]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/bfq-iosched.c
block, bfq: add more fairness with writes and slow processes
[mirror_ubuntu-bionic-kernel.git] / block / bfq-iosched.c
1 /*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
52 * applications: interactive and soft real-time. This feature enables
53 * BFQ to provide applications in these classes with a very low
54 * latency. Finally, BFQ also features additional heuristics for
55 * preserving both a low latency and a high throughput on NCQ-capable,
56 * rotational or flash-based devices, and to get the job done quickly
57 * for applications consisting in many I/O-bound processes.
58 *
59 * BFQ is described in [1], where also a reference to the initial, more
60 * theoretical paper on BFQ can be found. The interested reader can find
61 * in the latter paper full details on the main algorithm, as well as
62 * formulas of the guarantees and formal proofs of all the properties.
63 * With respect to the version of BFQ presented in these papers, this
64 * implementation adds a few more heuristics, such as the one that
65 * guarantees a low latency to soft real-time applications, and a
66 * hierarchical extension based on H-WF2Q+.
67 *
68 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
69 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
70 * with O(log N) complexity derives from the one introduced with EEVDF
71 * in [3].
72 *
73 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
74 * Scheduler", Proceedings of the First Workshop on Mobile System
75 * Technologies (MST-2015), May 2015.
76 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
77 *
78 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
79 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
80 * Oct 1997.
81 *
82 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
83 *
84 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
85 * First: A Flexible and Accurate Mechanism for Proportional Share
86 * Resource Allocation", technical report.
87 *
88 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
89 */
90 #include <linux/module.h>
91 #include <linux/slab.h>
92 #include <linux/blkdev.h>
93 #include <linux/cgroup.h>
94 #include <linux/elevator.h>
95 #include <linux/ktime.h>
96 #include <linux/rbtree.h>
97 #include <linux/ioprio.h>
98 #include <linux/sbitmap.h>
99 #include <linux/delay.h>
100
101 #include "blk.h"
102 #include "blk-mq.h"
103 #include "blk-mq-tag.h"
104 #include "blk-mq-sched.h"
105 #include <linux/blktrace_api.h>
106 #include <linux/hrtimer.h>
107 #include <linux/blk-cgroup.h>
108
109 #define BFQ_IOPRIO_CLASSES 3
110 #define BFQ_CL_IDLE_TIMEOUT (HZ/5)
111
112 #define BFQ_MIN_WEIGHT 1
113 #define BFQ_MAX_WEIGHT 1000
114 #define BFQ_WEIGHT_CONVERSION_COEFF 10
115
116 #define BFQ_DEFAULT_QUEUE_IOPRIO 4
117
118 #define BFQ_WEIGHT_LEGACY_DFL 100
119 #define BFQ_DEFAULT_GRP_IOPRIO 0
120 #define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
121
122 struct bfq_entity;
123
124 /**
125 * struct bfq_service_tree - per ioprio_class service tree.
126 *
127 * Each service tree represents a B-WF2Q+ scheduler on its own. Each
128 * ioprio_class has its own independent scheduler, and so its own
129 * bfq_service_tree. All the fields are protected by the queue lock
130 * of the containing bfqd.
131 */
132 struct bfq_service_tree {
133 /* tree for active entities (i.e., those backlogged) */
134 struct rb_root active;
135 /* tree for idle entities (i.e., not backlogged, with V <= F_i)*/
136 struct rb_root idle;
137
138 /* idle entity with minimum F_i */
139 struct bfq_entity *first_idle;
140 /* idle entity with maximum F_i */
141 struct bfq_entity *last_idle;
142
143 /* scheduler virtual time */
144 u64 vtime;
145 /* scheduler weight sum; active and idle entities contribute to it */
146 unsigned long wsum;
147 };
148
149 /**
150 * struct bfq_sched_data - multi-class scheduler.
151 *
152 * bfq_sched_data is the basic scheduler queue. It supports three
153 * ioprio_classes, and can be used either as a toplevel queue or as an
154 * intermediate queue on a hierarchical setup. @next_in_service
155 * points to the active entity of the sched_data service trees that
156 * will be scheduled next. It is used to reduce the number of steps
157 * needed for each hierarchical-schedule update.
158 *
159 * The supported ioprio_classes are the same as in CFQ, in descending
160 * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
161 * Requests from higher priority queues are served before all the
162 * requests from lower priority queues; among requests of the same
163 * queue requests are served according to B-WF2Q+.
164 * All the fields are protected by the queue lock of the containing bfqd.
165 */
166 struct bfq_sched_data {
167 /* entity in service */
168 struct bfq_entity *in_service_entity;
169 /* head-of-line entity (see comments above) */
170 struct bfq_entity *next_in_service;
171 /* array of service trees, one per ioprio_class */
172 struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
173 /* last time CLASS_IDLE was served */
174 unsigned long bfq_class_idle_last_service;
175
176 };
177
178 /**
179 * struct bfq_entity - schedulable entity.
180 *
181 * A bfq_entity is used to represent either a bfq_queue (leaf node in the
182 * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each
183 * entity belongs to the sched_data of the parent group in the cgroup
184 * hierarchy. Non-leaf entities have also their own sched_data, stored
185 * in @my_sched_data.
186 *
187 * Each entity stores independently its priority values; this would
188 * allow different weights on different devices, but this
189 * functionality is not exported to userspace by now. Priorities and
190 * weights are updated lazily, first storing the new values into the
191 * new_* fields, then setting the @prio_changed flag. As soon as
192 * there is a transition in the entity state that allows the priority
193 * update to take place the effective and the requested priority
194 * values are synchronized.
195 *
196 * Unless cgroups are used, the weight value is calculated from the
197 * ioprio to export the same interface as CFQ. When dealing with
198 * ``well-behaved'' queues (i.e., queues that do not spend too much
199 * time to consume their budget and have true sequential behavior, and
200 * when there are no external factors breaking anticipation) the
201 * relative weights at each level of the cgroups hierarchy should be
202 * guaranteed. All the fields are protected by the queue lock of the
203 * containing bfqd.
204 */
205 struct bfq_entity {
206 /* service_tree member */
207 struct rb_node rb_node;
208
209 /*
210 * Flag, true if the entity is on a tree (either the active or
211 * the idle one of its service_tree) or is in service.
212 */
213 bool on_st;
214
215 /* B-WF2Q+ start and finish timestamps [sectors/weight] */
216 u64 start, finish;
217
218 /* tree the entity is enqueued into; %NULL if not on a tree */
219 struct rb_root *tree;
220
221 /*
222 * minimum start time of the (active) subtree rooted at this
223 * entity; used for O(log N) lookups into active trees
224 */
225 u64 min_start;
226
227 /* amount of service received during the last service slot */
228 int service;
229
230 /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
231 int budget;
232
233 /* weight of the queue */
234 int weight;
235 /* next weight if a change is in progress */
236 int new_weight;
237
238 /* original weight, used to implement weight boosting */
239 int orig_weight;
240
241 /* parent entity, for hierarchical scheduling */
242 struct bfq_entity *parent;
243
244 /*
245 * For non-leaf nodes in the hierarchy, the associated
246 * scheduler queue, %NULL on leaf nodes.
247 */
248 struct bfq_sched_data *my_sched_data;
249 /* the scheduler queue this entity belongs to */
250 struct bfq_sched_data *sched_data;
251
252 /* flag, set to request a weight, ioprio or ioprio_class change */
253 int prio_changed;
254 };
255
256 struct bfq_group;
257
258 /**
259 * struct bfq_ttime - per process thinktime stats.
260 */
261 struct bfq_ttime {
262 /* completion time of the last request */
263 u64 last_end_request;
264
265 /* total process thinktime */
266 u64 ttime_total;
267 /* number of thinktime samples */
268 unsigned long ttime_samples;
269 /* average process thinktime */
270 u64 ttime_mean;
271 };
272
273 /**
274 * struct bfq_queue - leaf schedulable entity.
275 *
276 * A bfq_queue is a leaf request queue; it can be associated with an
277 * io_context or more, if it is async. @cgroup holds a reference to
278 * the cgroup, to be sure that it does not disappear while a bfqq
279 * still references it (mostly to avoid races between request issuing
280 * and task migration followed by cgroup destruction). All the fields
281 * are protected by the queue lock of the containing bfqd.
282 */
283 struct bfq_queue {
284 /* reference counter */
285 int ref;
286 /* parent bfq_data */
287 struct bfq_data *bfqd;
288
289 /* current ioprio and ioprio class */
290 unsigned short ioprio, ioprio_class;
291 /* next ioprio and ioprio class if a change is in progress */
292 unsigned short new_ioprio, new_ioprio_class;
293
294 /* sorted list of pending requests */
295 struct rb_root sort_list;
296 /* if fifo isn't expired, next request to serve */
297 struct request *next_rq;
298 /* number of sync and async requests queued */
299 int queued[2];
300 /* number of requests currently allocated */
301 int allocated;
302 /* number of pending metadata requests */
303 int meta_pending;
304 /* fifo list of requests in sort_list */
305 struct list_head fifo;
306
307 /* entity representing this queue in the scheduler */
308 struct bfq_entity entity;
309
310 /* maximum budget allowed from the feedback mechanism */
311 int max_budget;
312 /* budget expiration (in jiffies) */
313 unsigned long budget_timeout;
314
315 /* number of requests on the dispatch list or inside driver */
316 int dispatched;
317
318 /* status flags */
319 unsigned long flags;
320
321 /* node for active/idle bfqq list inside parent bfqd */
322 struct list_head bfqq_list;
323
324 /* associated @bfq_ttime struct */
325 struct bfq_ttime ttime;
326
327 /* bit vector: a 1 for each seeky requests in history */
328 u32 seek_history;
329 /* position of the last request enqueued */
330 sector_t last_request_pos;
331
332 /* Number of consecutive pairs of request completion and
333 * arrival, such that the queue becomes idle after the
334 * completion, but the next request arrives within an idle
335 * time slice; used only if the queue's IO_bound flag has been
336 * cleared.
337 */
338 unsigned int requests_within_timer;
339
340 /* pid of the process owning the queue, used for logging purposes */
341 pid_t pid;
342 };
343
344 /**
345 * struct bfq_io_cq - per (request_queue, io_context) structure.
346 */
347 struct bfq_io_cq {
348 /* associated io_cq structure */
349 struct io_cq icq; /* must be the first member */
350 /* array of two process queues, the sync and the async */
351 struct bfq_queue *bfqq[2];
352 /* per (request_queue, blkcg) ioprio */
353 int ioprio;
354 #ifdef CONFIG_BFQ_GROUP_IOSCHED
355 uint64_t blkcg_serial_nr; /* the current blkcg serial */
356 #endif
357 };
358
359 /**
360 * struct bfq_data - per-device data structure.
361 *
362 * All the fields are protected by @lock.
363 */
364 struct bfq_data {
365 /* device request queue */
366 struct request_queue *queue;
367 /* dispatch queue */
368 struct list_head dispatch;
369
370 /* root bfq_group for the device */
371 struct bfq_group *root_group;
372
373 /*
374 * Number of bfq_queues containing requests (including the
375 * queue in service, even if it is idling).
376 */
377 int busy_queues;
378 /* number of queued requests */
379 int queued;
380 /* number of requests dispatched and waiting for completion */
381 int rq_in_driver;
382
383 /*
384 * Maximum number of requests in driver in the last
385 * @hw_tag_samples completed requests.
386 */
387 int max_rq_in_driver;
388 /* number of samples used to calculate hw_tag */
389 int hw_tag_samples;
390 /* flag set to one if the driver is showing a queueing behavior */
391 int hw_tag;
392
393 /* number of budgets assigned */
394 int budgets_assigned;
395
396 /*
397 * Timer set when idling (waiting) for the next request from
398 * the queue in service.
399 */
400 struct hrtimer idle_slice_timer;
401
402 /* bfq_queue in service */
403 struct bfq_queue *in_service_queue;
404 /* bfq_io_cq (bic) associated with the @in_service_queue */
405 struct bfq_io_cq *in_service_bic;
406
407 /* on-disk position of the last served request */
408 sector_t last_position;
409
410 /* time of last request completion (ns) */
411 u64 last_completion;
412
413 /* time of first rq dispatch in current observation interval (ns) */
414 u64 first_dispatch;
415 /* time of last rq dispatch in current observation interval (ns) */
416 u64 last_dispatch;
417
418 /* beginning of the last budget */
419 ktime_t last_budget_start;
420 /* beginning of the last idle slice */
421 ktime_t last_idling_start;
422
423 /* number of samples in current observation interval */
424 int peak_rate_samples;
425 /* num of samples of seq dispatches in current observation interval */
426 u32 sequential_samples;
427 /* total num of sectors transferred in current observation interval */
428 u64 tot_sectors_dispatched;
429 /* max rq size seen during current observation interval (sectors) */
430 u32 last_rq_max_size;
431 /* time elapsed from first dispatch in current observ. interval (us) */
432 u64 delta_from_first;
433 /*
434 * Current estimate of the device peak rate, measured in
435 * [BFQ_RATE_SHIFT * sectors/usec]. The left-shift by
436 * BFQ_RATE_SHIFT is performed to increase precision in
437 * fixed-point calculations.
438 */
439 u32 peak_rate;
440
441 /* maximum budget allotted to a bfq_queue before rescheduling */
442 int bfq_max_budget;
443
444 /* list of all the bfq_queues active on the device */
445 struct list_head active_list;
446 /* list of all the bfq_queues idle on the device */
447 struct list_head idle_list;
448
449 /*
450 * Timeout for async/sync requests; when it fires, requests
451 * are served in fifo order.
452 */
453 u64 bfq_fifo_expire[2];
454 /* weight of backward seeks wrt forward ones */
455 unsigned int bfq_back_penalty;
456 /* maximum allowed backward seek */
457 unsigned int bfq_back_max;
458 /* maximum idling time */
459 u32 bfq_slice_idle;
460
461 /* user-configured max budget value (0 for auto-tuning) */
462 int bfq_user_max_budget;
463 /*
464 * Timeout for bfq_queues to consume their budget; used to
465 * prevent seeky queues from imposing long latencies to
466 * sequential or quasi-sequential ones (this also implies that
467 * seeky queues cannot receive guarantees in the service
468 * domain; after a timeout they are charged for the time they
469 * have been in service, to preserve fairness among them, but
470 * without service-domain guarantees).
471 */
472 unsigned int bfq_timeout;
473
474 /*
475 * Number of consecutive requests that must be issued within
476 * the idle time slice to set again idling to a queue which
477 * was marked as non-I/O-bound (see the definition of the
478 * IO_bound flag for further details).
479 */
480 unsigned int bfq_requests_within_timer;
481
482 /*
483 * Force device idling whenever needed to provide accurate
484 * service guarantees, without caring about throughput
485 * issues. CAVEAT: this may even increase latencies, in case
486 * of useless idling for processes that did stop doing I/O.
487 */
488 bool strict_guarantees;
489
490 /* fallback dummy bfqq for extreme OOM conditions */
491 struct bfq_queue oom_bfqq;
492
493 spinlock_t lock;
494
495 /*
496 * bic associated with the task issuing current bio for
497 * merging. This and the next field are used as a support to
498 * be able to perform the bic lookup, needed by bio-merge
499 * functions, before the scheduler lock is taken, and thus
500 * avoid taking the request-queue lock while the scheduler
501 * lock is being held.
502 */
503 struct bfq_io_cq *bio_bic;
504 /* bfqq associated with the task issuing current bio for merging */
505 struct bfq_queue *bio_bfqq;
506 };
507
508 enum bfqq_state_flags {
509 BFQQF_busy = 0, /* has requests or is in service */
510 BFQQF_wait_request, /* waiting for a request */
511 BFQQF_non_blocking_wait_rq, /*
512 * waiting for a request
513 * without idling the device
514 */
515 BFQQF_fifo_expire, /* FIFO checked in this slice */
516 BFQQF_idle_window, /* slice idling enabled */
517 BFQQF_sync, /* synchronous queue */
518 BFQQF_budget_new, /* no completion with this budget */
519 BFQQF_IO_bound, /*
520 * bfqq has timed-out at least once
521 * having consumed at most 2/10 of
522 * its budget
523 */
524 };
525
526 #define BFQ_BFQQ_FNS(name) \
527 static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
528 { \
529 __set_bit(BFQQF_##name, &(bfqq)->flags); \
530 } \
531 static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
532 { \
533 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
534 } \
535 static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
536 { \
537 return test_bit(BFQQF_##name, &(bfqq)->flags); \
538 }
539
540 BFQ_BFQQ_FNS(busy);
541 BFQ_BFQQ_FNS(wait_request);
542 BFQ_BFQQ_FNS(non_blocking_wait_rq);
543 BFQ_BFQQ_FNS(fifo_expire);
544 BFQ_BFQQ_FNS(idle_window);
545 BFQ_BFQQ_FNS(sync);
546 BFQ_BFQQ_FNS(budget_new);
547 BFQ_BFQQ_FNS(IO_bound);
548 #undef BFQ_BFQQ_FNS
549
550 /* Logging facilities. */
551 #ifdef CONFIG_BFQ_GROUP_IOSCHED
552 static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
553 static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
554
555 #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
556 char __pbuf[128]; \
557 \
558 blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \
559 blk_add_trace_msg((bfqd)->queue, "bfq%d%c %s " fmt, (bfqq)->pid, \
560 bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
561 __pbuf, ##args); \
562 } while (0)
563
564 #define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
565 char __pbuf[128]; \
566 \
567 blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf)); \
568 blk_add_trace_msg((bfqd)->queue, "%s " fmt, __pbuf, ##args); \
569 } while (0)
570
571 #else /* CONFIG_BFQ_GROUP_IOSCHED */
572
573 #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
574 blk_add_trace_msg((bfqd)->queue, "bfq%d%c " fmt, (bfqq)->pid, \
575 bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
576 ##args)
577 #define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
578
579 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
580
581 #define bfq_log(bfqd, fmt, args...) \
582 blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
583
584 /* Expiration reasons. */
585 enum bfqq_expiration {
586 BFQQE_TOO_IDLE = 0, /*
587 * queue has been idling for
588 * too long
589 */
590 BFQQE_BUDGET_TIMEOUT, /* budget took too long to be used */
591 BFQQE_BUDGET_EXHAUSTED, /* budget consumed */
592 BFQQE_NO_MORE_REQUESTS, /* the queue has no more requests */
593 BFQQE_PREEMPTED /* preemption in progress */
594 };
595
596 struct bfqg_stats {
597 #ifdef CONFIG_BFQ_GROUP_IOSCHED
598 /* number of ios merged */
599 struct blkg_rwstat merged;
600 /* total time spent on device in ns, may not be accurate w/ queueing */
601 struct blkg_rwstat service_time;
602 /* total time spent waiting in scheduler queue in ns */
603 struct blkg_rwstat wait_time;
604 /* number of IOs queued up */
605 struct blkg_rwstat queued;
606 /* total disk time and nr sectors dispatched by this group */
607 struct blkg_stat time;
608 /* sum of number of ios queued across all samples */
609 struct blkg_stat avg_queue_size_sum;
610 /* count of samples taken for average */
611 struct blkg_stat avg_queue_size_samples;
612 /* how many times this group has been removed from service tree */
613 struct blkg_stat dequeue;
614 /* total time spent waiting for it to be assigned a timeslice. */
615 struct blkg_stat group_wait_time;
616 /* time spent idling for this blkcg_gq */
617 struct blkg_stat idle_time;
618 /* total time with empty current active q with other requests queued */
619 struct blkg_stat empty_time;
620 /* fields after this shouldn't be cleared on stat reset */
621 uint64_t start_group_wait_time;
622 uint64_t start_idle_time;
623 uint64_t start_empty_time;
624 uint16_t flags;
625 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
626 };
627
628 #ifdef CONFIG_BFQ_GROUP_IOSCHED
629
630 /*
631 * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
632 *
633 * @ps: @blkcg_policy_storage that this structure inherits
634 * @weight: weight of the bfq_group
635 */
636 struct bfq_group_data {
637 /* must be the first member */
638 struct blkcg_policy_data pd;
639
640 unsigned short weight;
641 };
642
643 /**
644 * struct bfq_group - per (device, cgroup) data structure.
645 * @entity: schedulable entity to insert into the parent group sched_data.
646 * @sched_data: own sched_data, to contain child entities (they may be
647 * both bfq_queues and bfq_groups).
648 * @bfqd: the bfq_data for the device this group acts upon.
649 * @async_bfqq: array of async queues for all the tasks belonging to
650 * the group, one queue per ioprio value per ioprio_class,
651 * except for the idle class that has only one queue.
652 * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
653 * @my_entity: pointer to @entity, %NULL for the toplevel group; used
654 * to avoid too many special cases during group creation/
655 * migration.
656 * @stats: stats for this bfqg.
657 *
658 * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
659 * there is a set of bfq_groups, each one collecting the lower-level
660 * entities belonging to the group that are acting on the same device.
661 *
662 * Locking works as follows:
663 * o @bfqd is protected by the queue lock, RCU is used to access it
664 * from the readers.
665 * o All the other fields are protected by the @bfqd queue lock.
666 */
667 struct bfq_group {
668 /* must be the first member */
669 struct blkg_policy_data pd;
670
671 struct bfq_entity entity;
672 struct bfq_sched_data sched_data;
673
674 void *bfqd;
675
676 struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
677 struct bfq_queue *async_idle_bfqq;
678
679 struct bfq_entity *my_entity;
680
681 struct bfqg_stats stats;
682 };
683
684 #else
685 struct bfq_group {
686 struct bfq_sched_data sched_data;
687
688 struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
689 struct bfq_queue *async_idle_bfqq;
690
691 struct rb_root rq_pos_tree;
692 };
693 #endif
694
695 static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
696
697 static unsigned int bfq_class_idx(struct bfq_entity *entity)
698 {
699 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
700
701 return bfqq ? bfqq->ioprio_class - 1 :
702 BFQ_DEFAULT_GRP_CLASS - 1;
703 }
704
705 static struct bfq_service_tree *
706 bfq_entity_service_tree(struct bfq_entity *entity)
707 {
708 struct bfq_sched_data *sched_data = entity->sched_data;
709 unsigned int idx = bfq_class_idx(entity);
710
711 return sched_data->service_tree + idx;
712 }
713
714 static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
715 {
716 return bic->bfqq[is_sync];
717 }
718
719 static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq,
720 bool is_sync)
721 {
722 bic->bfqq[is_sync] = bfqq;
723 }
724
725 static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
726 {
727 return bic->icq.q->elevator->elevator_data;
728 }
729
730 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
731 static void bfq_put_queue(struct bfq_queue *bfqq);
732 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
733 struct bio *bio, bool is_sync,
734 struct bfq_io_cq *bic);
735 static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
736 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
737
738 /* Expiration time of sync (0) and async (1) requests, in ns. */
739 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
740
741 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
742 static const int bfq_back_max = 16 * 1024;
743
744 /* Penalty of a backwards seek, in number of sectors. */
745 static const int bfq_back_penalty = 2;
746
747 /* Idling period duration, in ns. */
748 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
749
750 /* Minimum number of assigned budgets for which stats are safe to compute. */
751 static const int bfq_stats_min_budgets = 194;
752
753 /* Default maximum budget values, in sectors and number of requests. */
754 static const int bfq_default_max_budget = 16 * 1024;
755
756 /*
757 * Async to sync throughput distribution is controlled as follows:
758 * when an async request is served, the entity is charged the number
759 * of sectors of the request, multiplied by the factor below
760 */
761 static const int bfq_async_charge_factor = 10;
762
763 /* Default timeout values, in jiffies, approximating CFQ defaults. */
764 static const int bfq_timeout = HZ / 8;
765
766 static struct kmem_cache *bfq_pool;
767
768 /* Below this threshold (in ns), we consider thinktime immediate. */
769 #define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
770
771 /* hw_tag detection: parallel requests threshold and min samples needed. */
772 #define BFQ_HW_QUEUE_THRESHOLD 4
773 #define BFQ_HW_QUEUE_SAMPLES 32
774
775 #define BFQQ_SEEK_THR (sector_t)(8 * 100)
776 #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
777 #define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
778 #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8)
779
780 /* Min number of samples required to perform peak-rate update */
781 #define BFQ_RATE_MIN_SAMPLES 32
782 /* Min observation time interval required to perform a peak-rate update (ns) */
783 #define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
784 /* Target observation time interval for a peak-rate update (ns) */
785 #define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
786
787 /* Shift used for peak rate fixed precision calculations. */
788 #define BFQ_RATE_SHIFT 16
789
790 #define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
791 { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
792
793 #define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0])
794 #define RQ_BFQQ(rq) ((rq)->elv.priv[1])
795
796 /**
797 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
798 * @icq: the iocontext queue.
799 */
800 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
801 {
802 /* bic->icq is the first member, %NULL will convert to %NULL */
803 return container_of(icq, struct bfq_io_cq, icq);
804 }
805
806 /**
807 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
808 * @bfqd: the lookup key.
809 * @ioc: the io_context of the process doing I/O.
810 * @q: the request queue.
811 */
812 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
813 struct io_context *ioc,
814 struct request_queue *q)
815 {
816 if (ioc) {
817 unsigned long flags;
818 struct bfq_io_cq *icq;
819
820 spin_lock_irqsave(q->queue_lock, flags);
821 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
822 spin_unlock_irqrestore(q->queue_lock, flags);
823
824 return icq;
825 }
826
827 return NULL;
828 }
829
830 /*
831 * Scheduler run of queue, if there are requests pending and no one in the
832 * driver that will restart queueing.
833 */
834 static void bfq_schedule_dispatch(struct bfq_data *bfqd)
835 {
836 if (bfqd->queued != 0) {
837 bfq_log(bfqd, "schedule dispatch");
838 blk_mq_run_hw_queues(bfqd->queue, true);
839 }
840 }
841
842 /**
843 * bfq_gt - compare two timestamps.
