]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/bio.c
Merge tag 'powerpc-5.12-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-jammy-kernel.git] / block / bio.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27
28 static struct biovec_slab {
29 int nr_vecs;
30 char *name;
31 struct kmem_cache *slab;
32 } bvec_slabs[] __read_mostly = {
33 { .nr_vecs = 16, .name = "biovec-16" },
34 { .nr_vecs = 64, .name = "biovec-64" },
35 { .nr_vecs = 128, .name = "biovec-128" },
36 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
37 };
38
39 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
40 {
41 switch (nr_vecs) {
42 /* smaller bios use inline vecs */
43 case 5 ... 16:
44 return &bvec_slabs[0];
45 case 17 ... 64:
46 return &bvec_slabs[1];
47 case 65 ... 128:
48 return &bvec_slabs[2];
49 case 129 ... BIO_MAX_VECS:
50 return &bvec_slabs[3];
51 default:
52 BUG();
53 return NULL;
54 }
55 }
56
57 /*
58 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
59 * IO code that does not need private memory pools.
60 */
61 struct bio_set fs_bio_set;
62 EXPORT_SYMBOL(fs_bio_set);
63
64 /*
65 * Our slab pool management
66 */
67 struct bio_slab {
68 struct kmem_cache *slab;
69 unsigned int slab_ref;
70 unsigned int slab_size;
71 char name[8];
72 };
73 static DEFINE_MUTEX(bio_slab_lock);
74 static DEFINE_XARRAY(bio_slabs);
75
76 static struct bio_slab *create_bio_slab(unsigned int size)
77 {
78 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
79
80 if (!bslab)
81 return NULL;
82
83 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
84 bslab->slab = kmem_cache_create(bslab->name, size,
85 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
86 if (!bslab->slab)
87 goto fail_alloc_slab;
88
89 bslab->slab_ref = 1;
90 bslab->slab_size = size;
91
92 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
93 return bslab;
94
95 kmem_cache_destroy(bslab->slab);
96
97 fail_alloc_slab:
98 kfree(bslab);
99 return NULL;
100 }
101
102 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
103 {
104 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
105 }
106
107 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
108 {
109 unsigned int size = bs_bio_slab_size(bs);
110 struct bio_slab *bslab;
111
112 mutex_lock(&bio_slab_lock);
113 bslab = xa_load(&bio_slabs, size);
114 if (bslab)
115 bslab->slab_ref++;
116 else
117 bslab = create_bio_slab(size);
118 mutex_unlock(&bio_slab_lock);
119
120 if (bslab)
121 return bslab->slab;
122 return NULL;
123 }
124
125 static void bio_put_slab(struct bio_set *bs)
126 {
127 struct bio_slab *bslab = NULL;
128 unsigned int slab_size = bs_bio_slab_size(bs);
129
130 mutex_lock(&bio_slab_lock);
131
132 bslab = xa_load(&bio_slabs, slab_size);
133 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 goto out;
135
136 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
137
138 WARN_ON(!bslab->slab_ref);
139
140 if (--bslab->slab_ref)
141 goto out;
142
143 xa_erase(&bio_slabs, slab_size);
144
145 kmem_cache_destroy(bslab->slab);
146 kfree(bslab);
147
148 out:
149 mutex_unlock(&bio_slab_lock);
150 }
151
152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
153 {
154 BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
155
156 if (nr_vecs == BIO_MAX_VECS)
157 mempool_free(bv, pool);
158 else if (nr_vecs > BIO_INLINE_VECS)
159 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
160 }
161
162 /*
163 * Make the first allocation restricted and don't dump info on allocation
164 * failures, since we'll fall back to the mempool in case of failure.
165 */
166 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
167 {
168 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
169 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
170 }
171
172 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
173 gfp_t gfp_mask)
174 {
175 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
176
177 if (WARN_ON_ONCE(!bvs))
178 return NULL;
179
180 /*
181 * Upgrade the nr_vecs request to take full advantage of the allocation.
182 * We also rely on this in the bvec_free path.
183 */
184 *nr_vecs = bvs->nr_vecs;
185
186 /*
187 * Try a slab allocation first for all smaller allocations. If that
188 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
189 * The mempool is sized to handle up to BIO_MAX_VECS entries.
