]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/bio.c
UBUNTU: Ubuntu-snapdragon-4.4.0-1026.29
[mirror_ubuntu-zesty-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 /*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50
51 /*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125 }
126
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152 out:
153 mutex_unlock(&bio_slab_lock);
154 }
155
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 return bvec_slabs[idx].nr_vecs;
159 }
160
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172 }
173
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
176 {
177 struct bio_vec *bvl;
178
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 bvl = mempool_alloc(pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
215
216 /*
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
220 */
221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222
223 /*
224 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
225 * is set, retry with the 1-entry mempool
226 */
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
234 return bvl;
235 }
236
237 static void __bio_free(struct bio *bio)
238 {
239 bio_disassociate_task(bio);
240
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
243 }
244
245 static void bio_free(struct bio *bio)
246 {
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
253 if (bio_flagged(bio, BIO_OWNS_VEC))
254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
260 p -= bs->front_pad;
261
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
267 }
268
269 void bio_init(struct bio *bio)
270 {
271 memset(bio, 0, sizeof(*bio));
272 atomic_set(&bio->__bi_remaining, 1);
273 atomic_set(&bio->__bi_cnt, 1);
274 }
275 EXPORT_SYMBOL(bio_init);
276
277 /**
278 * bio_reset - reinitialize a bio
279 * @bio: bio to reset
280 *
281 * Description:
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
286 */
287 void bio_reset(struct bio *bio)
288 {
289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290
291 __bio_free(bio);
292
293 memset(bio, 0, BIO_RESET_BYTES);
294 bio->bi_flags = flags;
295 atomic_set(&bio->__bi_remaining, 1);
296 }
297 EXPORT_SYMBOL(bio_reset);
298
299 static void bio_chain_endio(struct bio *bio)
300 {
301 struct bio *parent = bio->bi_private;
302
303 parent->bi_error = bio->bi_error;
304 bio_endio(parent);
305 bio_put(bio);
306 }
307
308 /*
309 * Increment chain count for the bio. Make sure the CHAIN flag update
310 * is visible before the raised count.
311 */
312 static inline void bio_inc_remaining(struct bio *bio)
313 {
314 bio_set_flag(bio, BIO_CHAIN);
315 smp_mb__before_atomic();
316 atomic_inc(&bio->__bi_remaining);
317 }
318
319 /**
320 * bio_chain - chain bio completions
321 * @bio: the target bio
322 * @parent: the @bio's parent bio
323 *
324 * The caller won't have a bi_end_io called when @bio completes - instead,
325 * @parent's bi_end_io won't be called until both @parent and @bio have
326 * completed; the chained bio will also be freed when it completes.
327 *
328 * The caller must not set bi_private or bi_end_io in @bio.
329 */
330 void bio_chain(struct bio *bio, struct bio *parent)
331 {
332 BUG_ON(bio->bi_private || bio->bi_end_io);
333
334 bio->bi_private = parent;
335 bio->bi_end_io = bio_chain_endio;
336 bio_inc_remaining(parent);
337 }
338 EXPORT_SYMBOL(bio_chain);
339
340 static void bio_alloc_rescue(struct work_struct *work)
341 {
342 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
343 struct bio *bio;
344
345 while (1) {
346 spin_lock(&bs->rescue_lock);
347 bio = bio_list_pop(&bs->rescue_list);
348 spin_unlock(&bs->rescue_lock);
349
350 if (!bio)
351 break;
352
353 generic_make_request(bio);
354 }
355 }
356
357 static void punt_bios_to_rescuer(struct bio_set *bs)
358 {
359 struct bio_list punt, nopunt;
360 struct bio *bio;
361
362 /*
363 * In order to guarantee forward progress we must punt only bios that
364 * were allocated from this bio_set; otherwise, if there was a bio on
365 * there for a stacking driver higher up in the stack, processing it
366 * could require allocating bios from this bio_set, and doing that from
367 * our own rescuer would be bad.
368 *
369 * Since bio lists are singly linked, pop them all instead of trying to
370 * remove from the middle of the list:
371 */
372
373 bio_list_init(&punt);
374 bio_list_init(&nopunt);
375
376 while ((bio = bio_list_pop(&current->bio_list[0])))
377 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
378 current->bio_list[0] = nopunt;
379
380 bio_list_init(&nopunt);
381 while ((bio = bio_list_pop(&current->bio_list[1])))
382 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
383 current->bio_list[1] = nopunt;
384
385 spin_lock(&bs->rescue_lock);
386 bio_list_merge(&bs->rescue_list, &punt);
387 spin_unlock(&bs->rescue_lock);
388
389 queue_work(bs->rescue_workqueue, &bs->rescue_work);
390 }
391
392 /**
393 * bio_alloc_bioset - allocate a bio for I/O
394 * @gfp_mask: the GFP_ mask given to the slab allocator
395 * @nr_iovecs: number of iovecs to pre-allocate
396 * @bs: the bio_set to allocate from.
397 *
398 * Description:
399 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
400 * backed by the @bs's mempool.
401 *
402 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
403 * always be able to allocate a bio. This is due to the mempool guarantees.
404 * To make this work, callers must never allocate more than 1 bio at a time
405 * from this pool. Callers that need to allocate more than 1 bio must always
406 * submit the previously allocated bio for IO before attempting to allocate
407 * a new one. Failure to do so can cause deadlocks under memory pressure.
408 *
409 * Note that when running under generic_make_request() (i.e. any block
410 * driver), bios are not submitted until after you return - see the code in
411 * generic_make_request() that converts recursion into iteration, to prevent
412 * stack overflows.
413 *
414 * This would normally mean allocating multiple bios under
415 * generic_make_request() would be susceptible to deadlocks, but we have
416 * deadlock avoidance code that resubmits any blocked bios from a rescuer
417 * thread.
418 *
419 * However, we do not guarantee forward progress for allocations from other
420 * mempools. Doing multiple allocations from the same mempool under
421 * generic_make_request() should be avoided - instead, use bio_set's front_pad
422 * for per bio allocations.
423 *
424 * RETURNS:
425 * Pointer to new bio on success, NULL on failure.
426 */
427 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
428 {
429 gfp_t saved_gfp = gfp_mask;
430 unsigned front_pad;
431 unsigned inline_vecs;
432 unsigned long idx = BIO_POOL_NONE;
433 struct bio_vec *bvl = NULL;
434 struct bio *bio;
435 void *p;
436
437 if (!bs) {
438 if (nr_iovecs > UIO_MAXIOV)
439 return NULL;
440
441 p = kmalloc(sizeof(struct bio) +
442 nr_iovecs * sizeof(struct bio_vec),
443 gfp_mask);
444 front_pad = 0;
445 inline_vecs = nr_iovecs;
446 } else {
447 /* should not use nobvec bioset for nr_iovecs > 0 */
448 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
449 return NULL;
450 /*
451 * generic_make_request() converts recursion to iteration; this
452 * means if we're running beneath it, any bios we allocate and
453 * submit will not be submitted (and thus freed) until after we
454 * return.
