR) \
1831 static ssize_t __FUNC(struct as_data *ad, char *page) \
1832 { \
1833 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1834 }
1835 SHOW_FUNCTION(as_readexpire_show, ad->fifo_expire[REQ_SYNC]);
1836 SHOW_FUNCTION(as_writeexpire_show, ad->fifo_expire[REQ_ASYNC]);
1837 SHOW_FUNCTION(as_anticexpire_show, ad->antic_expire);
1838 SHOW_FUNCTION(as_read_batchexpire_show, ad->batch_expire[REQ_SYNC]);
1839 SHOW_FUNCTION(as_write_batchexpire_show, ad->batch_expire[REQ_ASYNC]);
1840 #undef SHOW_FUNCTION
1841
1842 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1843 static ssize_t __FUNC(struct as_data *ad, const char *page, size_t count) \
1844 { \
1845 int ret = as_var_store(__PTR, (page), count); \
1846 if (*(__PTR) < (MIN)) \
1847 *(__PTR) = (MIN); \
1848 else if (*(__PTR) > (MAX)) \
1849 *(__PTR) = (MAX); \
1850 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1851 return ret; \
1852 }
1853 STORE_FUNCTION(as_readexpire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
1854 STORE_FUNCTION(as_writeexpire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
1855 STORE_FUNCTION(as_anticexpire_store, &ad->antic_expire, 0, INT_MAX);
1856 STORE_FUNCTION(as_read_batchexpire_store,
1857 &ad->batch_expire[REQ_SYNC], 0, INT_MAX);
1858 STORE_FUNCTION(as_write_batchexpire_store,
1859 &ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
1860 #undef STORE_FUNCTION
1861
1862 static struct as_fs_entry as_est_entry = {
1863 .attr = {.name = "est_time", .mode = S_IRUGO },
1864 .show = as_est_show,
1865 };
1866 static struct as_fs_entry as_readexpire_entry = {
1867 .attr = {.name = "read_expire", .mode = S_IRUGO | S_IWUSR },
1868 .show = as_readexpire_show,
1869 .store = as_readexpire_store,
1870 };
1871 static struct as_fs_entry as_writeexpire_entry = {
1872 .attr = {.name = "write_expire", .mode = S_IRUGO | S_IWUSR },
1873 .show = as_writeexpire_show,
1874 .store = as_writeexpire_store,
1875 };
1876 static struct as_fs_entry as_anticexpire_entry = {
1877 .attr = {.name = "antic_expire", .mode = S_IRUGO | S_IWUSR },
1878 .show = as_anticexpire_show,
1879 .store = as_anticexpire_store,
1880 };
1881 static struct as_fs_entry as_read_batchexpire_entry = {
1882 .attr = {.name = "read_batch_expire", .mode = S_IRUGO | S_IWUSR },
1883 .show = as_read_batchexpire_show,
1884 .store = as_read_batchexpire_store,
1885 };
1886 static struct as_fs_entry as_write_batchexpire_entry = {
1887 .attr = {.name = "write_batch_expire", .mode = S_IRUGO | S_IWUSR },
1888 .show = as_write_batchexpire_show,
1889 .store = as_write_batchexpire_store,
1890 };
1891
1892 static struct attribute *default_attrs[] = {
1893 &as_est_entry.attr,
1894 &as_readexpire_entry.attr,
1895 &as_writeexpire_entry.attr,
1896 &as_anticexpire_entry.attr,
1897 &as_read_batchexpire_entry.attr,
1898 &as_write_batchexpire_entry.attr,
1899 NULL,
1900 };
1901
1902 #define to_as(atr) container_of((atr), struct as_fs_entry, attr)
1903
1904 static ssize_t
1905 as_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1906 {
1907 elevator_t *e = container_of(kobj, elevator_t, kobj);
1908 struct as_fs_entry *entry = to_as(attr);
1909
1910 if (!entry->show)
1911 return -EIO;
1912
1913 return entry->show(e->elevator_data, page);
1914 }
1915
1916 static ssize_t
1917 as_attr_store(struct kobject *kobj, struct attribute *attr,
1918 const char *page, size_t length)
1919 {
1920 elevator_t *e = container_of(kobj, elevator_t, kobj);
1921 struct as_fs_entry *entry = to_as(attr);
1922
1923 if (!entry->store)
1924 return -EIO;
1925
1926 return entry->store(e->elevator_data, page, length);
1927 }
1928
1929 static struct sysfs_ops as_sysfs_ops = {
1930 .show = as_attr_show,
1931 .store = as_attr_store,
1932 };
1933
1934 static struct kobj_type as_ktype = {
1935 .sysfs_ops = &as_sysfs_ops,
1936 .default_attrs = default_attrs,
1937 };
1938
1939 static struct elevator_type iosched_as = {
1940 .ops = {
1941 .elevator_merge_fn = as_merge,
1942 .elevator_merged_fn = as_merged_request,
1943 .elevator_merge_req_fn = as_merged_requests,
1944 .elevator_dispatch_fn = as_dispatch_request,
1945 .elevator_add_req_fn = as_add_request,
1946 .elevator_activate_req_fn = as_activate_request,
1947 .elevator_deactivate_req_fn = as_deactivate_request,
1948 .elevator_queue_empty_fn = as_queue_empty,
1949 .elevator_completed_req_fn = as_completed_request,
1950 .elevator_former_req_fn = as_former_request,
1951 .elevator_latter_req_fn = as_latter_request,
1952 .elevator_set_req_fn = as_set_request,
1953 .elevator_put_req_fn = as_put_request,
1954 .elevator_may_queue_fn = as_may_queue,
1955 .elevator_init_fn = as_init_queue,
1956 .elevator_exit_fn = as_exit_queue,
1957 },
1958
1959 .elevator_ktype = &as_ktype,
1960 .elevator_name = "anticipatory",
1961 .elevator_owner = THIS_MODULE,
1962 };
1963
1964 static int __init as_init(void)
1965 {
1966 int ret;
1967
1968 arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq),
1969 0, 0, NULL, NULL);
1970 if (!arq_pool)
1971 return -ENOMEM;
1972
1973 ret = elv_register(&iosched_as);
1974 if (!ret) {
1975 /*
1976 * don't allow AS to get unregistered, since we would have
1977 * to browse all tasks in the system and release their
1978 * as_io_context first
1979 */
1980 __module_get(THIS_MODULE);
1981 return 0;
1982 }
1983
1984 kmem_cache_destroy(arq_pool);
1985 return ret;
1986 }
1987
1988 static void __exit as_exit(void)
1989 {
1990 elv_unregister(&iosched_as);
1991 kmem_cache_destroy(arq_pool);
1992 }
1993
1994 module_init(as_init);
1995 module_exit(as_exit);
1996
1997 MODULE_AUTHOR("Nick Piggin");
1998 MODULE_LICENSE("GPL");
1999 MODULE_DESCRIPTION("anticipatory IO scheduler");