]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/bio.c
can: mcp251x: mcp251x_can_probe(): silence clang warning
[mirror_ubuntu-jammy-kernel.git] / block / bio.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27
28 static struct biovec_slab {
29 int nr_vecs;
30 char *name;
31 struct kmem_cache *slab;
32 } bvec_slabs[] __read_mostly = {
33 { .nr_vecs = 16, .name = "biovec-16" },
34 { .nr_vecs = 64, .name = "biovec-64" },
35 { .nr_vecs = 128, .name = "biovec-128" },
36 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
37 };
38
39 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
40 {
41 switch (nr_vecs) {
42 /* smaller bios use inline vecs */
43 case 5 ... 16:
44 return &bvec_slabs[0];
45 case 17 ... 64:
46 return &bvec_slabs[1];
47 case 65 ... 128:
48 return &bvec_slabs[2];
49 case 129 ... BIO_MAX_VECS:
50 return &bvec_slabs[3];
51 default:
52 BUG();
53 return NULL;
54 }
55 }
56
57 /*
58 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
59 * IO code that does not need private memory pools.
60 */
61 struct bio_set fs_bio_set;
62 EXPORT_SYMBOL(fs_bio_set);
63
64 /*
65 * Our slab pool management
66 */
67 struct bio_slab {
68 struct kmem_cache *slab;
69 unsigned int slab_ref;
70 unsigned int slab_size;
71 char name[8];
72 };
73 static DEFINE_MUTEX(bio_slab_lock);
74 static DEFINE_XARRAY(bio_slabs);
75
76 static struct bio_slab *create_bio_slab(unsigned int size)
77 {
78 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
79
80 if (!bslab)
81 return NULL;
82
83 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
84 bslab->slab = kmem_cache_create(bslab->name, size,
85 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
86 if (!bslab->slab)
87 goto fail_alloc_slab;
88
89 bslab->slab_ref = 1;
90 bslab->slab_size = size;
91
92 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
93 return bslab;
94
95 kmem_cache_destroy(bslab->slab);
96
97 fail_alloc_slab:
98 kfree(bslab);
99 return NULL;
100 }
101
102 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
103 {
104 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
105 }
106
107 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
108 {
109 unsigned int size = bs_bio_slab_size(bs);
110 struct bio_slab *bslab;
111
112 mutex_lock(&bio_slab_lock);
113 bslab = xa_load(&bio_slabs, size);
114 if (bslab)
115 bslab->slab_ref++;
116 else
117 bslab = create_bio_slab(size);
118 mutex_unlock(&bio_slab_lock);
119
120 if (bslab)
121 return bslab->slab;
122 return NULL;
123 }
124
125 static void bio_put_slab(struct bio_set *bs)
126 {
127 struct bio_slab *bslab = NULL;
128 unsigned int slab_size = bs_bio_slab_size(bs);
129
130 mutex_lock(&bio_slab_lock);
131
132 bslab = xa_load(&bio_slabs, slab_size);
133 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 goto out;
135
136 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
137
138 WARN_ON(!bslab->slab_ref);
139
140 if (--bslab->slab_ref)
141 goto out;
142
143 xa_erase(&bio_slabs, slab_size);
144
145 kmem_cache_destroy(bslab->slab);
146 kfree(bslab);
147
148 out:
149 mutex_unlock(&bio_slab_lock);
150 }
151
152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
153 {
154 BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
155
156 if (nr_vecs == BIO_MAX_VECS)
157 mempool_free(bv, pool);
158 else if (nr_vecs > BIO_INLINE_VECS)
159 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
160 }
161
162 /*
163 * Make the first allocation restricted and don't dump info on allocation
164 * failures, since we'll fall back to the mempool in case of failure.
165 */
166 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
167 {
168 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
169 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
170 }
171
172 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
173 gfp_t gfp_mask)
174 {
175 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
176
177 if (WARN_ON_ONCE(!bvs))
178 return NULL;
179
180 /*
181 * Upgrade the nr_vecs request to take full advantage of the allocation.
182 * We also rely on this in the bvec_free path.
183 */
184 *nr_vecs = bvs->nr_vecs;
185
186 /*
187 * Try a slab allocation first for all smaller allocations. If that
188 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
189 * The mempool is sized to handle up to BIO_MAX_VECS entries.
190 */
191 if (*nr_vecs < BIO_MAX_VECS) {
192 struct bio_vec *bvl;
193
194 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
195 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
196 return bvl;
197 *nr_vecs = BIO_MAX_VECS;
198 }
199
200 return mempool_alloc(pool, gfp_mask);
201 }
202
203 void bio_uninit(struct bio *bio)
204 {
205 #ifdef CONFIG_BLK_CGROUP
206 if (bio->bi_blkg) {
207 blkg_put(bio->bi_blkg);
208 bio->bi_blkg = NULL;
209 }
210 #endif
211 if (bio_integrity(bio))
212 bio_integrity_free(bio);
213
214 bio_crypt_free_ctx(bio);
215 }
216 EXPORT_SYMBOL(bio_uninit);
217
218 static void bio_free(struct bio *bio)
219 {
220 struct bio_set *bs = bio->bi_pool;
221 void *p;
222
223 bio_uninit(bio);
224
225 if (bs) {
226 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
227
228 /*
229 * If we have front padding, adjust the bio pointer before freeing
230 */
231 p = bio;
232 p -= bs->front_pad;
233
234 mempool_free(p, &bs->bio_pool);
235 } else {
236 /* Bio was allocated by bio_kmalloc() */
237 kfree(bio);
238 }
239 }
240
241 /*
242 * Users of this function have their own bio allocation. Subsequently,
243 * they must remember to pair any call to bio_init() with bio_uninit()
244 * when IO has completed, or when the bio is released.