190 */
191 if (*nr_vecs < BIO_MAX_VECS) {
192 struct bio_vec *bvl;
193
194 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
195 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
196 return bvl;
197 *nr_vecs = BIO_MAX_VECS;
198 }
199
200 return mempool_alloc(pool, gfp_mask);
201 }
202
203 void bio_uninit(struct bio *bio)
204 {
205 #ifdef CONFIG_BLK_CGROUP
206 if (bio->bi_blkg) {
207 blkg_put(bio->bi_blkg);
208 bio->bi_blkg = NULL;
209 }
210 #endif
211 if (bio_integrity(bio))
212 bio_integrity_free(bio);
213
214 bio_crypt_free_ctx(bio);
215 }
216 EXPORT_SYMBOL(bio_uninit);
217
218 static void bio_free(struct bio *bio)
219 {
220 struct bio_set *bs = bio->bi_pool;
221 void *p;
222
223 bio_uninit(bio);
224
225 if (bs) {
226 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
227
228 /*
229 * If we have front padding, adjust the bio pointer before freeing
230 */
231 p = bio;
232 p -= bs->front_pad;
233
234 mempool_free(p, &bs->bio_pool);
235 } else {
236 /* Bio was allocated by bio_kmalloc() */
237 kfree(bio);
238 }
239 }
240
241 /*
242 * Users of this function have their own bio allocation. Subsequently,
243 * they must remember to pair any call to bio_init() with bio_uninit()
244 * when IO has completed, or when the bio is released.
245 */
246 void bio_init(struct bio *bio, struct bio_vec *table,
247 unsigned short max_vecs)
248 {
249 memset(bio, 0, sizeof(*bio));
250 atomic_set(&bio->__bi_remaining, 1);
251 atomic_set(&bio->__bi_cnt, 1);
252
253 bio->bi_io_vec = table;
254 bio->bi_max_vecs = max_vecs;
255 }
256 EXPORT_SYMBOL(bio_init);
257
258 /**
259 * bio_reset - reinitialize a bio
260 * @bio: bio to reset
261 *
262 * Description:
263 * After calling bio_reset(), @bio will be in the same state as a freshly
264 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
265 * preserved are the ones that are initialized by bio_alloc_bioset(). See
266 * comment in struct bio.
267 */
268 void bio_reset(struct bio *bio)
269 {
270 bio_uninit(bio);
271 memset(bio, 0, BIO_RESET_BYTES);
272 atomic_set(&bio->__bi_remaining, 1);
273 }
274 EXPORT_SYMBOL(bio_reset);
275
276 static struct bio *__bio_chain_endio(struct bio *bio)
277 {
278 struct bio *parent = bio->bi_private;
279
280 if (bio->bi_status && !parent->bi_status)
281 parent->bi_status = bio->bi_status;
282 bio_put(bio);
283 return parent;
284 }
285
286 static void bio_chain_endio(struct bio *bio)
287 {
288 bio_endio(__bio_chain_endio(bio));
289 }
290
291 /**
292 * bio_chain - chain bio completions
293 * @bio: the target bio
294 * @parent: the parent bio of @bio
295 *
296 * The caller won't have a bi_end_io called when @bio completes - instead,
297 * @parent's bi_end_io won't be called until both @parent and @bio have
298 * completed; the chained bio will also be freed when it completes.
299 *
300 * The caller must not set bi_private or bi_end_io in @bio.
301 */
302 void bio_chain(struct bio *bio, struct bio *parent)
303 {
304 BUG_ON(bio->bi_private || bio->bi_end_io);
305
306 bio->bi_private = parent;
307 bio->bi_end_io = bio_chain_endio;
308 bio_inc_remaining(parent);
309 }
310 EXPORT_SYMBOL(bio_chain);
311
312 static void bio_alloc_rescue(struct work_struct *work)
313 {
314 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
315 struct bio *bio;
316
317 while (1) {
318 spin_lock(&bs->rescue_lock);
319 bio = bio_list_pop(&bs->rescue_list);
320 spin_unlock(&bs->rescue_lock);
321
322 if (!bio)
323 break;
324
325 submit_bio_noacct(bio);
326 }
327 }
328
329 static void punt_bios_to_rescuer(struct bio_set *bs)
330 {
331 struct bio_list punt, nopunt;
332 struct bio *bio;
333
334 if (WARN_ON_ONCE(!bs->rescue_workqueue))
335 return;
336 /*
337 * In order to guarantee forward progress we must punt only bios that
338 * were allocated from this bio_set; otherwise, if there was a bio on
339 * there for a stacking driver higher up in the stack, processing it
340 * could require allocating bios from this bio_set, and doing that from
341 * our own rescuer would be bad.