455 *
456 * This exposes us to a potential deadlock if we allocate
457 * multiple bios from the same bio_set() while running
458 * underneath generic_make_request(). If we were to allocate
459 * multiple bios (say a stacking block driver that was splitting
460 * bios), we would deadlock if we exhausted the mempool's
461 * reserve.
462 *
463 * We solve this, and guarantee forward progress, with a rescuer
464 * workqueue per bio_set. If we go to allocate and there are
465 * bios on current->bio_list, we first try the allocation
466 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
467 * bios we would be blocking to the rescuer workqueue before
468 * we retry with the original gfp_flags.
469 */
470
471 if (current->bio_list &&
472 (!bio_list_empty(&current->bio_list[0]) ||
473 !bio_list_empty(&current->bio_list[1])))
474 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
475
476 p = mempool_alloc(bs->bio_pool, gfp_mask);
477 if (!p && gfp_mask != saved_gfp) {
478 punt_bios_to_rescuer(bs);
479 gfp_mask = saved_gfp;
480 p = mempool_alloc(bs->bio_pool, gfp_mask);
481 }
482
483 front_pad = bs->front_pad;
484 inline_vecs = BIO_INLINE_VECS;
485 }
486
487 if (unlikely(!p))
488 return NULL;
489
490 bio = p + front_pad;
491 bio_init(bio);
492
493 if (nr_iovecs > inline_vecs) {
494 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
495 if (!bvl && gfp_mask != saved_gfp) {
496 punt_bios_to_rescuer(bs);
497 gfp_mask = saved_gfp;
498 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
499 }
500
501 if (unlikely(!bvl))
502 goto err_free;
503
504 bio_set_flag(bio, BIO_OWNS_VEC);
505 } else if (nr_iovecs) {
506 bvl = bio->bi_inline_vecs;
507 }
508
509 bio->bi_pool = bs;
510 bio->bi_flags |= idx << BIO_POOL_OFFSET;
511 bio->bi_max_vecs = nr_iovecs;
512 bio->bi_io_vec = bvl;
513 return bio;
514
515 err_free:
516 mempool_free(p, bs->bio_pool);
517 return NULL;
518 }
519 EXPORT_SYMBOL(bio_alloc_bioset);
520
521 void zero_fill_bio(struct bio *bio)
522 {
523 unsigned long flags;
524 struct bio_vec bv;
525 struct bvec_iter iter;
526
527 bio_for_each_segment(bv, bio, iter) {
528 char *data = bvec_kmap_irq(&bv, &flags);
529 memset(data, 0, bv.bv_len);
530 flush_dcache_page(bv.bv_page);
531 bvec_kunmap_irq(data, &flags);
532 }
533 }
534 EXPORT_SYMBOL(zero_fill_bio);
535
536 /**
537 * bio_put - release a reference to a bio
538 * @bio: bio to release reference to
539 *
540 * Description:
541 * Put a reference to a &struct bio, either one you have gotten with
542 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
543 **/
544 void bio_put(struct bio *bio)
545 {
546 if (!bio_flagged(bio, BIO_REFFED))
547 bio_free(bio);
548 else {
549 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
550
551 /*
552 * last put frees it
553 */
554 if (atomic_dec_and_test(&bio->__bi_cnt))
555 bio_free(bio);
556 }
557 }
558 EXPORT_SYMBOL(bio_put);
559
560 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
561 {
562 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
563 blk_recount_segments(q, bio);
564
565 return bio->bi_phys_segments;
566 }
567 EXPORT_SYMBOL(bio_phys_segments);
568
569 /**
570 * __bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: destination bio
572 * @bio_src: bio to clone
573 *
574 * Clone a &bio. Caller will own the returned bio, but not
575 * the actual data it points to. Reference count of returned
576 * bio will be one.
577 *
578 * Caller must ensure that @bio_src is not freed before @bio.
579 */
580 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
581 {
582 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
583
584 /*
585 * most users will be overriding ->bi_bdev with a new target,
586 * so we don't set nor calculate new physical/hw segment counts here
587 */
588 bio->bi_bdev = bio_src->bi_bdev;
589 bio_set_flag(bio, BIO_CLONED);
590 bio->bi_rw = bio_src->bi_rw;
591 bio->bi_iter = bio_src->bi_iter;
592 bio->bi_io_vec = bio_src->bi_io_vec;
593
594 bio_clone_blkcg_association(bio, bio_src);
595 }
596 EXPORT_SYMBOL(__bio_clone_fast);
597
598 /**
599 * bio_clone_fast - clone a bio that shares the original bio's biovec
600 * @bio: bio to clone
601 * @gfp_mask: allocation priority
602 * @bs: bio_set to allocate from
603 *
604 * Like __bio_clone_fast, only also allocates the returned bio
605 */
606 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
607 {
608 struct bio *b;
609
610 b = bio_alloc_bioset(gfp_mask, 0, bs);
611 if (!b)
612 return NULL;
613
614 __bio_clone_fast(b, bio);
615
616 if (bio_integrity(bio)) {
617 int ret;
618
619 ret = bio_integrity_clone(b, bio, gfp_mask);
620
621 if (ret < 0) {
622 bio_put(b);
623 return NULL;
624 }
625 }
626
627 return b;
628 }
629 EXPORT_SYMBOL(bio_clone_fast);
630
631 /**
632 * bio_clone_bioset - clone a bio
633 * @bio_src: bio to clone
634 * @gfp_mask: allocation priority
635 * @bs: bio_set to allocate from
636 *
637 * Clone bio. Caller will own the returned bio, but not the actual data it
638 * points to. Reference count of returned bio will be one.
639 */
640 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
641 struct bio_set *bs)
642 {
643 struct bvec_iter iter;
644 struct bio_vec bv;
645 struct bio *bio;
646
647 /*
648 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
649 * bio_src->bi_io_vec to bio->bi_io_vec.
650 *
651 * We can't do that anymore, because:
652 *
653 * - The point of cloning the biovec is to produce a bio with a biovec
654 * the caller can modify: bi_idx and bi_bvec_done should be 0.
655 *
656 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
657 * we tried to clone the whole thing bio_alloc_bioset() would fail.
658 * But the clone should succeed as long as the number of biovecs we
659 * actually need to allocate is fewer than BIO_MAX_PAGES.
660 *
661 * - Lastly, bi_vcnt should not be looked at or relied upon by code
662 * that does not own the bio - reason being drivers don't use it for
663 * iterating over the biovec anymore, so expecting it to be kept up
664 * to date (i.e. for clones that share the parent biovec) is just
665 * asking for trouble and would force extra work on
666 * __bio_clone_fast() anyways.