844 * @a: first ts.
845 * @b: second ts.
846 *
847 * Return @a > @b, dealing with wrapping correctly.
848 */
849 static int bfq_gt(u64 a, u64 b)
850 {
851 return (s64)(a - b) > 0;
852 }
853
854 static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
855 {
856 struct rb_node *node = tree->rb_node;
857
858 return rb_entry(node, struct bfq_entity, rb_node);
859 }
860
861 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd);
862
863 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
864
865 /**
866 * bfq_update_next_in_service - update sd->next_in_service
867 * @sd: sched_data for which to perform the update.
868 * @new_entity: if not NULL, pointer to the entity whose activation,
869 * requeueing or repositionig triggered the invocation of
870 * this function.
871 *
872 * This function is called to update sd->next_in_service, which, in
873 * its turn, may change as a consequence of the insertion or
874 * extraction of an entity into/from one of the active trees of
875 * sd. These insertions/extractions occur as a consequence of
876 * activations/deactivations of entities, with some activations being
877 * 'true' activations, and other activations being requeueings (i.e.,
878 * implementing the second, requeueing phase of the mechanism used to
879 * reposition an entity in its active tree; see comments on
880 * __bfq_activate_entity and __bfq_requeue_entity for details). In
881 * both the last two activation sub-cases, new_entity points to the
882 * just activated or requeued entity.
883 *
884 * Returns true if sd->next_in_service changes in such a way that
885 * entity->parent may become the next_in_service for its parent
886 * entity.
887 */
888 static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
889 struct bfq_entity *new_entity)
890 {
891 struct bfq_entity *next_in_service = sd->next_in_service;
892 bool parent_sched_may_change = false;
893
894 /*
895 * If this update is triggered by the activation, requeueing
896 * or repositiong of an entity that does not coincide with
897 * sd->next_in_service, then a full lookup in the active tree
898 * can be avoided. In fact, it is enough to check whether the
899 * just-modified entity has a higher priority than
900 * sd->next_in_service, or, even if it has the same priority
901 * as sd->next_in_service, is eligible and has a lower virtual
902 * finish time than sd->next_in_service. If this compound
903 * condition holds, then the new entity becomes the new
904 * next_in_service. Otherwise no change is needed.
905 */
906 if (new_entity && new_entity != sd->next_in_service) {
907 /*
908 * Flag used to decide whether to replace
909 * sd->next_in_service with new_entity. Tentatively
910 * set to true, and left as true if
911 * sd->next_in_service is NULL.
912 */
913 bool replace_next = true;
914
915 /*
916 * If there is already a next_in_service candidate
917 * entity, then compare class priorities or timestamps
918 * to decide whether to replace sd->service_tree with
919 * new_entity.
920 */
921 if (next_in_service) {
922 unsigned int new_entity_class_idx =
923 bfq_class_idx(new_entity);
924 struct bfq_service_tree *st =
925 sd->service_tree + new_entity_class_idx;
926
927 /*
928 * For efficiency, evaluate the most likely
929 * sub-condition first.
930 */
931 replace_next =
932 (new_entity_class_idx ==
933 bfq_class_idx(next_in_service)
934 &&
935 !bfq_gt(new_entity->start, st->vtime)
936 &&
937 bfq_gt(next_in_service->finish,
938 new_entity->finish))
939 ||
940 new_entity_class_idx <
941 bfq_class_idx(next_in_service);
942 }
943
944 if (replace_next)
945 next_in_service = new_entity;
946 } else /* invoked because of a deactivation: lookup needed */
947 next_in_service = bfq_lookup_next_entity(sd);
948
949 if (next_in_service) {
950 parent_sched_may_change = !sd->next_in_service ||
951 bfq_update_parent_budget(next_in_service);
952 }
953
954 sd->next_in_service = next_in_service;
955
956 if (!next_in_service)
957 return parent_sched_may_change;
958
959 return parent_sched_may_change;
960 }
961
962 #ifdef CONFIG_BFQ_GROUP_IOSCHED
963 /* both next loops stop at one of the child entities of the root group */
964 #define for_each_entity(entity) \
965 for (; entity ; entity = entity->parent)
966
967 /*
968 * For each iteration, compute parent in advance, so as to be safe if
969 * entity is deallocated during the iteration. Such a deallocation may
970 * happen as a consequence of a bfq_put_queue that frees the bfq_queue
971 * containing entity.
972 */
973 #define for_each_entity_safe(entity, parent) \
974 for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
975
976 /*
977 * Returns true if this budget changes may let next_in_service->parent
978 * become the next_in_service entity for its parent entity.
979 */
980 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
981 {
982 struct bfq_entity *bfqg_entity;
983 struct bfq_group *bfqg;
984 struct bfq_sched_data *group_sd;
985 bool ret = false;
986
987 group_sd = next_in_service->sched_data;
988
989 bfqg = container_of(group_sd, struct bfq_group, sched_data);
990 /*
991 * bfq_group's my_entity field is not NULL only if the group
992 * is not the root group. We must not touch the root entity
993 * as it must never become an in-service entity.
994 */
995 bfqg_entity = bfqg->my_entity;
996 if (bfqg_entity) {
997 if (bfqg_entity->budget > next_in_service->budget)
998 ret = true;
999 bfqg_entity->budget = next_in_service->budget;
1000 }
1001
1002 return ret;
1003 }
1004
1005 /*
1006 * This function tells whether entity stops being a candidate for next
1007 * service, according to the following logic.
1008 *
1009 * This function is invoked for an entity that is about to be set in
1010 * service. If such an entity is a queue, then the entity is no longer
1011 * a candidate for next service (i.e, a candidate entity to serve
1012 * after the in-service entity is expired). The function then returns
1013 * true.
1014 */
1015 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
1016 {
1017 if (bfq_entity_to_bfqq(entity))
1018 return true;
1019
1020 return false;
1021 }
1022
1023 #else /* CONFIG_BFQ_GROUP_IOSCHED */
1024 /*
1025 * Next two macros are fake loops when cgroups support is not
1026 * enabled. I fact, in such a case, there is only one level to go up
1027 * (to reach the root group).
1028 */
1029 #define for_each_entity(entity) \
1030 for (; entity ; entity = NULL)
1031
1032 #define for_each_entity_safe(entity, parent) \
1033 for (parent = NULL; entity ; entity = parent)
1034
1035 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
1036 {
1037 return false;
1038 }
1039
1040 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
1041 {
1042 return true;
1043 }
1044
1045 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
1046
1047 /*
1048 * Shift for timestamp calculations. This actually limits the maximum
1049 * service allowed in one timestamp delta (small shift values increase it),
1050 * the maximum total weight that can be used for the queues in the system
1051 * (big shift values increase it), and the period of virtual time
1052 * wraparounds.
1053 */
1054 #define WFQ_SERVICE_SHIFT 22
1055
1056 static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
1057 {
1058 struct bfq_queue *bfqq = NULL;
1059
1060 if (!entity->my_sched_data)
1061 bfqq = container_of(entity, struct bfq_queue, entity);
1062
1063 return bfqq;
1064 }
1065
1066
1067 /**
1068 * bfq_delta - map service into the virtual time domain.
1069 * @service: amount of service.
1070 * @weight: scale factor (weight of an entity or weight sum).
1071 */
1072 static u64 bfq_delta(unsigned long service, unsigned long weight)
1073 {
1074 u64 d = (u64)service << WFQ_SERVICE_SHIFT;
1075
1076 do_div(d, weight);
1077 return d;
1078 }
1079
1080 /**
1081 * bfq_calc_finish - assign the finish time to an entity.
1082 * @entity: the entity to act upon.
1083 * @service: the service to be charged to the entity.
1084 */
1085 static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
1086 {
1087 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1088
1089 entity->finish = entity->start +
1090 bfq_delta(service, entity->weight);
1091
1092 if (bfqq) {
1093 bfq_log_bfqq(bfqq->bfqd, bfqq,
1094 "calc_finish: serv %lu, w %d",
1095 service, entity->weight);
1096 bfq_log_bfqq(bfqq->bfqd, bfqq,
1097 "calc_finish: start %llu, finish %llu, delta %llu",
1098 entity->start, entity->finish,
1099 bfq_delta(service, entity->weight));
1100 }
1101 }
1102
1103 /**
1104 * bfq_entity_of - get an entity from a node.
1105 * @node: the node field of the entity.
1106 *
1107 * Convert a node pointer to the relative entity. This is used only
1108 * to simplify the logic of some functions and not as the generic
1109 * conversion mechanism because, e.g., in the tree walking functions,
1110 * the check for a %NULL value would be redundant.
1111 */
1112 static struct bfq_entity *bfq_entity_of(struct rb_node *node)
1113 {
1114 struct bfq_entity *entity = NULL;
1115
1116 if (node)
1117 entity = rb_entry(node, struct bfq_entity, rb_node);
1118
1119 return entity;
1120 }
1121
1122 /**
1123 * bfq_extract - remove an entity from a tree.
1124 * @root: the tree root.
1125 * @entity: the entity to remove.
1126 */
1127 static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
1128 {
1129 entity->tree = NULL;
1130 rb_erase(&entity->rb_node, root);
1131 }
1132
1133 /**
1134 * bfq_idle_extract - extract an entity from the idle tree.
1135 * @st: the service tree of the owning @entity.
1136 * @entity: the entity being removed.
1137 */
1138 static void bfq_idle_extract(struct bfq_service_tree *st,
1139 struct bfq_entity *entity)
1140 {
1141 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1142 struct rb_node *next;
1143
1144 if (entity == st->first_idle) {
1145 next = rb_next(&entity->rb_node);
1146 st->first_idle = bfq_entity_of(next);
1147 }
1148
1149 if (entity == st->last_idle) {
1150 next = rb_prev(&entity->rb_node);
1151 st->last_idle = bfq_entity_of(next);
1152 }
1153
1154 bfq_extract(&st->idle, entity);
1155
1156 if (bfqq)
1157 list_del(&bfqq->bfqq_list);
1158 }
1159
1160 /**
1161 * bfq_insert - generic tree insertion.
1162 * @root: tree root.
1163 * @entity: entity to insert.
1164 *
1165 * This is used for the idle and the active tree, since they are both
1166 * ordered by finish time.
1167 */
1168 static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
1169 {
1170 struct bfq_entity *entry;
1171 struct rb_node **node = &root->rb_node;
1172 struct rb_node *parent = NULL;
1173
1174 while (*node) {
1175 parent = *node;
1176 entry = rb_entry(parent, struct bfq_entity, rb_node);
1177
1178 if (bfq_gt(entry->finish, entity->finish))
1179 node = &parent->rb_left;
1180 else
1181 node = &parent->rb_right;
1182 }
1183
1184 rb_link_node(&entity->rb_node, parent, node);
1185 rb_insert_color(&entity->rb_node, root);
1186
1187 entity->tree = root;
1188 }
1189
1190 /**
1191 * bfq_update_min - update the min_start field of a entity.
1192 * @entity: the entity to update.
1193 * @node: one of its children.
1194 *
1195 * This function is called when @entity may store an invalid value for
1196 * min_start due to updates to the active tree. The function assumes
1197 * that the subtree rooted at @node (which may be its left or its right
1198 * child) has a valid min_start value.
1199 */
1200 static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
1201 {
1202 struct bfq_entity *child;
1203
1204 if (node) {
1205 child = rb_entry(node, struct bfq_entity, rb_node);
1206 if (bfq_gt(entity->min_start, child->min_start))
1207 entity->min_start = child->min_start;
1208 }
1209 }
1210
1211 /**
1212 * bfq_update_active_node - recalculate min_start.
1213 * @node: the node to update.
1214 *
1215 * @node may have changed position or one of its children may have moved,
1216 * this function updates its min_start value. The left and right subtrees
1217 * are assumed to hold a correct min_start value.
1218 */
1219 static void bfq_update_active_node(struct rb_node *node)
1220 {
1221 struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
1222
1223 entity->min_start = entity->start;
1224 bfq_update_min(entity, node->rb_right);
1225 bfq_update_min(entity, node->rb_left);
1226 }
1227
1228 /**
1229 * bfq_update_active_tree - update min_start for the whole active tree.
1230 * @node: the starting node.
1231 *
1232 * @node must be the deepest modified node after an update. This function
1233 * updates its min_start using the values held by its children, assuming
1234 * that they did not change, and then updates all the nodes that may have
1235 * changed in the path to the root. The only nodes that may have changed
1236 * are the ones in the path or their siblings.
1237 */
1238 static void bfq_update_active_tree(struct rb_node *node)
1239 {
1240 struct rb_node *parent;
1241
1242 up:
1243 bfq_update_active_node(node);
1244
1245 parent = rb_parent(node);
1246 if (!parent)
1247 return;
1248
1249 if (node == parent->rb_left && parent->rb_right)
1250 bfq_update_active_node(parent->rb_right);
1251 else if (parent->rb_left)
1252 bfq_update_active_node(parent->rb_left);
1253
1254 node = parent;
1255 goto up;
1256 }
1257
1258 /**
1259 * bfq_active_insert - insert an entity in the active tree of its
1260 * group/device.
1261 * @st: the service tree of the entity.
1262 * @entity: the entity being inserted.
1263 *
1264 * The active tree is ordered by finish time, but an extra key is kept
1265 * per each node, containing the minimum value for the start times of
1266 * its children (and the node itself), so it's possible to search for
1267 * the eligible node with the lowest finish time in logarithmic time.
1268 */
1269 static void bfq_active_insert(struct bfq_service_tree *st,
1270 struct bfq_entity *entity)
1271 {
1272 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1273 struct rb_node *node = &entity->rb_node;
1274 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1275 struct bfq_sched_data *sd = NULL;
1276 struct bfq_group *bfqg = NULL;
1277 struct bfq_data *bfqd = NULL;
1278 #endif
1279
1280 bfq_insert(&st->active, entity);
1281
1282 if (node->rb_left)
1283 node = node->rb_left;
1284 else if (node->rb_right)
1285 node = node->rb_right;
1286
1287 bfq_update_active_tree(node);
1288
1289 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1290 sd = entity->sched_data;
1291 bfqg = container_of(sd, struct bfq_group, sched_data);
1292 bfqd = (struct bfq_data *)bfqg->bfqd;
1293 #endif
1294 if (bfqq)
1295 list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
1296 }
1297
1298 /**
1299 * bfq_ioprio_to_weight - calc a weight from an ioprio.
1300 * @ioprio: the ioprio value to convert.
1301 */
1302 static unsigned short bfq_ioprio_to_weight(int ioprio)
1303 {
1304 return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
1305 }
1306
1307 /**
1308 * bfq_weight_to_ioprio - calc an ioprio from a weight.
1309 * @weight: the weight value to convert.
1310 *
1311 * To preserve as much as possible the old only-ioprio user interface,
1312 * 0 is used as an escape ioprio value for weights (numerically) equal or
1313 * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
1314 */
1315 static unsigned short bfq_weight_to_ioprio(int weight)
1316 {
1317 return max_t(int, 0,
1318 IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
1319 }
1320
1321 static void bfq_get_entity(struct bfq_entity *entity)
1322 {
1323 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1324
1325 if (bfqq) {
1326 bfqq->ref++;
1327 bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
1328 bfqq, bfqq->ref);
1329 }
1330 }
1331
1332 /**
1333 * bfq_find_deepest - find the deepest node that an extraction can modify.
1334 * @node: the node being removed.
1335 *
1336 * Do the first step of an extraction in an rb tree, looking for the
1337 * node that will replace @node, and returning the deepest node that
1338 * the following modifications to the tree can touch. If @node is the
1339 * last node in the tree return %NULL.
1340 */
1341 static struct rb_node *bfq_find_deepest(struct rb_node *node)
1342 {
1343 struct rb_node *deepest;
1344
1345 if (!node->rb_right && !node->rb_left)
1346 deepest = rb_parent(node);
1347 else if (!node->rb_right)
1348 deepest = node->rb_left;
1349 else if (!node->rb_left)
1350 deepest = node->rb_right;
1351 else {
1352 deepest = rb_next(node);
1353 if (deepest->rb_right)
1354 deepest = deepest->rb_right;
1355 else if (rb_parent(deepest) != node)
1356 deepest = rb_parent(deepest);
1357 }
1358
1359 return deepest;
1360 }
1361
1362 /**
1363 * bfq_active_extract - remove an entity from the active tree.
1364 * @st: the service_tree containing the tree.
1365 * @entity: the entity being removed.
1366 */
1367 static void bfq_active_extract(struct bfq_service_tree *st,
1368 struct bfq_entity *entity)
1369 {
1370 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1371 struct rb_node *node;
1372 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1373 struct bfq_sched_data *sd = NULL;
1374 struct bfq_group *bfqg = NULL;
1375 struct bfq_data *bfqd = NULL;
1376 #endif
1377
1378 node = bfq_find_deepest(&entity->rb_node);
1379 bfq_extract(&st->active, entity);
1380
1381 if (node)
1382 bfq_update_active_tree(node);
1383
1384 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1385 sd = entity->sched_data;
1386 bfqg = container_of(sd, struct bfq_group, sched_data);
1387 bfqd = (struct bfq_data *)bfqg->bfqd;
1388 #endif
1389 if (bfqq)
1390 list_del(&bfqq->bfqq_list);
1391 }
1392
1393 /**
1394 * bfq_idle_insert - insert an entity into the idle tree.
1395 * @st: the service tree containing the tree.
1396 * @entity: the entity to insert.
1397 */
1398 static void bfq_idle_insert(struct bfq_service_tree *st,
1399 struct bfq_entity *entity)
1400 {
1401 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1402 struct bfq_entity *first_idle = st->first_idle;
1403 struct bfq_entity *last_idle = st->last_idle;
1404
1405 if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
1406 st->first_idle = entity;
1407 if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
1408 st->last_idle = entity;
1409
1410 bfq_insert(&st->idle, entity);
1411
1412 if (bfqq)
1413 list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
1414 }
1415
1416 /**
1417 * bfq_forget_entity - do not consider entity any longer for scheduling
1418 * @st: the service tree.
1419 * @entity: the entity being removed.
1420 * @is_in_service: true if entity is currently the in-service entity.
1421 *
1422 * Forget everything about @entity. In addition, if entity represents
1423 * a queue, and the latter is not in service, then release the service
1424 * reference to the queue (the one taken through bfq_get_entity). In
1425 * fact, in this case, there is really no more service reference to
1426 * the queue, as the latter is also outside any service tree. If,
1427 * instead, the queue is in service, then __bfq_bfqd_reset_in_service
1428 * will take care of putting the reference when the queue finally
1429 * stops being served.
1430 */
1431 static void bfq_forget_entity(struct bfq_service_tree *st,
1432 struct bfq_entity *entity,
1433 bool is_in_service)
1434 {
1435 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1436
1437 entity->on_st = false;
1438 st->wsum -= entity->weight;
1439 if (bfqq && !is_in_service)
1440 bfq_put_queue(bfqq);
1441 }
1442
1443 /**
1444 * bfq_put_idle_entity - release the idle tree ref of an entity.
1445 * @st: service tree for the entity.
1446 * @entity: the entity being released.
1447 */
1448 static void bfq_put_idle_entity(struct bfq_service_tree *st,
1449 struct bfq_entity *entity)
1450 {
1451 bfq_idle_extract(st, entity);
1452 bfq_forget_entity(st, entity,
1453 entity == entity->sched_data->in_service_entity);
1454 }
1455
1456 /**
1457 * bfq_forget_idle - update the idle tree if necessary.
1458 * @st: the service tree to act upon.
1459 *
1460 * To preserve the global O(log N) complexity we only remove one entry here;
1461 * as the idle tree will not grow indefinitely this can be done safely.
1462 */
1463 static void bfq_forget_idle(struct bfq_service_tree *st)
1464 {
1465 struct bfq_entity *first_idle = st->first_idle;
1466 struct bfq_entity *last_idle = st->last_idle;
1467
1468 if (RB_EMPTY_ROOT(&st->active) && last_idle &&
1469 !bfq_gt(last_idle->finish, st->vtime)) {
1470 /*
1471 * Forget the whole idle tree, increasing the vtime past
1472 * the last finish time of idle entities.
1473 */
1474 st->vtime = last_idle->finish;
1475 }
1476
1477 if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
1478 bfq_put_idle_entity(st, first_idle);
1479 }
1480
1481 static struct bfq_service_tree *
1482 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
1483 struct bfq_entity *entity)
1484 {
1485 struct bfq_service_tree *new_st = old_st;
1486
1487 if (entity->prio_changed) {
1488 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
1489 unsigned short prev_weight, new_weight;
1490 struct bfq_data *bfqd = NULL;
1491 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1492 struct bfq_sched_data *sd;
1493 struct bfq_group *bfqg;
1494 #endif
1495
1496 if (bfqq)
1497 bfqd = bfqq->bfqd;
1498 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1499 else {
1500 sd = entity->my_sched_data;
1501 bfqg = container_of(sd, struct bfq_group, sched_data);
1502 bfqd = (struct bfq_data *)bfqg->bfqd;
1503 }
1504 #endif
1505
1506 old_st->wsum -= entity->weight;
1507
1508 if (entity->new_weight != entity->orig_weight) {
1509 if (entity->new_weight < BFQ_MIN_WEIGHT ||
1510 entity->new_weight > BFQ_MAX_WEIGHT) {
1511 pr_crit("update_weight_prio: new_weight %d\n",
1512 entity->new_weight);
1513 if (entity->new_weight < BFQ_MIN_WEIGHT)
1514 entity->new_weight = BFQ_MIN_WEIGHT;
1515 else
1516 entity->new_weight = BFQ_MAX_WEIGHT;
1517 }
1518 entity->orig_weight = entity->new_weight;
1519 if (bfqq)
1520 bfqq->ioprio =
1521 bfq_weight_to_ioprio(entity->orig_weight);
1522 }
1523
1524 if (bfqq)
1525 bfqq->ioprio_class = bfqq->new_ioprio_class;
1526 entity->prio_changed = 0;
1527
1528 /*
1529 * NOTE: here we may be changing the weight too early,
1530 * this will cause unfairness. The correct approach
1531 * would have required additional complexity to defer
1532 * weight changes to the proper time instants (i.e.,
1533 * when entity->finish <= old_st->vtime).
1534 */
1535 new_st = bfq_entity_service_tree(entity);
1536
1537 prev_weight = entity->weight;
1538 new_weight = entity->orig_weight;
1539 entity->weight = new_weight;
1540
1541 new_st->wsum += entity->weight;
1542
1543 if (new_st != old_st)
1544 entity->start = new_st->vtime;
1545 }
1546
1547 return new_st;
1548 }
1549
1550 static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
1551 static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
1552
1553 /**
1554 * bfq_bfqq_served - update the scheduler status after selection for
1555 * service.
1556 * @bfqq: the queue being served.
1557 * @served: bytes to transfer.
1558 *
1559 * NOTE: this can be optimized, as the timestamps of upper level entities
1560 * are synchronized every time a new bfqq is selected for service. By now,
1561 * we keep it to better check consistency.
1562 */
1563 static void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
1564 {
1565 struct bfq_entity *entity = &bfqq->entity;
1566 struct bfq_service_tree *st;
1567
1568 for_each_entity(entity) {
1569 st = bfq_entity_service_tree(entity);
1570
1571 entity->service += served;
1572
1573 st->vtime += bfq_delta(served, st->wsum);
1574 bfq_forget_idle(st);
1575 }
1576 bfqg_stats_set_start_empty_time(bfqq_group(bfqq));
1577 bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
1578 }
1579
1580 /**
1581 * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
1582 * of the time interval during which bfqq has been in
1583 * service.
1584 * @bfqd: the device
1585 * @bfqq: the queue that needs a service update.
1586 * @time_ms: the amount of time during which the queue has received service
1587 *
1588 * If a queue does not consume its budget fast enough, then providing
1589 * the queue with service fairness may impair throughput, more or less
1590 * severely. For this reason, queues that consume their budget slowly
1591 * are provided with time fairness instead of service fairness. This
1592 * goal is achieved through the BFQ scheduling engine, even if such an
1593 * engine works in the service, and not in the time domain. The trick
1594 * is charging these queues with an inflated amount of service, equal
1595 * to the amount of service that they would have received during their
1596 * service slot if they had been fast, i.e., if their requests had
1597 * been dispatched at a rate equal to the estimated peak rate.
1598 *
1599 * It is worth noting that time fairness can cause important
1600 * distortions in terms of bandwidth distribution, on devices with
1601 * internal queueing. The reason is that I/O requests dispatched
1602 * during the service slot of a queue may be served after that service
1603 * slot is finished, and may have a total processing time loosely
1604 * correlated with the duration of the service slot. This is
1605 * especially true for short service slots.
1606 */
1607 static void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1608 unsigned long time_ms)
1609 {
1610 struct bfq_entity *entity = &bfqq->entity;
1611 int tot_serv_to_charge = entity->service;
1612 unsigned int timeout_ms = jiffies_to_msecs(bfq_timeout);
1613
1614 if (time_ms > 0 && time_ms < timeout_ms)
1615 tot_serv_to_charge =
1616 (bfqd->bfq_max_budget * time_ms) / timeout_ms;
1617
1618 if (tot_serv_to_charge < entity->service)
1619 tot_serv_to_charge = entity->service;
1620
1621 /* Increase budget to avoid inconsistencies */
1622 if (tot_serv_to_charge > entity->budget)
1623 entity->budget = tot_serv_to_charge;
1624
1625 bfq_bfqq_served(bfqq,
1626 max_t(int, 0, tot_serv_to_charge - entity->service));
1627 }
1628
1629 static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
1630 struct bfq_service_tree *st,
1631 bool backshifted)
1632 {
1633 st = __bfq_entity_update_weight_prio(st, entity);
1634 bfq_calc_finish(entity, entity->budget);
1635
1636 /*
1637 * If some queues enjoy backshifting for a while, then their
1638 * (virtual) finish timestamps may happen to become lower and
1639 * lower than the system virtual time. In particular, if
1640 * these queues often happen to be idle for short time
1641 * periods, and during such time periods other queues with
1642 * higher timestamps happen to be busy, then the backshifted
1643 * timestamps of the former queues can become much lower than
1644 * the system virtual time. In fact, to serve the queues with
1645 * higher timestamps while the ones with lower timestamps are
1646 * idle, the system virtual time may be pushed-up to much
1647 * higher values than the finish timestamps of the idle
1648 * queues. As a consequence, the finish timestamps of all new
1649 * or newly activated queues may end up being much larger than
1650 * those of lucky queues with backshifted timestamps. The
1651 * latter queues may then monopolize the device for a lot of
1652 * time. This would simply break service guarantees.