342 *
343 * Since bio lists are singly linked, pop them all instead of trying to
344 * remove from the middle of the list:
345 */
346
347 bio_list_init(&punt);
348 bio_list_init(&nopunt);
349
350 while ((bio = bio_list_pop(&current->bio_list[0])))
351 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
352 current->bio_list[0] = nopunt;
353
354 bio_list_init(&nopunt);
355 while ((bio = bio_list_pop(&current->bio_list[1])))
356 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
357 current->bio_list[1] = nopunt;
358
359 spin_lock(&bs->rescue_lock);
360 bio_list_merge(&bs->rescue_list, &punt);
361 spin_unlock(&bs->rescue_lock);
362
363 queue_work(bs->rescue_workqueue, &bs->rescue_work);
364 }
365
366 /**
367 * bio_alloc_bioset - allocate a bio for I/O
368 * @gfp_mask: the GFP_* mask given to the slab allocator
369 * @nr_iovecs: number of iovecs to pre-allocate
370 * @bs: the bio_set to allocate from.
371 *
372 * Allocate a bio from the mempools in @bs.
373 *
374 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
375 * allocate a bio. This is due to the mempool guarantees. To make this work,
376 * callers must never allocate more than 1 bio at a time from the general pool.
377 * Callers that need to allocate more than 1 bio must always submit the
378 * previously allocated bio for IO before attempting to allocate a new one.
379 * Failure to do so can cause deadlocks under memory pressure.
380 *
381 * Note that when running under submit_bio_noacct() (i.e. any block driver),
382 * bios are not submitted until after you return - see the code in
383 * submit_bio_noacct() that converts recursion into iteration, to prevent
384 * stack overflows.
385 *
386 * This would normally mean allocating multiple bios under submit_bio_noacct()
387 * would be susceptible to deadlocks, but we have
388 * deadlock avoidance code that resubmits any blocked bios from a rescuer
389 * thread.
390 *
391 * However, we do not guarantee forward progress for allocations from other
392 * mempools. Doing multiple allocations from the same mempool under
393 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
394 * for per bio allocations.
395 *
396 * Returns: Pointer to new bio on success, NULL on failure.
397 */
398 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
399 struct bio_set *bs)
400 {
401 gfp_t saved_gfp = gfp_mask;
402 struct bio *bio;
403 void *p;
404
405 /* should not use nobvec bioset for nr_iovecs > 0 */
406 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
407 return NULL;
408
409 /*
410 * submit_bio_noacct() converts recursion to iteration; this means if
411 * we're running beneath it, any bios we allocate and submit will not be
412 * submitted (and thus freed) until after we return.
413 *
414 * This exposes us to a potential deadlock if we allocate multiple bios
415 * from the same bio_set() while running underneath submit_bio_noacct().
416 * If we were to allocate multiple bios (say a stacking block driver
417 * that was splitting bios), we would deadlock if we exhausted the
418 * mempool's reserve.
419 *
420 * We solve this, and guarantee forward progress, with a rescuer
421 * workqueue per bio_set. If we go to allocate and there are bios on
422 * current->bio_list, we first try the allocation without
423 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
424 * blocking to the rescuer workqueue before we retry with the original
425 * gfp_flags.