667 */
668
669 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
670 if (!bio)
671 return NULL;
672
673 bio->bi_bdev = bio_src->bi_bdev;
674 bio->bi_rw = bio_src->bi_rw;
675 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
676 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
677
678 if (bio->bi_rw & REQ_DISCARD)
679 goto integrity_clone;
680
681 if (bio->bi_rw & REQ_WRITE_SAME) {
682 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
683 goto integrity_clone;
684 }
685
686 bio_for_each_segment(bv, bio_src, iter)
687 bio->bi_io_vec[bio->bi_vcnt++] = bv;
688
689 integrity_clone:
690 if (bio_integrity(bio_src)) {
691 int ret;
692
693 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
694 if (ret < 0) {
695 bio_put(bio);
696 return NULL;
697 }
698 }
699
700 bio_clone_blkcg_association(bio, bio_src);
701
702 return bio;
703 }
704 EXPORT_SYMBOL(bio_clone_bioset);
705
706 /**
707 * bio_add_pc_page - attempt to add page to bio
708 * @q: the target queue
709 * @bio: destination bio
710 * @page: page to add
711 * @len: vec entry length
712 * @offset: vec entry offset
713 *
714 * Attempt to add a page to the bio_vec maplist. This can fail for a
715 * number of reasons, such as the bio being full or target block device
716 * limitations. The target block device must allow bio's up to PAGE_SIZE,
717 * so it is always possible to add a single page to an empty bio.
718 *
719 * This should only be used by REQ_PC bios.
720 */
721 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
722 *page, unsigned int len, unsigned int offset)
723 {
724 int retried_segments = 0;
725 struct bio_vec *bvec;
726
727 /*
728 * cloned bio must not modify vec list
729 */
730 if (unlikely(bio_flagged(bio, BIO_CLONED)))
731 return 0;
732
733 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
734 return 0;
735
736 /*
737 * For filesystems with a blocksize smaller than the pagesize
738 * we will often be called with the same page as last time and
739 * a consecutive offset. Optimize this special case.
740 */
741 if (bio->bi_vcnt > 0) {
742 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
743
744 if (page == prev->bv_page &&
745 offset == prev->bv_offset + prev->bv_len) {
746 prev->bv_len += len;
747 bio->bi_iter.bi_size += len;
748 goto done;
749 }
750
751 /*
752 * If the queue doesn't support SG gaps and adding this
753 * offset would create a gap, disallow it.
754 */
755 if (bvec_gap_to_prev(q, prev, offset))
756 return 0;
757 }
758
759 if (bio->bi_vcnt >= bio->bi_max_vecs)
760 return 0;
761
762 /*
763 * setup the new entry, we might clear it again later if we
764 * cannot add the page
765 */
766 bvec = &bio->bi_io_vec[bio->bi_vcnt];
767 bvec->bv_page = page;
768 bvec->bv_len = len;
769 bvec->bv_offset = offset;
770 bio->bi_vcnt++;
771 bio->bi_phys_segments++;
772 bio->bi_iter.bi_size += len;
773
774 /*
775 * Perform a recount if the number of segments is greater
776 * than queue_max_segments(q).
777 */
778
779 while (bio->bi_phys_segments > queue_max_segments(q)) {
780
781 if (retried_segments)
782 goto failed;
783
784 retried_segments = 1;
785 blk_recount_segments(q, bio);
786 }
787
788 /* If we may be able to merge these biovecs, force a recount */
789 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
790 bio_clear_flag(bio, BIO_SEG_VALID);
791
792 done:
793 return len;
794
795 failed:
796 bvec->bv_page = NULL;
797 bvec->bv_len = 0;
798 bvec->bv_offset = 0;
799 bio->bi_vcnt--;
800 bio->bi_iter.bi_size -= len;
801 blk_recount_segments(q, bio);
802 return 0;
803 }
804 EXPORT_SYMBOL(bio_add_pc_page);
805
806 /**
807 * bio_add_page - attempt to add page to bio
808 * @bio: destination bio
809 * @page: page to add
810 * @len: vec entry length
811 * @offset: vec entry offset
812 *
813 * Attempt to add a page to the bio_vec maplist. This will only fail
814 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
815 */
816 int bio_add_page(struct bio *bio, struct page *page,
817 unsigned int len, unsigned int offset)
818 {
819 struct bio_vec *bv;
820
821 /*
822 * cloned bio must not modify vec list
823 */
824 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
825 return 0;
826
827 /*
828 * For filesystems with a blocksize smaller than the pagesize
829 * we will often be called with the same page as last time and
830 * a consecutive offset. Optimize this special case.
831 */
832 if (bio->bi_vcnt > 0) {
833 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
834
835 if (page == bv->bv_page &&
836 offset == bv->bv_offset + bv->bv_len) {
837 bv->bv_len += len;
838 goto done;
839 }
840 }
841
842 if (bio->bi_vcnt >= bio->bi_max_vecs)
843 return 0;
844
845 bv = &bio->bi_io_vec[bio->bi_vcnt];
846 bv->bv_page = page;
847 bv->bv_len = len;
848 bv->bv_offset = offset;
849
850 bio->bi_vcnt++;
851 done:
852 bio->bi_iter.bi_size += len;
853 return len;
854 }
855 EXPORT_SYMBOL(bio_add_page);
856
857 struct submit_bio_ret {
858 struct completion event;
859 int error;
860 };
861
862 static void submit_bio_wait_endio(struct bio *bio)
863 {
864 struct submit_bio_ret *ret = bio->bi_private;
865
866 ret->error = bio->bi_error;
867 complete(&ret->event);
868 }
869
870 /**
871 * submit_bio_wait - submit a bio, and wait until it completes
872 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
873 * @bio: The &struct bio which describes the I/O
874 *
875 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
876 * bio_endio() on failure.
877 */
878 int submit_bio_wait(int rw, struct bio *bio)
879 {
880 struct submit_bio_ret ret;
881
882 rw |= REQ_SYNC;
883 init_completion(&ret.event);
884 bio->bi_private = &ret;
885 bio->bi_end_io = submit_bio_wait_endio;
886 submit_bio(rw, bio);
887 wait_for_completion(&ret.event);
888
889 return ret.error;
890 }
891 EXPORT_SYMBOL(submit_bio_wait);
892
893 /**
894 * bio_advance - increment/complete a bio by some number of bytes
895 * @bio: bio to advance
896 * @bytes: number of bytes to complete
897 *
898 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
899 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
900 * be updated on the last bvec as well.
901 *
902 * @bio will then represent the remaining, uncompleted portion of the io.
903 */
904 void bio_advance(struct bio *bio, unsigned bytes)
905 {
906 if (bio_integrity(bio))
907 bio_integrity_advance(bio, bytes);
908
909 bio_advance_iter(bio, &bio->bi_iter, bytes);
910 }
911 EXPORT_SYMBOL(bio_advance);
912
913 /**
914 * bio_alloc_pages - allocates a single page for each bvec in a bio
915 * @bio: bio to allocate pages for
916 * @gfp_mask: flags for allocation
917 *
918 * Allocates pages up to @bio->bi_vcnt.