1653 *
1654 * To reduce this problem, push up a little bit the
1655 * backshifted timestamps of the queue associated with this
1656 * entity (only a queue can happen to have the backshifted
1657 * flag set): just enough to let the finish timestamp of the
1658 * queue be equal to the current value of the system virtual
1659 * time. This may introduce a little unfairness among queues
1660 * with backshifted timestamps, but it does not break
1661 * worst-case fairness guarantees.
1662 */
1663 if (backshifted && bfq_gt(st->vtime, entity->finish)) {
1664 unsigned long delta = st->vtime - entity->finish;
1665
1666 entity->start += delta;
1667 entity->finish += delta;
1668 }
1669
1670 bfq_active_insert(st, entity);
1671 }
1672
1673 /**
1674 * __bfq_activate_entity - handle activation of entity.
1675 * @entity: the entity being activated.
1676 * @non_blocking_wait_rq: true if entity was waiting for a request
1677 *
1678 * Called for a 'true' activation, i.e., if entity is not active and
1679 * one of its children receives a new request.
1680 *
1681 * Basically, this function updates the timestamps of entity and
1682 * inserts entity into its active tree, ater possible extracting it
1683 * from its idle tree.
1684 */
1685 static void __bfq_activate_entity(struct bfq_entity *entity,
1686 bool non_blocking_wait_rq)
1687 {
1688 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1689 bool backshifted = false;
1690 unsigned long long min_vstart;
1691
1692 /* See comments on bfq_fqq_update_budg_for_activation */
1693 if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
1694 backshifted = true;
1695 min_vstart = entity->finish;
1696 } else
1697 min_vstart = st->vtime;
1698
1699 if (entity->tree == &st->idle) {
1700 /*
1701 * Must be on the idle tree, bfq_idle_extract() will
1702 * check for that.
1703 */
1704 bfq_idle_extract(st, entity);
1705 entity->start = bfq_gt(min_vstart, entity->finish) ?
1706 min_vstart : entity->finish;
1707 } else {
1708 /*
1709 * The finish time of the entity may be invalid, and
1710 * it is in the past for sure, otherwise the queue
1711 * would have been on the idle tree.
1712 */
1713 entity->start = min_vstart;
1714 st->wsum += entity->weight;
1715 /*
1716 * entity is about to be inserted into a service tree,
1717 * and then set in service: get a reference to make
1718 * sure entity does not disappear until it is no
1719 * longer in service or scheduled for service.
1720 */
1721 bfq_get_entity(entity);
1722
1723 entity->on_st = true;
1724 }
1725
1726 bfq_update_fin_time_enqueue(entity, st, backshifted);
1727 }
1728
1729 /**
1730 * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
1731 * @entity: the entity being requeued or repositioned.
1732 *
1733 * Requeueing is needed if this entity stops being served, which
1734 * happens if a leaf descendant entity has expired. On the other hand,
1735 * repositioning is needed if the next_inservice_entity for the child
1736 * entity has changed. See the comments inside the function for
1737 * details.
1738 *
1739 * Basically, this function: 1) removes entity from its active tree if
1740 * present there, 2) updates the timestamps of entity and 3) inserts
1741 * entity back into its active tree (in the new, right position for
1742 * the new values of the timestamps).
1743 */
1744 static void __bfq_requeue_entity(struct bfq_entity *entity)
1745 {
1746 struct bfq_sched_data *sd = entity->sched_data;
1747 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1748
1749 if (entity == sd->in_service_entity) {
1750 /*
1751 * We are requeueing the current in-service entity,
1752 * which may have to be done for one of the following
1753 * reasons:
1754 * - entity represents the in-service queue, and the
1755 * in-service queue is being requeued after an
1756 * expiration;
1757 * - entity represents a group, and its budget has
1758 * changed because one of its child entities has
1759 * just been either activated or requeued for some
1760 * reason; the timestamps of the entity need then to
1761 * be updated, and the entity needs to be enqueued
1762 * or repositioned accordingly.
1763 *
1764 * In particular, before requeueing, the start time of
1765 * the entity must be moved forward to account for the
1766 * service that the entity has received while in
1767 * service. This is done by the next instructions. The
1768 * finish time will then be updated according to this
1769 * new value of the start time, and to the budget of
1770 * the entity.
1771 */
1772 bfq_calc_finish(entity, entity->service);
1773 entity->start = entity->finish;
1774 /*
1775 * In addition, if the entity had more than one child
1776 * when set in service, then was not extracted from
1777 * the active tree. This implies that the position of
1778 * the entity in the active tree may need to be
1779 * changed now, because we have just updated the start
1780 * time of the entity, and we will update its finish
1781 * time in a moment (the requeueing is then, more
1782 * precisely, a repositioning in this case). To
1783 * implement this repositioning, we: 1) dequeue the
1784 * entity here, 2) update the finish time and
1785 * requeue the entity according to the new
1786 * timestamps below.
1787 */
1788 if (entity->tree)
1789 bfq_active_extract(st, entity);
1790 } else { /* The entity is already active, and not in service */
1791 /*
1792 * In this case, this function gets called only if the
1793 * next_in_service entity below this entity has
1794 * changed, and this change has caused the budget of
1795 * this entity to change, which, finally implies that
1796 * the finish time of this entity must be
1797 * updated. Such an update may cause the scheduling,
1798 * i.e., the position in the active tree, of this
1799 * entity to change. We handle this change by: 1)
1800 * dequeueing the entity here, 2) updating the finish
1801 * time and requeueing the entity according to the new
1802 * timestamps below. This is the same approach as the
1803 * non-extracted-entity sub-case above.
1804 */
1805 bfq_active_extract(st, entity);
1806 }
1807
1808 bfq_update_fin_time_enqueue(entity, st, false);
1809 }
1810
1811 static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
1812 struct bfq_sched_data *sd,
1813 bool non_blocking_wait_rq)
1814 {
1815 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1816
1817 if (sd->in_service_entity == entity || entity->tree == &st->active)
1818 /*
1819 * in service or already queued on the active tree,
1820 * requeue or reposition
1821 */
1822 __bfq_requeue_entity(entity);
1823 else
1824 /*
1825 * Not in service and not queued on its active tree:
1826 * the activity is idle and this is a true activation.
1827 */
1828 __bfq_activate_entity(entity, non_blocking_wait_rq);
1829 }
1830
1831
1832 /**
1833 * bfq_activate_entity - activate or requeue an entity representing a bfq_queue,
1834 * and activate, requeue or reposition all ancestors
1835 * for which such an update becomes necessary.
1836 * @entity: the entity to activate.
1837 * @non_blocking_wait_rq: true if this entity was waiting for a request
1838 * @requeue: true if this is a requeue, which implies that bfqq is
1839 * being expired; thus ALL its ancestors stop being served and must
1840 * therefore be requeued
1841 */
1842 static void bfq_activate_requeue_entity(struct bfq_entity *entity,
1843 bool non_blocking_wait_rq,
1844 bool requeue)
1845 {
1846 struct bfq_sched_data *sd;
1847
1848 for_each_entity(entity) {
1849 sd = entity->sched_data;
1850 __bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
1851
1852 if (!bfq_update_next_in_service(sd, entity) && !requeue)
1853 break;
1854 }
1855 }
1856
1857 /**
1858 * __bfq_deactivate_entity - deactivate an entity from its service tree.
1859 * @entity: the entity to deactivate.
1860 * @ins_into_idle_tree: if false, the entity will not be put into the
1861 * idle tree.
1862 *
1863 * Deactivates an entity, independently from its previous state. Must
1864 * be invoked only if entity is on a service tree. Extracts the entity
1865 * from that tree, and if necessary and allowed, puts it on the idle
1866 * tree.
1867 */
1868 static bool __bfq_deactivate_entity(struct bfq_entity *entity,
1869 bool ins_into_idle_tree)
1870 {
1871 struct bfq_sched_data *sd = entity->sched_data;
1872 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1873 int is_in_service = entity == sd->in_service_entity;
1874
1875 if (!entity->on_st) /* entity never activated, or already inactive */
1876 return false;
1877
1878 if (is_in_service)
1879 bfq_calc_finish(entity, entity->service);
1880
1881 if (entity->tree == &st->active)
1882 bfq_active_extract(st, entity);
1883 else if (!is_in_service && entity->tree == &st->idle)
1884 bfq_idle_extract(st, entity);
1885
1886 if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
1887 bfq_forget_entity(st, entity, is_in_service);
1888 else
1889 bfq_idle_insert(st, entity);
1890
1891 return true;
1892 }
1893
1894 /**
1895 * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
1896 * @entity: the entity to deactivate.
1897 * @ins_into_idle_tree: true if the entity can be put on the idle tree
1898 */
1899 static void bfq_deactivate_entity(struct bfq_entity *entity,
1900 bool ins_into_idle_tree,
1901 bool expiration)
1902 {
1903 struct bfq_sched_data *sd;
1904 struct bfq_entity *parent = NULL;
1905
1906 for_each_entity_safe(entity, parent) {
1907 sd = entity->sched_data;
1908
1909 if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
1910 /*
1911 * entity is not in any tree any more, so
1912 * this deactivation is a no-op, and there is
1913 * nothing to change for upper-level entities
1914 * (in case of expiration, this can never
1915 * happen).
1916 */
1917 return;
1918 }
1919
1920 if (sd->next_in_service == entity)
1921 /*
1922 * entity was the next_in_service entity,
1923 * then, since entity has just been
1924 * deactivated, a new one must be found.
1925 */
1926 bfq_update_next_in_service(sd, NULL);
1927
1928 if (sd->next_in_service)
1929 /*
1930 * The parent entity is still backlogged,
1931 * because next_in_service is not NULL. So, no
1932 * further upwards deactivation must be
1933 * performed. Yet, next_in_service has
1934 * changed. Then the schedule does need to be
1935 * updated upwards.
1936 */
1937 break;
1938
1939 /*
1940 * If we get here, then the parent is no more
1941 * backlogged and we need to propagate the
1942 * deactivation upwards. Thus let the loop go on.
1943 */
1944
1945 /*
1946 * Also let parent be queued into the idle tree on
1947 * deactivation, to preserve service guarantees, and
1948 * assuming that who invoked this function does not
1949 * need parent entities too to be removed completely.
1950 */
1951 ins_into_idle_tree = true;
1952 }
1953
1954 /*
1955 * If the deactivation loop is fully executed, then there are
1956 * no more entities to touch and next loop is not executed at
1957 * all. Otherwise, requeue remaining entities if they are
1958 * about to stop receiving service, or reposition them if this
1959 * is not the case.
1960 */
1961 entity = parent;
1962 for_each_entity(entity) {
1963 /*
1964 * Invoke __bfq_requeue_entity on entity, even if
1965 * already active, to requeue/reposition it in the
1966 * active tree (because sd->next_in_service has
1967 * changed)
1968 */
1969 __bfq_requeue_entity(entity);
1970
1971 sd = entity->sched_data;
1972 if (!bfq_update_next_in_service(sd, entity) &&
1973 !expiration)
1974 /*
1975 * next_in_service unchanged or not causing
1976 * any change in entity->parent->sd, and no
1977 * requeueing needed for expiration: stop
1978 * here.
1979 */
1980 break;
1981 }
1982 }
1983
1984 /**
1985 * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
1986 * if needed, to have at least one entity eligible.
1987 * @st: the service tree to act upon.
1988 *
1989 * Assumes that st is not empty.
1990 */
1991 static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
1992 {
1993 struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
1994
1995 if (bfq_gt(root_entity->min_start, st->vtime))
1996 return root_entity->min_start;
1997
1998 return st->vtime;
1999 }
2000
2001 static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
2002 {
2003 if (new_value > st->vtime) {
2004 st->vtime = new_value;
2005 bfq_forget_idle(st);
2006 }
2007 }
2008
2009 /**
2010 * bfq_first_active_entity - find the eligible entity with
2011 * the smallest finish time
2012 * @st: the service tree to select from.
2013 * @vtime: the system virtual to use as a reference for eligibility
2014 *
2015 * This function searches the first schedulable entity, starting from the
2016 * root of the tree and going on the left every time on this side there is
2017 * a subtree with at least one eligible (start >= vtime) entity. The path on
2018 * the right is followed only if a) the left subtree contains no eligible
2019 * entities and b) no eligible entity has been found yet.
2020 */
2021 static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
2022 u64 vtime)
2023 {
2024 struct bfq_entity *entry, *first = NULL;
2025 struct rb_node *node = st->active.rb_node;
2026
2027 while (node) {
2028 entry = rb_entry(node, struct bfq_entity, rb_node);
2029 left:
2030 if (!bfq_gt(entry->start, vtime))
2031 first = entry;
2032
2033 if (node->rb_left) {
2034 entry = rb_entry(node->rb_left,
2035 struct bfq_entity, rb_node);
2036 if (!bfq_gt(entry->min_start, vtime)) {
2037 node = node->rb_left;
2038 goto left;
2039 }
2040 }
2041 if (first)
2042 break;
2043 node = node->rb_right;
2044 }
2045
2046 return first;
2047 }
2048
2049 /**
2050 * __bfq_lookup_next_entity - return the first eligible entity in @st.
2051 * @st: the service tree.
2052 *
2053 * If there is no in-service entity for the sched_data st belongs to,
2054 * then return the entity that will be set in service if:
2055 * 1) the parent entity this st belongs to is set in service;
2056 * 2) no entity belonging to such parent entity undergoes a state change
2057 * that would influence the timestamps of the entity (e.g., becomes idle,
2058 * becomes backlogged, changes its budget, ...).
2059 *
2060 * In this first case, update the virtual time in @st too (see the
2061 * comments on this update inside the function).
2062 *
2063 * In constrast, if there is an in-service entity, then return the
2064 * entity that would be set in service if not only the above
2065 * conditions, but also the next one held true: the currently
2066 * in-service entity, on expiration,
2067 * 1) gets a finish time equal to the current one, or
2068 * 2) is not eligible any more, or
2069 * 3) is idle.
2070 */
2071 static struct bfq_entity *
2072 __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
2073 {
2074 struct bfq_entity *entity;
2075 u64 new_vtime;
2076
2077 if (RB_EMPTY_ROOT(&st->active))
2078 return NULL;
2079
2080 /*
2081 * Get the value of the system virtual time for which at
2082 * least one entity is eligible.
2083 */
2084 new_vtime = bfq_calc_vtime_jump(st);
2085
2086 /*
2087 * If there is no in-service entity for the sched_data this
2088 * active tree belongs to, then push the system virtual time
2089 * up to the value that guarantees that at least one entity is
2090 * eligible. If, instead, there is an in-service entity, then
2091 * do not make any such update, because there is already an
2092 * eligible entity, namely the in-service one (even if the
2093 * entity is not on st, because it was extracted when set in
2094 * service).
2095 */
2096 if (!in_service)
2097 bfq_update_vtime(st, new_vtime);
2098
2099 entity = bfq_first_active_entity(st, new_vtime);
2100
2101 return entity;
2102 }
2103
2104 /**
2105 * bfq_lookup_next_entity - return the first eligible entity in @sd.
2106 * @sd: the sched_data.
2107 *
2108 * This function is invoked when there has been a change in the trees
2109 * for sd, and we need know what is the new next entity after this
2110 * change.
2111 */
2112 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd)
2113 {
2114 struct bfq_service_tree *st = sd->service_tree;
2115 struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
2116 struct bfq_entity *entity = NULL;
2117 int class_idx = 0;
2118
2119 /*
2120 * Choose from idle class, if needed to guarantee a minimum
2121 * bandwidth to this class (and if there is some active entity
2122 * in idle class). This should also mitigate
2123 * priority-inversion problems in case a low priority task is
2124 * holding file system resources.
2125 */
2126 if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
2127 BFQ_CL_IDLE_TIMEOUT)) {
2128 if (!RB_EMPTY_ROOT(&idle_class_st->active))
2129 class_idx = BFQ_IOPRIO_CLASSES - 1;
2130 /* About to be served if backlogged, or not yet backlogged */
2131 sd->bfq_class_idle_last_service = jiffies;
2132 }
2133
2134 /*
2135 * Find the next entity to serve for the highest-priority
2136 * class, unless the idle class needs to be served.
2137 */
2138 for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
2139 entity = __bfq_lookup_next_entity(st + class_idx,
2140 sd->in_service_entity);
2141
2142 if (entity)
2143 break;
2144 }
2145
2146 if (!entity)
2147 return NULL;
2148
2149 return entity;
2150 }
2151
2152 static bool next_queue_may_preempt(struct bfq_data *bfqd)
2153 {
2154 struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
2155
2156 return sd->next_in_service != sd->in_service_entity;
2157 }
2158
2159 /*
2160 * Get next queue for service.
2161 */
2162 static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
2163 {
2164 struct bfq_entity *entity = NULL;
2165 struct bfq_sched_data *sd;
2166 struct bfq_queue *bfqq;
2167
2168 if (bfqd->busy_queues == 0)
2169 return NULL;
2170
2171 /*
2172 * Traverse the path from the root to the leaf entity to
2173 * serve. Set in service all the entities visited along the
2174 * way.
2175 */
2176 sd = &bfqd->root_group->sched_data;
2177 for (; sd ; sd = entity->my_sched_data) {
2178 /*
2179 * WARNING. We are about to set the in-service entity
2180 * to sd->next_in_service, i.e., to the (cached) value
2181 * returned by bfq_lookup_next_entity(sd) the last
2182 * time it was invoked, i.e., the last time when the
2183 * service order in sd changed as a consequence of the
2184 * activation or deactivation of an entity. In this
2185 * respect, if we execute bfq_lookup_next_entity(sd)
2186 * in this very moment, it may, although with low
2187 * probability, yield a different entity than that
2188 * pointed to by sd->next_in_service. This rare event
2189 * happens in case there was no CLASS_IDLE entity to
2190 * serve for sd when bfq_lookup_next_entity(sd) was
2191 * invoked for the last time, while there is now one
2192 * such entity.
2193 *
2194 * If the above event happens, then the scheduling of
2195 * such entity in CLASS_IDLE is postponed until the
2196 * service of the sd->next_in_service entity
2197 * finishes. In fact, when the latter is expired,
2198 * bfq_lookup_next_entity(sd) gets called again,
2199 * exactly to update sd->next_in_service.
2200 */
2201
2202 /* Make next_in_service entity become in_service_entity */
2203 entity = sd->next_in_service;
2204 sd->in_service_entity = entity;
2205
2206 /*
2207 * Reset the accumulator of the amount of service that
2208 * the entity is about to receive.
2209 */
2210 entity->service = 0;
2211
2212 /*
2213 * If entity is no longer a candidate for next
2214 * service, then we extract it from its active tree,
2215 * for the following reason. To further boost the
2216 * throughput in some special case, BFQ needs to know
2217 * which is the next candidate entity to serve, while
2218 * there is already an entity in service. In this
2219 * respect, to make it easy to compute/update the next
2220 * candidate entity to serve after the current
2221 * candidate has been set in service, there is a case
2222 * where it is necessary to extract the current
2223 * candidate from its service tree. Such a case is
2224 * when the entity just set in service cannot be also
2225 * a candidate for next service. Details about when
2226 * this conditions holds are reported in the comments
2227 * on the function bfq_no_longer_next_in_service()
2228 * invoked below.
2229 */
2230 if (bfq_no_longer_next_in_service(entity))
2231 bfq_active_extract(bfq_entity_service_tree(entity),
2232 entity);
2233
2234 /*
2235 * For the same reason why we may have just extracted
2236 * entity from its active tree, we may need to update
2237 * next_in_service for the sched_data of entity too,
2238 * regardless of whether entity has been extracted.
2239 * In fact, even if entity has not been extracted, a
2240 * descendant entity may get extracted. Such an event
2241 * would cause a change in next_in_service for the
2242 * level of the descendant entity, and thus possibly
2243 * back to upper levels.
2244 *
2245 * We cannot perform the resulting needed update
2246 * before the end of this loop, because, to know which
2247 * is the correct next-to-serve candidate entity for
2248 * each level, we need first to find the leaf entity
2249 * to set in service. In fact, only after we know
2250 * which is the next-to-serve leaf entity, we can
2251 * discover whether the parent entity of the leaf
2252 * entity becomes the next-to-serve, and so on.
2253 */
2254
2255 }
2256
2257 bfqq = bfq_entity_to_bfqq(entity);
2258
2259 /*
2260 * We can finally update all next-to-serve entities along the
2261 * path from the leaf entity just set in service to the root.
2262 */
2263 for_each_entity(entity) {
2264 struct bfq_sched_data *sd = entity->sched_data;
2265
2266 if (!bfq_update_next_in_service(sd, NULL))
2267 break;
2268 }
2269
2270 return bfqq;
2271 }
2272
2273 static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
2274 {
2275 struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
2276 struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
2277 struct bfq_entity *entity = in_serv_entity;
2278
2279 if (bfqd->in_service_bic) {
2280 put_io_context(bfqd->in_service_bic->icq.ioc);
2281 bfqd->in_service_bic = NULL;
2282 }
2283
2284 bfq_clear_bfqq_wait_request(in_serv_bfqq);
2285 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
2286 bfqd->in_service_queue = NULL;
2287
2288 /*
2289 * When this function is called, all in-service entities have
2290 * been properly deactivated or requeued, so we can safely
2291 * execute the final step: reset in_service_entity along the
2292 * path from entity to the root.
2293 */
2294 for_each_entity(entity)
2295 entity->sched_data->in_service_entity = NULL;
2296
2297 /*
2298 * in_serv_entity is no longer in service, so, if it is in no
2299 * service tree either, then release the service reference to
2300 * the queue it represents (taken with bfq_get_entity).
2301 */
2302 if (!in_serv_entity->on_st)
2303 bfq_put_queue(in_serv_bfqq);
2304 }
2305
2306 static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2307 bool ins_into_idle_tree, bool expiration)
2308 {
2309 struct bfq_entity *entity = &bfqq->entity;
2310
2311 bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
2312 }
2313
2314 static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2315 {
2316 struct bfq_entity *entity = &bfqq->entity;
2317
2318 bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
2319 false);
2320 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
2321 }
2322
2323 static void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2324 {
2325 struct bfq_entity *entity = &bfqq->entity;
2326
2327 bfq_activate_requeue_entity(entity, false,
2328 bfqq == bfqd->in_service_queue);
2329 }
2330
2331 static void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
2332
2333 /*
2334 * Called when the bfqq no longer has requests pending, remove it from
2335 * the service tree. As a special case, it can be invoked during an
2336 * expiration.
2337 */
2338 static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2339 bool expiration)
2340 {
2341 bfq_log_bfqq(bfqd, bfqq, "del from busy");
2342
2343 bfq_clear_bfqq_busy(bfqq);
2344
2345 bfqd->busy_queues--;
2346
2347 bfqg_stats_update_dequeue(bfqq_group(bfqq));
2348
2349 bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
2350 }
2351
2352 /*
2353 * Called when an inactive queue receives a new request.
2354 */
2355 static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2356 {
2357 bfq_log_bfqq(bfqd, bfqq, "add to busy");
2358
2359 bfq_activate_bfqq(bfqd, bfqq);
2360
2361 bfq_mark_bfqq_busy(bfqq);
2362 bfqd->busy_queues++;
2363 }
2364
2365 #ifdef CONFIG_BFQ_GROUP_IOSCHED
2366
2367 /* bfqg stats flags */
2368 enum bfqg_stats_flags {
2369 BFQG_stats_waiting = 0,
2370 BFQG_stats_idling,
2371 BFQG_stats_empty,
2372 };
2373
2374 #define BFQG_FLAG_FNS(name) \
2375 static void bfqg_stats_mark_##name(struct bfqg_stats *stats) \
2376 { \
2377 stats->flags |= (1 << BFQG_stats_##name); \
2378 } \
2379 static void bfqg_stats_clear_##name(struct bfqg_stats *stats) \
2380 { \
2381 stats->flags &= ~(1 << BFQG_stats_##name); \
2382 } \
2383 static int bfqg_stats_##name(struct bfqg_stats *stats) \
2384 { \
2385 return (stats->flags & (1 << BFQG_stats_##name)) != 0; \
2386 } \
2387
2388 BFQG_FLAG_FNS(waiting)
2389 BFQG_FLAG_FNS(idling)
2390 BFQG_FLAG_FNS(empty)
2391 #undef BFQG_FLAG_FNS
2392
2393 /* This should be called with the queue_lock held. */
2394 static void bfqg_stats_update_group_wait_time(struct bfqg_stats *stats)
2395 {
2396 unsigned long long now;
2397
2398 if (!bfqg_stats_waiting(stats))
2399 return;
2400
2401 now = sched_clock();
2402 if (time_after64(now, stats->start_group_wait_time))
2403 blkg_stat_add(&stats->group_wait_time,
2404 now - stats->start_group_wait_time);
2405 bfqg_stats_clear_waiting(stats);
2406 }
2407
2408 /* This should be called with the queue_lock held. */
2409 static void bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
2410 struct bfq_group *curr_bfqg)
2411 {
2412 struct bfqg_stats *stats = &bfqg->stats;
2413
2414 if (bfqg_stats_waiting(stats))
2415 return;
2416 if (bfqg == curr_bfqg)
2417 return;
2418 stats->start_group_wait_time = sched_clock();
2419 bfqg_stats_mark_waiting(stats);
2420 }
2421
2422 /* This should be called with the queue_lock held. */
2423 static void bfqg_stats_end_empty_time(struct bfqg_stats *stats)
2424 {
2425 unsigned long long now;
2426
2427 if (!bfqg_stats_empty(stats))
2428 return;
2429
2430 now = sched_clock();
2431 if (time_after64(now, stats->start_empty_time))
2432 blkg_stat_add(&stats->empty_time,
2433 now - stats->start_empty_time);
2434 bfqg_stats_clear_empty(stats);
2435 }
2436
2437 static void bfqg_stats_update_dequeue(struct bfq_group *bfqg)
2438 {
2439 blkg_stat_add(&bfqg->stats.dequeue, 1);
2440 }
2441
2442 static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg)
2443 {
2444 struct bfqg_stats *stats = &bfqg->stats;
2445
2446 if (blkg_rwstat_total(&stats->queued))
2447 return;
2448
2449 /*
2450 * group is already marked empty. This can happen if bfqq got new
2451 * request in parent group and moved to this group while being added
2452 * to service tree. Just ignore the event and move on.