245 */
246 void bio_init(struct bio *bio, struct bio_vec *table,
247 unsigned short max_vecs)
248 {
249 memset(bio, 0, sizeof(*bio));
250 atomic_set(&bio->__bi_remaining, 1);
251 atomic_set(&bio->__bi_cnt, 1);
252
253 bio->bi_io_vec = table;
254 bio->bi_max_vecs = max_vecs;
255 }
256 EXPORT_SYMBOL(bio_init);
257
258 unsigned int bio_max_size(struct bio *bio)
259 {
260 struct block_device *bdev = bio->bi_bdev;
261
262 return bdev ? bdev->bd_disk->queue->limits.bio_max_bytes : UINT_MAX;
263 }
264
265 /**
266 * bio_reset - reinitialize a bio
267 * @bio: bio to reset
268 *
269 * Description:
270 * After calling bio_reset(), @bio will be in the same state as a freshly
271 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
272 * preserved are the ones that are initialized by bio_alloc_bioset(). See
273 * comment in struct bio.
274 */
275 void bio_reset(struct bio *bio)
276 {
277 bio_uninit(bio);
278 memset(bio, 0, BIO_RESET_BYTES);
279 atomic_set(&bio->__bi_remaining, 1);
280 }
281 EXPORT_SYMBOL(bio_reset);
282
283 static struct bio *__bio_chain_endio(struct bio *bio)
284 {
285 struct bio *parent = bio->bi_private;
286
287 if (bio->bi_status && !parent->bi_status)
288 parent->bi_status = bio->bi_status;
289 bio_put(bio);
290 return parent;
291 }
292
293 static void bio_chain_endio(struct bio *bio)
294 {
295 bio_endio(__bio_chain_endio(bio));
296 }
297
298 /**
299 * bio_chain - chain bio completions
300 * @bio: the target bio
301 * @parent: the parent bio of @bio
302 *
303 * The caller won't have a bi_end_io called when @bio completes - instead,
304 * @parent's bi_end_io won't be called until both @parent and @bio have
305 * completed; the chained bio will also be freed when it completes.
306 *
307 * The caller must not set bi_private or bi_end_io in @bio.
308 */
309 void bio_chain(struct bio *bio, struct bio *parent)
310 {
311 BUG_ON(bio->bi_private || bio->bi_end_io);
312
313 bio->bi_private = parent;
314 bio->bi_end_io = bio_chain_endio;
315 bio_inc_remaining(parent);
316 }
317 EXPORT_SYMBOL(bio_chain);
318
319 static void bio_alloc_rescue(struct work_struct *work)
320 {
321 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
322 struct bio *bio;
323
324 while (1) {
325 spin_lock(&bs->rescue_lock);
326 bio = bio_list_pop(&bs->rescue_list);
327 spin_unlock(&bs->rescue_lock);
328
329 if (!bio)
330 break;
331
332 submit_bio_noacct(bio);
333 }
334 }
335
336 static void punt_bios_to_rescuer(struct bio_set *bs)
337 {
338 struct bio_list punt, nopunt;
339 struct bio *bio;
340
341 if (WARN_ON_ONCE(!bs->rescue_workqueue))
342 return;
343 /*
344 * In order to guarantee forward progress we must punt only bios that
345 * were allocated from this bio_set; otherwise, if there was a bio on
346 * there for a stacking driver higher up in the stack, processing it
347 * could require allocating bios from this bio_set, and doing that from
348 * our own rescuer would be bad.
349 *
350 * Since bio lists are singly linked, pop them all instead of trying to
351 * remove from the middle of the list:
352 */
353
354 bio_list_init(&punt);
355 bio_list_init(&nopunt);
356
357 while ((bio = bio_list_pop(&current->bio_list[0])))
358 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
359 current->bio_list[0] = nopunt;
360
361 bio_list_init(&nopunt);
362 while ((bio = bio_list_pop(&current->bio_list[1])))
363 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
364 current->bio_list[1] = nopunt;
365
366 spin_lock(&bs->rescue_lock);
367 bio_list_merge(&bs->rescue_list, &punt);
368 spin_unlock(&bs->rescue_lock);
369
370 queue_work(bs->rescue_workqueue, &bs->rescue_work);
371 }
372
373 /**
374 * bio_alloc_bioset - allocate a bio for I/O
375 * @gfp_mask: the GFP_* mask given to the slab allocator
376 * @nr_iovecs: number of iovecs to pre-allocate
377 * @bs: the bio_set to allocate from.
378 *
379 * Allocate a bio from the mempools in @bs.
380 *
381 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
382 * allocate a bio. This is due to the mempool guarantees. To make this work,
383 * callers must never allocate more than 1 bio at a time from the general pool.
384 * Callers that need to allocate more than 1 bio must always submit the
385 * previously allocated bio for IO before attempting to allocate a new one.
386 * Failure to do so can cause deadlocks under memory pressure.
387 *
388 * Note that when running under submit_bio_noacct() (i.e. any block driver),
389 * bios are not submitted until after you return - see the code in
390 * submit_bio_noacct() that converts recursion into iteration, to prevent
391 * stack overflows.
392 *
393 * This would normally mean allocating multiple bios under submit_bio_noacct()
394 * would be susceptible to deadlocks, but we have
395 * deadlock avoidance code that resubmits any blocked bios from a rescuer
396 * thread.
397 *
398 * However, we do not guarantee forward progress for allocations from other
399 * mempools. Doing multiple allocations from the same mempool under
400 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
401 * for per bio allocations.
402 *
403 * Returns: Pointer to new bio on success, NULL on failure.
404 */
405 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
406 struct bio_set *bs)
407 {
408 gfp_t saved_gfp = gfp_mask;
409 struct bio *bio;
410 void *p;
411
412 /* should not use nobvec bioset for nr_iovecs > 0 */
413 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
414 return NULL;
415
416 /*
417 * submit_bio_noacct() converts recursion to iteration; this means if
418 * we're running beneath it, any bios we allocate and submit will not be
419 * submitted (and thus freed) until after we return.
420 *
421 * This exposes us to a potential deadlock if we allocate multiple bios
422 * from the same bio_set() while running underneath submit_bio_noacct().
423 * If we were to allocate multiple bios (say a stacking block driver
424 * that was splitting bios), we would deadlock if we exhausted the
425 * mempool's reserve.
426 *
427 * We solve this, and guarantee forward progress, with a rescuer
428 * workqueue per bio_set. If we go to allocate and there are bios on
429 * current->bio_list, we first try the allocation without
430 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
431 * blocking to the rescuer workqueue before we retry with the original
432 * gfp_flags.