919 *
920 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
921 * freed.
922 */
923 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
924 {
925 int i;
926 struct bio_vec *bv;
927
928 bio_for_each_segment_all(bv, bio, i) {
929 bv->bv_page = alloc_page(gfp_mask);
930 if (!bv->bv_page) {
931 while (--bv >= bio->bi_io_vec)
932 __free_page(bv->bv_page);
933 return -ENOMEM;
934 }
935 }
936
937 return 0;
938 }
939 EXPORT_SYMBOL(bio_alloc_pages);
940
941 /**
942 * bio_copy_data - copy contents of data buffers from one chain of bios to
943 * another
944 * @src: source bio list
945 * @dst: destination bio list
946 *
947 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
948 * @src and @dst as linked lists of bios.
949 *
950 * Stops when it reaches the end of either @src or @dst - that is, copies
951 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
952 */
953 void bio_copy_data(struct bio *dst, struct bio *src)
954 {
955 struct bvec_iter src_iter, dst_iter;
956 struct bio_vec src_bv, dst_bv;
957 void *src_p, *dst_p;
958 unsigned bytes;
959
960 src_iter = src->bi_iter;
961 dst_iter = dst->bi_iter;
962
963 while (1) {
964 if (!src_iter.bi_size) {
965 src = src->bi_next;
966 if (!src)
967 break;
968
969 src_iter = src->bi_iter;
970 }
971
972 if (!dst_iter.bi_size) {
973 dst = dst->bi_next;
974 if (!dst)
975 break;
976
977 dst_iter = dst->bi_iter;
978 }
979
980 src_bv = bio_iter_iovec(src, src_iter);
981 dst_bv = bio_iter_iovec(dst, dst_iter);
982
983 bytes = min(src_bv.bv_len, dst_bv.bv_len);
984
985 src_p = kmap_atomic(src_bv.bv_page);
986 dst_p = kmap_atomic(dst_bv.bv_page);
987
988 memcpy(dst_p + dst_bv.bv_offset,
989 src_p + src_bv.bv_offset,
990 bytes);
991
992 kunmap_atomic(dst_p);
993 kunmap_atomic(src_p);
994
995 bio_advance_iter(src, &src_iter, bytes);
996 bio_advance_iter(dst, &dst_iter, bytes);
997 }
998 }
999 EXPORT_SYMBOL(bio_copy_data);
1000
1001 struct bio_map_data {
1002 int is_our_pages;
1003 struct iov_iter iter;
1004 struct iovec iov[];
1005 };
1006
1007 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1008 gfp_t gfp_mask)
1009 {
1010 if (iov_count > UIO_MAXIOV)
1011 return NULL;
1012
1013 return kmalloc(sizeof(struct bio_map_data) +
1014 sizeof(struct iovec) * iov_count, gfp_mask);
1015 }
1016
1017 /**
1018 * bio_copy_from_iter - copy all pages from iov_iter to bio
1019 * @bio: The &struct bio which describes the I/O as destination
1020 * @iter: iov_iter as source
1021 *
1022 * Copy all pages from iov_iter to bio.
1023 * Returns 0 on success, or error on failure.
1024 */
1025 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1026 {
1027 int i;
1028 struct bio_vec *bvec;
1029
1030 bio_for_each_segment_all(bvec, bio, i) {
1031 ssize_t ret;
1032
1033 ret = copy_page_from_iter(bvec->bv_page,
1034 bvec->bv_offset,
1035 bvec->bv_len,
1036 &iter);
1037
1038 if (!iov_iter_count(&iter))
1039 break;
1040
1041 if (ret < bvec->bv_len)
1042 return -EFAULT;
1043 }
1044
1045 return 0;
1046 }
1047
1048 /**
1049 * bio_copy_to_iter - copy all pages from bio to iov_iter
1050 * @bio: The &struct bio which describes the I/O as source
1051 * @iter: iov_iter as destination
1052 *
1053 * Copy all pages from bio to iov_iter.
1054 * Returns 0 on success, or error on failure.
1055 */
1056 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1057 {
1058 int i;
1059 struct bio_vec *bvec;
1060
1061 bio_for_each_segment_all(bvec, bio, i) {
1062 ssize_t ret;
1063
1064 ret = copy_page_to_iter(bvec->bv_page,
1065 bvec->bv_offset,
1066 bvec->bv_len,
1067 &iter);
1068
1069 if (!iov_iter_count(&iter))
1070 break;
1071
1072 if (ret < bvec->bv_len)
1073 return -EFAULT;
1074 }
1075
1076 return 0;
1077 }
1078
1079 static void bio_free_pages(struct bio *bio)
1080 {
1081 struct bio_vec *bvec;
1082 int i;
1083
1084 bio_for_each_segment_all(bvec, bio, i)
1085 __free_page(bvec->bv_page);
1086 }
1087
1088 /**
1089 * bio_uncopy_user - finish previously mapped bio
1090 * @bio: bio being terminated
1091 *
1092 * Free pages allocated from bio_copy_user_iov() and write back data
1093 * to user space in case of a read.
1094 */
1095 int bio_uncopy_user(struct bio *bio)
1096 {
1097 struct bio_map_data *bmd = bio->bi_private;
1098 int ret = 0;
1099
1100 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1101 /*
1102 * if we're in a workqueue, the request is orphaned, so
1103 * don't copy into a random user address space, just free
1104 * and return -EINTR so user space doesn't expect any data.
1105 */
1106 if (!current->mm)
1107 ret = -EINTR;
1108 else if (bio_data_dir(bio) == READ)
1109 ret = bio_copy_to_iter(bio, bmd->iter);
1110 if (bmd->is_our_pages)
1111 bio_free_pages(bio);
1112 }
1113 kfree(bmd);
1114 bio_put(bio);
1115 return ret;
1116 }
1117 EXPORT_SYMBOL(bio_uncopy_user);
1118
1119 /**
1120 * bio_copy_user_iov - copy user data to bio
1121 * @q: destination block queue
1122 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1123 * @iter: iovec iterator
1124 * @gfp_mask: memory allocation flags
1125 *
1126 * Prepares and returns a bio for indirect user io, bouncing data
1127 * to/from kernel pages as necessary. Must be paired with
1128 * call bio_uncopy_user() on io completion.
1129 */
1130 struct bio *bio_copy_user_iov(struct request_queue *q,
1131 struct rq_map_data *map_data,
1132 const struct iov_iter *iter,
1133 gfp_t gfp_mask)
1134 {
1135 struct bio_map_data *bmd;
1136 struct page *page;
1137 struct bio *bio;
1138 int i, ret;
1139 int nr_pages = 0;
1140 unsigned int len = iter->count;
1141 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1142
1143 for (i = 0; i < iter->nr_segs; i++) {
1144 unsigned long uaddr;
1145 unsigned long end;
1146 unsigned long start;
1147
1148 uaddr = (unsigned long) iter->iov[i].iov_base;
1149 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1150 >> PAGE_SHIFT;
1151 start = uaddr >> PAGE_SHIFT;
1152
1153 /*
1154 * Overflow, abort
1155 */
1156 if (end < start)
1157 return ERR_PTR(-EINVAL);
1158
1159 nr_pages += end - start;
1160 }
1161
1162 if (offset)
1163 nr_pages++;
1164
1165 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1166 if (!bmd)
1167 return ERR_PTR(-ENOMEM);
1168
1169 /*
1170 * We need to do a deep copy of the iov_iter including the iovecs.