2453 */
2454 if (bfqg_stats_empty(stats))
2455 return;
2456
2457 stats->start_empty_time = sched_clock();
2458 bfqg_stats_mark_empty(stats);
2459 }
2460
2461 static void bfqg_stats_update_idle_time(struct bfq_group *bfqg)
2462 {
2463 struct bfqg_stats *stats = &bfqg->stats;
2464
2465 if (bfqg_stats_idling(stats)) {
2466 unsigned long long now = sched_clock();
2467
2468 if (time_after64(now, stats->start_idle_time))
2469 blkg_stat_add(&stats->idle_time,
2470 now - stats->start_idle_time);
2471 bfqg_stats_clear_idling(stats);
2472 }
2473 }
2474
2475 static void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg)
2476 {
2477 struct bfqg_stats *stats = &bfqg->stats;
2478
2479 stats->start_idle_time = sched_clock();
2480 bfqg_stats_mark_idling(stats);
2481 }
2482
2483 static void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg)
2484 {
2485 struct bfqg_stats *stats = &bfqg->stats;
2486
2487 blkg_stat_add(&stats->avg_queue_size_sum,
2488 blkg_rwstat_total(&stats->queued));
2489 blkg_stat_add(&stats->avg_queue_size_samples, 1);
2490 bfqg_stats_update_group_wait_time(stats);
2491 }
2492
2493 /*
2494 * blk-cgroup policy-related handlers
2495 * The following functions help in converting between blk-cgroup
2496 * internal structures and BFQ-specific structures.
2497 */
2498
2499 static struct bfq_group *pd_to_bfqg(struct blkg_policy_data *pd)
2500 {
2501 return pd ? container_of(pd, struct bfq_group, pd) : NULL;
2502 }
2503
2504 static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg)
2505 {
2506 return pd_to_blkg(&bfqg->pd);
2507 }
2508
2509 static struct blkcg_policy blkcg_policy_bfq;
2510
2511 static struct bfq_group *blkg_to_bfqg(struct blkcg_gq *blkg)
2512 {
2513 return pd_to_bfqg(blkg_to_pd(blkg, &blkcg_policy_bfq));
2514 }
2515
2516 /*
2517 * bfq_group handlers
2518 * The following functions help in navigating the bfq_group hierarchy
2519 * by allowing to find the parent of a bfq_group or the bfq_group
2520 * associated to a bfq_queue.
2521 */
2522
2523 static struct bfq_group *bfqg_parent(struct bfq_group *bfqg)
2524 {
2525 struct blkcg_gq *pblkg = bfqg_to_blkg(bfqg)->parent;
2526
2527 return pblkg ? blkg_to_bfqg(pblkg) : NULL;
2528 }
2529
2530 static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
2531 {
2532 struct bfq_entity *group_entity = bfqq->entity.parent;
2533
2534 return group_entity ? container_of(group_entity, struct bfq_group,
2535 entity) :
2536 bfqq->bfqd->root_group;
2537 }
2538
2539 /*
2540 * The following two functions handle get and put of a bfq_group by
2541 * wrapping the related blk-cgroup hooks.
2542 */
2543
2544 static void bfqg_get(struct bfq_group *bfqg)
2545 {
2546 return blkg_get(bfqg_to_blkg(bfqg));
2547 }
2548
2549 static void bfqg_put(struct bfq_group *bfqg)
2550 {
2551 return blkg_put(bfqg_to_blkg(bfqg));
2552 }
2553
2554 static void bfqg_stats_update_io_add(struct bfq_group *bfqg,
2555 struct bfq_queue *bfqq,
2556 unsigned int op)
2557 {
2558 blkg_rwstat_add(&bfqg->stats.queued, op, 1);
2559 bfqg_stats_end_empty_time(&bfqg->stats);
2560 if (!(bfqq == ((struct bfq_data *)bfqg->bfqd)->in_service_queue))
2561 bfqg_stats_set_start_group_wait_time(bfqg, bfqq_group(bfqq));
2562 }
2563
2564 static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op)
2565 {
2566 blkg_rwstat_add(&bfqg->stats.queued, op, -1);
2567 }
2568
2569 static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op)
2570 {
2571 blkg_rwstat_add(&bfqg->stats.merged, op, 1);
2572 }
2573
2574 static void bfqg_stats_update_completion(struct bfq_group *bfqg,
2575 uint64_t start_time, uint64_t io_start_time,
2576 unsigned int op)
2577 {
2578 struct bfqg_stats *stats = &bfqg->stats;
2579 unsigned long long now = sched_clock();
2580
2581 if (time_after64(now, io_start_time))
2582 blkg_rwstat_add(&stats->service_time, op,
2583 now - io_start_time);
2584 if (time_after64(io_start_time, start_time))
2585 blkg_rwstat_add(&stats->wait_time, op,
2586 io_start_time - start_time);
2587 }
2588
2589 /* @stats = 0 */
2590 static void bfqg_stats_reset(struct bfqg_stats *stats)
2591 {
2592 /* queued stats shouldn't be cleared */
2593 blkg_rwstat_reset(&stats->merged);
2594 blkg_rwstat_reset(&stats->service_time);
2595 blkg_rwstat_reset(&stats->wait_time);
2596 blkg_stat_reset(&stats->time);
2597 blkg_stat_reset(&stats->avg_queue_size_sum);
2598 blkg_stat_reset(&stats->avg_queue_size_samples);
2599 blkg_stat_reset(&stats->dequeue);
2600 blkg_stat_reset(&stats->group_wait_time);
2601 blkg_stat_reset(&stats->idle_time);
2602 blkg_stat_reset(&stats->empty_time);
2603 }
2604
2605 /* @to += @from */
2606 static void bfqg_stats_add_aux(struct bfqg_stats *to, struct bfqg_stats *from)
2607 {
2608 if (!to || !from)
2609 return;
2610
2611 /* queued stats shouldn't be cleared */
2612 blkg_rwstat_add_aux(&to->merged, &from->merged);
2613 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
2614 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
2615 blkg_stat_add_aux(&from->time, &from->time);
2616 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
2617 blkg_stat_add_aux(&to->avg_queue_size_samples,
2618 &from->avg_queue_size_samples);
2619 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
2620 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
2621 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
2622 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
2623 }
2624
2625 /*
2626 * Transfer @bfqg's stats to its parent's aux counts so that the ancestors'
2627 * recursive stats can still account for the amount used by this bfqg after
2628 * it's gone.
2629 */
2630 static void bfqg_stats_xfer_dead(struct bfq_group *bfqg)
2631 {
2632 struct bfq_group *parent;
2633
2634 if (!bfqg) /* root_group */
2635 return;
2636
2637 parent = bfqg_parent(bfqg);
2638
2639 lockdep_assert_held(bfqg_to_blkg(bfqg)->q->queue_lock);
2640
2641 if (unlikely(!parent))
2642 return;
2643
2644 bfqg_stats_add_aux(&parent->stats, &bfqg->stats);
2645 bfqg_stats_reset(&bfqg->stats);
2646 }
2647
2648 static void bfq_init_entity(struct bfq_entity *entity,
2649 struct bfq_group *bfqg)
2650 {
2651 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
2652
2653 entity->weight = entity->new_weight;
2654 entity->orig_weight = entity->new_weight;
2655 if (bfqq) {
2656 bfqq->ioprio = bfqq->new_ioprio;
2657 bfqq->ioprio_class = bfqq->new_ioprio_class;
2658 bfqg_get(bfqg);
2659 }
2660 entity->parent = bfqg->my_entity; /* NULL for root group */
2661 entity->sched_data = &bfqg->sched_data;
2662 }
2663
2664 static void bfqg_stats_exit(struct bfqg_stats *stats)
2665 {
2666 blkg_rwstat_exit(&stats->merged);
2667 blkg_rwstat_exit(&stats->service_time);
2668 blkg_rwstat_exit(&stats->wait_time);
2669 blkg_rwstat_exit(&stats->queued);
2670 blkg_stat_exit(&stats->time);
2671 blkg_stat_exit(&stats->avg_queue_size_sum);
2672 blkg_stat_exit(&stats->avg_queue_size_samples);
2673 blkg_stat_exit(&stats->dequeue);
2674 blkg_stat_exit(&stats->group_wait_time);
2675 blkg_stat_exit(&stats->idle_time);
2676 blkg_stat_exit(&stats->empty_time);
2677 }
2678
2679 static int bfqg_stats_init(struct bfqg_stats *stats, gfp_t gfp)
2680 {
2681 if (blkg_rwstat_init(&stats->merged, gfp) ||
2682 blkg_rwstat_init(&stats->service_time, gfp) ||
2683 blkg_rwstat_init(&stats->wait_time, gfp) ||
2684 blkg_rwstat_init(&stats->queued, gfp) ||
2685 blkg_stat_init(&stats->time, gfp) ||
2686 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
2687 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
2688 blkg_stat_init(&stats->dequeue, gfp) ||
2689 blkg_stat_init(&stats->group_wait_time, gfp) ||
2690 blkg_stat_init(&stats->idle_time, gfp) ||
2691 blkg_stat_init(&stats->empty_time, gfp)) {
2692 bfqg_stats_exit(stats);
2693 return -ENOMEM;
2694 }
2695
2696 return 0;
2697 }
2698
2699 static struct bfq_group_data *cpd_to_bfqgd(struct blkcg_policy_data *cpd)
2700 {
2701 return cpd ? container_of(cpd, struct bfq_group_data, pd) : NULL;
2702 }
2703
2704 static struct bfq_group_data *blkcg_to_bfqgd(struct blkcg *blkcg)
2705 {
2706 return cpd_to_bfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_bfq));
2707 }
2708
2709 static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp)
2710 {
2711 struct bfq_group_data *bgd;
2712
2713 bgd = kzalloc(sizeof(*bgd), gfp);
2714 if (!bgd)
2715 return NULL;
2716 return &bgd->pd;
2717 }
2718
2719 static void bfq_cpd_init(struct blkcg_policy_data *cpd)
2720 {
2721 struct bfq_group_data *d = cpd_to_bfqgd(cpd);
2722
2723 d->weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
2724 CGROUP_WEIGHT_DFL : BFQ_WEIGHT_LEGACY_DFL;
2725 }
2726
2727 static void bfq_cpd_free(struct blkcg_policy_data *cpd)
2728 {
2729 kfree(cpd_to_bfqgd(cpd));
2730 }
2731
2732 static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node)
2733 {
2734 struct bfq_group *bfqg;
2735
2736 bfqg = kzalloc_node(sizeof(*bfqg), gfp, node);
2737 if (!bfqg)
2738 return NULL;
2739
2740 if (bfqg_stats_init(&bfqg->stats, gfp)) {
2741 kfree(bfqg);
2742 return NULL;
2743 }
2744
2745 return &bfqg->pd;
2746 }
2747
2748 static void bfq_pd_init(struct blkg_policy_data *pd)
2749 {
2750 struct blkcg_gq *blkg = pd_to_blkg(pd);
2751 struct bfq_group *bfqg = blkg_to_bfqg(blkg);
2752 struct bfq_data *bfqd = blkg->q->elevator->elevator_data;
2753 struct bfq_entity *entity = &bfqg->entity;
2754 struct bfq_group_data *d = blkcg_to_bfqgd(blkg->blkcg);
2755
2756 entity->orig_weight = entity->weight = entity->new_weight = d->weight;
2757 entity->my_sched_data = &bfqg->sched_data;
2758 bfqg->my_entity = entity; /*
2759 * the root_group's will be set to NULL
2760 * in bfq_init_queue()
2761 */
2762 bfqg->bfqd = bfqd;
2763 }
2764
2765 static void bfq_pd_free(struct blkg_policy_data *pd)
2766 {
2767 struct bfq_group *bfqg = pd_to_bfqg(pd);
2768
2769 bfqg_stats_exit(&bfqg->stats);
2770 return kfree(bfqg);
2771 }
2772
2773 static void bfq_pd_reset_stats(struct blkg_policy_data *pd)
2774 {
2775 struct bfq_group *bfqg = pd_to_bfqg(pd);
2776
2777 bfqg_stats_reset(&bfqg->stats);
2778 }
2779
2780 static void bfq_group_set_parent(struct bfq_group *bfqg,
2781 struct bfq_group *parent)
2782 {
2783 struct bfq_entity *entity;
2784
2785 entity = &bfqg->entity;
2786 entity->parent = parent->my_entity;
2787 entity->sched_data = &parent->sched_data;
2788 }
2789
2790 static struct bfq_group *bfq_lookup_bfqg(struct bfq_data *bfqd,
2791 struct blkcg *blkcg)
2792 {
2793 struct blkcg_gq *blkg;
2794
2795 blkg = blkg_lookup(blkcg, bfqd->queue);
2796 if (likely(blkg))
2797 return blkg_to_bfqg(blkg);
2798 return NULL;
2799 }
2800
2801 static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
2802 struct blkcg *blkcg)
2803 {
2804 struct bfq_group *bfqg, *parent;
2805 struct bfq_entity *entity;
2806
2807 bfqg = bfq_lookup_bfqg(bfqd, blkcg);
2808
2809 if (unlikely(!bfqg))
2810 return NULL;
2811
2812 /*
2813 * Update chain of bfq_groups as we might be handling a leaf group
2814 * which, along with some of its relatives, has not been hooked yet
2815 * to the private hierarchy of BFQ.
2816 */
2817 entity = &bfqg->entity;
2818 for_each_entity(entity) {
2819 bfqg = container_of(entity, struct bfq_group, entity);
2820 if (bfqg != bfqd->root_group) {
2821 parent = bfqg_parent(bfqg);
2822 if (!parent)
2823 parent = bfqd->root_group;
2824 bfq_group_set_parent(bfqg, parent);
2825 }
2826 }
2827
2828 return bfqg;
2829 }
2830
2831 static void bfq_bfqq_expire(struct bfq_data *bfqd,
2832 struct bfq_queue *bfqq,
2833 bool compensate,
2834 enum bfqq_expiration reason);
2835
2836 /**
2837 * bfq_bfqq_move - migrate @bfqq to @bfqg.
2838 * @bfqd: queue descriptor.
2839 * @bfqq: the queue to move.
2840 * @bfqg: the group to move to.
2841 *
2842 * Move @bfqq to @bfqg, deactivating it from its old group and reactivating
2843 * it on the new one. Avoid putting the entity on the old group idle tree.
2844 *
2845 * Must be called under the queue lock; the cgroup owning @bfqg must
2846 * not disappear (by now this just means that we are called under
2847 * rcu_read_lock()).
2848 */
2849 static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2850 struct bfq_group *bfqg)
2851 {
2852 struct bfq_entity *entity = &bfqq->entity;
2853
2854 /* If bfqq is empty, then bfq_bfqq_expire also invokes
2855 * bfq_del_bfqq_busy, thereby removing bfqq and its entity
2856 * from data structures related to current group. Otherwise we
2857 * need to remove bfqq explicitly with bfq_deactivate_bfqq, as
2858 * we do below.
2859 */
2860 if (bfqq == bfqd->in_service_queue)
2861 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
2862 false, BFQQE_PREEMPTED);
2863
2864 if (bfq_bfqq_busy(bfqq))
2865 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
2866 else if (entity->on_st)
2867 bfq_put_idle_entity(bfq_entity_service_tree(entity), entity);
2868 bfqg_put(bfqq_group(bfqq));
2869
2870 /*
2871 * Here we use a reference to bfqg. We don't need a refcounter
2872 * as the cgroup reference will not be dropped, so that its
2873 * destroy() callback will not be invoked.
2874 */
2875 entity->parent = bfqg->my_entity;
2876 entity->sched_data = &bfqg->sched_data;
2877 bfqg_get(bfqg);
2878
2879 if (bfq_bfqq_busy(bfqq))
2880 bfq_activate_bfqq(bfqd, bfqq);
2881
2882 if (!bfqd->in_service_queue && !bfqd->rq_in_driver)
2883 bfq_schedule_dispatch(bfqd);
2884 }
2885
2886 /**
2887 * __bfq_bic_change_cgroup - move @bic to @cgroup.
2888 * @bfqd: the queue descriptor.
2889 * @bic: the bic to move.
2890 * @blkcg: the blk-cgroup to move to.
2891 *
2892 * Move bic to blkcg, assuming that bfqd->queue is locked; the caller
2893 * has to make sure that the reference to cgroup is valid across the call.
2894 *
2895 * NOTE: an alternative approach might have been to store the current
2896 * cgroup in bfqq and getting a reference to it, reducing the lookup
2897 * time here, at the price of slightly more complex code.
2898 */
2899 static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
2900 struct bfq_io_cq *bic,
2901 struct blkcg *blkcg)
2902 {
2903 struct bfq_queue *async_bfqq = bic_to_bfqq(bic, 0);
2904 struct bfq_queue *sync_bfqq = bic_to_bfqq(bic, 1);
2905 struct bfq_group *bfqg;
2906 struct bfq_entity *entity;
2907
2908 bfqg = bfq_find_set_group(bfqd, blkcg);
2909
2910 if (unlikely(!bfqg))
2911 bfqg = bfqd->root_group;
2912
2913 if (async_bfqq) {
2914 entity = &async_bfqq->entity;
2915
2916 if (entity->sched_data != &bfqg->sched_data) {
2917 bic_set_bfqq(bic, NULL, 0);
2918 bfq_log_bfqq(bfqd, async_bfqq,
2919 "bic_change_group: %p %d",
2920 async_bfqq,
2921 async_bfqq->ref);
2922 bfq_put_queue(async_bfqq);
2923 }
2924 }
2925
2926 if (sync_bfqq) {
2927 entity = &sync_bfqq->entity;
2928 if (entity->sched_data != &bfqg->sched_data)
2929 bfq_bfqq_move(bfqd, sync_bfqq, bfqg);
2930 }
2931
2932 return bfqg;
2933 }
2934
2935 static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio)
2936 {
2937 struct bfq_data *bfqd = bic_to_bfqd(bic);
2938 struct bfq_group *bfqg = NULL;
2939 uint64_t serial_nr;
2940
2941 rcu_read_lock();
2942 serial_nr = bio_blkcg(bio)->css.serial_nr;
2943
2944 /*
2945 * Check whether blkcg has changed. The condition may trigger
2946 * spuriously on a newly created cic but there's no harm.
2947 */
2948 if (unlikely(!bfqd) || likely(bic->blkcg_serial_nr == serial_nr))
2949 goto out;
2950
2951 bfqg = __bfq_bic_change_cgroup(bfqd, bic, bio_blkcg(bio));
2952 bic->blkcg_serial_nr = serial_nr;
2953 out:
2954 rcu_read_unlock();
2955 }
2956
2957 /**
2958 * bfq_flush_idle_tree - deactivate any entity on the idle tree of @st.
2959 * @st: the service tree being flushed.
2960 */
2961 static void bfq_flush_idle_tree(struct bfq_service_tree *st)
2962 {
2963 struct bfq_entity *entity = st->first_idle;
2964
2965 for (; entity ; entity = st->first_idle)
2966 __bfq_deactivate_entity(entity, false);
2967 }
2968
2969 /**
2970 * bfq_reparent_leaf_entity - move leaf entity to the root_group.
2971 * @bfqd: the device data structure with the root group.
2972 * @entity: the entity to move.
2973 */
2974 static void bfq_reparent_leaf_entity(struct bfq_data *bfqd,
2975 struct bfq_entity *entity)
2976 {
2977 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
2978
2979 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
2980 }
2981
2982 /**
2983 * bfq_reparent_active_entities - move to the root group all active
2984 * entities.
2985 * @bfqd: the device data structure with the root group.
2986 * @bfqg: the group to move from.
2987 * @st: the service tree with the entities.
2988 *
2989 * Needs queue_lock to be taken and reference to be valid over the call.
2990 */
2991 static void bfq_reparent_active_entities(struct bfq_data *bfqd,
2992 struct bfq_group *bfqg,
2993 struct bfq_service_tree *st)
2994 {
2995 struct rb_root *active = &st->active;
2996 struct bfq_entity *entity = NULL;
2997
2998 if (!RB_EMPTY_ROOT(&st->active))
2999 entity = bfq_entity_of(rb_first(active));
3000
3001 for (; entity ; entity = bfq_entity_of(rb_first(active)))
3002 bfq_reparent_leaf_entity(bfqd, entity);
3003
3004 if (bfqg->sched_data.in_service_entity)
3005 bfq_reparent_leaf_entity(bfqd,
3006 bfqg->sched_data.in_service_entity);
3007 }
3008
3009 /**
3010 * bfq_pd_offline - deactivate the entity associated with @pd,
3011 * and reparent its children entities.
3012 * @pd: descriptor of the policy going offline.
3013 *
3014 * blkio already grabs the queue_lock for us, so no need to use
3015 * RCU-based magic
3016 */
3017 static void bfq_pd_offline(struct blkg_policy_data *pd)
3018 {
3019 struct bfq_service_tree *st;
3020 struct bfq_group *bfqg = pd_to_bfqg(pd);
3021 struct bfq_data *bfqd = bfqg->bfqd;
3022 struct bfq_entity *entity = bfqg->my_entity;
3023 unsigned long flags;
3024 int i;
3025
3026 if (!entity) /* root group */
3027 return;
3028
3029 spin_lock_irqsave(&bfqd->lock, flags);
3030 /*
3031 * Empty all service_trees belonging to this group before
3032 * deactivating the group itself.
3033 */
3034 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) {
3035 st = bfqg->sched_data.service_tree + i;
3036
3037 /*
3038 * The idle tree may still contain bfq_queues belonging
3039 * to exited task because they never migrated to a different
3040 * cgroup from the one being destroyed now. No one else
3041 * can access them so it's safe to act without any lock.
3042 */
3043 bfq_flush_idle_tree(st);
3044
3045 /*
3046 * It may happen that some queues are still active
3047 * (busy) upon group destruction (if the corresponding
3048 * processes have been forced to terminate). We move
3049 * all the leaf entities corresponding to these queues
3050 * to the root_group.
3051 * Also, it may happen that the group has an entity
3052 * in service, which is disconnected from the active
3053 * tree: it must be moved, too.
3054 * There is no need to put the sync queues, as the
3055 * scheduler has taken no reference.
3056 */
3057 bfq_reparent_active_entities(bfqd, bfqg, st);
3058 }
3059
3060 __bfq_deactivate_entity(entity, false);
3061 bfq_put_async_queues(bfqd, bfqg);
3062
3063 spin_unlock_irqrestore(&bfqd->lock, flags);
3064 /*
3065 * @blkg is going offline and will be ignored by
3066 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
3067 * that they don't get lost. If IOs complete after this point, the
3068 * stats for them will be lost. Oh well...
3069 */
3070 bfqg_stats_xfer_dead(bfqg);
3071 }
3072
3073 static int bfq_io_show_weight(struct seq_file *sf, void *v)
3074 {
3075 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3076 struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
3077 unsigned int val = 0;
3078
3079 if (bfqgd)
3080 val = bfqgd->weight;
3081
3082 seq_printf(sf, "%u\n", val);
3083
3084 return 0;
3085 }
3086
3087 static int bfq_io_set_weight_legacy(struct cgroup_subsys_state *css,
3088 struct cftype *cftype,
3089 u64 val)
3090 {
3091 struct blkcg *blkcg = css_to_blkcg(css);
3092 struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
3093 struct blkcg_gq *blkg;
3094 int ret = -ERANGE;
3095
3096 if (val < BFQ_MIN_WEIGHT || val > BFQ_MAX_WEIGHT)
3097 return ret;
3098
3099 ret = 0;
3100 spin_lock_irq(&blkcg->lock);
3101 bfqgd->weight = (unsigned short)val;
3102 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3103 struct bfq_group *bfqg = blkg_to_bfqg(blkg);
3104
3105 if (!bfqg)
3106 continue;
3107 /*
3108 * Setting the prio_changed flag of the entity
3109 * to 1 with new_weight == weight would re-set
3110 * the value of the weight to its ioprio mapping.
3111 * Set the flag only if necessary.
3112 */
3113 if ((unsigned short)val != bfqg->entity.new_weight) {
3114 bfqg->entity.new_weight = (unsigned short)val;
3115 /*
3116 * Make sure that the above new value has been
3117 * stored in bfqg->entity.new_weight before
3118 * setting the prio_changed flag. In fact,
3119 * this flag may be read asynchronously (in
3120 * critical sections protected by a different
3121 * lock than that held here), and finding this
3122 * flag set may cause the execution of the code
3123 * for updating parameters whose value may
3124 * depend also on bfqg->entity.new_weight (in
3125 * __bfq_entity_update_weight_prio).