433 */
434 if (current->bio_list &&
435 (!bio_list_empty(&current->bio_list[0]) ||
436 !bio_list_empty(&current->bio_list[1])) &&
437 bs->rescue_workqueue)
438 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
439
440 p = mempool_alloc(&bs->bio_pool, gfp_mask);
441 if (!p && gfp_mask != saved_gfp) {
442 punt_bios_to_rescuer(bs);
443 gfp_mask = saved_gfp;
444 p = mempool_alloc(&bs->bio_pool, gfp_mask);
445 }
446 if (unlikely(!p))
447 return NULL;
448
449 bio = p + bs->front_pad;
450 if (nr_iovecs > BIO_INLINE_VECS) {
451 struct bio_vec *bvl = NULL;
452
453 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
454 if (!bvl && gfp_mask != saved_gfp) {
455 punt_bios_to_rescuer(bs);
456 gfp_mask = saved_gfp;
457 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
458 }
459 if (unlikely(!bvl))
460 goto err_free;
461
462 bio_init(bio, bvl, nr_iovecs);
463 } else if (nr_iovecs) {
464 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
465 } else {
466 bio_init(bio, NULL, 0);
467 }
468
469 bio->bi_pool = bs;
470 return bio;
471
472 err_free:
473 mempool_free(p, &bs->bio_pool);
474 return NULL;
475 }
476 EXPORT_SYMBOL(bio_alloc_bioset);
477
478 /**
479 * bio_kmalloc - kmalloc a bio for I/O
480 * @gfp_mask: the GFP_* mask given to the slab allocator
481 * @nr_iovecs: number of iovecs to pre-allocate
482 *
483 * Use kmalloc to allocate and initialize a bio.
484 *
485 * Returns: Pointer to new bio on success, NULL on failure.
486 */
487 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
488 {
489 struct bio *bio;
490
491 if (nr_iovecs > UIO_MAXIOV)
492 return NULL;
493
494 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
495 if (unlikely(!bio))
496 return NULL;
497 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
498 bio->bi_pool = NULL;
499 return bio;
500 }
501 EXPORT_SYMBOL(bio_kmalloc);
502
503 void zero_fill_bio(struct bio *bio)
504 {
505 unsigned long flags;
506 struct bio_vec bv;
507 struct bvec_iter iter;
508
509 bio_for_each_segment(bv, bio, iter) {
510 char *data = bvec_kmap_irq(&bv, &flags);
511 memset(data, 0, bv.bv_len);
512 flush_dcache_page(bv.bv_page);
513 bvec_kunmap_irq(data, &flags);
514 }
515 }
516 EXPORT_SYMBOL(zero_fill_bio);
517
518 /**
519 * bio_truncate - truncate the bio to small size of @new_size
520 * @bio: the bio to be truncated
521 * @new_size: new size for truncating the bio
522 *
523 * Description:
524 * Truncate the bio to new size of @new_size. If bio_op(bio) is
525 * REQ_OP_READ, zero the truncated part. This function should only
526 * be used for handling corner cases, such as bio eod.
527 */
528 void bio_truncate(struct bio *bio, unsigned new_size)
529 {
530 struct bio_vec bv;
531 struct bvec_iter iter;
532 unsigned int done = 0;
533 bool truncated = false;
534
535 if (new_size >= bio->bi_iter.bi_size)
536 return;
537
538 if (bio_op(bio) != REQ_OP_READ)
539 goto exit;
540
541 bio_for_each_segment(bv, bio, iter) {
542 if (done + bv.bv_len > new_size) {
543 unsigned offset;
544
545 if (!truncated)
546 offset = new_size - done;
547 else
548 offset = 0;
549 zero_user(bv.bv_page, offset, bv.bv_len - offset);
550 truncated = true;
551 }
552 done += bv.bv_len;
553 }
554
555 exit:
556 /*
557 * Don't touch bvec table here and make it really immutable, since
558 * fs bio user has to retrieve all pages via bio_for_each_segment_all
559 * in its .end_bio() callback.
560 *
561 * It is enough to truncate bio by updating .bi_size since we can make
562 * correct bvec with the updated .bi_size for drivers.
563 */
564 bio->bi_iter.bi_size = new_size;
565 }
566
567 /**
568 * guard_bio_eod - truncate a BIO to fit the block device
569 * @bio: bio to truncate
570 *
571 * This allows us to do IO even on the odd last sectors of a device, even if the
572 * block size is some multiple of the physical sector size.
573 *
574 * We'll just truncate the bio to the size of the device, and clear the end of
575 * the buffer head manually. Truly out-of-range accesses will turn into actual
576 * I/O errors, this only handles the "we need to be able to do I/O at the final
577 * sector" case.
578 */
579 void guard_bio_eod(struct bio *bio)
580 {
581 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
582
583 if (!maxsector)
584 return;
585
586 /*
587 * If the *whole* IO is past the end of the device,
588 * let it through, and the IO layer will turn it into
589 * an EIO.
590 */
591 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
592 return;
593
594 maxsector -= bio->bi_iter.bi_sector;
595 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
596 return;
597
598 bio_truncate(bio, maxsector << 9);
599 }
600
601 /**
602 * bio_put - release a reference to a bio
603 * @bio: bio to release reference to
604 *
605 * Description:
606 * Put a reference to a &struct bio, either one you have gotten with
607 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
608 **/
609 void bio_put(struct bio *bio)
610 {
611 if (!bio_flagged(bio, BIO_REFFED))
612 bio_free(bio);
613 else {
614 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
615
616 /*
617 * last put frees it
618 */
619 if (atomic_dec_and_test(&bio->__bi_cnt))
620 bio_free(bio);
621 }
622 }
623 EXPORT_SYMBOL(bio_put);
624
625 /**
626 * __bio_clone_fast - clone a bio that shares the original bio's biovec
627 * @bio: destination bio
628 * @bio_src: bio to clone
629 *
630 * Clone a &bio. Caller will own the returned bio, but not
631 * the actual data it points to. Reference count of returned
632 * bio will be one.
633 *
634 * Caller must ensure that @bio_src is not freed before @bio.