1171 * The caller provided iov might point to an on-stack or otherwise
1172 * shortlived one.
1173 */
1174 bmd->is_our_pages = map_data ? 0 : 1;
1175 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1176 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1177 iter->nr_segs, iter->count);
1178
1179 ret = -ENOMEM;
1180 bio = bio_kmalloc(gfp_mask, nr_pages);
1181 if (!bio)
1182 goto out_bmd;
1183
1184 if (iter->type & WRITE)
1185 bio->bi_rw |= REQ_WRITE;
1186
1187 ret = 0;
1188
1189 if (map_data) {
1190 nr_pages = 1 << map_data->page_order;
1191 i = map_data->offset / PAGE_SIZE;
1192 }
1193 while (len) {
1194 unsigned int bytes = PAGE_SIZE;
1195
1196 bytes -= offset;
1197
1198 if (bytes > len)
1199 bytes = len;
1200
1201 if (map_data) {
1202 if (i == map_data->nr_entries * nr_pages) {
1203 ret = -ENOMEM;
1204 break;
1205 }
1206
1207 page = map_data->pages[i / nr_pages];
1208 page += (i % nr_pages);
1209
1210 i++;
1211 } else {
1212 page = alloc_page(q->bounce_gfp | gfp_mask);
1213 if (!page) {
1214 ret = -ENOMEM;
1215 break;
1216 }
1217 }
1218
1219 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1220 break;
1221
1222 len -= bytes;
1223 offset = 0;
1224 }
1225
1226 if (ret)
1227 goto cleanup;
1228
1229 /*
1230 * success
1231 */
1232 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1233 (map_data && map_data->from_user)) {
1234 ret = bio_copy_from_iter(bio, *iter);
1235 if (ret)
1236 goto cleanup;
1237 }
1238
1239 bio->bi_private = bmd;
1240 return bio;
1241 cleanup:
1242 if (!map_data)
1243 bio_free_pages(bio);
1244 bio_put(bio);
1245 out_bmd:
1246 kfree(bmd);
1247 return ERR_PTR(ret);
1248 }
1249
1250 /**
1251 * bio_map_user_iov - map user iovec into bio
1252 * @q: the struct request_queue for the bio
1253 * @iter: iovec iterator
1254 * @gfp_mask: memory allocation flags
1255 *
1256 * Map the user space address into a bio suitable for io to a block
1257 * device. Returns an error pointer in case of error.
1258 */
1259 struct bio *bio_map_user_iov(struct request_queue *q,
1260 const struct iov_iter *iter,
1261 gfp_t gfp_mask)
1262 {
1263 int j;
1264 int nr_pages = 0;
1265 struct page **pages;
1266 struct bio *bio;
1267 int cur_page = 0;
1268 int ret, offset;
1269 struct iov_iter i;
1270 struct iovec iov;
1271
1272 iov_for_each(iov, i, *iter) {
1273 unsigned long uaddr = (unsigned long) iov.iov_base;
1274 unsigned long len = iov.iov_len;
1275 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1276 unsigned long start = uaddr >> PAGE_SHIFT;
1277
1278 /*
1279 * Overflow, abort
1280 */
1281 if (end < start)
1282 return ERR_PTR(-EINVAL);
1283
1284 nr_pages += end - start;
1285 /*
1286 * buffer must be aligned to at least hardsector size for now
1287 */
1288 if (uaddr & queue_dma_alignment(q))
1289 return ERR_PTR(-EINVAL);
1290 }
1291
1292 if (!nr_pages)
1293 return ERR_PTR(-EINVAL);
1294
1295 bio = bio_kmalloc(gfp_mask, nr_pages);
1296 if (!bio)
1297 return ERR_PTR(-ENOMEM);
1298
1299 ret = -ENOMEM;
1300 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1301 if (!pages)
1302 goto out;
1303
1304 iov_for_each(iov, i, *iter) {
1305 unsigned long uaddr = (unsigned long) iov.iov_base;
1306 unsigned long len = iov.iov_len;
1307 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1308 unsigned long start = uaddr >> PAGE_SHIFT;
1309 const int local_nr_pages = end - start;
1310 const int page_limit = cur_page + local_nr_pages;
1311
1312 ret = get_user_pages_fast(uaddr, local_nr_pages,
1313 (iter->type & WRITE) != WRITE,
1314 &pages[cur_page]);
1315 if (ret < local_nr_pages) {
1316 ret = -EFAULT;
1317 goto out_unmap;
1318 }
1319
1320 offset = uaddr & ~PAGE_MASK;
1321 for (j = cur_page; j < page_limit; j++) {
1322 unsigned int bytes = PAGE_SIZE - offset;
1323
1324 if (len <= 0)
1325 break;
1326
1327 if (bytes > len)
1328 bytes = len;
1329
1330 /*
1331 * sorry...
1332 */
1333 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1334 bytes)
1335 break;
1336
1337 len -= bytes;
1338 offset = 0;
1339 }
1340
1341 cur_page = j;
1342 /*
1343 * release the pages we didn't map into the bio, if any
1344 */
1345 while (j < page_limit)
1346 page_cache_release(pages[j++]);
1347 }
1348
1349 kfree(pages);
1350
1351 /*
1352 * set data direction, and check if mapped pages need bouncing
1353 */
1354 if (iter->type & WRITE)
1355 bio->bi_rw |= REQ_WRITE;
1356
1357 bio_set_flag(bio, BIO_USER_MAPPED);
1358
1359 /*
1360 * subtle -- if __bio_map_user() ended up bouncing a bio,
1361 * it would normally disappear when its bi_end_io is run.
1362 * however, we need it for the unmap, so grab an extra
1363 * reference to it
1364 */
1365 bio_get(bio);
1366 return bio;
1367
1368 out_unmap:
1369 for (j = 0; j < nr_pages; j++) {
1370 if (!pages[j])
1371 break;
1372 page_cache_release(pages[j]);
1373 }
1374 out:
1375 kfree(pages);
1376 bio_put(bio);
1377 return ERR_PTR(ret);
1378 }
1379
1380 static void __bio_unmap_user(struct bio *bio)
1381 {
1382 struct bio_vec *bvec;
1383 int i;
1384
1385 /*
1386 * make sure we dirty pages we wrote to
1387 */
1388 bio_for_each_segment_all(bvec, bio, i) {
1389 if (bio_data_dir(bio) == READ)
1390 set_page_dirty_lock(bvec->bv_page);
1391
1392 page_cache_release(bvec->bv_page);
1393 }
1394
1395 bio_put(bio);
1396 }
1397
1398 /**
1399 * bio_unmap_user - unmap a bio
1400 * @bio: the bio being unmapped
1401 *
1402 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1403 * a process context.