3126 * This barrier makes sure that the new value
3127 * of bfqg->entity.new_weight is correctly
3128 * seen in that code.
3129 */
3130 smp_wmb();
3131 bfqg->entity.prio_changed = 1;
3132 }
3133 }
3134 spin_unlock_irq(&blkcg->lock);
3135
3136 return ret;
3137 }
3138
3139 static ssize_t bfq_io_set_weight(struct kernfs_open_file *of,
3140 char *buf, size_t nbytes,
3141 loff_t off)
3142 {
3143 u64 weight;
3144 /* First unsigned long found in the file is used */
3145 int ret = kstrtoull(strim(buf), 0, &weight);
3146
3147 if (ret)
3148 return ret;
3149
3150 return bfq_io_set_weight_legacy(of_css(of), NULL, weight);
3151 }
3152
3153 static int bfqg_print_stat(struct seq_file *sf, void *v)
3154 {
3155 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
3156 &blkcg_policy_bfq, seq_cft(sf)->private, false);
3157 return 0;
3158 }
3159
3160 static int bfqg_print_rwstat(struct seq_file *sf, void *v)
3161 {
3162 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
3163 &blkcg_policy_bfq, seq_cft(sf)->private, true);
3164 return 0;
3165 }
3166
3167 static u64 bfqg_prfill_stat_recursive(struct seq_file *sf,
3168 struct blkg_policy_data *pd, int off)
3169 {
3170 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
3171 &blkcg_policy_bfq, off);
3172 return __blkg_prfill_u64(sf, pd, sum);
3173 }
3174
3175 static u64 bfqg_prfill_rwstat_recursive(struct seq_file *sf,
3176 struct blkg_policy_data *pd, int off)
3177 {
3178 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
3179 &blkcg_policy_bfq,
3180 off);
3181 return __blkg_prfill_rwstat(sf, pd, &sum);
3182 }
3183
3184 static int bfqg_print_stat_recursive(struct seq_file *sf, void *v)
3185 {
3186 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3187 bfqg_prfill_stat_recursive, &blkcg_policy_bfq,
3188 seq_cft(sf)->private, false);
3189 return 0;
3190 }
3191
3192 static int bfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
3193 {
3194 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3195 bfqg_prfill_rwstat_recursive, &blkcg_policy_bfq,
3196 seq_cft(sf)->private, true);
3197 return 0;
3198 }
3199
3200 static u64 bfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
3201 int off)
3202 {
3203 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
3204
3205 return __blkg_prfill_u64(sf, pd, sum >> 9);
3206 }
3207
3208 static int bfqg_print_stat_sectors(struct seq_file *sf, void *v)
3209 {
3210 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3211 bfqg_prfill_sectors, &blkcg_policy_bfq, 0, false);
3212 return 0;
3213 }
3214
3215 static u64 bfqg_prfill_sectors_recursive(struct seq_file *sf,
3216 struct blkg_policy_data *pd, int off)
3217 {
3218 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
3219 offsetof(struct blkcg_gq, stat_bytes));
3220 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
3221 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
3222
3223 return __blkg_prfill_u64(sf, pd, sum >> 9);
3224 }
3225
3226 static int bfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
3227 {
3228 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3229 bfqg_prfill_sectors_recursive, &blkcg_policy_bfq, 0,
3230 false);
3231 return 0;
3232 }
3233
3234 static u64 bfqg_prfill_avg_queue_size(struct seq_file *sf,
3235 struct blkg_policy_data *pd, int off)
3236 {
3237 struct bfq_group *bfqg = pd_to_bfqg(pd);
3238 u64 samples = blkg_stat_read(&bfqg->stats.avg_queue_size_samples);
3239 u64 v = 0;
3240
3241 if (samples) {
3242 v = blkg_stat_read(&bfqg->stats.avg_queue_size_sum);
3243 v = div64_u64(v, samples);
3244 }
3245 __blkg_prfill_u64(sf, pd, v);
3246 return 0;
3247 }
3248
3249 /* print avg_queue_size */
3250 static int bfqg_print_avg_queue_size(struct seq_file *sf, void *v)
3251 {
3252 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
3253 bfqg_prfill_avg_queue_size, &blkcg_policy_bfq,
3254 0, false);
3255 return 0;
3256 }
3257
3258 static struct bfq_group *
3259 bfq_create_group_hierarchy(struct bfq_data *bfqd, int node)
3260 {
3261 int ret;
3262
3263 ret = blkcg_activate_policy(bfqd->queue, &blkcg_policy_bfq);
3264 if (ret)
3265 return NULL;
3266
3267 return blkg_to_bfqg(bfqd->queue->root_blkg);
3268 }
3269
3270 static struct cftype bfq_blkcg_legacy_files[] = {
3271 {
3272 .name = "bfq.weight",
3273 .flags = CFTYPE_NOT_ON_ROOT,
3274 .seq_show = bfq_io_show_weight,
3275 .write_u64 = bfq_io_set_weight_legacy,
3276 },
3277
3278 /* statistics, covers only the tasks in the bfqg */
3279 {
3280 .name = "bfq.time",
3281 .private = offsetof(struct bfq_group, stats.time),
3282 .seq_show = bfqg_print_stat,
3283 },
3284 {
3285 .name = "bfq.sectors",
3286 .seq_show = bfqg_print_stat_sectors,
3287 },
3288 {
3289 .name = "bfq.io_service_bytes",
3290 .private = (unsigned long)&blkcg_policy_bfq,
3291 .seq_show = blkg_print_stat_bytes,
3292 },
3293 {
3294 .name = "bfq.io_serviced",
3295 .private = (unsigned long)&blkcg_policy_bfq,
3296 .seq_show = blkg_print_stat_ios,
3297 },
3298 {
3299 .name = "bfq.io_service_time",
3300 .private = offsetof(struct bfq_group, stats.service_time),
3301 .seq_show = bfqg_print_rwstat,
3302 },
3303 {
3304 .name = "bfq.io_wait_time",
3305 .private = offsetof(struct bfq_group, stats.wait_time),
3306 .seq_show = bfqg_print_rwstat,
3307 },
3308 {
3309 .name = "bfq.io_merged",
3310 .private = offsetof(struct bfq_group, stats.merged),
3311 .seq_show = bfqg_print_rwstat,
3312 },
3313 {
3314 .name = "bfq.io_queued",
3315 .private = offsetof(struct bfq_group, stats.queued),
3316 .seq_show = bfqg_print_rwstat,
3317 },
3318
3319 /* the same statictics which cover the bfqg and its descendants */
3320 {
3321 .name = "bfq.time_recursive",
3322 .private = offsetof(struct bfq_group, stats.time),
3323 .seq_show = bfqg_print_stat_recursive,
3324 },
3325 {
3326 .name = "bfq.sectors_recursive",
3327 .seq_show = bfqg_print_stat_sectors_recursive,
3328 },
3329 {
3330 .name = "bfq.io_service_bytes_recursive",
3331 .private = (unsigned long)&blkcg_policy_bfq,
3332 .seq_show = blkg_print_stat_bytes_recursive,
3333 },
3334 {
3335 .name = "bfq.io_serviced_recursive",
3336 .private = (unsigned long)&blkcg_policy_bfq,
3337 .seq_show = blkg_print_stat_ios_recursive,
3338 },
3339 {
3340 .name = "bfq.io_service_time_recursive",
3341 .private = offsetof(struct bfq_group, stats.service_time),
3342 .seq_show = bfqg_print_rwstat_recursive,
3343 },
3344 {
3345 .name = "bfq.io_wait_time_recursive",
3346 .private = offsetof(struct bfq_group, stats.wait_time),
3347 .seq_show = bfqg_print_rwstat_recursive,
3348 },
3349 {
3350 .name = "bfq.io_merged_recursive",
3351 .private = offsetof(struct bfq_group, stats.merged),
3352 .seq_show = bfqg_print_rwstat_recursive,
3353 },
3354 {
3355 .name = "bfq.io_queued_recursive",
3356 .private = offsetof(struct bfq_group, stats.queued),
3357 .seq_show = bfqg_print_rwstat_recursive,
3358 },
3359 {
3360 .name = "bfq.avg_queue_size",
3361 .seq_show = bfqg_print_avg_queue_size,
3362 },
3363 {
3364 .name = "bfq.group_wait_time",
3365 .private = offsetof(struct bfq_group, stats.group_wait_time),
3366 .seq_show = bfqg_print_stat,
3367 },
3368 {
3369 .name = "bfq.idle_time",
3370 .private = offsetof(struct bfq_group, stats.idle_time),
3371 .seq_show = bfqg_print_stat,
3372 },
3373 {
3374 .name = "bfq.empty_time",
3375 .private = offsetof(struct bfq_group, stats.empty_time),
3376 .seq_show = bfqg_print_stat,
3377 },
3378 {
3379 .name = "bfq.dequeue",
3380 .private = offsetof(struct bfq_group, stats.dequeue),
3381 .seq_show = bfqg_print_stat,
3382 },
3383 { } /* terminate */
3384 };
3385
3386 static struct cftype bfq_blkg_files[] = {
3387 {
3388 .name = "bfq.weight",
3389 .flags = CFTYPE_NOT_ON_ROOT,
3390 .seq_show = bfq_io_show_weight,
3391 .write = bfq_io_set_weight,
3392 },
3393 {} /* terminate */
3394 };
3395
3396 #else /* CONFIG_BFQ_GROUP_IOSCHED */
3397
3398 static inline void bfqg_stats_update_io_add(struct bfq_group *bfqg,
3399 struct bfq_queue *bfqq, unsigned int op) { }
3400 static inline void
3401 bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op) { }
3402 static inline void
3403 bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op) { }
3404 static inline void bfqg_stats_update_completion(struct bfq_group *bfqg,
3405 uint64_t start_time, uint64_t io_start_time,
3406 unsigned int op) { }
3407 static inline void
3408 bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
3409 struct bfq_group *curr_bfqg) { }
3410 static inline void bfqg_stats_end_empty_time(struct bfqg_stats *stats) { }
3411 static inline void bfqg_stats_update_dequeue(struct bfq_group *bfqg) { }
3412 static inline void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) { }
3413 static inline void bfqg_stats_update_idle_time(struct bfq_group *bfqg) { }
3414 static inline void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) { }
3415 static inline void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) { }
3416
3417 static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3418 struct bfq_group *bfqg) {}
3419
3420 static void bfq_init_entity(struct bfq_entity *entity,
3421 struct bfq_group *bfqg)
3422 {
3423 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
3424
3425 entity->weight = entity->new_weight;
3426 entity->orig_weight = entity->new_weight;
3427 if (bfqq) {
3428 bfqq->ioprio = bfqq->new_ioprio;
3429 bfqq->ioprio_class = bfqq->new_ioprio_class;
3430 }
3431 entity->sched_data = &bfqg->sched_data;
3432 }
3433
3434 static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) {}
3435
3436 static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
3437 struct blkcg *blkcg)
3438 {
3439 return bfqd->root_group;
3440 }
3441
3442 static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
3443 {
3444 return bfqq->bfqd->root_group;
3445 }
3446
3447 static struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd,
3448 int node)
3449 {
3450 struct bfq_group *bfqg;
3451 int i;
3452
3453 bfqg = kmalloc_node(sizeof(*bfqg), GFP_KERNEL | __GFP_ZERO, node);
3454 if (!bfqg)
3455 return NULL;
3456
3457 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
3458 bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
3459
3460 return bfqg;
3461 }
3462 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
3463
3464 #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
3465 #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
3466
3467 #define bfq_sample_valid(samples) ((samples) > 80)
3468
3469 /*
3470 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
3471 * We choose the request that is closesr to the head right now. Distance
3472 * behind the head is penalized and only allowed to a certain extent.
3473 */
3474 static struct request *bfq_choose_req(struct bfq_data *bfqd,
3475 struct request *rq1,
3476 struct request *rq2,
3477 sector_t last)
3478 {
3479 sector_t s1, s2, d1 = 0, d2 = 0;
3480 unsigned long back_max;
3481 #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
3482 #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
3483 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
3484
3485 if (!rq1 || rq1 == rq2)
3486 return rq2;
3487 if (!rq2)
3488 return rq1;
3489
3490 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
3491 return rq1;
3492 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
3493 return rq2;
3494 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
3495 return rq1;
3496 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
3497 return rq2;
3498
3499 s1 = blk_rq_pos(rq1);
3500 s2 = blk_rq_pos(rq2);
3501
3502 /*
3503 * By definition, 1KiB is 2 sectors.
3504 */
3505 back_max = bfqd->bfq_back_max * 2;
3506
3507 /*
3508 * Strict one way elevator _except_ in the case where we allow
3509 * short backward seeks which are biased as twice the cost of a
3510 * similar forward seek.
3511 */
3512 if (s1 >= last)
3513 d1 = s1 - last;
3514 else if (s1 + back_max >= last)
3515 d1 = (last - s1) * bfqd->bfq_back_penalty;
3516 else
3517 wrap |= BFQ_RQ1_WRAP;
3518
3519 if (s2 >= last)
3520 d2 = s2 - last;
3521 else if (s2 + back_max >= last)
3522 d2 = (last - s2) * bfqd->bfq_back_penalty;
3523 else
3524 wrap |= BFQ_RQ2_WRAP;
3525
3526 /* Found required data */
3527
3528 /*
3529 * By doing switch() on the bit mask "wrap" we avoid having to
3530 * check two variables for all permutations: --> faster!
3531 */
3532 switch (wrap) {
3533 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
3534 if (d1 < d2)
3535 return rq1;
3536 else if (d2 < d1)
3537 return rq2;
3538
3539 if (s1 >= s2)
3540 return rq1;
3541 else
3542 return rq2;
3543
3544 case BFQ_RQ2_WRAP:
3545 return rq1;
3546 case BFQ_RQ1_WRAP:
3547 return rq2;
3548 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
3549 default:
3550 /*
3551 * Since both rqs are wrapped,
3552 * start with the one that's further behind head
3553 * (--> only *one* back seek required),
3554 * since back seek takes more time than forward.
3555 */
3556 if (s1 <= s2)
3557 return rq1;
3558 else
3559 return rq2;
3560 }
3561 }
3562
3563 /*
3564 * Return expired entry, or NULL to just start from scratch in rbtree.
3565 */
3566 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
3567 struct request *last)
3568 {
3569 struct request *rq;
3570
3571 if (bfq_bfqq_fifo_expire(bfqq))
3572 return NULL;
3573
3574 bfq_mark_bfqq_fifo_expire(bfqq);
3575
3576 rq = rq_entry_fifo(bfqq->fifo.next);
3577
3578 if (rq == last || ktime_get_ns() < rq->fifo_time)
3579 return NULL;
3580
3581 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
3582 return rq;
3583 }
3584
3585 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
3586 struct bfq_queue *bfqq,
3587 struct request *last)
3588 {
3589 struct rb_node *rbnext = rb_next(&last->rb_node);
3590 struct rb_node *rbprev = rb_prev(&last->rb_node);
3591 struct request *next, *prev = NULL;
3592
3593 /* Follow expired path, else get first next available. */
3594 next = bfq_check_fifo(bfqq, last);
3595 if (next)
3596 return next;
3597
3598 if (rbprev)
3599 prev = rb_entry_rq(rbprev);
3600
3601 if (rbnext)
3602 next = rb_entry_rq(rbnext);
3603 else {
3604 rbnext = rb_first(&bfqq->sort_list);
3605 if (rbnext && rbnext != &last->rb_node)
3606 next = rb_entry_rq(rbnext);
3607 }
3608
3609 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
3610 }
3611
3612 /* see the definition of bfq_async_charge_factor for details */
3613 static unsigned long bfq_serv_to_charge(struct request *rq,
3614 struct bfq_queue *bfqq)
3615 {
3616 if (bfq_bfqq_sync(bfqq))
3617 return blk_rq_sectors(rq);
3618
3619 return blk_rq_sectors(rq) * bfq_async_charge_factor;
3620 }
3621
3622 /**
3623 * bfq_updated_next_req - update the queue after a new next_rq selection.
3624 * @bfqd: the device data the queue belongs to.
3625 * @bfqq: the queue to update.
3626 *
3627 * If the first request of a queue changes we make sure that the queue
3628 * has enough budget to serve at least its first request (if the
3629 * request has grown). We do this because if the queue has not enough
3630 * budget for its first request, it has to go through two dispatch
3631 * rounds to actually get it dispatched.
3632 */
3633 static void bfq_updated_next_req(struct bfq_data *bfqd,
3634 struct bfq_queue *bfqq)
3635 {
3636 struct bfq_entity *entity = &bfqq->entity;
3637 struct request *next_rq = bfqq->next_rq;
3638 unsigned long new_budget;
3639
3640 if (!next_rq)
3641 return;
3642
3643 if (bfqq == bfqd->in_service_queue)
3644 /*
3645 * In order not to break guarantees, budgets cannot be
3646 * changed after an entity has been selected.
3647 */
3648 return;
3649
3650 new_budget = max_t(unsigned long, bfqq->max_budget,
3651 bfq_serv_to_charge(next_rq, bfqq));
3652 if (entity->budget != new_budget) {
3653 entity->budget = new_budget;
3654 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
3655 new_budget);
3656 bfq_requeue_bfqq(bfqd, bfqq);
3657 }
3658 }
3659
3660 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
3661 {
3662 struct bfq_entity *entity = &bfqq->entity;
3663
3664 return entity->budget - entity->service;
3665 }
3666
3667 /*
3668 * If enough samples have been computed, return the current max budget
3669 * stored in bfqd, which is dynamically updated according to the
3670 * estimated disk peak rate; otherwise return the default max budget
3671 */
3672 static int bfq_max_budget(struct bfq_data *bfqd)
3673 {
3674 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
3675 return bfq_default_max_budget;
3676 else
3677 return bfqd->bfq_max_budget;
3678 }
3679
3680 /*
3681 * Return min budget, which is a fraction of the current or default
3682 * max budget (trying with 1/32)
3683 */
3684 static int bfq_min_budget(struct bfq_data *bfqd)
3685 {
3686 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
3687 return bfq_default_max_budget / 32;
3688 else
3689 return bfqd->bfq_max_budget / 32;
3690 }
3691
3692 static void bfq_bfqq_expire(struct bfq_data *bfqd,
3693 struct bfq_queue *bfqq,
3694 bool compensate,
3695 enum bfqq_expiration reason);
3696
3697 /*
3698 * The next function, invoked after the input queue bfqq switches from
3699 * idle to busy, updates the budget of bfqq. The function also tells
3700 * whether the in-service queue should be expired, by returning
3701 * true. The purpose of expiring the in-service queue is to give bfqq
3702 * the chance to possibly preempt the in-service queue, and the reason
3703 * for preempting the in-service queue is to achieve the following
3704 * goal: guarantee to bfqq its reserved bandwidth even if bfqq has
3705 * expired because it has remained idle.
3706 *
3707 * In particular, bfqq may have expired for one of the following two
3708 * reasons:
3709 *
3710 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
3711 * and did not make it to issue a new request before its last
3712 * request was served;
3713 *
3714 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
3715 * a new request before the expiration of the idling-time.
3716 *
3717 * Even if bfqq has expired for one of the above reasons, the process
3718 * associated with the queue may be however issuing requests greedily,
3719 * and thus be sensitive to the bandwidth it receives (bfqq may have
3720 * remained idle for other reasons: CPU high load, bfqq not enjoying
3721 * idling, I/O throttling somewhere in the path from the process to
3722 * the I/O scheduler, ...). But if, after every expiration for one of
3723 * the above two reasons, bfqq has to wait for the service of at least
3724 * one full budget of another queue before being served again, then
3725 * bfqq is likely to get a much lower bandwidth or resource time than
3726 * its reserved ones. To address this issue, two countermeasures need
3727 * to be taken.
3728 *
3729 * First, the budget and the timestamps of bfqq need to be updated in
3730 * a special way on bfqq reactivation: they need to be updated as if
3731 * bfqq did not remain idle and did not expire. In fact, if they are
3732 * computed as if bfqq expired and remained idle until reactivation,
3733 * then the process associated with bfqq is treated as if, instead of
3734 * being greedy, it stopped issuing requests when bfqq remained idle,
3735 * and restarts issuing requests only on this reactivation. In other
3736 * words, the scheduler does not help the process recover the "service
3737 * hole" between bfqq expiration and reactivation. As a consequence,
3738 * the process receives a lower bandwidth than its reserved one. In
3739 * contrast, to recover this hole, the budget must be updated as if
3740 * bfqq was not expired at all before this reactivation, i.e., it must
3741 * be set to the value of the remaining budget when bfqq was
3742 * expired. Along the same line, timestamps need to be assigned the
3743 * value they had the last time bfqq was selected for service, i.e.,
3744 * before last expiration. Thus timestamps need to be back-shifted
3745 * with respect to their normal computation (see [1] for more details
3746 * on this tricky aspect).
3747 *
3748 * Secondly, to allow the process to recover the hole, the in-service
3749 * queue must be expired too, to give bfqq the chance to preempt it
3750 * immediately. In fact, if bfqq has to wait for a full budget of the
3751 * in-service queue to be completed, then it may become impossible to
3752 * let the process recover the hole, even if the back-shifted
3753 * timestamps of bfqq are lower than those of the in-service queue. If
3754 * this happens for most or all of the holes, then the process may not
3755 * receive its reserved bandwidth. In this respect, it is worth noting
3756 * that, being the service of outstanding requests unpreemptible, a
3757 * little fraction of the holes may however be unrecoverable, thereby
3758 * causing a little loss of bandwidth.
3759 *
3760 * The last important point is detecting whether bfqq does need this
3761 * bandwidth recovery. In this respect, the next function deems the
3762 * process associated with bfqq greedy, and thus allows it to recover
3763 * the hole, if: 1) the process is waiting for the arrival of a new
3764 * request (which implies that bfqq expired for one of the above two
3765 * reasons), and 2) such a request has arrived soon. The first
3766 * condition is controlled through the flag non_blocking_wait_rq,
3767 * while the second through the flag arrived_in_time. If both
3768 * conditions hold, then the function computes the budget in the
3769 * above-described special way, and signals that the in-service queue
3770 * should be expired. Timestamp back-shifting is done later in
3771 * __bfq_activate_entity.
3772 */
3773 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
3774 struct bfq_queue *bfqq,
3775 bool arrived_in_time)
3776 {
3777 struct bfq_entity *entity = &bfqq->entity;
3778
3779 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
3780 /*
3781 * We do not clear the flag non_blocking_wait_rq here, as
3782 * the latter is used in bfq_activate_bfqq to signal
3783 * that timestamps need to be back-shifted (and is
3784 * cleared right after).
3785 */
3786
3787 /*
3788 * In next assignment we rely on that either
3789 * entity->service or entity->budget are not updated
3790 * on expiration if bfqq is empty (see
3791 * __bfq_bfqq_recalc_budget). Thus both quantities
3792 * remain unchanged after such an expiration, and the
3793 * following statement therefore assigns to
3794 * entity->budget the remaining budget on such an
3795 * expiration. For clarity, entity->service is not
3796 * updated on expiration in any case, and, in normal
3797 * operation, is reset only when bfqq is selected for
3798 * service (see bfq_get_next_queue).
3799 */
3800 entity->budget = min_t(unsigned long,
3801 bfq_bfqq_budget_left(bfqq),
3802 bfqq->max_budget);
3803
3804 return true;
3805 }
3806
3807 entity->budget = max_t(unsigned long, bfqq->max_budget,
3808 bfq_serv_to_charge(bfqq->next_rq, bfqq));
3809 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
3810 return false;
3811 }
3812
3813 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
3814 struct bfq_queue *bfqq,
3815 struct request *rq)
3816 {
3817 bool bfqq_wants_to_preempt,
3818 /*
3819 * See the comments on
3820 * bfq_bfqq_update_budg_for_activation for
3821 * details on the usage of the next variable.
3822 */
3823 arrived_in_time = ktime_get_ns() <=
3824 bfqq->ttime.last_end_request +
3825 bfqd->bfq_slice_idle * 3;
3826
3827 bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
3828
3829 /*
3830 * Update budget and check whether bfqq may want to preempt
3831 * the in-service queue.
3832 */
3833 bfqq_wants_to_preempt =
3834 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
3835 arrived_in_time);
3836
3837 if (!bfq_bfqq_IO_bound(bfqq)) {
3838 if (arrived_in_time) {
3839 bfqq->requests_within_timer++;
3840 if (bfqq->requests_within_timer >=
3841 bfqd->bfq_requests_within_timer)
3842 bfq_mark_bfqq_IO_bound(bfqq);
3843 } else
3844 bfqq->requests_within_timer = 0;
3845 }
3846
3847 bfq_add_bfqq_busy(bfqd, bfqq);
3848
3849 /*
3850 * Expire in-service queue only if preemption may be needed
3851 * for guarantees. In this respect, the function
3852 * next_queue_may_preempt just checks a simple, necessary
3853 * condition, and not a sufficient condition based on
3854 * timestamps. In fact, for the latter condition to be
3855 * evaluated, timestamps would need first to be updated, and
3856 * this operation is quite costly (see the comments on the
3857 * function bfq_bfqq_update_budg_for_activation).
3858 */
3859 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
3860 next_queue_may_preempt(bfqd))
3861 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
3862 false, BFQQE_PREEMPTED);
3863 }
3864
3865 static void bfq_add_request(struct request *rq)
3866 {
3867 struct bfq_queue *bfqq = RQ_BFQQ(rq);
3868 struct bfq_data *bfqd = bfqq->bfqd;
3869 struct request *next_rq, *prev;
3870
3871 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
3872 bfqq->queued[rq_is_sync(rq)]++;
3873 bfqd->queued++;
3874
3875 elv_rb_add(&bfqq->sort_list, rq);
3876
3877 /*
3878 * Check if this request is a better next-serve candidate.