635 */
636 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
637 {
638 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
639
640 /*
641 * most users will be overriding ->bi_bdev with a new target,
642 * so we don't set nor calculate new physical/hw segment counts here
643 */
644 bio->bi_bdev = bio_src->bi_bdev;
645 bio_set_flag(bio, BIO_CLONED);
646 if (bio_flagged(bio_src, BIO_THROTTLED))
647 bio_set_flag(bio, BIO_THROTTLED);
648 if (bio_flagged(bio_src, BIO_REMAPPED))
649 bio_set_flag(bio, BIO_REMAPPED);
650 bio->bi_opf = bio_src->bi_opf;
651 bio->bi_ioprio = bio_src->bi_ioprio;
652 bio->bi_write_hint = bio_src->bi_write_hint;
653 bio->bi_iter = bio_src->bi_iter;
654 bio->bi_io_vec = bio_src->bi_io_vec;
655
656 bio_clone_blkg_association(bio, bio_src);
657 blkcg_bio_issue_init(bio);
658 }
659 EXPORT_SYMBOL(__bio_clone_fast);
660
661 /**
662 * bio_clone_fast - clone a bio that shares the original bio's biovec
663 * @bio: bio to clone
664 * @gfp_mask: allocation priority
665 * @bs: bio_set to allocate from
666 *
667 * Like __bio_clone_fast, only also allocates the returned bio
668 */
669 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
670 {
671 struct bio *b;
672
673 b = bio_alloc_bioset(gfp_mask, 0, bs);
674 if (!b)
675 return NULL;
676
677 __bio_clone_fast(b, bio);
678
679 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
680 goto err_put;
681
682 if (bio_integrity(bio) &&
683 bio_integrity_clone(b, bio, gfp_mask) < 0)
684 goto err_put;
685
686 return b;
687
688 err_put:
689 bio_put(b);
690 return NULL;
691 }
692 EXPORT_SYMBOL(bio_clone_fast);
693
694 const char *bio_devname(struct bio *bio, char *buf)
695 {
696 return bdevname(bio->bi_bdev, buf);
697 }
698 EXPORT_SYMBOL(bio_devname);
699
700 static inline bool page_is_mergeable(const struct bio_vec *bv,
701 struct page *page, unsigned int len, unsigned int off,
702 bool *same_page)
703 {
704 size_t bv_end = bv->bv_offset + bv->bv_len;
705 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
706 phys_addr_t page_addr = page_to_phys(page);
707
708 if (vec_end_addr + 1 != page_addr + off)
709 return false;
710 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
711 return false;
712
713 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
714 if (*same_page)
715 return true;
716 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
717 }
718
719 /*
720 * Try to merge a page into a segment, while obeying the hardware segment
721 * size limit. This is not for normal read/write bios, but for passthrough
722 * or Zone Append operations that we can't split.
723 */
724 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
725 struct page *page, unsigned len,
726 unsigned offset, bool *same_page)
727 {
728 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
729 unsigned long mask = queue_segment_boundary(q);
730 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
731 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
732
733 if ((addr1 | mask) != (addr2 | mask))
734 return false;
735 if (bv->bv_len + len > queue_max_segment_size(q))
736 return false;
737 return __bio_try_merge_page(bio, page, len, offset, same_page);
738 }
739
740 /**
741 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
742 * @q: the target queue
743 * @bio: destination bio
744 * @page: page to add
745 * @len: vec entry length
746 * @offset: vec entry offset
747 * @max_sectors: maximum number of sectors that can be added
748 * @same_page: return if the segment has been merged inside the same page
749 *
750 * Add a page to a bio while respecting the hardware max_sectors, max_segment
751 * and gap limitations.
752 */
753 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
754 struct page *page, unsigned int len, unsigned int offset,
755 unsigned int max_sectors, bool *same_page)
756 {
757 struct bio_vec *bvec;
758
759 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
760 return 0;
761
762 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
763 return 0;
764
765 if (bio->bi_vcnt > 0) {
766 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
767 return len;
768
769 /*
770 * If the queue doesn't support SG gaps and adding this segment
771 * would create a gap, disallow it.
772 */
773 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
774 if (bvec_gap_to_prev(q, bvec, offset))
775 return 0;
776 }
777
778 if (bio_full(bio, len))
779 return 0;
780
781 if (bio->bi_vcnt >= queue_max_segments(q))
782 return 0;
783
784 bvec = &bio->bi_io_vec[bio->bi_vcnt];
785 bvec->bv_page = page;
786 bvec->bv_len = len;
787 bvec->bv_offset = offset;
788 bio->bi_vcnt++;
789 bio->bi_iter.bi_size += len;
790 return len;
791 }
792
793 /**
794 * bio_add_pc_page - attempt to add page to passthrough bio
795 * @q: the target queue
796 * @bio: destination bio
797 * @page: page to add
798 * @len: vec entry length
799 * @offset: vec entry offset
800 *
801 * Attempt to add a page to the bio_vec maplist. This can fail for a
802 * number of reasons, such as the bio being full or target block device
803 * limitations. The target block device must allow bio's up to PAGE_SIZE,
804 * so it is always possible to add a single page to an empty bio.
805 *
806 * This should only be used by passthrough bios.
807 */
808 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
809 struct page *page, unsigned int len, unsigned int offset)
810 {
811 bool same_page = false;
812 return bio_add_hw_page(q, bio, page, len, offset,
813 queue_max_hw_sectors(q), &same_page);
814 }
815 EXPORT_SYMBOL(bio_add_pc_page);
816
817 /**
818 * bio_add_zone_append_page - attempt to add page to zone-append bio
819 * @bio: destination bio
820 * @page: page to add
821 * @len: vec entry length
822 * @offset: vec entry offset
823 *
824 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
825 * for a zone-append request. This can fail for a number of reasons, such as the
826 * bio being full or the target block device is not a zoned block device or
827 * other limitations of the target block device. The target block device must
828 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
829 * to an empty bio.
830 *
831 * Returns: number of bytes added to the bio, or 0 in case of a failure.