1404 *
1405 * bio_unmap_user() may sleep.
1406 */
1407 void bio_unmap_user(struct bio *bio)
1408 {
1409 __bio_unmap_user(bio);
1410 bio_put(bio);
1411 }
1412 EXPORT_SYMBOL(bio_unmap_user);
1413
1414 static void bio_map_kern_endio(struct bio *bio)
1415 {
1416 bio_put(bio);
1417 }
1418
1419 /**
1420 * bio_map_kern - map kernel address into bio
1421 * @q: the struct request_queue for the bio
1422 * @data: pointer to buffer to map
1423 * @len: length in bytes
1424 * @gfp_mask: allocation flags for bio allocation
1425 *
1426 * Map the kernel address into a bio suitable for io to a block
1427 * device. Returns an error pointer in case of error.
1428 */
1429 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1430 gfp_t gfp_mask)
1431 {
1432 unsigned long kaddr = (unsigned long)data;
1433 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1434 unsigned long start = kaddr >> PAGE_SHIFT;
1435 const int nr_pages = end - start;
1436 int offset, i;
1437 struct bio *bio;
1438
1439 bio = bio_kmalloc(gfp_mask, nr_pages);
1440 if (!bio)
1441 return ERR_PTR(-ENOMEM);
1442
1443 offset = offset_in_page(kaddr);
1444 for (i = 0; i < nr_pages; i++) {
1445 unsigned int bytes = PAGE_SIZE - offset;
1446
1447 if (len <= 0)
1448 break;
1449
1450 if (bytes > len)
1451 bytes = len;
1452
1453 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1454 offset) < bytes) {
1455 /* we don't support partial mappings */
1456 bio_put(bio);
1457 return ERR_PTR(-EINVAL);
1458 }
1459
1460 data += bytes;
1461 len -= bytes;
1462 offset = 0;
1463 }
1464
1465 bio->bi_end_io = bio_map_kern_endio;
1466 return bio;
1467 }
1468 EXPORT_SYMBOL(bio_map_kern);
1469
1470 static void bio_copy_kern_endio(struct bio *bio)
1471 {
1472 bio_free_pages(bio);
1473 bio_put(bio);
1474 }
1475
1476 static void bio_copy_kern_endio_read(struct bio *bio)
1477 {
1478 char *p = bio->bi_private;
1479 struct bio_vec *bvec;
1480 int i;
1481
1482 bio_for_each_segment_all(bvec, bio, i) {
1483 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1484 p += bvec->bv_len;
1485 }
1486
1487 bio_copy_kern_endio(bio);
1488 }
1489
1490 /**
1491 * bio_copy_kern - copy kernel address into bio
1492 * @q: the struct request_queue for the bio
1493 * @data: pointer to buffer to copy
1494 * @len: length in bytes
1495 * @gfp_mask: allocation flags for bio and page allocation
1496 * @reading: data direction is READ
1497 *
1498 * copy the kernel address into a bio suitable for io to a block
1499 * device. Returns an error pointer in case of error.
1500 */
1501 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1502 gfp_t gfp_mask, int reading)
1503 {
1504 unsigned long kaddr = (unsigned long)data;
1505 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1506 unsigned long start = kaddr >> PAGE_SHIFT;
1507 struct bio *bio;
1508 void *p = data;
1509 int nr_pages = 0;
1510
1511 /*
1512 * Overflow, abort
1513 */
1514 if (end < start)
1515 return ERR_PTR(-EINVAL);
1516
1517 nr_pages = end - start;
1518 bio = bio_kmalloc(gfp_mask, nr_pages);
1519 if (!bio)
1520 return ERR_PTR(-ENOMEM);
1521
1522 while (len) {
1523 struct page *page;
1524 unsigned int bytes = PAGE_SIZE;
1525
1526 if (bytes > len)
1527 bytes = len;
1528
1529 page = alloc_page(q->bounce_gfp | gfp_mask);
1530 if (!page)
1531 goto cleanup;
1532
1533 if (!reading)
1534 memcpy(page_address(page), p, bytes);
1535
1536 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1537 break;
1538
1539 len -= bytes;
1540 p += bytes;
1541 }
1542
1543 if (reading) {
1544 bio->bi_end_io = bio_copy_kern_endio_read;
1545 bio->bi_private = data;
1546 } else {
1547 bio->bi_end_io = bio_copy_kern_endio;
1548 bio->bi_rw |= REQ_WRITE;
1549 }
1550
1551 return bio;
1552
1553 cleanup:
1554 bio_free_pages(bio);
1555 bio_put(bio);
1556 return ERR_PTR(-ENOMEM);
1557 }
1558 EXPORT_SYMBOL(bio_copy_kern);
1559
1560 /*
1561 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1562 * for performing direct-IO in BIOs.
1563 *
1564 * The problem is that we cannot run set_page_dirty() from interrupt context
1565 * because the required locks are not interrupt-safe. So what we can do is to
1566 * mark the pages dirty _before_ performing IO. And in interrupt context,
1567 * check that the pages are still dirty. If so, fine. If not, redirty them
1568 * in process context.
1569 *
1570 * We special-case compound pages here: normally this means reads into hugetlb
1571 * pages. The logic in here doesn't really work right for compound pages
1572 * because the VM does not uniformly chase down the head page in all cases.
1573 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1574 * handle them at all. So we skip compound pages here at an early stage.
1575 *
1576 * Note that this code is very hard to test under normal circumstances because
1577 * direct-io pins the pages with get_user_pages(). This makes
1578 * is_page_cache_freeable return false, and the VM will not clean the pages.
1579 * But other code (eg, flusher threads) could clean the pages if they are mapped
1580 * pagecache.
1581 *
1582 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1583 * deferred bio dirtying paths.
1584 */
1585
1586 /*
1587 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1588 */
1589 void bio_set_pages_dirty(struct bio *bio)
1590 {
1591 struct bio_vec *bvec;
1592 int i;
1593
1594 bio_for_each_segment_all(bvec, bio, i) {
1595 struct page *page = bvec->bv_page;
1596
1597 if (page && !PageCompound(page))
1598 set_page_dirty_lock(page);
1599 }
1600 }
1601
1602 static void bio_release_pages(struct bio *bio)
1603 {
1604 struct bio_vec *bvec;
1605 int i;
1606
1607 bio_for_each_segment_all(bvec, bio, i) {
1608 struct page *page = bvec->bv_page;
1609
1610 if (page)
1611 put_page(page);
1612 }
1613 }
1614
1615 /*
1616 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1617 * If they are, then fine. If, however, some pages are clean then they must
1618 * have been written out during the direct-IO read. So we take another ref on
1619 * the BIO and the offending pages and re-dirty the pages in process context.