3879 */
3880 prev = bfqq->next_rq;
3881 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
3882 bfqq->next_rq = next_rq;
3883
3884 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
3885 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, rq);
3886 else if (prev != bfqq->next_rq)
3887 bfq_updated_next_req(bfqd, bfqq);
3888 }
3889
3890 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
3891 struct bio *bio,
3892 struct request_queue *q)
3893 {
3894 struct bfq_queue *bfqq = bfqd->bio_bfqq;
3895
3896
3897 if (bfqq)
3898 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
3899
3900 return NULL;
3901 }
3902
3903 static sector_t get_sdist(sector_t last_pos, struct request *rq)
3904 {
3905 if (last_pos)
3906 return abs(blk_rq_pos(rq) - last_pos);
3907
3908 return 0;
3909 }
3910
3911 #if 0 /* Still not clear if we can do without next two functions */
3912 static void bfq_activate_request(struct request_queue *q, struct request *rq)
3913 {
3914 struct bfq_data *bfqd = q->elevator->elevator_data;
3915
3916 bfqd->rq_in_driver++;
3917 }
3918
3919 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
3920 {
3921 struct bfq_data *bfqd = q->elevator->elevator_data;
3922
3923 bfqd->rq_in_driver--;
3924 }
3925 #endif
3926
3927 static void bfq_remove_request(struct request_queue *q,
3928 struct request *rq)
3929 {
3930 struct bfq_queue *bfqq = RQ_BFQQ(rq);
3931 struct bfq_data *bfqd = bfqq->bfqd;
3932 const int sync = rq_is_sync(rq);
3933
3934 if (bfqq->next_rq == rq) {
3935 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
3936 bfq_updated_next_req(bfqd, bfqq);
3937 }
3938
3939 if (rq->queuelist.prev != &rq->queuelist)
3940 list_del_init(&rq->queuelist);
3941 bfqq->queued[sync]--;
3942 bfqd->queued--;
3943 elv_rb_del(&bfqq->sort_list, rq);
3944
3945 elv_rqhash_del(q, rq);
3946 if (q->last_merge == rq)
3947 q->last_merge = NULL;
3948
3949 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
3950 bfqq->next_rq = NULL;
3951
3952 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
3953 bfq_del_bfqq_busy(bfqd, bfqq, false);
3954 /*
3955 * bfqq emptied. In normal operation, when
3956 * bfqq is empty, bfqq->entity.service and
3957 * bfqq->entity.budget must contain,
3958 * respectively, the service received and the
3959 * budget used last time bfqq emptied. These
3960 * facts do not hold in this case, as at least
3961 * this last removal occurred while bfqq is
3962 * not in service. To avoid inconsistencies,
3963 * reset both bfqq->entity.service and
3964 * bfqq->entity.budget, if bfqq has still a
3965 * process that may issue I/O requests to it.
3966 */
3967 bfqq->entity.budget = bfqq->entity.service = 0;
3968 }
3969 }
3970
3971 if (rq->cmd_flags & REQ_META)
3972 bfqq->meta_pending--;
3973
3974 bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
3975 }
3976
3977 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
3978 {
3979 struct request_queue *q = hctx->queue;
3980 struct bfq_data *bfqd = q->elevator->elevator_data;
3981 struct request *free = NULL;
3982 /*
3983 * bfq_bic_lookup grabs the queue_lock: invoke it now and
3984 * store its return value for later use, to avoid nesting
3985 * queue_lock inside the bfqd->lock. We assume that the bic
3986 * returned by bfq_bic_lookup does not go away before
3987 * bfqd->lock is taken.
3988 */
3989 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
3990 bool ret;
3991
3992 spin_lock_irq(&bfqd->lock);
3993
3994 if (bic)
3995 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
3996 else
3997 bfqd->bio_bfqq = NULL;
3998 bfqd->bio_bic = bic;
3999
4000 ret = blk_mq_sched_try_merge(q, bio, &free);
4001
4002 if (free)
4003 blk_mq_free_request(free);
4004 spin_unlock_irq(&bfqd->lock);
4005
4006 return ret;
4007 }
4008
4009 static int bfq_request_merge(struct request_queue *q, struct request **req,
4010 struct bio *bio)
4011 {
4012 struct bfq_data *bfqd = q->elevator->elevator_data;
4013 struct request *__rq;
4014
4015 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
4016 if (__rq && elv_bio_merge_ok(__rq, bio)) {
4017 *req = __rq;
4018 return ELEVATOR_FRONT_MERGE;
4019 }
4020
4021 return ELEVATOR_NO_MERGE;
4022 }
4023
4024 static void bfq_request_merged(struct request_queue *q, struct request *req,
4025 enum elv_merge type)
4026 {
4027 if (type == ELEVATOR_FRONT_MERGE &&
4028 rb_prev(&req->rb_node) &&
4029 blk_rq_pos(req) <
4030 blk_rq_pos(container_of(rb_prev(&req->rb_node),
4031 struct request, rb_node))) {
4032 struct bfq_queue *bfqq = RQ_BFQQ(req);
4033 struct bfq_data *bfqd = bfqq->bfqd;
4034 struct request *prev, *next_rq;
4035
4036 /* Reposition request in its sort_list */
4037 elv_rb_del(&bfqq->sort_list, req);
4038 elv_rb_add(&bfqq->sort_list, req);
4039
4040 /* Choose next request to be served for bfqq */
4041 prev = bfqq->next_rq;
4042 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
4043 bfqd->last_position);
4044 bfqq->next_rq = next_rq;
4045 /*
4046 * If next_rq changes, update the queue's budget to fit
4047 * the new request.
4048 */
4049 if (prev != bfqq->next_rq)
4050 bfq_updated_next_req(bfqd, bfqq);
4051 }
4052 }
4053
4054 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
4055 struct request *next)
4056 {
4057 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
4058
4059 if (!RB_EMPTY_NODE(&rq->rb_node))
4060 goto end;
4061 spin_lock_irq(&bfqq->bfqd->lock);
4062
4063 /*
4064 * If next and rq belong to the same bfq_queue and next is older
4065 * than rq, then reposition rq in the fifo (by substituting next
4066 * with rq). Otherwise, if next and rq belong to different
4067 * bfq_queues, never reposition rq: in fact, we would have to
4068 * reposition it with respect to next's position in its own fifo,
4069 * which would most certainly be too expensive with respect to
4070 * the benefits.
4071 */
4072 if (bfqq == next_bfqq &&
4073 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
4074 next->fifo_time < rq->fifo_time) {
4075 list_del_init(&rq->queuelist);
4076 list_replace_init(&next->queuelist, &rq->queuelist);
4077 rq->fifo_time = next->fifo_time;
4078 }
4079
4080 if (bfqq->next_rq == next)
4081 bfqq->next_rq = rq;
4082
4083 bfq_remove_request(q, next);
4084
4085 spin_unlock_irq(&bfqq->bfqd->lock);
4086 end:
4087 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
4088 }
4089
4090 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
4091 struct bio *bio)
4092 {
4093 struct bfq_data *bfqd = q->elevator->elevator_data;
4094 bool is_sync = op_is_sync(bio->bi_opf);
4095 struct bfq_queue *bfqq = bfqd->bio_bfqq;
4096
4097 /*
4098 * Disallow merge of a sync bio into an async request.
4099 */
4100 if (is_sync && !rq_is_sync(rq))
4101 return false;
4102
4103 /*
4104 * Lookup the bfqq that this bio will be queued with. Allow
4105 * merge only if rq is queued there.
4106 */
4107 if (!bfqq)
4108 return false;
4109
4110 return bfqq == RQ_BFQQ(rq);
4111 }
4112
4113 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
4114 struct bfq_queue *bfqq)
4115 {
4116 if (bfqq) {
4117 bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
4118 bfq_mark_bfqq_budget_new(bfqq);
4119 bfq_clear_bfqq_fifo_expire(bfqq);
4120
4121 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
4122
4123 bfq_log_bfqq(bfqd, bfqq,
4124 "set_in_service_queue, cur-budget = %d",
4125 bfqq->entity.budget);
4126 }
4127
4128 bfqd->in_service_queue = bfqq;
4129 }
4130
4131 /*
4132 * Get and set a new queue for service.
4133 */
4134 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
4135 {
4136 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
4137
4138 __bfq_set_in_service_queue(bfqd, bfqq);
4139 return bfqq;
4140 }
4141
4142 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
4143 {
4144 struct bfq_queue *bfqq = bfqd->in_service_queue;
4145 struct bfq_io_cq *bic;
4146 u32 sl;
4147
4148 /* Processes have exited, don't wait. */
4149 bic = bfqd->in_service_bic;
4150 if (!bic || atomic_read(&bic->icq.ioc->active_ref) == 0)
4151 return;
4152
4153 bfq_mark_bfqq_wait_request(bfqq);
4154
4155 /*
4156 * We don't want to idle for seeks, but we do want to allow
4157 * fair distribution of slice time for a process doing back-to-back
4158 * seeks. So allow a little bit of time for him to submit a new rq.
4159 */
4160 sl = bfqd->bfq_slice_idle;
4161 /*
4162 * Grant only minimum idle time if the queue is seeky.
4163 */
4164 if (BFQQ_SEEKY(bfqq))
4165 sl = min_t(u64, sl, BFQ_MIN_TT);
4166
4167 bfqd->last_idling_start = ktime_get();
4168 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
4169 HRTIMER_MODE_REL);
4170 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
4171 }
4172
4173 /*
4174 * Set the maximum time for the in-service queue to consume its
4175 * budget. This prevents seeky processes from lowering the disk
4176 * throughput (always guaranteed with a time slice scheme as in CFQ).
4177 */
4178 static void bfq_set_budget_timeout(struct bfq_data *bfqd)
4179 {
4180 struct bfq_queue *bfqq = bfqd->in_service_queue;
4181 unsigned int timeout_coeff = bfqq->entity.weight /
4182 bfqq->entity.orig_weight;
4183
4184 bfqd->last_budget_start = ktime_get();
4185
4186 bfq_clear_bfqq_budget_new(bfqq);
4187 bfqq->budget_timeout = jiffies +
4188 bfqd->bfq_timeout * timeout_coeff;
4189
4190 bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
4191 jiffies_to_msecs(bfqd->bfq_timeout * timeout_coeff));
4192 }
4193
4194 /*
4195 * In autotuning mode, max_budget is dynamically recomputed as the
4196 * amount of sectors transferred in timeout at the estimated peak
4197 * rate. This enables BFQ to utilize a full timeslice with a full
4198 * budget, even if the in-service queue is served at peak rate. And
4199 * this maximises throughput with sequential workloads.
4200 */
4201 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
4202 {
4203 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
4204 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
4205 }
4206
4207 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
4208 struct request *rq)
4209 {
4210 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
4211 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
4212 bfqd->peak_rate_samples = 1;
4213 bfqd->sequential_samples = 0;
4214 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
4215 blk_rq_sectors(rq);
4216 } else /* no new rq dispatched, just reset the number of samples */
4217 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
4218
4219 bfq_log(bfqd,
4220 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
4221 bfqd->peak_rate_samples, bfqd->sequential_samples,
4222 bfqd->tot_sectors_dispatched);
4223 }
4224
4225 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
4226 {
4227 u32 rate, weight, divisor;
4228
4229 /*
4230 * For the convergence property to hold (see comments on
4231 * bfq_update_peak_rate()) and for the assessment to be
4232 * reliable, a minimum number of samples must be present, and
4233 * a minimum amount of time must have elapsed. If not so, do
4234 * not compute new rate. Just reset parameters, to get ready
4235 * for a new evaluation attempt.
4236 */
4237 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
4238 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
4239 goto reset_computation;
4240
4241 /*
4242 * If a new request completion has occurred after last
4243 * dispatch, then, to approximate the rate at which requests
4244 * have been served by the device, it is more precise to
4245 * extend the observation interval to the last completion.
4246 */
4247 bfqd->delta_from_first =
4248 max_t(u64, bfqd->delta_from_first,
4249 bfqd->last_completion - bfqd->first_dispatch);
4250
4251 /*
4252 * Rate computed in sects/usec, and not sects/nsec, for
4253 * precision issues.
4254 */
4255 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
4256 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
4257
4258 /*
4259 * Peak rate not updated if:
4260 * - the percentage of sequential dispatches is below 3/4 of the
4261 * total, and rate is below the current estimated peak rate
4262 * - rate is unreasonably high (> 20M sectors/sec)
4263 */
4264 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
4265 rate <= bfqd->peak_rate) ||
4266 rate > 20<<BFQ_RATE_SHIFT)
4267 goto reset_computation;
4268
4269 /*
4270 * We have to update the peak rate, at last! To this purpose,
4271 * we use a low-pass filter. We compute the smoothing constant
4272 * of the filter as a function of the 'weight' of the new
4273 * measured rate.
4274 *
4275 * As can be seen in next formulas, we define this weight as a
4276 * quantity proportional to how sequential the workload is,
4277 * and to how long the observation time interval is.
4278 *
4279 * The weight runs from 0 to 8. The maximum value of the
4280 * weight, 8, yields the minimum value for the smoothing
4281 * constant. At this minimum value for the smoothing constant,
4282 * the measured rate contributes for half of the next value of
4283 * the estimated peak rate.
4284 *
4285 * So, the first step is to compute the weight as a function
4286 * of how sequential the workload is. Note that the weight
4287 * cannot reach 9, because bfqd->sequential_samples cannot
4288 * become equal to bfqd->peak_rate_samples, which, in its
4289 * turn, holds true because bfqd->sequential_samples is not
4290 * incremented for the first sample.
4291 */
4292 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
4293
4294 /*
4295 * Second step: further refine the weight as a function of the
4296 * duration of the observation interval.
4297 */
4298 weight = min_t(u32, 8,
4299 div_u64(weight * bfqd->delta_from_first,
4300 BFQ_RATE_REF_INTERVAL));
4301
4302 /*
4303 * Divisor ranging from 10, for minimum weight, to 2, for
4304 * maximum weight.
4305 */
4306 divisor = 10 - weight;
4307
4308 /*
4309 * Finally, update peak rate:
4310 *
4311 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
4312 */
4313 bfqd->peak_rate *= divisor-1;
4314 bfqd->peak_rate /= divisor;
4315 rate /= divisor; /* smoothing constant alpha = 1/divisor */
4316
4317 bfqd->peak_rate += rate;
4318 if (bfqd->bfq_user_max_budget == 0)
4319 bfqd->bfq_max_budget =
4320 bfq_calc_max_budget(bfqd);
4321
4322 reset_computation:
4323 bfq_reset_rate_computation(bfqd, rq);
4324 }
4325
4326 /*
4327 * Update the read/write peak rate (the main quantity used for
4328 * auto-tuning, see update_thr_responsiveness_params()).
4329 *
4330 * It is not trivial to estimate the peak rate (correctly): because of
4331 * the presence of sw and hw queues between the scheduler and the
4332 * device components that finally serve I/O requests, it is hard to
4333 * say exactly when a given dispatched request is served inside the
4334 * device, and for how long. As a consequence, it is hard to know
4335 * precisely at what rate a given set of requests is actually served
4336 * by the device.
4337 *
4338 * On the opposite end, the dispatch time of any request is trivially
4339 * available, and, from this piece of information, the "dispatch rate"
4340 * of requests can be immediately computed. So, the idea in the next
4341 * function is to use what is known, namely request dispatch times
4342 * (plus, when useful, request completion times), to estimate what is
4343 * unknown, namely in-device request service rate.
4344 *
4345 * The main issue is that, because of the above facts, the rate at
4346 * which a certain set of requests is dispatched over a certain time
4347 * interval can vary greatly with respect to the rate at which the
4348 * same requests are then served. But, since the size of any
4349 * intermediate queue is limited, and the service scheme is lossless
4350 * (no request is silently dropped), the following obvious convergence
4351 * property holds: the number of requests dispatched MUST become
4352 * closer and closer to the number of requests completed as the
4353 * observation interval grows. This is the key property used in
4354 * the next function to estimate the peak service rate as a function
4355 * of the observed dispatch rate. The function assumes to be invoked
4356 * on every request dispatch.
4357 */
4358 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
4359 {
4360 u64 now_ns = ktime_get_ns();
4361
4362 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
4363 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
4364 bfqd->peak_rate_samples);
4365 bfq_reset_rate_computation(bfqd, rq);
4366 goto update_last_values; /* will add one sample */
4367 }
4368
4369 /*
4370 * Device idle for very long: the observation interval lasting
4371 * up to this dispatch cannot be a valid observation interval
4372 * for computing a new peak rate (similarly to the late-
4373 * completion event in bfq_completed_request()). Go to
4374 * update_rate_and_reset to have the following three steps
4375 * taken:
4376 * - close the observation interval at the last (previous)
4377 * request dispatch or completion
4378 * - compute rate, if possible, for that observation interval
4379 * - start a new observation interval with this dispatch
4380 */
4381 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
4382 bfqd->rq_in_driver == 0)
4383 goto update_rate_and_reset;
4384
4385 /* Update sampling information */
4386 bfqd->peak_rate_samples++;
4387
4388 if ((bfqd->rq_in_driver > 0 ||
4389 now_ns - bfqd->last_completion < BFQ_MIN_TT)
4390 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
4391 bfqd->sequential_samples++;
4392
4393 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
4394
4395 /* Reset max observed rq size every 32 dispatches */
4396 if (likely(bfqd->peak_rate_samples % 32))
4397 bfqd->last_rq_max_size =
4398 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
4399 else
4400 bfqd->last_rq_max_size = blk_rq_sectors(rq);
4401
4402 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
4403
4404 /* Target observation interval not yet reached, go on sampling */
4405 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
4406 goto update_last_values;
4407
4408 update_rate_and_reset:
4409 bfq_update_rate_reset(bfqd, rq);
4410 update_last_values:
4411 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
4412 bfqd->last_dispatch = now_ns;
4413 }
4414
4415 /*
4416 * Remove request from internal lists.
4417 */
4418 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
4419 {
4420 struct bfq_queue *bfqq = RQ_BFQQ(rq);
4421
4422 /*
4423 * For consistency, the next instruction should have been
4424 * executed after removing the request from the queue and
4425 * dispatching it. We execute instead this instruction before
4426 * bfq_remove_request() (and hence introduce a temporary
4427 * inconsistency), for efficiency. In fact, should this
4428 * dispatch occur for a non in-service bfqq, this anticipated
4429 * increment prevents two counters related to bfqq->dispatched
4430 * from risking to be, first, uselessly decremented, and then
4431 * incremented again when the (new) value of bfqq->dispatched
4432 * happens to be taken into account.
4433 */
4434 bfqq->dispatched++;
4435 bfq_update_peak_rate(q->elevator->elevator_data, rq);
4436
4437 bfq_remove_request(q, rq);
4438 }
4439
4440 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4441 {
4442 if (RB_EMPTY_ROOT(&bfqq->sort_list))
4443 bfq_del_bfqq_busy(bfqd, bfqq, true);
4444 else
4445 bfq_requeue_bfqq(bfqd, bfqq);
4446
4447 /*
4448 * All in-service entities must have been properly deactivated
4449 * or requeued before executing the next function, which
4450 * resets all in-service entites as no more in service.
4451 */
4452 __bfq_bfqd_reset_in_service(bfqd);
4453 }
4454
4455 /**
4456 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
4457 * @bfqd: device data.
4458 * @bfqq: queue to update.
4459 * @reason: reason for expiration.
4460 *
4461 * Handle the feedback on @bfqq budget at queue expiration.
4462 * See the body for detailed comments.
4463 */
4464 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
4465 struct bfq_queue *bfqq,
4466 enum bfqq_expiration reason)
4467 {
4468 struct request *next_rq;
4469 int budget, min_budget;
4470
4471 budget = bfqq->max_budget;
4472 min_budget = bfq_min_budget(bfqd);
4473
4474 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
4475 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
4476 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
4477 budget, bfq_min_budget(bfqd));
4478 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
4479 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
4480
4481 if (bfq_bfqq_sync(bfqq)) {
4482 switch (reason) {
4483 /*
4484 * Caveat: in all the following cases we trade latency
4485 * for throughput.
4486 */
4487 case BFQQE_TOO_IDLE:
4488 /*
4489 * This is the only case where we may reduce
4490 * the budget: if there is no request of the
4491 * process still waiting for completion, then
4492 * we assume (tentatively) that the timer has
4493 * expired because the batch of requests of
4494 * the process could have been served with a
4495 * smaller budget. Hence, betting that
4496 * process will behave in the same way when it
4497 * becomes backlogged again, we reduce its
4498 * next budget. As long as we guess right,
4499 * this budget cut reduces the latency
4500 * experienced by the process.
4501 *
4502 * However, if there are still outstanding
4503 * requests, then the process may have not yet
4504 * issued its next request just because it is
4505 * still waiting for the completion of some of
4506 * the still outstanding ones. So in this
4507 * subcase we do not reduce its budget, on the
4508 * contrary we increase it to possibly boost
4509 * the throughput, as discussed in the
4510 * comments to the BUDGET_TIMEOUT case.
4511 */
4512 if (bfqq->dispatched > 0) /* still outstanding reqs */
4513 budget = min(budget * 2, bfqd->bfq_max_budget);
4514 else {
4515 if (budget > 5 * min_budget)
4516 budget -= 4 * min_budget;
4517 else
4518 budget = min_budget;
4519 }
4520 break;
4521 case BFQQE_BUDGET_TIMEOUT:
4522 /*
4523 * We double the budget here because it gives
4524 * the chance to boost the throughput if this
4525 * is not a seeky process (and has bumped into
4526 * this timeout because of, e.g., ZBR).
4527 */
4528 budget = min(budget * 2, bfqd->bfq_max_budget);
4529 break;
4530 case BFQQE_BUDGET_EXHAUSTED:
4531 /*
4532 * The process still has backlog, and did not
4533 * let either the budget timeout or the disk
4534 * idling timeout expire. Hence it is not
4535 * seeky, has a short thinktime and may be
4536 * happy with a higher budget too. So
4537 * definitely increase the budget of this good
4538 * candidate to boost the disk throughput.
4539 */
4540 budget = min(budget * 4, bfqd->bfq_max_budget);
4541 break;
4542 case BFQQE_NO_MORE_REQUESTS:
4543 /*
4544 * For queues that expire for this reason, it
4545 * is particularly important to keep the
4546 * budget close to the actual service they
4547 * need. Doing so reduces the timestamp
4548 * misalignment problem described in the
4549 * comments in the body of
4550 * __bfq_activate_entity. In fact, suppose
4551 * that a queue systematically expires for
4552 * BFQQE_NO_MORE_REQUESTS and presents a
4553 * new request in time to enjoy timestamp
4554 * back-shifting. The larger the budget of the
4555 * queue is with respect to the service the
4556 * queue actually requests in each service
4557 * slot, the more times the queue can be
4558 * reactivated with the same virtual finish
4559 * time. It follows that, even if this finish
4560 * time is pushed to the system virtual time
4561 * to reduce the consequent timestamp
4562 * misalignment, the queue unjustly enjoys for
4563 * many re-activations a lower finish time
4564 * than all newly activated queues.
4565 *
4566 * The service needed by bfqq is measured
4567 * quite precisely by bfqq->entity.service.
4568 * Since bfqq does not enjoy device idling,
4569 * bfqq->entity.service is equal to the number
4570 * of sectors that the process associated with
4571 * bfqq requested to read/write before waiting
4572 * for request completions, or blocking for
4573 * other reasons.
4574 */
4575 budget = max_t(int, bfqq->entity.service, min_budget);
4576 break;
4577 default:
4578 return;
4579 }
4580 } else {
4581 /*
4582 * Async queues get always the maximum possible
4583 * budget, as for them we do not care about latency
4584 * (in addition, their ability to dispatch is limited
4585 * by the charging factor).
4586 */
4587 budget = bfqd->bfq_max_budget;
4588 }
4589
4590 bfqq->max_budget = budget;
4591
4592 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
4593 !bfqd->bfq_user_max_budget)
4594 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
4595
4596 /*
4597 * If there is still backlog, then assign a new budget, making
4598 * sure that it is large enough for the next request. Since
4599 * the finish time of bfqq must be kept in sync with the
4600 * budget, be sure to call __bfq_bfqq_expire() *after* this
4601 * update.
4602 *
4603 * If there is no backlog, then no need to update the budget;
4604 * it will be updated on the arrival of a new request.
4605 */
4606 next_rq = bfqq->next_rq;
4607 if (next_rq)
4608 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
4609 bfq_serv_to_charge(next_rq, bfqq));
4610
4611 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
4612 next_rq ? blk_rq_sectors(next_rq) : 0,
4613 bfqq->entity.budget);
4614 }
4615
4616 /*
4617 * Return true if the process associated with bfqq is "slow". The slow
4618 * flag is used, in addition to the budget timeout, to reduce the
4619 * amount of service provided to seeky processes, and thus reduce
4620 * their chances to lower the throughput. More details in the comments
4621 * on the function bfq_bfqq_expire().
4622 *
4623 * An important observation is in order: as discussed in the comments
4624 * on the function bfq_update_peak_rate(), with devices with internal
4625 * queues, it is hard if ever possible to know when and for how long
4626 * an I/O request is processed by the device (apart from the trivial
4627 * I/O pattern where a new request is dispatched only after the
4628 * previous one has been completed). This makes it hard to evaluate
4629 * the real rate at which the I/O requests of each bfq_queue are
4630 * served. In fact, for an I/O scheduler like BFQ, serving a
4631 * bfq_queue means just dispatching its requests during its service
4632 * slot (i.e., until the budget of the queue is exhausted, or the
4633 * queue remains idle, or, finally, a timeout fires). But, during the
4634 * service slot of a bfq_queue, around 100 ms at most, the device may
4635 * be even still processing requests of bfq_queues served in previous
4636 * service slots. On the opposite end, the requests of the in-service
4637 * bfq_queue may be completed after the service slot of the queue
4638 * finishes.