832 */
833 int bio_add_zone_append_page(struct bio *bio, struct page *page,
834 unsigned int len, unsigned int offset)
835 {
836 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
837 bool same_page = false;
838
839 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
840 return 0;
841
842 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
843 return 0;
844
845 return bio_add_hw_page(q, bio, page, len, offset,
846 queue_max_zone_append_sectors(q), &same_page);
847 }
848 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
849
850 /**
851 * __bio_try_merge_page - try appending data to an existing bvec.
852 * @bio: destination bio
853 * @page: start page to add
854 * @len: length of the data to add
855 * @off: offset of the data relative to @page
856 * @same_page: return if the segment has been merged inside the same page
857 *
858 * Try to add the data at @page + @off to the last bvec of @bio. This is a
859 * useful optimisation for file systems with a block size smaller than the
860 * page size.
861 *
862 * Warn if (@len, @off) crosses pages in case that @same_page is true.
863 *
864 * Return %true on success or %false on failure.
865 */
866 bool __bio_try_merge_page(struct bio *bio, struct page *page,
867 unsigned int len, unsigned int off, bool *same_page)
868 {
869 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
870 return false;
871
872 if (bio->bi_vcnt > 0) {
873 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
874
875 if (page_is_mergeable(bv, page, len, off, same_page)) {
876 if (bio->bi_iter.bi_size > bio_max_size(bio) - len) {
877 *same_page = false;
878 return false;
879 }
880 bv->bv_len += len;
881 bio->bi_iter.bi_size += len;
882 return true;
883 }
884 }
885 return false;
886 }
887 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
888
889 /**
890 * __bio_add_page - add page(s) to a bio in a new segment
891 * @bio: destination bio
892 * @page: start page to add
893 * @len: length of the data to add, may cross pages
894 * @off: offset of the data relative to @page, may cross pages
895 *
896 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
897 * that @bio has space for another bvec.
898 */
899 void __bio_add_page(struct bio *bio, struct page *page,
900 unsigned int len, unsigned int off)
901 {
902 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
903
904 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
905 WARN_ON_ONCE(bio_full(bio, len));
906
907 bv->bv_page = page;
908 bv->bv_offset = off;
909 bv->bv_len = len;
910
911 bio->bi_iter.bi_size += len;
912 bio->bi_vcnt++;
913
914 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
915 bio_set_flag(bio, BIO_WORKINGSET);
916 }
917 EXPORT_SYMBOL_GPL(__bio_add_page);
918
919 /**
920 * bio_add_page - attempt to add page(s) to bio
921 * @bio: destination bio
922 * @page: start page to add
923 * @len: vec entry length, may cross pages
924 * @offset: vec entry offset relative to @page, may cross pages
925 *
926 * Attempt to add page(s) to the bio_vec maplist. This will only fail
927 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
928 */
929 int bio_add_page(struct bio *bio, struct page *page,
930 unsigned int len, unsigned int offset)
931 {
932 bool same_page = false;
933
934 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
935 if (bio_full(bio, len))
936 return 0;
937 __bio_add_page(bio, page, len, offset);
938 }
939 return len;
940 }
941 EXPORT_SYMBOL(bio_add_page);
942
943 void bio_release_pages(struct bio *bio, bool mark_dirty)
944 {
945 struct bvec_iter_all iter_all;
946 struct bio_vec *bvec;
947
948 if (bio_flagged(bio, BIO_NO_PAGE_REF))
949 return;
950
951 bio_for_each_segment_all(bvec, bio, iter_all) {
952 if (mark_dirty && !PageCompound(bvec->bv_page))
953 set_page_dirty_lock(bvec->bv_page);
954 put_page(bvec->bv_page);
955 }
956 }
957 EXPORT_SYMBOL_GPL(bio_release_pages);
958
959 static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
960 {
961 WARN_ON_ONCE(bio->bi_max_vecs);
962
963 bio->bi_vcnt = iter->nr_segs;
964 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
965 bio->bi_iter.bi_bvec_done = iter->iov_offset;
966 bio->bi_iter.bi_size = iter->count;
967 bio_set_flag(bio, BIO_NO_PAGE_REF);
968 bio_set_flag(bio, BIO_CLONED);
969 }
970
971 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
972 {
973 __bio_iov_bvec_set(bio, iter);
974 iov_iter_advance(iter, iter->count);
975 return 0;
976 }
977
978 static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
979 {
980 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
981 struct iov_iter i = *iter;
982
983 iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
984 __bio_iov_bvec_set(bio, &i);
985 iov_iter_advance(iter, i.count);
986 return 0;
987 }
988
989 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
990
991 /**
992 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
993 * @bio: bio to add pages to
994 * @iter: iov iterator describing the region to be mapped
995 *
996 * Pins pages from *iter and appends them to @bio's bvec array. The
997 * pages will have to be released using put_page() when done.
998 * For multi-segment *iter, this function only adds pages from the
999 * next non-empty segment of the iov iterator.
1000 */
1001 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1002 {
1003 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1004 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1005 unsigned int bytes_left = bio_max_size(bio) - bio->bi_iter.bi_size;
1006 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1007 struct page **pages = (struct page **)bv;
1008 bool same_page = false;
1009 ssize_t size, left;
1010 unsigned len, i;
1011 size_t offset;
1012
1013 /*
1014 * Move page array up in the allocated memory for the bio vecs as far as
1015 * possible so that we can start filling biovecs from the beginning
1016 * without overwriting the temporary page array.
1017 */
1018 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1019 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1020
1021 size = iov_iter_get_pages(iter, pages, bytes_left, nr_pages,
1022 &offset);
1023 if (unlikely(size <= 0))
1024 return size ? size : -EFAULT;
1025
1026 for (left = size, i = 0; left > 0; left -= len, i++) {
1027 struct page *page = pages[i];
1028
1029 len = min_t(size_t, PAGE_SIZE - offset, left);
1030
1031 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1032 if (same_page)
1033 put_page(page);
1034 } else {
1035 if (WARN_ON_ONCE(bio_full(bio, len)))
1036 return -EINVAL;
1037 __bio_add_page(bio, page, len, offset);
1038 }
1039 offset = 0;
1040 }
1041
1042 iov_iter_advance(iter, size);
1043 return 0;
1044 }
1045
1046 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1047 {
1048 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1049 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1050 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1051 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1052 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1053 struct page **pages = (struct page **)bv;
1054 ssize_t size, left;
1055 unsigned len, i;
1056 size_t offset;
1057 int ret = 0;
1058
1059 if (WARN_ON_ONCE(!max_append_sectors))
1060 return 0;
1061
1062 /*
1063 * Move page array up in the allocated memory for the bio vecs as far as
1064 * possible so that we can start filling biovecs from the beginning
1065 * without overwriting the temporary page array.