1620 *
1621 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1622 * here on. It will run one page_cache_release() against each page and will
1623 * run one bio_put() against the BIO.
1624 */
1625
1626 static void bio_dirty_fn(struct work_struct *work);
1627
1628 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1629 static DEFINE_SPINLOCK(bio_dirty_lock);
1630 static struct bio *bio_dirty_list;
1631
1632 /*
1633 * This runs in process context
1634 */
1635 static void bio_dirty_fn(struct work_struct *work)
1636 {
1637 unsigned long flags;
1638 struct bio *bio;
1639
1640 spin_lock_irqsave(&bio_dirty_lock, flags);
1641 bio = bio_dirty_list;
1642 bio_dirty_list = NULL;
1643 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1644
1645 while (bio) {
1646 struct bio *next = bio->bi_private;
1647
1648 bio_set_pages_dirty(bio);
1649 bio_release_pages(bio);
1650 bio_put(bio);
1651 bio = next;
1652 }
1653 }
1654
1655 void bio_check_pages_dirty(struct bio *bio)
1656 {
1657 struct bio_vec *bvec;
1658 int nr_clean_pages = 0;
1659 int i;
1660
1661 bio_for_each_segment_all(bvec, bio, i) {
1662 struct page *page = bvec->bv_page;
1663
1664 if (PageDirty(page) || PageCompound(page)) {
1665 page_cache_release(page);
1666 bvec->bv_page = NULL;
1667 } else {
1668 nr_clean_pages++;
1669 }
1670 }
1671
1672 if (nr_clean_pages) {
1673 unsigned long flags;
1674
1675 spin_lock_irqsave(&bio_dirty_lock, flags);
1676 bio->bi_private = bio_dirty_list;
1677 bio_dirty_list = bio;
1678 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1679 schedule_work(&bio_dirty_work);
1680 } else {
1681 bio_put(bio);
1682 }
1683 }
1684
1685 void generic_start_io_acct(int rw, unsigned long sectors,
1686 struct hd_struct *part)
1687 {
1688 int cpu = part_stat_lock();
1689
1690 part_round_stats(cpu, part);
1691 part_stat_inc(cpu, part, ios[rw]);
1692 part_stat_add(cpu, part, sectors[rw], sectors);
1693 part_inc_in_flight(part, rw);
1694
1695 part_stat_unlock();
1696 }
1697 EXPORT_SYMBOL(generic_start_io_acct);
1698
1699 void generic_end_io_acct(int rw, struct hd_struct *part,
1700 unsigned long start_time)
1701 {
1702 unsigned long duration = jiffies - start_time;
1703 int cpu = part_stat_lock();
1704
1705 part_stat_add(cpu, part, ticks[rw], duration);
1706 part_round_stats(cpu, part);
1707 part_dec_in_flight(part, rw);
1708
1709 part_stat_unlock();
1710 }
1711 EXPORT_SYMBOL(generic_end_io_acct);
1712
1713 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1714 void bio_flush_dcache_pages(struct bio *bi)
1715 {
1716 struct bio_vec bvec;
1717 struct bvec_iter iter;
1718
1719 bio_for_each_segment(bvec, bi, iter)
1720 flush_dcache_page(bvec.bv_page);
1721 }
1722 EXPORT_SYMBOL(bio_flush_dcache_pages);
1723 #endif
1724
1725 static inline bool bio_remaining_done(struct bio *bio)
1726 {
1727 /*
1728 * If we're not chaining, then ->__bi_remaining is always 1 and
1729 * we always end io on the first invocation.
1730 */
1731 if (!bio_flagged(bio, BIO_CHAIN))
1732 return true;
1733
1734 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1735
1736 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1737 bio_clear_flag(bio, BIO_CHAIN);
1738 return true;
1739 }
1740
1741 return false;
1742 }
1743
1744 /**
1745 * bio_endio - end I/O on a bio
1746 * @bio: bio
1747 *
1748 * Description:
1749 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1750 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1751 * bio unless they own it and thus know that it has an end_io function.
1752 **/
1753 void bio_endio(struct bio *bio)
1754 {
1755 while (bio) {
1756 if (unlikely(!bio_remaining_done(bio)))
1757 break;
1758
1759 /*
1760 * Need to have a real endio function for chained bios,
1761 * otherwise various corner cases will break (like stacking
1762 * block devices that save/restore bi_end_io) - however, we want
1763 * to avoid unbounded recursion and blowing the stack. Tail call
1764 * optimization would handle this, but compiling with frame
1765 * pointers also disables gcc's sibling call optimization.
1766 */
1767 if (bio->bi_end_io == bio_chain_endio) {
1768 struct bio *parent = bio->bi_private;
1769 parent->bi_error = bio->bi_error;
1770 bio_put(bio);
1771 bio = parent;
1772 } else {
1773 if (bio->bi_end_io)
1774 bio->bi_end_io(bio);
1775 bio = NULL;
1776 }
1777 }
1778 }
1779 EXPORT_SYMBOL(bio_endio);
1780
1781 /**
1782 * bio_split - split a bio
1783 * @bio: bio to split
1784 * @sectors: number of sectors to split from the front of @bio
1785 * @gfp: gfp mask
1786 * @bs: bio set to allocate from
1787 *
1788 * Allocates and returns a new bio which represents @sectors from the start of
1789 * @bio, and updates @bio to represent the remaining sectors.
1790 *
1791 * Unless this is a discard request the newly allocated bio will point
1792 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1793 * @bio is not freed before the split.
1794 */
1795 struct bio *bio_split(struct bio *bio, int sectors,
1796 gfp_t gfp, struct bio_set *bs)
1797 {
1798 struct bio *split = NULL;
1799
1800 BUG_ON(sectors <= 0);
1801 BUG_ON(sectors >= bio_sectors(bio));
1802
1803 /*
1804 * Discards need a mutable bio_vec to accommodate the payload
1805 * required by the DSM TRIM and UNMAP commands.
1806 */
1807 if (bio->bi_rw & REQ_DISCARD)
1808 split = bio_clone_bioset(bio, gfp, bs);
1809 else
1810 split = bio_clone_fast(bio, gfp, bs);
1811
1812 if (!split)
1813 return NULL;
1814
1815 split->bi_iter.bi_size = sectors << 9;
1816
1817 if (bio_integrity(split))
1818 bio_integrity_trim(split, 0, sectors);
1819
1820 bio_advance(bio, split->bi_iter.bi_size);
1821
1822 return split;
1823 }
1824 EXPORT_SYMBOL(bio_split);
1825
1826 /**
1827 * bio_trim - trim a bio
1828 * @bio: bio to trim
1829 * @offset: number of sectors to trim from the front of @bio
1830 * @size: size we want to trim @bio to, in sectors
1831 */
1832 void bio_trim(struct bio *bio, int offset, int size)
1833 {
1834 /* 'bio' is a cloned bio which we need to trim to match
1835 * the given offset and size.