426 */
427 if (current->bio_list &&
428 (!bio_list_empty(&current->bio_list[0]) ||
429 !bio_list_empty(&current->bio_list[1])) &&
430 bs->rescue_workqueue)
431 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
432
433 p = mempool_alloc(&bs->bio_pool, gfp_mask);
434 if (!p && gfp_mask != saved_gfp) {
435 punt_bios_to_rescuer(bs);
436 gfp_mask = saved_gfp;
437 p = mempool_alloc(&bs->bio_pool, gfp_mask);
438 }
439 if (unlikely(!p))
440 return NULL;
441
442 bio = p + bs->front_pad;
443 if (nr_iovecs > BIO_INLINE_VECS) {
444 struct bio_vec *bvl = NULL;
445
446 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
447 if (!bvl && gfp_mask != saved_gfp) {
448 punt_bios_to_rescuer(bs);
449 gfp_mask = saved_gfp;
450 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
451 }
452 if (unlikely(!bvl))
453 goto err_free;
454
455 bio_init(bio, bvl, nr_iovecs);
456 } else if (nr_iovecs) {
457 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
458 } else {
459 bio_init(bio, NULL, 0);
460 }
461
462 bio->bi_pool = bs;
463 return bio;
464
465 err_free:
466 mempool_free(p, &bs->bio_pool);
467 return NULL;
468 }
469 EXPORT_SYMBOL(bio_alloc_bioset);
470
471 /**
472 * bio_kmalloc - kmalloc a bio for I/O
473 * @gfp_mask: the GFP_* mask given to the slab allocator
474 * @nr_iovecs: number of iovecs to pre-allocate
475 *
476 * Use kmalloc to allocate and initialize a bio.
477 *
478 * Returns: Pointer to new bio on success, NULL on failure.
479 */
480 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
481 {
482 struct bio *bio;
483
484 if (nr_iovecs > UIO_MAXIOV)
485 return NULL;
486
487 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
488 if (unlikely(!bio))
489 return NULL;
490 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
491 bio->bi_pool = NULL;
492 return bio;
493 }
494 EXPORT_SYMBOL(bio_kmalloc);
495
496 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
497 {
498 unsigned long flags;
499 struct bio_vec bv;
500 struct bvec_iter iter;
501
502 __bio_for_each_segment(bv, bio, iter, start) {
503 char *data = bvec_kmap_irq(&bv, &flags);
504 memset(data, 0, bv.bv_len);
505 flush_dcache_page(bv.bv_page);
506 bvec_kunmap_irq(data, &flags);
507 }
508 }
509 EXPORT_SYMBOL(zero_fill_bio_iter);
510
511 /**
512 * bio_truncate - truncate the bio to small size of @new_size
513 * @bio: the bio to be truncated
514 * @new_size: new size for truncating the bio
515 *
516 * Description:
517 * Truncate the bio to new size of @new_size. If bio_op(bio) is
518 * REQ_OP_READ, zero the truncated part. This function should only
519 * be used for handling corner cases, such as bio eod.
520 */
521 void bio_truncate(struct bio *bio, unsigned new_size)
522 {
523 struct bio_vec bv;
524 struct bvec_iter iter;
525 unsigned int done = 0;
526 bool truncated = false;
527
528 if (new_size >= bio->bi_iter.bi_size)
529 return;
530
531 if (bio_op(bio) != REQ_OP_READ)
532 goto exit;
533
534 bio_for_each_segment(bv, bio, iter) {
535 if (done + bv.bv_len > new_size) {
536 unsigned offset;
537
538 if (!truncated)
539 offset = new_size - done;
540 else
541 offset = 0;
542 zero_user(bv.bv_page, offset, bv.bv_len - offset);
543 truncated = true;
544 }
545 done += bv.bv_len;
546 }
547
548 exit:
549 /*
550 * Don't touch bvec table here and make it really immutable, since
551 * fs bio user has to retrieve all pages via bio_for_each_segment_all
552 * in its .end_bio() callback.
553 *
554 * It is enough to truncate bio by updating .bi_size since we can make
555 * correct bvec with the updated .bi_size for drivers.
556 */
557 bio->bi_iter.bi_size = new_size;
558 }
559
560 /**
561 * guard_bio_eod - truncate a BIO to fit the block device
562 * @bio: bio to truncate
563 *
564 * This allows us to do IO even on the odd last sectors of a device, even if the
565 * block size is some multiple of the physical sector size.
566 *
567 * We'll just truncate the bio to the size of the device, and clear the end of
568 * the buffer head manually. Truly out-of-range accesses will turn into actual
569 * I/O errors, this only handles the "we need to be able to do I/O at the final
570 * sector" case.
571 */
572 void guard_bio_eod(struct bio *bio)
573 {
574 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
575
576 if (!maxsector)
577 return;
578
579 /*
580 * If the *whole* IO is past the end of the device,
581 * let it through, and the IO layer will turn it into
582 * an EIO.