1066 */
1067 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1068 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1069
1070 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1071 if (unlikely(size <= 0))
1072 return size ? size : -EFAULT;
1073
1074 for (left = size, i = 0; left > 0; left -= len, i++) {
1075 struct page *page = pages[i];
1076 bool same_page = false;
1077
1078 len = min_t(size_t, PAGE_SIZE - offset, left);
1079 if (bio_add_hw_page(q, bio, page, len, offset,
1080 max_append_sectors, &same_page) != len) {
1081 ret = -EINVAL;
1082 break;
1083 }
1084 if (same_page)
1085 put_page(page);
1086 offset = 0;
1087 }
1088
1089 iov_iter_advance(iter, size - left);
1090 return ret;
1091 }
1092
1093 /**
1094 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1095 * @bio: bio to add pages to
1096 * @iter: iov iterator describing the region to be added
1097 *
1098 * This takes either an iterator pointing to user memory, or one pointing to
1099 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1100 * map them into the kernel. On IO completion, the caller should put those
1101 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1102 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1103 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1104 * completed by a call to ->ki_complete() or returns with an error other than
1105 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1106 * on IO completion. If it isn't, then pages should be released.
1107 *
1108 * The function tries, but does not guarantee, to pin as many pages as
1109 * fit into the bio, or are requested in @iter, whatever is smaller. If
1110 * MM encounters an error pinning the requested pages, it stops. Error
1111 * is returned only if 0 pages could be pinned.
1112 *
1113 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1114 * responsible for setting BIO_WORKINGSET if necessary.
1115 */
1116 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1117 {
1118 int ret = 0;
1119
1120 if (iov_iter_is_bvec(iter)) {
1121 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1122 return bio_iov_bvec_set_append(bio, iter);
1123 return bio_iov_bvec_set(bio, iter);
1124 }
1125
1126 do {
1127 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1128 ret = __bio_iov_append_get_pages(bio, iter);
1129 else
1130 ret = __bio_iov_iter_get_pages(bio, iter);
1131 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1132
1133 /* don't account direct I/O as memory stall */
1134 bio_clear_flag(bio, BIO_WORKINGSET);
1135 return bio->bi_vcnt ? 0 : ret;
1136 }
1137 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1138
1139 static void submit_bio_wait_endio(struct bio *bio)
1140 {
1141 complete(bio->bi_private);
1142 }
1143
1144 /**
1145 * submit_bio_wait - submit a bio, and wait until it completes
1146 * @bio: The &struct bio which describes the I/O
1147 *
1148 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1149 * bio_endio() on failure.
1150 *
1151 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1152 * result in bio reference to be consumed. The caller must drop the reference
1153 * on his own.
1154 */
1155 int submit_bio_wait(struct bio *bio)
1156 {
1157 DECLARE_COMPLETION_ONSTACK_MAP(done,
1158 bio->bi_bdev->bd_disk->lockdep_map);
1159 unsigned long hang_check;
1160
1161 bio->bi_private = &done;
1162 bio->bi_end_io = submit_bio_wait_endio;
1163 bio->bi_opf |= REQ_SYNC;
1164 submit_bio(bio);
1165
1166 /* Prevent hang_check timer from firing at us during very long I/O */
1167 hang_check = sysctl_hung_task_timeout_secs;
1168 if (hang_check)
1169 while (!wait_for_completion_io_timeout(&done,
1170 hang_check * (HZ/2)))
1171 ;
1172 else
1173 wait_for_completion_io(&done);
1174
1175 return blk_status_to_errno(bio->bi_status);
1176 }
1177 EXPORT_SYMBOL(submit_bio_wait);
1178
1179 /**
1180 * bio_advance - increment/complete a bio by some number of bytes
1181 * @bio: bio to advance
1182 * @bytes: number of bytes to complete
1183 *
1184 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1185 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1186 * be updated on the last bvec as well.
1187 *
1188 * @bio will then represent the remaining, uncompleted portion of the io.
1189 */
1190 void bio_advance(struct bio *bio, unsigned bytes)
1191 {
1192 if (bio_integrity(bio))
1193 bio_integrity_advance(bio, bytes);
1194
1195 bio_crypt_advance(bio, bytes);
1196 bio_advance_iter(bio, &bio->bi_iter, bytes);
1197 }
1198 EXPORT_SYMBOL(bio_advance);
1199
1200 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1201 struct bio *src, struct bvec_iter *src_iter)
1202 {
1203 struct bio_vec src_bv, dst_bv;
1204 void *src_p, *dst_p;
1205 unsigned bytes;
1206
1207 while (src_iter->bi_size && dst_iter->bi_size) {
1208 src_bv = bio_iter_iovec(src, *src_iter);
1209 dst_bv = bio_iter_iovec(dst, *dst_iter);
1210
1211 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1212
1213 src_p = kmap_atomic(src_bv.bv_page);
1214 dst_p = kmap_atomic(dst_bv.bv_page);
1215
1216 memcpy(dst_p + dst_bv.bv_offset,
1217 src_p + src_bv.bv_offset,
1218 bytes);
1219
1220 kunmap_atomic(dst_p);
1221 kunmap_atomic(src_p);
1222
1223 flush_dcache_page(dst_bv.bv_page);
1224
1225 bio_advance_iter_single(src, src_iter, bytes);
1226 bio_advance_iter_single(dst, dst_iter, bytes);
1227 }
1228 }
1229 EXPORT_SYMBOL(bio_copy_data_iter);
1230
1231 /**
1232 * bio_copy_data - copy contents of data buffers from one bio to another
1233 * @src: source bio
1234 * @dst: destination bio
1235 *
1236 * Stops when it reaches the end of either @src or @dst - that is, copies
1237 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1238 */
1239 void bio_copy_data(struct bio *dst, struct bio *src)
1240 {
1241 struct bvec_iter src_iter = src->bi_iter;
1242 struct bvec_iter dst_iter = dst->bi_iter;
1243
1244 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1245 }
1246 EXPORT_SYMBOL(bio_copy_data);
1247
1248 void bio_free_pages(struct bio *bio)
1249 {
1250 struct bio_vec *bvec;
1251 struct bvec_iter_all iter_all;
1252
1253 bio_for_each_segment_all(bvec, bio, iter_all)
1254 __free_page(bvec->bv_page);
1255 }
1256 EXPORT_SYMBOL(bio_free_pages);
1257
1258 /*
1259 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1260 * for performing direct-IO in BIOs.