4639 *
4640 * Anyway, unless more sophisticated solutions are used
4641 * (where possible), the sum of the sizes of the requests dispatched
4642 * during the service slot of a bfq_queue is probably the only
4643 * approximation available for the service received by the bfq_queue
4644 * during its service slot. And this sum is the quantity used in this
4645 * function to evaluate the I/O speed of a process.
4646 */
4647 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4648 bool compensate, enum bfqq_expiration reason,
4649 unsigned long *delta_ms)
4650 {
4651 ktime_t delta_ktime;
4652 u32 delta_usecs;
4653 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
4654
4655 if (!bfq_bfqq_sync(bfqq))
4656 return false;
4657
4658 if (compensate)
4659 delta_ktime = bfqd->last_idling_start;
4660 else
4661 delta_ktime = ktime_get();
4662 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
4663 delta_usecs = ktime_to_us(delta_ktime);
4664
4665 /* don't use too short time intervals */
4666 if (delta_usecs < 1000) {
4667 if (blk_queue_nonrot(bfqd->queue))
4668 /*
4669 * give same worst-case guarantees as idling
4670 * for seeky
4671 */
4672 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
4673 else /* charge at least one seek */
4674 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
4675
4676 return slow;
4677 }
4678
4679 *delta_ms = delta_usecs / USEC_PER_MSEC;
4680
4681 /*
4682 * Use only long (> 20ms) intervals to filter out excessive
4683 * spikes in service rate estimation.
4684 */
4685 if (delta_usecs > 20000) {
4686 /*
4687 * Caveat for rotational devices: processes doing I/O
4688 * in the slower disk zones tend to be slow(er) even
4689 * if not seeky. In this respect, the estimated peak
4690 * rate is likely to be an average over the disk
4691 * surface. Accordingly, to not be too harsh with
4692 * unlucky processes, a process is deemed slow only if
4693 * its rate has been lower than half of the estimated
4694 * peak rate.
4695 */
4696 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
4697 }
4698
4699 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
4700
4701 return slow;
4702 }
4703
4704 /*
4705 * Return the farthest past time instant according to jiffies
4706 * macros.
4707 */
4708 static unsigned long bfq_smallest_from_now(void)
4709 {
4710 return jiffies - MAX_JIFFY_OFFSET;
4711 }
4712
4713 /**
4714 * bfq_bfqq_expire - expire a queue.
4715 * @bfqd: device owning the queue.
4716 * @bfqq: the queue to expire.
4717 * @compensate: if true, compensate for the time spent idling.
4718 * @reason: the reason causing the expiration.
4719 *
4720 * If the process associated with bfqq does slow I/O (e.g., because it
4721 * issues random requests), we charge bfqq with the time it has been
4722 * in service instead of the service it has received (see
4723 * bfq_bfqq_charge_time for details on how this goal is achieved). As
4724 * a consequence, bfqq will typically get higher timestamps upon
4725 * reactivation, and hence it will be rescheduled as if it had
4726 * received more service than what it has actually received. In the
4727 * end, bfqq receives less service in proportion to how slowly its
4728 * associated process consumes its budgets (and hence how seriously it
4729 * tends to lower the throughput). In addition, this time-charging
4730 * strategy guarantees time fairness among slow processes. In
4731 * contrast, if the process associated with bfqq is not slow, we
4732 * charge bfqq exactly with the service it has received.
4733 *
4734 * Charging time to the first type of queues and the exact service to
4735 * the other has the effect of using the WF2Q+ policy to schedule the
4736 * former on a timeslice basis, without violating service domain
4737 * guarantees among the latter.
4738 */
4739 static void bfq_bfqq_expire(struct bfq_data *bfqd,
4740 struct bfq_queue *bfqq,
4741 bool compensate,
4742 enum bfqq_expiration reason)
4743 {
4744 bool slow;
4745 unsigned long delta = 0;
4746 struct bfq_entity *entity = &bfqq->entity;
4747 int ref;
4748
4749 /*
4750 * Check whether the process is slow (see bfq_bfqq_is_slow).
4751 */
4752 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
4753
4754 /*
4755 * As above explained, charge slow (typically seeky) and
4756 * timed-out queues with the time and not the service
4757 * received, to favor sequential workloads.
4758 *
4759 * Processes doing I/O in the slower disk zones will tend to
4760 * be slow(er) even if not seeky. Therefore, since the
4761 * estimated peak rate is actually an average over the disk
4762 * surface, these processes may timeout just for bad luck. To
4763 * avoid punishing them, do not charge time to processes that
4764 * succeeded in consuming at least 2/3 of their budget. This
4765 * allows BFQ to preserve enough elasticity to still perform
4766 * bandwidth, and not time, distribution with little unlucky
4767 * or quasi-sequential processes.
4768 */
4769 if (slow ||
4770 (reason == BFQQE_BUDGET_TIMEOUT &&
4771 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3))
4772 bfq_bfqq_charge_time(bfqd, bfqq, delta);
4773
4774 if (reason == BFQQE_TOO_IDLE &&
4775 entity->service <= 2 * entity->budget / 10)
4776 bfq_clear_bfqq_IO_bound(bfqq);
4777
4778 bfq_log_bfqq(bfqd, bfqq,
4779 "expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
4780 slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
4781
4782 /*
4783 * Increase, decrease or leave budget unchanged according to
4784 * reason.
4785 */
4786 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4787 ref = bfqq->ref;
4788 __bfq_bfqq_expire(bfqd, bfqq);
4789
4790 /* mark bfqq as waiting a request only if a bic still points to it */
4791 if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
4792 reason != BFQQE_BUDGET_TIMEOUT &&
4793 reason != BFQQE_BUDGET_EXHAUSTED)
4794 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4795 }
4796
4797 /*
4798 * Budget timeout is not implemented through a dedicated timer, but
4799 * just checked on request arrivals and completions, as well as on
4800 * idle timer expirations.
4801 */
4802 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4803 {
4804 if (bfq_bfqq_budget_new(bfqq) ||
4805 time_is_after_jiffies(bfqq->budget_timeout))
4806 return false;
4807 return true;
4808 }
4809
4810 /*
4811 * If we expire a queue that is actively waiting (i.e., with the
4812 * device idled) for the arrival of a new request, then we may incur
4813 * the timestamp misalignment problem described in the body of the
4814 * function __bfq_activate_entity. Hence we return true only if this
4815 * condition does not hold, or if the queue is slow enough to deserve
4816 * only to be kicked off for preserving a high throughput.
4817 */
4818 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4819 {
4820 bfq_log_bfqq(bfqq->bfqd, bfqq,
4821 "may_budget_timeout: wait_request %d left %d timeout %d",
4822 bfq_bfqq_wait_request(bfqq),
4823 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
4824 bfq_bfqq_budget_timeout(bfqq));
4825
4826 return (!bfq_bfqq_wait_request(bfqq) ||
4827 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
4828 &&
4829 bfq_bfqq_budget_timeout(bfqq);
4830 }
4831
4832 /*
4833 * For a queue that becomes empty, device idling is allowed only if
4834 * this function returns true for the queue. And this function returns
4835 * true only if idling is beneficial for throughput.
4836 */
4837 static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
4838 {
4839 struct bfq_data *bfqd = bfqq->bfqd;
4840 bool idling_boosts_thr;
4841
4842 if (bfqd->strict_guarantees)
4843 return true;
4844
4845 /*
4846 * The value of the next variable is computed considering that
4847 * idling is usually beneficial for the throughput if:
4848 * (a) the device is not NCQ-capable, or
4849 * (b) regardless of the presence of NCQ, the request pattern
4850 * for bfqq is I/O-bound (possible throughput losses
4851 * caused by granting idling to seeky queues are mitigated
4852 * by the fact that, in all scenarios where boosting
4853 * throughput is the best thing to do, i.e., in all
4854 * symmetric scenarios, only a minimal idle time is
4855 * allowed to seeky queues).
4856 */
4857 idling_boosts_thr = !bfqd->hw_tag || bfq_bfqq_IO_bound(bfqq);
4858
4859 /*
4860 * We have now the components we need to compute the return
4861 * value of the function, which is true only if both the
4862 * following conditions hold:
4863 * 1) bfqq is sync, because idling make sense only for sync queues;
4864 * 2) idling boosts the throughput.
4865 */
4866 return bfq_bfqq_sync(bfqq) && idling_boosts_thr;
4867 }
4868
4869 /*
4870 * If the in-service queue is empty but the function bfq_bfqq_may_idle
4871 * returns true, then:
4872 * 1) the queue must remain in service and cannot be expired, and
4873 * 2) the device must be idled to wait for the possible arrival of a new
4874 * request for the queue.
4875 * See the comments on the function bfq_bfqq_may_idle for the reasons
4876 * why performing device idling is the best choice to boost the throughput
4877 * and preserve service guarantees when bfq_bfqq_may_idle itself
4878 * returns true.
4879 */
4880 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4881 {
4882 struct bfq_data *bfqd = bfqq->bfqd;
4883
4884 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 &&
4885 bfq_bfqq_may_idle(bfqq);
4886 }
4887
4888 /*
4889 * Select a queue for service. If we have a current queue in service,
4890 * check whether to continue servicing it, or retrieve and set a new one.
4891 */
4892 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4893 {
4894 struct bfq_queue *bfqq;
4895 struct request *next_rq;
4896 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4897
4898 bfqq = bfqd->in_service_queue;
4899 if (!bfqq)
4900 goto new_queue;
4901
4902 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4903
4904 if (bfq_may_expire_for_budg_timeout(bfqq) &&
4905 !bfq_bfqq_wait_request(bfqq) &&
4906 !bfq_bfqq_must_idle(bfqq))
4907 goto expire;
4908
4909 check_queue:
4910 /*
4911 * This loop is rarely executed more than once. Even when it
4912 * happens, it is much more convenient to re-execute this loop
4913 * than to return NULL and trigger a new dispatch to get a
4914 * request served.
4915 */
4916 next_rq = bfqq->next_rq;
4917 /*
4918 * If bfqq has requests queued and it has enough budget left to
4919 * serve them, keep the queue, otherwise expire it.
4920 */
4921 if (next_rq) {
4922 if (bfq_serv_to_charge(next_rq, bfqq) >
4923 bfq_bfqq_budget_left(bfqq)) {
4924 /*
4925 * Expire the queue for budget exhaustion,
4926 * which makes sure that the next budget is
4927 * enough to serve the next request, even if
4928 * it comes from the fifo expired path.
4929 */
4930 reason = BFQQE_BUDGET_EXHAUSTED;
4931 goto expire;
4932 } else {
4933 /*
4934 * The idle timer may be pending because we may
4935 * not disable disk idling even when a new request
4936 * arrives.
4937 */
4938 if (bfq_bfqq_wait_request(bfqq)) {
4939 /*
4940 * If we get here: 1) at least a new request
4941 * has arrived but we have not disabled the
4942 * timer because the request was too small,
4943 * 2) then the block layer has unplugged
4944 * the device, causing the dispatch to be
4945 * invoked.
4946 *
4947 * Since the device is unplugged, now the
4948 * requests are probably large enough to
4949 * provide a reasonable throughput.
4950 * So we disable idling.
4951 */
4952 bfq_clear_bfqq_wait_request(bfqq);
4953 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4954 bfqg_stats_update_idle_time(bfqq_group(bfqq));
4955 }
4956 goto keep_queue;
4957 }
4958 }
4959
4960 /*
4961 * No requests pending. However, if the in-service queue is idling
4962 * for a new request, or has requests waiting for a completion and
4963 * may idle after their completion, then keep it anyway.
4964 */
4965 if (bfq_bfqq_wait_request(bfqq) ||
4966 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
4967 bfqq = NULL;
4968 goto keep_queue;
4969 }
4970
4971 reason = BFQQE_NO_MORE_REQUESTS;
4972 expire:
4973 bfq_bfqq_expire(bfqd, bfqq, false, reason);
4974 new_queue:
4975 bfqq = bfq_set_in_service_queue(bfqd);
4976 if (bfqq) {
4977 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4978 goto check_queue;
4979 }
4980 keep_queue:
4981 if (bfqq)
4982 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4983 else
4984 bfq_log(bfqd, "select_queue: no queue returned");
4985
4986 return bfqq;
4987 }
4988
4989 /*
4990 * Dispatch next request from bfqq.
4991 */
4992 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4993 struct bfq_queue *bfqq)
4994 {
4995 struct request *rq = bfqq->next_rq;
4996 unsigned long service_to_charge;
4997
4998 service_to_charge = bfq_serv_to_charge(rq, bfqq);
4999
5000 bfq_bfqq_served(bfqq, service_to_charge);
5001
5002 bfq_dispatch_remove(bfqd->queue, rq);
5003
5004 if (!bfqd->in_service_bic) {
5005 atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount);
5006 bfqd->in_service_bic = RQ_BIC(rq);
5007 }
5008
5009 /*
5010 * Expire bfqq, pretending that its budget expired, if bfqq
5011 * belongs to CLASS_IDLE and other queues are waiting for
5012 * service.
5013 */
5014 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
5015 goto expire;
5016
5017 return rq;
5018
5019 expire:
5020 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
5021 return rq;
5022 }
5023
5024 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
5025 {
5026 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5027
5028 /*
5029 * Avoiding lock: a race on bfqd->busy_queues should cause at
5030 * most a call to dispatch for nothing
5031 */
5032 return !list_empty_careful(&bfqd->dispatch) ||
5033 bfqd->busy_queues > 0;
5034 }
5035
5036 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5037 {
5038 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5039 struct request *rq = NULL;
5040 struct bfq_queue *bfqq = NULL;
5041
5042 if (!list_empty(&bfqd->dispatch)) {
5043 rq = list_first_entry(&bfqd->dispatch, struct request,
5044 queuelist);
5045 list_del_init(&rq->queuelist);
5046
5047 bfqq = RQ_BFQQ(rq);
5048
5049 if (bfqq) {
5050 /*
5051 * Increment counters here, because this
5052 * dispatch does not follow the standard
5053 * dispatch flow (where counters are
5054 * incremented)
5055 */
5056 bfqq->dispatched++;
5057
5058 goto inc_in_driver_start_rq;
5059 }
5060
5061 /*
5062 * We exploit the put_rq_private hook to decrement
5063 * rq_in_driver, but put_rq_private will not be
5064 * invoked on this request. So, to avoid unbalance,
5065 * just start this request, without incrementing
5066 * rq_in_driver. As a negative consequence,
5067 * rq_in_driver is deceptively lower than it should be
5068 * while this request is in service. This may cause
5069 * bfq_schedule_dispatch to be invoked uselessly.
5070 *
5071 * As for implementing an exact solution, the
5072 * put_request hook, if defined, is probably invoked
5073 * also on this request. So, by exploiting this hook,
5074 * we could 1) increment rq_in_driver here, and 2)
5075 * decrement it in put_request. Such a solution would
5076 * let the value of the counter be always accurate,
5077 * but it would entail using an extra interface
5078 * function. This cost seems higher than the benefit,
5079 * being the frequency of non-elevator-private
5080 * requests very low.
5081 */
5082 goto start_rq;
5083 }
5084
5085 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
5086
5087 if (bfqd->busy_queues == 0)
5088 goto exit;
5089
5090 /*
5091 * Force device to serve one request at a time if
5092 * strict_guarantees is true. Forcing this service scheme is
5093 * currently the ONLY way to guarantee that the request
5094 * service order enforced by the scheduler is respected by a
5095 * queueing device. Otherwise the device is free even to make
5096 * some unlucky request wait for as long as the device
5097 * wishes.
5098 *
5099 * Of course, serving one request at at time may cause loss of
5100 * throughput.
5101 */
5102 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
5103 goto exit;
5104
5105 bfqq = bfq_select_queue(bfqd);
5106 if (!bfqq)
5107 goto exit;
5108
5109 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
5110
5111 if (rq) {
5112 inc_in_driver_start_rq:
5113 bfqd->rq_in_driver++;
5114 start_rq:
5115 rq->rq_flags |= RQF_STARTED;
5116 }
5117 exit:
5118 return rq;
5119 }
5120
5121 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5122 {
5123 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5124 struct request *rq;
5125
5126 spin_lock_irq(&bfqd->lock);
5127 rq = __bfq_dispatch_request(hctx);
5128 spin_unlock_irq(&bfqd->lock);
5129
5130 return rq;
5131 }
5132
5133 /*
5134 * Task holds one reference to the queue, dropped when task exits. Each rq
5135 * in-flight on this queue also holds a reference, dropped when rq is freed.
5136 *
5137 * Scheduler lock must be held here. Recall not to use bfqq after calling
5138 * this function on it.
5139 */
5140 static void bfq_put_queue(struct bfq_queue *bfqq)
5141 {
5142 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5143 struct bfq_group *bfqg = bfqq_group(bfqq);
5144 #endif
5145
5146 if (bfqq->bfqd)
5147 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
5148 bfqq, bfqq->ref);
5149
5150 bfqq->ref--;
5151 if (bfqq->ref)
5152 return;
5153
5154 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p freed", bfqq);
5155
5156 kmem_cache_free(bfq_pool, bfqq);
5157 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5158 bfqg_put(bfqg);
5159 #endif
5160 }
5161
5162 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5163 {
5164 if (bfqq == bfqd->in_service_queue) {
5165 __bfq_bfqq_expire(bfqd, bfqq);
5166 bfq_schedule_dispatch(bfqd);
5167 }
5168
5169 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5170
5171 bfq_put_queue(bfqq); /* release process reference */
5172 }
5173
5174 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
5175 {
5176 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5177 struct bfq_data *bfqd;
5178
5179 if (bfqq)
5180 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5181
5182 if (bfqq && bfqd) {
5183 unsigned long flags;
5184
5185 spin_lock_irqsave(&bfqd->lock, flags);
5186 bfq_exit_bfqq(bfqd, bfqq);
5187 bic_set_bfqq(bic, NULL, is_sync);
5188 spin_unlock_irq(&bfqd->lock);
5189 }
5190 }
5191
5192 static void bfq_exit_icq(struct io_cq *icq)
5193 {
5194 struct bfq_io_cq *bic = icq_to_bic(icq);
5195
5196 bfq_exit_icq_bfqq(bic, true);
5197 bfq_exit_icq_bfqq(bic, false);
5198 }
5199
5200 /*
5201 * Update the entity prio values; note that the new values will not
5202 * be used until the next (re)activation.
5203 */
5204 static void
5205 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5206 {
5207 struct task_struct *tsk = current;
5208 int ioprio_class;
5209 struct bfq_data *bfqd = bfqq->bfqd;
5210
5211 if (!bfqd)
5212 return;
5213
5214 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5215 switch (ioprio_class) {
5216 default:
5217 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
5218 "bfq: bad prio class %d\n", ioprio_class);
5219 case IOPRIO_CLASS_NONE:
5220 /*
5221 * No prio set, inherit CPU scheduling settings.
5222 */
5223 bfqq->new_ioprio = task_nice_ioprio(tsk);
5224 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5225 break;
5226 case IOPRIO_CLASS_RT:
5227 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5228 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5229 break;
5230 case IOPRIO_CLASS_BE:
5231 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5232 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5233 break;
5234 case IOPRIO_CLASS_IDLE:
5235 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5236 bfqq->new_ioprio = 7;
5237 bfq_clear_bfqq_idle_window(bfqq);
5238 break;
5239 }
5240
5241 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
5242 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5243 bfqq->new_ioprio);
5244 bfqq->new_ioprio = IOPRIO_BE_NR;
5245 }
5246
5247 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5248 bfqq->entity.prio_changed = 1;
5249 }
5250
5251 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5252 {
5253 struct bfq_data *bfqd = bic_to_bfqd(bic);
5254 struct bfq_queue *bfqq;
5255 int ioprio = bic->icq.ioc->ioprio;
5256
5257 /*
5258 * This condition may trigger on a newly created bic, be sure to
5259 * drop the lock before returning.
5260 */
5261 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5262 return;
5263
5264 bic->ioprio = ioprio;
5265
5266 bfqq = bic_to_bfqq(bic, false);
5267 if (bfqq) {
5268 /* release process reference on this queue */
5269 bfq_put_queue(bfqq);
5270 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
5271 bic_set_bfqq(bic, bfqq, false);
5272 }
5273
5274 bfqq = bic_to_bfqq(bic, true);
5275 if (bfqq)
5276 bfq_set_next_ioprio_data(bfqq, bic);
5277 }
5278
5279 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5280 struct bfq_io_cq *bic, pid_t pid, int is_sync)
5281 {
5282 RB_CLEAR_NODE(&bfqq->entity.rb_node);
5283 INIT_LIST_HEAD(&bfqq->fifo);
5284
5285 bfqq->ref = 0;
5286 bfqq->bfqd = bfqd;
5287
5288 if (bic)
5289 bfq_set_next_ioprio_data(bfqq, bic);
5290
5291 if (is_sync) {
5292 if (!bfq_class_idle(bfqq))
5293 bfq_mark_bfqq_idle_window(bfqq);
5294 bfq_mark_bfqq_sync(bfqq);
5295 } else
5296 bfq_clear_bfqq_sync(bfqq);
5297
5298 /* set end request to minus infinity from now */
5299 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
5300
5301 bfq_mark_bfqq_IO_bound(bfqq);
5302
5303 bfqq->pid = pid;
5304
5305 /* Tentative initial value to trade off between thr and lat */
5306 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5307 bfqq->budget_timeout = bfq_smallest_from_now();
5308
5309 /* first request is almost certainly seeky */
5310 bfqq->seek_history = 1;
5311 }
5312
5313 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5314 struct bfq_group *bfqg,
5315 int ioprio_class, int ioprio)
5316 {
5317 switch (ioprio_class) {
5318 case IOPRIO_CLASS_RT:
5319 return &bfqg->async_bfqq[0][ioprio];
5320 case IOPRIO_CLASS_NONE:
5321 ioprio = IOPRIO_NORM;
5322 /* fall through */
5323 case IOPRIO_CLASS_BE:
5324 return &bfqg->async_bfqq[1][ioprio];
5325 case IOPRIO_CLASS_IDLE:
5326 return &bfqg->async_idle_bfqq;
5327 default:
5328 return NULL;
5329 }
5330 }
5331
5332 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5333 struct bio *bio, bool is_sync,
5334 struct bfq_io_cq *bic)
5335 {
5336 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5337 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5338 struct bfq_queue **async_bfqq = NULL;
5339 struct bfq_queue *bfqq;
5340 struct bfq_group *bfqg;
5341
5342 rcu_read_lock();
5343
5344 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
5345 if (!bfqg) {
5346 bfqq = &bfqd->oom_bfqq;
5347 goto out;
5348 }
5349
5350 if (!is_sync) {
5351 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5352 ioprio);
5353 bfqq = *async_bfqq;
5354 if (bfqq)
5355 goto out;
5356 }
5357
5358 bfqq = kmem_cache_alloc_node(bfq_pool,
5359 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5360 bfqd->queue->node);
5361
5362 if (bfqq) {
5363 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5364 is_sync);
5365 bfq_init_entity(&bfqq->entity, bfqg);
5366 bfq_log_bfqq(bfqd, bfqq, "allocated");
5367 } else {
5368 bfqq = &bfqd->oom_bfqq;
5369 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5370 goto out;
5371 }
5372
5373 /*
5374 * Pin the queue now that it's allocated, scheduler exit will
5375 * prune it.
5376 */
5377 if (async_bfqq) {
5378 bfqq->ref++; /*
5379 * Extra group reference, w.r.t. sync
5380 * queue. This extra reference is removed
5381 * only if bfqq->bfqg disappears, to
5382 * guarantee that this queue is not freed
5383 * until its group goes away.
5384 */
5385 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5386 bfqq, bfqq->ref);
5387 *async_bfqq = bfqq;
5388 }
5389
5390 out:
5391 bfqq->ref++; /* get a process reference to this queue */
5392 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
5393 rcu_read_unlock();
5394 return bfqq;
5395 }
5396
5397 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5398 struct bfq_queue *bfqq)
5399 {
5400 struct bfq_ttime *ttime = &bfqq->ttime;
5401 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5402
5403 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5404
5405 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
5406 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
5407 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5408 ttime->ttime_samples);
5409 }
5410
5411 static void
5412 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5413 struct request *rq)
5414 {
5415 bfqq->seek_history <<= 1;
5416 bfqq->seek_history |=
5417 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
5418 (!blk_queue_nonrot(bfqd->queue) ||
5419 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
5420 }
5421
5422 /*
5423 * Disable idle window if the process thinks too long or seeks so much that
5424 * it doesn't matter.
5425 */
5426 static void bfq_update_idle_window(struct bfq_data *bfqd,
5427 struct bfq_queue *bfqq,
5428 struct bfq_io_cq *bic)
5429 {
5430 int enable_idle;
5431
5432 /* Don't idle for async or idle io prio class. */
5433 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
5434 return;
5435
5436 enable_idle = bfq_bfqq_idle_window(bfqq);
5437
5438 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5439 bfqd->bfq_slice_idle == 0 ||
5440 (bfqd->hw_tag && BFQQ_SEEKY(bfqq)))
5441 enable_idle = 0;
5442 else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) {
5443 if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle)
5444 enable_idle = 0;
5445 else
5446 enable_idle = 1;
5447 }
5448 bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
5449 enable_idle);
5450
5451 if (enable_idle)
5452 bfq_mark_bfqq_idle_window(bfqq);
5453 else
5454 bfq_clear_bfqq_idle_window(bfqq);
5455 }
5456
5457 /*
5458 * Called when a new fs request (rq) is added to bfqq. Check if there's
5459 * something we should do about it.