583 */
584 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
585 return;
586
587 maxsector -= bio->bi_iter.bi_sector;
588 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
589 return;
590
591 bio_truncate(bio, maxsector << 9);
592 }
593
594 /**
595 * bio_put - release a reference to a bio
596 * @bio: bio to release reference to
597 *
598 * Description:
599 * Put a reference to a &struct bio, either one you have gotten with
600 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
601 **/
602 void bio_put(struct bio *bio)
603 {
604 if (!bio_flagged(bio, BIO_REFFED))
605 bio_free(bio);
606 else {
607 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
608
609 /*
610 * last put frees it
611 */
612 if (atomic_dec_and_test(&bio->__bi_cnt))
613 bio_free(bio);
614 }
615 }
616 EXPORT_SYMBOL(bio_put);
617
618 /**
619 * __bio_clone_fast - clone a bio that shares the original bio's biovec
620 * @bio: destination bio
621 * @bio_src: bio to clone
622 *
623 * Clone a &bio. Caller will own the returned bio, but not
624 * the actual data it points to. Reference count of returned
625 * bio will be one.
626 *
627 * Caller must ensure that @bio_src is not freed before @bio.
628 */
629 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
630 {
631 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
632
633 /*
634 * most users will be overriding ->bi_bdev with a new target,
635 * so we don't set nor calculate new physical/hw segment counts here
636 */
637 bio->bi_bdev = bio_src->bi_bdev;
638 bio_set_flag(bio, BIO_CLONED);
639 if (bio_flagged(bio_src, BIO_THROTTLED))
640 bio_set_flag(bio, BIO_THROTTLED);
641 if (bio_flagged(bio_src, BIO_REMAPPED))
642 bio_set_flag(bio, BIO_REMAPPED);
643 bio->bi_opf = bio_src->bi_opf;
644 bio->bi_ioprio = bio_src->bi_ioprio;
645 bio->bi_write_hint = bio_src->bi_write_hint;
646 bio->bi_iter = bio_src->bi_iter;
647 bio->bi_io_vec = bio_src->bi_io_vec;
648
649 bio_clone_blkg_association(bio, bio_src);
650 blkcg_bio_issue_init(bio);
651 }
652 EXPORT_SYMBOL(__bio_clone_fast);
653
654 /**
655 * bio_clone_fast - clone a bio that shares the original bio's biovec
656 * @bio: bio to clone
657 * @gfp_mask: allocation priority
658 * @bs: bio_set to allocate from
659 *
660 * Like __bio_clone_fast, only also allocates the returned bio
661 */
662 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
663 {
664 struct bio *b;
665
666 b = bio_alloc_bioset(gfp_mask, 0, bs);
667 if (!b)
668 return NULL;
669
670 __bio_clone_fast(b, bio);
671
672 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
673 goto err_put;
674
675 if (bio_integrity(bio) &&
676 bio_integrity_clone(b, bio, gfp_mask) < 0)
677 goto err_put;
678
679 return b;
680
681 err_put:
682 bio_put(b);
683 return NULL;
684 }
685 EXPORT_SYMBOL(bio_clone_fast);
686
687 const char *bio_devname(struct bio *bio, char *buf)
688 {
689 return bdevname(bio->bi_bdev, buf);
690 }
691 EXPORT_SYMBOL(bio_devname);
692
693 static inline bool page_is_mergeable(const struct bio_vec *bv,
694 struct page *page, unsigned int len, unsigned int off,
695 bool *same_page)
696 {
697 size_t bv_end = bv->bv_offset + bv->bv_len;
698 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
699 phys_addr_t page_addr = page_to_phys(page);
700
701 if (vec_end_addr + 1 != page_addr + off)
702 return false;
703 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
704 return false;
705
706 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
707 if (*same_page)
708 return true;
709 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
710 }
711
712 /*
713 * Try to merge a page into a segment, while obeying the hardware segment
714 * size limit. This is not for normal read/write bios, but for passthrough
715 * or Zone Append operations that we can't split.