1261 *
1262 * The problem is that we cannot run set_page_dirty() from interrupt context
1263 * because the required locks are not interrupt-safe. So what we can do is to
1264 * mark the pages dirty _before_ performing IO. And in interrupt context,
1265 * check that the pages are still dirty. If so, fine. If not, redirty them
1266 * in process context.
1267 *
1268 * We special-case compound pages here: normally this means reads into hugetlb
1269 * pages. The logic in here doesn't really work right for compound pages
1270 * because the VM does not uniformly chase down the head page in all cases.
1271 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1272 * handle them at all. So we skip compound pages here at an early stage.
1273 *
1274 * Note that this code is very hard to test under normal circumstances because
1275 * direct-io pins the pages with get_user_pages(). This makes
1276 * is_page_cache_freeable return false, and the VM will not clean the pages.
1277 * But other code (eg, flusher threads) could clean the pages if they are mapped
1278 * pagecache.
1279 *
1280 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1281 * deferred bio dirtying paths.
1282 */
1283
1284 /*
1285 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1286 */
1287 void bio_set_pages_dirty(struct bio *bio)
1288 {
1289 struct bio_vec *bvec;
1290 struct bvec_iter_all iter_all;
1291
1292 bio_for_each_segment_all(bvec, bio, iter_all) {
1293 if (!PageCompound(bvec->bv_page))
1294 set_page_dirty_lock(bvec->bv_page);
1295 }
1296 }
1297
1298 /*
1299 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1300 * If they are, then fine. If, however, some pages are clean then they must
1301 * have been written out during the direct-IO read. So we take another ref on
1302 * the BIO and re-dirty the pages in process context.
1303 *
1304 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1305 * here on. It will run one put_page() against each page and will run one
1306 * bio_put() against the BIO.
1307 */
1308
1309 static void bio_dirty_fn(struct work_struct *work);
1310
1311 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1312 static DEFINE_SPINLOCK(bio_dirty_lock);
1313 static struct bio *bio_dirty_list;
1314
1315 /*
1316 * This runs in process context
1317 */
1318 static void bio_dirty_fn(struct work_struct *work)
1319 {
1320 struct bio *bio, *next;
1321
1322 spin_lock_irq(&bio_dirty_lock);
1323 next = bio_dirty_list;
1324 bio_dirty_list = NULL;
1325 spin_unlock_irq(&bio_dirty_lock);
1326
1327 while ((bio = next) != NULL) {
1328 next = bio->bi_private;
1329
1330 bio_release_pages(bio, true);
1331 bio_put(bio);
1332 }
1333 }
1334
1335 void bio_check_pages_dirty(struct bio *bio)
1336 {
1337 struct bio_vec *bvec;
1338 unsigned long flags;
1339 struct bvec_iter_all iter_all;
1340
1341 bio_for_each_segment_all(bvec, bio, iter_all) {
1342 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1343 goto defer;
1344 }
1345
1346 bio_release_pages(bio, false);
1347 bio_put(bio);
1348 return;
1349 defer:
1350 spin_lock_irqsave(&bio_dirty_lock, flags);
1351 bio->bi_private = bio_dirty_list;
1352 bio_dirty_list = bio;
1353 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1354 schedule_work(&bio_dirty_work);
1355 }
1356
1357 static inline bool bio_remaining_done(struct bio *bio)
1358 {
1359 /*
1360 * If we're not chaining, then ->__bi_remaining is always 1 and
1361 * we always end io on the first invocation.
1362 */
1363 if (!bio_flagged(bio, BIO_CHAIN))
1364 return true;
1365
1366 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1367
1368 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1369 bio_clear_flag(bio, BIO_CHAIN);
1370 return true;
1371 }
1372
1373 return false;
1374 }
1375
1376 /**
1377 * bio_endio - end I/O on a bio
1378 * @bio: bio
1379 *
1380 * Description:
1381 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1382 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1383 * bio unless they own it and thus know that it has an end_io function.
1384 *
1385 * bio_endio() can be called several times on a bio that has been chained
1386 * using bio_chain(). The ->bi_end_io() function will only be called the
1387 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1388 * generated if BIO_TRACE_COMPLETION is set.
1389 **/
1390 void bio_endio(struct bio *bio)
1391 {
1392 again:
1393 if (!bio_remaining_done(bio))
1394 return;
1395 if (!bio_integrity_endio(bio))
1396 return;
1397
1398 if (bio->bi_bdev)
1399 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
1400
1401 /*
1402 * Need to have a real endio function for chained bios, otherwise
1403 * various corner cases will break (like stacking block devices that
1404 * save/restore bi_end_io) - however, we want to avoid unbounded
1405 * recursion and blowing the stack. Tail call optimization would
1406 * handle this, but compiling with frame pointers also disables
1407 * gcc's sibling call optimization.
1408 */
1409 if (bio->bi_end_io == bio_chain_endio) {
1410 bio = __bio_chain_endio(bio);
1411 goto again;
1412 }
1413
1414 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1415 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1416 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1417 }
1418
1419 blk_throtl_bio_endio(bio);
1420 /* release cgroup info */
1421 bio_uninit(bio);
1422 if (bio->bi_end_io)
1423 bio->bi_end_io(bio);
1424 }
1425 EXPORT_SYMBOL(bio_endio);
1426
1427 /**
1428 * bio_split - split a bio
1429 * @bio: bio to split
1430 * @sectors: number of sectors to split from the front of @bio
1431 * @gfp: gfp mask
1432 * @bs: bio set to allocate from
1433 *
1434 * Allocates and returns a new bio which represents @sectors from the start of
1435 * @bio, and updates @bio to represent the remaining sectors.