1836 */
1837
1838 size <<= 9;
1839 if (offset == 0 && size == bio->bi_iter.bi_size)
1840 return;
1841
1842 bio_clear_flag(bio, BIO_SEG_VALID);
1843
1844 bio_advance(bio, offset << 9);
1845
1846 bio->bi_iter.bi_size = size;
1847 }
1848 EXPORT_SYMBOL_GPL(bio_trim);
1849
1850 /*
1851 * create memory pools for biovec's in a bio_set.
1852 * use the global biovec slabs created for general use.
1853 */
1854 mempool_t *biovec_create_pool(int pool_entries)
1855 {
1856 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1857
1858 return mempool_create_slab_pool(pool_entries, bp->slab);
1859 }
1860
1861 void bioset_free(struct bio_set *bs)
1862 {
1863 if (bs->rescue_workqueue)
1864 destroy_workqueue(bs->rescue_workqueue);
1865
1866 if (bs->bio_pool)
1867 mempool_destroy(bs->bio_pool);
1868
1869 if (bs->bvec_pool)
1870 mempool_destroy(bs->bvec_pool);
1871
1872 bioset_integrity_free(bs);
1873 bio_put_slab(bs);
1874
1875 kfree(bs);
1876 }
1877 EXPORT_SYMBOL(bioset_free);
1878
1879 static struct bio_set *__bioset_create(unsigned int pool_size,
1880 unsigned int front_pad,
1881 bool create_bvec_pool)
1882 {
1883 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1884 struct bio_set *bs;
1885
1886 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1887 if (!bs)
1888 return NULL;
1889
1890 bs->front_pad = front_pad;
1891
1892 spin_lock_init(&bs->rescue_lock);
1893 bio_list_init(&bs->rescue_list);
1894 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1895
1896 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1897 if (!bs->bio_slab) {
1898 kfree(bs);
1899 return NULL;
1900 }
1901
1902 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1903 if (!bs->bio_pool)
1904 goto bad;
1905
1906 if (create_bvec_pool) {
1907 bs->bvec_pool = biovec_create_pool(pool_size);
1908 if (!bs->bvec_pool)
1909 goto bad;
1910 }
1911
1912 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1913 if (!bs->rescue_workqueue)
1914 goto bad;
1915
1916 return bs;
1917 bad:
1918 bioset_free(bs);
1919 return NULL;
1920 }
1921
1922 /**
1923 * bioset_create - Create a bio_set
1924 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1925 * @front_pad: Number of bytes to allocate in front of the returned bio
1926 *
1927 * Description:
1928 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1929 * to ask for a number of bytes to be allocated in front of the bio.
1930 * Front pad allocation is useful for embedding the bio inside
1931 * another structure, to avoid allocating extra data to go with the bio.
1932 * Note that the bio must be embedded at the END of that structure always,
1933 * or things will break badly.
1934 */
1935 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1936 {
1937 return __bioset_create(pool_size, front_pad, true);
1938 }
1939 EXPORT_SYMBOL(bioset_create);
1940
1941 /**
1942 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1943 * @pool_size: Number of bio to cache in the mempool
1944 * @front_pad: Number of bytes to allocate in front of the returned bio
1945 *
1946 * Description:
1947 * Same functionality as bioset_create() except that mempool is not
1948 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1949 */
1950 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1951 {
1952 return __bioset_create(pool_size, front_pad, false);
1953 }
1954 EXPORT_SYMBOL(bioset_create_nobvec);
1955
1956 #ifdef CONFIG_BLK_CGROUP
1957
1958 /**
1959 * bio_associate_blkcg - associate a bio with the specified blkcg
1960 * @bio: target bio
1961 * @blkcg_css: css of the blkcg to associate
1962 *
1963 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1964 * treat @bio as if it were issued by a task which belongs to the blkcg.
1965 *
1966 * This function takes an extra reference of @blkcg_css which will be put
1967 * when @bio is released. The caller must own @bio and is responsible for
1968 * synchronizing calls to this function.
1969 */
1970 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1971 {
1972 if (unlikely(bio->bi_css))
1973 return -EBUSY;
1974 css_get(blkcg_css);
1975 bio->bi_css = blkcg_css;
1976 return 0;
1977 }
1978 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1979
1980 /**
1981 * bio_associate_current - associate a bio with %current
1982 * @bio: target bio
1983 *
1984 * Associate @bio with %current if it hasn't been associated yet. Block
1985 * layer will treat @bio as if it were issued by %current no matter which
1986 * task actually issues it.
1987 *
1988 * This function takes an extra reference of @task's io_context and blkcg
1989 * which will be put when @bio is released. The caller must own @bio,
1990 * ensure %current->io_context exists, and is responsible for synchronizing
1991 * calls to this function.
1992 */
1993 int bio_associate_current(struct bio *bio)
1994 {
1995 struct io_context *ioc;
1996
1997 if (bio->bi_css)
1998 return -EBUSY;
1999
2000 ioc = current->io_context;
2001 if (!ioc)
2002 return -ENOENT;
2003
2004 get_io_context_active(ioc);
2005 bio->bi_ioc = ioc;
2006 bio->bi_css = task_get_css(current, io_cgrp_id);
2007 return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(bio_associate_current);
2010
2011 /**
2012 * bio_disassociate_task - undo bio_associate_current()
2013 * @bio: target bio
2014 */
2015 void bio_disassociate_task(struct bio *bio)
2016 {
2017 if (bio->bi_ioc) {
2018 put_io_context(bio->bi_ioc);
2019 bio->bi_ioc = NULL;
2020 }
2021 if (bio->bi_css) {
2022 css_put(bio->bi_css);
2023 bio->bi_css = NULL;
2024 }
2025 }
2026
2027 /**
2028 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2029 * @dst: destination bio
2030 * @src: source bio
2031 */
2032 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2033 {
2034 if (src->bi_css)
2035 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2036 }
2037
2038 #endif /* CONFIG_BLK_CGROUP */
2039
2040 static void __init biovec_init_slabs(void)
2041 {
2042 int i;
2043
2044 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2045 int size;
2046 struct biovec_slab *bvs = bvec_slabs + i;
2047
2048 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2049 bvs->slab = NULL;
2050 continue;
2051 }
2052
2053 size = bvs->nr_vecs * sizeof(struct bio_vec);
2054 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2055 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2056 }
2057 }
2058
2059 static int __init init_bio(void)
2060 {
2061 bio_slab_max = 2;
2062 bio_slab_nr = 0;
2063 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2064 if (!bio_slabs)
2065 panic("bio: can't allocate bios\n");
2066
2067 bio_integrity_init();
2068 biovec_init_slabs();
2069
2070 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2071 if (!fs_bio_set)
2072 panic("bio: can't allocate bios\n");
2073
2074 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2075 panic("bio: can't create integrity pool\n");
2076
2077 return 0;
2078 }
2079 subsys_initcall(init_bio);