5460 */
5461 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5462 struct request *rq)
5463 {
5464 struct bfq_io_cq *bic = RQ_BIC(rq);
5465
5466 if (rq->cmd_flags & REQ_META)
5467 bfqq->meta_pending++;
5468
5469 bfq_update_io_thinktime(bfqd, bfqq);
5470 bfq_update_io_seektime(bfqd, bfqq, rq);
5471 if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
5472 !BFQQ_SEEKY(bfqq))
5473 bfq_update_idle_window(bfqd, bfqq, bic);
5474
5475 bfq_log_bfqq(bfqd, bfqq,
5476 "rq_enqueued: idle_window=%d (seeky %d)",
5477 bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq));
5478
5479 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5480
5481 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5482 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5483 blk_rq_sectors(rq) < 32;
5484 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5485
5486 /*
5487 * There is just this request queued: if the request
5488 * is small and the queue is not to be expired, then
5489 * just exit.
5490 *
5491 * In this way, if the device is being idled to wait
5492 * for a new request from the in-service queue, we
5493 * avoid unplugging the device and committing the
5494 * device to serve just a small request. On the
5495 * contrary, we wait for the block layer to decide
5496 * when to unplug the device: hopefully, new requests
5497 * will be merged to this one quickly, then the device
5498 * will be unplugged and larger requests will be
5499 * dispatched.
5500 */
5501 if (small_req && !budget_timeout)
5502 return;
5503
5504 /*
5505 * A large enough request arrived, or the queue is to
5506 * be expired: in both cases disk idling is to be
5507 * stopped, so clear wait_request flag and reset
5508 * timer.
5509 */
5510 bfq_clear_bfqq_wait_request(bfqq);
5511 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5512 bfqg_stats_update_idle_time(bfqq_group(bfqq));
5513
5514 /*
5515 * The queue is not empty, because a new request just
5516 * arrived. Hence we can safely expire the queue, in
5517 * case of budget timeout, without risking that the
5518 * timestamps of the queue are not updated correctly.
5519 * See [1] for more details.
5520 */
5521 if (budget_timeout)
5522 bfq_bfqq_expire(bfqd, bfqq, false,
5523 BFQQE_BUDGET_TIMEOUT);
5524 }
5525 }
5526
5527 static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
5528 {
5529 struct bfq_queue *bfqq = RQ_BFQQ(rq);
5530
5531 bfq_add_request(rq);
5532
5533 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5534 list_add_tail(&rq->queuelist, &bfqq->fifo);
5535
5536 bfq_rq_enqueued(bfqd, bfqq, rq);
5537 }
5538
5539 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5540 bool at_head)
5541 {
5542 struct request_queue *q = hctx->queue;
5543 struct bfq_data *bfqd = q->elevator->elevator_data;
5544
5545 spin_lock_irq(&bfqd->lock);
5546 if (blk_mq_sched_try_insert_merge(q, rq)) {
5547 spin_unlock_irq(&bfqd->lock);
5548 return;
5549 }
5550
5551 spin_unlock_irq(&bfqd->lock);
5552
5553 blk_mq_sched_request_inserted(rq);
5554
5555 spin_lock_irq(&bfqd->lock);
5556 if (at_head || blk_rq_is_passthrough(rq)) {
5557 if (at_head)
5558 list_add(&rq->queuelist, &bfqd->dispatch);
5559 else
5560 list_add_tail(&rq->queuelist, &bfqd->dispatch);
5561 } else {
5562 __bfq_insert_request(bfqd, rq);
5563
5564 if (rq_mergeable(rq)) {
5565 elv_rqhash_add(q, rq);
5566 if (!q->last_merge)
5567 q->last_merge = rq;
5568 }
5569 }
5570
5571 spin_unlock_irq(&bfqd->lock);
5572 }
5573
5574 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5575 struct list_head *list, bool at_head)
5576 {
5577 while (!list_empty(list)) {
5578 struct request *rq;
5579
5580 rq = list_first_entry(list, struct request, queuelist);
5581 list_del_init(&rq->queuelist);
5582 bfq_insert_request(hctx, rq, at_head);
5583 }
5584 }
5585
5586 static void bfq_update_hw_tag(struct bfq_data *bfqd)
5587 {
5588 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
5589 bfqd->rq_in_driver);
5590
5591 if (bfqd->hw_tag == 1)
5592 return;
5593
5594 /*
5595 * This sample is valid if the number of outstanding requests
5596 * is large enough to allow a queueing behavior. Note that the
5597 * sum is not exact, as it's not taking into account deactivated
5598 * requests.
5599 */
5600 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
5601 return;
5602
5603 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
5604 return;
5605
5606 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
5607 bfqd->max_rq_in_driver = 0;
5608 bfqd->hw_tag_samples = 0;
5609 }
5610
5611 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
5612 {
5613 u64 now_ns;
5614 u32 delta_us;
5615
5616 bfq_update_hw_tag(bfqd);
5617
5618 bfqd->rq_in_driver--;
5619 bfqq->dispatched--;
5620
5621 now_ns = ktime_get_ns();
5622
5623 bfqq->ttime.last_end_request = now_ns;
5624
5625 /*
5626 * Using us instead of ns, to get a reasonable precision in
5627 * computing rate in next check.
5628 */
5629 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
5630
5631 /*
5632 * If the request took rather long to complete, and, according
5633 * to the maximum request size recorded, this completion latency
5634 * implies that the request was certainly served at a very low
5635 * rate (less than 1M sectors/sec), then the whole observation
5636 * interval that lasts up to this time instant cannot be a
5637 * valid time interval for computing a new peak rate. Invoke
5638 * bfq_update_rate_reset to have the following three steps
5639 * taken:
5640 * - close the observation interval at the last (previous)
5641 * request dispatch or completion
5642 * - compute rate, if possible, for that observation interval
5643 * - reset to zero samples, which will trigger a proper
5644 * re-initialization of the observation interval on next
5645 * dispatch
5646 */
5647 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
5648 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
5649 1UL<<(BFQ_RATE_SHIFT - 10))
5650 bfq_update_rate_reset(bfqd, NULL);
5651 bfqd->last_completion = now_ns;
5652
5653 /*
5654 * If this is the in-service queue, check if it needs to be expired,
5655 * or if we want to idle in case it has no pending requests.
5656 */
5657 if (bfqd->in_service_queue == bfqq) {
5658 if (bfq_bfqq_budget_new(bfqq))
5659 bfq_set_budget_timeout(bfqd);
5660
5661 if (bfq_bfqq_must_idle(bfqq)) {
5662 bfq_arm_slice_timer(bfqd);
5663 return;
5664 } else if (bfq_may_expire_for_budg_timeout(bfqq))
5665 bfq_bfqq_expire(bfqd, bfqq, false,
5666 BFQQE_BUDGET_TIMEOUT);
5667 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
5668 (bfqq->dispatched == 0 ||
5669 !bfq_bfqq_may_idle(bfqq)))
5670 bfq_bfqq_expire(bfqd, bfqq, false,
5671 BFQQE_NO_MORE_REQUESTS);
5672 }
5673 }
5674
5675 static void bfq_put_rq_priv_body(struct bfq_queue *bfqq)
5676 {
5677 bfqq->allocated--;
5678
5679 bfq_put_queue(bfqq);
5680 }
5681
5682 static void bfq_put_rq_private(struct request_queue *q, struct request *rq)
5683 {
5684 struct bfq_queue *bfqq = RQ_BFQQ(rq);
5685 struct bfq_data *bfqd = bfqq->bfqd;
5686
5687 if (rq->rq_flags & RQF_STARTED)
5688 bfqg_stats_update_completion(bfqq_group(bfqq),
5689 rq_start_time_ns(rq),
5690 rq_io_start_time_ns(rq),
5691 rq->cmd_flags);
5692
5693 if (likely(rq->rq_flags & RQF_STARTED)) {
5694 unsigned long flags;
5695
5696 spin_lock_irqsave(&bfqd->lock, flags);
5697
5698 bfq_completed_request(bfqq, bfqd);
5699 bfq_put_rq_priv_body(bfqq);
5700
5701 spin_unlock_irqrestore(&bfqd->lock, flags);
5702 } else {
5703 /*
5704 * Request rq may be still/already in the scheduler,
5705 * in which case we need to remove it. And we cannot
5706 * defer such a check and removal, to avoid
5707 * inconsistencies in the time interval from the end
5708 * of this function to the start of the deferred work.
5709 * This situation seems to occur only in process
5710 * context, as a consequence of a merge. In the
5711 * current version of the code, this implies that the
5712 * lock is held.
5713 */
5714
5715 if (!RB_EMPTY_NODE(&rq->rb_node))
5716 bfq_remove_request(q, rq);
5717 bfq_put_rq_priv_body(bfqq);
5718 }
5719
5720 rq->elv.priv[0] = NULL;
5721 rq->elv.priv[1] = NULL;
5722 }
5723
5724 /*
5725 * Allocate bfq data structures associated with this request.
5726 */
5727 static int bfq_get_rq_private(struct request_queue *q, struct request *rq,
5728 struct bio *bio)
5729 {
5730 struct bfq_data *bfqd = q->elevator->elevator_data;
5731 struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
5732 const int is_sync = rq_is_sync(rq);
5733 struct bfq_queue *bfqq;
5734
5735 spin_lock_irq(&bfqd->lock);
5736
5737 bfq_check_ioprio_change(bic, bio);
5738
5739 if (!bic)
5740 goto queue_fail;
5741
5742 bfq_bic_update_cgroup(bic, bio);
5743
5744 bfqq = bic_to_bfqq(bic, is_sync);
5745 if (!bfqq || bfqq == &bfqd->oom_bfqq) {
5746 if (bfqq)
5747 bfq_put_queue(bfqq);
5748 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
5749 bic_set_bfqq(bic, bfqq, is_sync);
5750 }
5751
5752 bfqq->allocated++;
5753 bfqq->ref++;
5754 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5755 rq, bfqq, bfqq->ref);
5756
5757 rq->elv.priv[0] = bic;
5758 rq->elv.priv[1] = bfqq;
5759
5760 spin_unlock_irq(&bfqd->lock);
5761
5762 return 0;
5763
5764 queue_fail:
5765 spin_unlock_irq(&bfqd->lock);
5766
5767 return 1;
5768 }
5769
5770 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5771 {
5772 struct bfq_data *bfqd = bfqq->bfqd;
5773 enum bfqq_expiration reason;
5774 unsigned long flags;
5775
5776 spin_lock_irqsave(&bfqd->lock, flags);
5777 bfq_clear_bfqq_wait_request(bfqq);
5778
5779 if (bfqq != bfqd->in_service_queue) {
5780 spin_unlock_irqrestore(&bfqd->lock, flags);
5781 return;
5782 }
5783
5784 if (bfq_bfqq_budget_timeout(bfqq))
5785 /*
5786 * Also here the queue can be safely expired
5787 * for budget timeout without wasting
5788 * guarantees
5789 */
5790 reason = BFQQE_BUDGET_TIMEOUT;
5791 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5792 /*
5793 * The queue may not be empty upon timer expiration,
5794 * because we may not disable the timer when the
5795 * first request of the in-service queue arrives
5796 * during disk idling.
5797 */
5798 reason = BFQQE_TOO_IDLE;
5799 else
5800 goto schedule_dispatch;
5801
5802 bfq_bfqq_expire(bfqd, bfqq, true, reason);
5803
5804 schedule_dispatch:
5805 spin_unlock_irqrestore(&bfqd->lock, flags);
5806 bfq_schedule_dispatch(bfqd);
5807 }
5808
5809 /*
5810 * Handler of the expiration of the timer running if the in-service queue
5811 * is idling inside its time slice.
5812 */
5813 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5814 {
5815 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5816 idle_slice_timer);
5817 struct bfq_queue *bfqq = bfqd->in_service_queue;
5818
5819 /*
5820 * Theoretical race here: the in-service queue can be NULL or
5821 * different from the queue that was idling if a new request
5822 * arrives for the current queue and there is a full dispatch
5823 * cycle that changes the in-service queue. This can hardly
5824 * happen, but in the worst case we just expire a queue too
5825 * early.
5826 */
5827 if (bfqq)
5828 bfq_idle_slice_timer_body(bfqq);
5829
5830 return HRTIMER_NORESTART;
5831 }
5832
5833 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5834 struct bfq_queue **bfqq_ptr)
5835 {
5836 struct bfq_queue *bfqq = *bfqq_ptr;
5837
5838 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5839 if (bfqq) {
5840 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5841
5842 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5843 bfqq, bfqq->ref);
5844 bfq_put_queue(bfqq);
5845 *bfqq_ptr = NULL;
5846 }
5847 }
5848
5849 /*
5850 * Release all the bfqg references to its async queues. If we are
5851 * deallocating the group these queues may still contain requests, so
5852 * we reparent them to the root cgroup (i.e., the only one that will
5853 * exist for sure until all the requests on a device are gone).
5854 */
5855 static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
5856 {
5857 int i, j;
5858
5859 for (i = 0; i < 2; i++)
5860 for (j = 0; j < IOPRIO_BE_NR; j++)
5861 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
5862
5863 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
5864 }
5865
5866 static void bfq_exit_queue(struct elevator_queue *e)
5867 {
5868 struct bfq_data *bfqd = e->elevator_data;
5869 struct bfq_queue *bfqq, *n;
5870
5871 hrtimer_cancel(&bfqd->idle_slice_timer);
5872
5873 spin_lock_irq(&bfqd->lock);
5874 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
5875 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
5876 spin_unlock_irq(&bfqd->lock);
5877
5878 hrtimer_cancel(&bfqd->idle_slice_timer);
5879
5880 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5881 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5882 #else
5883 spin_lock_irq(&bfqd->lock);
5884 bfq_put_async_queues(bfqd, bfqd->root_group);
5885 kfree(bfqd->root_group);
5886 spin_unlock_irq(&bfqd->lock);
5887 #endif
5888
5889 kfree(bfqd);
5890 }
5891
5892 static void bfq_init_root_group(struct bfq_group *root_group,
5893 struct bfq_data *bfqd)
5894 {
5895 int i;
5896
5897 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5898 root_group->entity.parent = NULL;
5899 root_group->my_entity = NULL;
5900 root_group->bfqd = bfqd;
5901 #endif
5902 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5903 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5904 root_group->sched_data.bfq_class_idle_last_service = jiffies;
5905 }
5906
5907 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5908 {
5909 struct bfq_data *bfqd;
5910 struct elevator_queue *eq;
5911
5912 eq = elevator_alloc(q, e);
5913 if (!eq)
5914 return -ENOMEM;
5915
5916 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5917 if (!bfqd) {
5918 kobject_put(&eq->kobj);
5919 return -ENOMEM;
5920 }
5921 eq->elevator_data = bfqd;
5922
5923 spin_lock_irq(q->queue_lock);
5924 q->elevator = eq;
5925 spin_unlock_irq(q->queue_lock);
5926
5927 /*
5928 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5929 * Grab a permanent reference to it, so that the normal code flow
5930 * will not attempt to free it.
5931 */
5932 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5933 bfqd->oom_bfqq.ref++;
5934 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5935 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5936 bfqd->oom_bfqq.entity.new_weight =
5937 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
5938 /*
5939 * Trigger weight initialization, according to ioprio, at the
5940 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5941 * class won't be changed any more.
5942 */
5943 bfqd->oom_bfqq.entity.prio_changed = 1;
5944
5945 bfqd->queue = q;
5946
5947 INIT_LIST_HEAD(&bfqd->dispatch);
5948
5949 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5950 HRTIMER_MODE_REL);
5951 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5952
5953 INIT_LIST_HEAD(&bfqd->active_list);
5954 INIT_LIST_HEAD(&bfqd->idle_list);
5955
5956 bfqd->hw_tag = -1;
5957
5958 bfqd->bfq_max_budget = bfq_default_max_budget;
5959
5960 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5961 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5962 bfqd->bfq_back_max = bfq_back_max;
5963 bfqd->bfq_back_penalty = bfq_back_penalty;
5964 bfqd->bfq_slice_idle = bfq_slice_idle;
5965 bfqd->bfq_timeout = bfq_timeout;
5966
5967 bfqd->bfq_requests_within_timer = 120;
5968
5969 spin_lock_init(&bfqd->lock);
5970
5971 /*
5972 * The invocation of the next bfq_create_group_hierarchy
5973 * function is the head of a chain of function calls
5974 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5975 * blk_mq_freeze_queue) that may lead to the invocation of the
5976 * has_work hook function. For this reason,
5977 * bfq_create_group_hierarchy is invoked only after all
5978 * scheduler data has been initialized, apart from the fields
5979 * that can be initialized only after invoking
5980 * bfq_create_group_hierarchy. This, in particular, enables
5981 * has_work to correctly return false. Of course, to avoid
5982 * other inconsistencies, the blk-mq stack must then refrain
5983 * from invoking further scheduler hooks before this init
5984 * function is finished.
5985 */
5986 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5987 if (!bfqd->root_group)
5988 goto out_free;
5989 bfq_init_root_group(bfqd->root_group, bfqd);
5990 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5991
5992
5993 return 0;
5994
5995 out_free:
5996 kfree(bfqd);
5997 kobject_put(&eq->kobj);
5998 return -ENOMEM;
5999 }
6000
6001 static void bfq_slab_kill(void)
6002 {
6003 kmem_cache_destroy(bfq_pool);
6004 }
6005
6006 static int __init bfq_slab_setup(void)
6007 {
6008 bfq_pool = KMEM_CACHE(bfq_queue, 0);
6009 if (!bfq_pool)
6010 return -ENOMEM;
6011 return 0;
6012 }
6013
6014 static ssize_t bfq_var_show(unsigned int var, char *page)
6015 {
6016 return sprintf(page, "%u\n", var);
6017 }
6018
6019 static ssize_t bfq_var_store(unsigned long *var, const char *page,
6020 size_t count)
6021 {
6022 unsigned long new_val;
6023 int ret = kstrtoul(page, 10, &new_val);
6024
6025 if (ret == 0)
6026 *var = new_val;
6027
6028 return count;
6029 }
6030
6031 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
6032 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
6033 { \
6034 struct bfq_data *bfqd = e->elevator_data; \
6035 u64 __data = __VAR; \
6036 if (__CONV == 1) \
6037 __data = jiffies_to_msecs(__data); \
6038 else if (__CONV == 2) \
6039 __data = div_u64(__data, NSEC_PER_MSEC); \
6040 return bfq_var_show(__data, (page)); \
6041 }
6042 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
6043 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
6044 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
6045 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
6046 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
6047 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
6048 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
6049 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
6050 #undef SHOW_FUNCTION
6051
6052 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
6053 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
6054 { \
6055 struct bfq_data *bfqd = e->elevator_data; \
6056 u64 __data = __VAR; \
6057 __data = div_u64(__data, NSEC_PER_USEC); \
6058 return bfq_var_show(__data, (page)); \
6059 }
6060 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
6061 #undef USEC_SHOW_FUNCTION
6062
6063 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
6064 static ssize_t \
6065 __FUNC(struct elevator_queue *e, const char *page, size_t count) \
6066 { \
6067 struct bfq_data *bfqd = e->elevator_data; \
6068 unsigned long uninitialized_var(__data); \
6069 int ret = bfq_var_store(&__data, (page), count); \
6070 if (__data < (MIN)) \
6071 __data = (MIN); \
6072 else if (__data > (MAX)) \
6073 __data = (MAX); \
6074 if (__CONV == 1) \
6075 *(__PTR) = msecs_to_jiffies(__data); \
6076 else if (__CONV == 2) \
6077 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
6078 else \
6079 *(__PTR) = __data; \
6080 return ret; \
6081 }
6082 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
6083 INT_MAX, 2);
6084 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
6085 INT_MAX, 2);
6086 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
6087 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
6088 INT_MAX, 0);
6089 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
6090 #undef STORE_FUNCTION
6091
6092 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
6093 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
6094 { \
6095 struct bfq_data *bfqd = e->elevator_data; \
6096 unsigned long uninitialized_var(__data); \
6097 int ret = bfq_var_store(&__data, (page), count); \
6098 if (__data < (MIN)) \
6099 __data = (MIN); \
6100 else if (__data > (MAX)) \
6101 __data = (MAX); \
6102 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
6103 return ret; \
6104 }
6105 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
6106 UINT_MAX);
6107 #undef USEC_STORE_FUNCTION
6108
6109 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
6110 const char *page, size_t count)
6111 {
6112 struct bfq_data *bfqd = e->elevator_data;
6113 unsigned long uninitialized_var(__data);
6114 int ret = bfq_var_store(&__data, (page), count);
6115
6116 if (__data == 0)
6117 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6118 else {
6119 if (__data > INT_MAX)
6120 __data = INT_MAX;
6121 bfqd->bfq_max_budget = __data;
6122 }
6123
6124 bfqd->bfq_user_max_budget = __data;
6125
6126 return ret;
6127 }
6128
6129 /*
6130 * Leaving this name to preserve name compatibility with cfq
6131 * parameters, but this timeout is used for both sync and async.
6132 */
6133 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
6134 const char *page, size_t count)
6135 {
6136 struct bfq_data *bfqd = e->elevator_data;
6137 unsigned long uninitialized_var(__data);
6138 int ret = bfq_var_store(&__data, (page), count);
6139
6140 if (__data < 1)
6141 __data = 1;
6142 else if (__data > INT_MAX)
6143 __data = INT_MAX;
6144
6145 bfqd->bfq_timeout = msecs_to_jiffies(__data);
6146 if (bfqd->bfq_user_max_budget == 0)
6147 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6148
6149 return ret;
6150 }
6151
6152 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
6153 const char *page, size_t count)
6154 {
6155 struct bfq_data *bfqd = e->elevator_data;
6156 unsigned long uninitialized_var(__data);
6157 int ret = bfq_var_store(&__data, (page), count);
6158
6159 if (__data > 1)
6160 __data = 1;
6161 if (!bfqd->strict_guarantees && __data == 1
6162 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
6163 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
6164
6165 bfqd->strict_guarantees = __data;
6166
6167 return ret;
6168 }
6169
6170 #define BFQ_ATTR(name) \
6171 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
6172
6173 static struct elv_fs_entry bfq_attrs[] = {
6174 BFQ_ATTR(fifo_expire_sync),
6175 BFQ_ATTR(fifo_expire_async),
6176 BFQ_ATTR(back_seek_max),
6177 BFQ_ATTR(back_seek_penalty),
6178 BFQ_ATTR(slice_idle),
6179 BFQ_ATTR(slice_idle_us),
6180 BFQ_ATTR(max_budget),
6181 BFQ_ATTR(timeout_sync),
6182 BFQ_ATTR(strict_guarantees),
6183 __ATTR_NULL
6184 };
6185
6186 static struct elevator_type iosched_bfq_mq = {
6187 .ops.mq = {
6188 .get_rq_priv = bfq_get_rq_private,
6189 .put_rq_priv = bfq_put_rq_private,
6190 .exit_icq = bfq_exit_icq,
6191 .insert_requests = bfq_insert_requests,
6192 .dispatch_request = bfq_dispatch_request,
6193 .next_request = elv_rb_latter_request,
6194 .former_request = elv_rb_former_request,
6195 .allow_merge = bfq_allow_bio_merge,
6196 .bio_merge = bfq_bio_merge,
6197 .request_merge = bfq_request_merge,
6198 .requests_merged = bfq_requests_merged,
6199 .request_merged = bfq_request_merged,
6200 .has_work = bfq_has_work,
6201 .init_sched = bfq_init_queue,
6202 .exit_sched = bfq_exit_queue,
6203 },
6204
6205 .uses_mq = true,
6206 .icq_size = sizeof(struct bfq_io_cq),
6207 .icq_align = __alignof__(struct bfq_io_cq),
6208 .elevator_attrs = bfq_attrs,
6209 .elevator_name = "bfq",
6210 .elevator_owner = THIS_MODULE,
6211 };
6212
6213 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6214 static struct blkcg_policy blkcg_policy_bfq = {
6215 .dfl_cftypes = bfq_blkg_files,
6216 .legacy_cftypes = bfq_blkcg_legacy_files,
6217
6218 .cpd_alloc_fn = bfq_cpd_alloc,
6219 .cpd_init_fn = bfq_cpd_init,
6220 .cpd_bind_fn = bfq_cpd_init,
6221 .cpd_free_fn = bfq_cpd_free,
6222
6223 .pd_alloc_fn = bfq_pd_alloc,
6224 .pd_init_fn = bfq_pd_init,
6225 .pd_offline_fn = bfq_pd_offline,
6226 .pd_free_fn = bfq_pd_free,
6227 .pd_reset_stats_fn = bfq_pd_reset_stats,
6228 };
6229 #endif
6230
6231 static int __init bfq_init(void)
6232 {
6233 int ret;
6234
6235 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6236 ret = blkcg_policy_register(&blkcg_policy_bfq);
6237 if (ret)
6238 return ret;
6239 #endif
6240
6241 ret = -ENOMEM;
6242 if (bfq_slab_setup())
6243 goto err_pol_unreg;
6244
6245 ret = elv_register(&iosched_bfq_mq);
6246 if (ret)
6247 goto err_pol_unreg;
6248
6249 return 0;
6250
6251 err_pol_unreg:
6252 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6253 blkcg_policy_unregister(&blkcg_policy_bfq);
6254 #endif
6255 return ret;
6256 }
6257
6258 static void __exit bfq_exit(void)
6259 {
6260 elv_unregister(&iosched_bfq_mq);
6261 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6262 blkcg_policy_unregister(&blkcg_policy_bfq);
6263 #endif
6264 bfq_slab_kill();
6265 }
6266
6267 module_init(bfq_init);
6268 module_exit(bfq_exit);
6269
6270 MODULE_AUTHOR("Paolo Valente");
6271 MODULE_LICENSE("GPL");
6272 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");