1436 *
1437 * Unless this is a discard request the newly allocated bio will point
1438 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1439 * neither @bio nor @bs are freed before the split bio.
1440 */
1441 struct bio *bio_split(struct bio *bio, int sectors,
1442 gfp_t gfp, struct bio_set *bs)
1443 {
1444 struct bio *split;
1445
1446 BUG_ON(sectors <= 0);
1447 BUG_ON(sectors >= bio_sectors(bio));
1448
1449 /* Zone append commands cannot be split */
1450 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1451 return NULL;
1452
1453 split = bio_clone_fast(bio, gfp, bs);
1454 if (!split)
1455 return NULL;
1456
1457 split->bi_iter.bi_size = sectors << 9;
1458
1459 if (bio_integrity(split))
1460 bio_integrity_trim(split);
1461
1462 bio_advance(bio, split->bi_iter.bi_size);
1463
1464 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1465 bio_set_flag(split, BIO_TRACE_COMPLETION);
1466
1467 return split;
1468 }
1469 EXPORT_SYMBOL(bio_split);
1470
1471 /**
1472 * bio_trim - trim a bio
1473 * @bio: bio to trim
1474 * @offset: number of sectors to trim from the front of @bio
1475 * @size: size we want to trim @bio to, in sectors
1476 */
1477 void bio_trim(struct bio *bio, int offset, int size)
1478 {
1479 /* 'bio' is a cloned bio which we need to trim to match
1480 * the given offset and size.
1481 */
1482
1483 size <<= 9;
1484 if (offset == 0 && size == bio->bi_iter.bi_size)
1485 return;
1486
1487 bio_advance(bio, offset << 9);
1488 bio->bi_iter.bi_size = size;
1489
1490 if (bio_integrity(bio))
1491 bio_integrity_trim(bio);
1492
1493 }
1494 EXPORT_SYMBOL_GPL(bio_trim);
1495
1496 /*
1497 * create memory pools for biovec's in a bio_set.
1498 * use the global biovec slabs created for general use.
1499 */
1500 int biovec_init_pool(mempool_t *pool, int pool_entries)
1501 {
1502 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1503
1504 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1505 }
1506
1507 /*
1508 * bioset_exit - exit a bioset initialized with bioset_init()
1509 *
1510 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1511 * kzalloc()).
1512 */
1513 void bioset_exit(struct bio_set *bs)
1514 {
1515 if (bs->rescue_workqueue)
1516 destroy_workqueue(bs->rescue_workqueue);
1517 bs->rescue_workqueue = NULL;
1518
1519 mempool_exit(&bs->bio_pool);
1520 mempool_exit(&bs->bvec_pool);
1521
1522 bioset_integrity_free(bs);
1523 if (bs->bio_slab)
1524 bio_put_slab(bs);
1525 bs->bio_slab = NULL;
1526 }
1527 EXPORT_SYMBOL(bioset_exit);
1528
1529 /**
1530 * bioset_init - Initialize a bio_set
1531 * @bs: pool to initialize
1532 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1533 * @front_pad: Number of bytes to allocate in front of the returned bio
1534 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1535 * and %BIOSET_NEED_RESCUER
1536 *
1537 * Description:
1538 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1539 * to ask for a number of bytes to be allocated in front of the bio.
1540 * Front pad allocation is useful for embedding the bio inside
1541 * another structure, to avoid allocating extra data to go with the bio.
1542 * Note that the bio must be embedded at the END of that structure always,
1543 * or things will break badly.
1544 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1545 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1546 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1547 * dispatch queued requests when the mempool runs out of space.
1548 *
1549 */
1550 int bioset_init(struct bio_set *bs,
1551 unsigned int pool_size,
1552 unsigned int front_pad,
1553 int flags)
1554 {
1555 bs->front_pad = front_pad;
1556 if (flags & BIOSET_NEED_BVECS)
1557 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1558 else
1559 bs->back_pad = 0;
1560
1561 spin_lock_init(&bs->rescue_lock);
1562 bio_list_init(&bs->rescue_list);
1563 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1564
1565 bs->bio_slab = bio_find_or_create_slab(bs);
1566 if (!bs->bio_slab)
1567 return -ENOMEM;
1568
1569 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1570 goto bad;
1571
1572 if ((flags & BIOSET_NEED_BVECS) &&
1573 biovec_init_pool(&bs->bvec_pool, pool_size))
1574 goto bad;
1575
1576 if (!(flags & BIOSET_NEED_RESCUER))
1577 return 0;
1578
1579 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1580 if (!bs->rescue_workqueue)
1581 goto bad;
1582
1583 return 0;
1584 bad:
1585 bioset_exit(bs);
1586 return -ENOMEM;
1587 }
1588 EXPORT_SYMBOL(bioset_init);
1589
1590 /*
1591 * Initialize and setup a new bio_set, based on the settings from
1592 * another bio_set.
1593 */
1594 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1595 {
1596 int flags;
1597
1598 flags = 0;
1599 if (src->bvec_pool.min_nr)
1600 flags |= BIOSET_NEED_BVECS;
1601 if (src->rescue_workqueue)
1602 flags |= BIOSET_NEED_RESCUER;
1603
1604 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1605 }
1606 EXPORT_SYMBOL(bioset_init_from_src);
1607
1608 static int __init init_bio(void)
1609 {
1610 int i;
1611
1612 bio_integrity_init();
1613
1614 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1615 struct biovec_slab *bvs = bvec_slabs + i;
1616
1617 bvs->slab = kmem_cache_create(bvs->name,
1618 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1619 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1620 }
1621
1622 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1623 panic("bio: can't allocate bios\n");
1624
1625 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1626 panic("bio: can't create integrity pool\n");
1627
1628 return 0;
1629 }
1630 subsys_initcall(init_bio);