716 */
717 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
718 struct page *page, unsigned len,
719 unsigned offset, bool *same_page)
720 {
721 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
722 unsigned long mask = queue_segment_boundary(q);
723 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
724 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
725
726 if ((addr1 | mask) != (addr2 | mask))
727 return false;
728 if (bv->bv_len + len > queue_max_segment_size(q))
729 return false;
730 return __bio_try_merge_page(bio, page, len, offset, same_page);
731 }
732
733 /**
734 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
735 * @q: the target queue
736 * @bio: destination bio
737 * @page: page to add
738 * @len: vec entry length
739 * @offset: vec entry offset
740 * @max_sectors: maximum number of sectors that can be added
741 * @same_page: return if the segment has been merged inside the same page
742 *
743 * Add a page to a bio while respecting the hardware max_sectors, max_segment
744 * and gap limitations.
745 */
746 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
747 struct page *page, unsigned int len, unsigned int offset,
748 unsigned int max_sectors, bool *same_page)
749 {
750 struct bio_vec *bvec;
751
752 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
753 return 0;
754
755 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
756 return 0;
757
758 if (bio->bi_vcnt > 0) {
759 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
760 return len;
761
762 /*
763 * If the queue doesn't support SG gaps and adding this segment
764 * would create a gap, disallow it.
765 */
766 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
767 if (bvec_gap_to_prev(q, bvec, offset))
768 return 0;
769 }
770
771 if (bio_full(bio, len))
772 return 0;
773
774 if (bio->bi_vcnt >= queue_max_segments(q))
775 return 0;
776
777 bvec = &bio->bi_io_vec[bio->bi_vcnt];
778 bvec->bv_page = page;
779 bvec->bv_len = len;
780 bvec->bv_offset = offset;
781 bio->bi_vcnt++;
782 bio->bi_iter.bi_size += len;
783 return len;
784 }
785
786 /**
787 * bio_add_pc_page - attempt to add page to passthrough bio
788 * @q: the target queue
789 * @bio: destination bio
790 * @page: page to add
791 * @len: vec entry length
792 * @offset: vec entry offset
793 *
794 * Attempt to add a page to the bio_vec maplist. This can fail for a
795 * number of reasons, such as the bio being full or target block device
796 * limitations. The target block device must allow bio's up to PAGE_SIZE,
797 * so it is always possible to add a single page to an empty bio.
798 *
799 * This should only be used by passthrough bios.
800 */
801 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
802 struct page *page, unsigned int len, unsigned int offset)
803 {
804 bool same_page = false;
805 return bio_add_hw_page(q, bio, page, len, offset,
806 queue_max_hw_sectors(q), &same_page);
807 }
808 EXPORT_SYMBOL(bio_add_pc_page);
809
810 /**
811 * bio_add_zone_append_page - attempt to add page to zone-append bio
812 * @bio: destination bio
813 * @page: page to add
814 * @len: vec entry length
815 * @offset: vec entry offset
816 *
817 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
818 * for a zone-append request. This can fail for a number of reasons, such as the
819 * bio being full or the target block device is not a zoned block device or
820 * other limitations of the target block device. The target block device must
821 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
822 * to an empty bio.
823 *
824 * Returns: number of bytes added to the bio, or 0 in case of a failure.
825 */
826 int bio_add_zone_append_page(struct bio *bio, struct page *page,
827 unsigned int len, unsigned int offset)
828 {
829 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
830 bool same_page = false;
831
832 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
833 return 0;
834
835 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
836 return 0;
837
838 return bio_add_hw_page(q, bio, page, len, offset,
839 queue_max_zone_append_sectors(q), &same_page);
840 }
841 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
842
843 /**
844 * __bio_try_merge_page - try appending data to an existing bvec.
845 * @bio: destination bio
846 * @page: start page to add
847 * @len: length of the data to add
848 * @off: offset of the data relative to @page
849 * @same_page: return if the segment has been merged inside the same page
850 *
851 * Try to add the data at @page + @off to the last bvec of @bio. This is a
852 * useful optimisation for file systems with a block size smaller than the
853 * page size.
854 *
855 * Warn if (@len, @off) crosses pages in case that @same_page is true.
856 *
857 * Return %true on success or %false on failure.
858 */
859 bool __bio_try_merge_page(struct bio *bio, struct page *page,
860 unsigned int len, unsigned int off, bool *same_page)
861 {
862 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
863 return false;
864
865 if (bio->bi_vcnt > 0) {
866 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
867
868 if (page_is_mergeable(bv, page, len, off, same_page)) {
869 if (bio->bi_iter.bi_size > UINT_MAX - len) {
870 *same_page = false;
871 return false;
872 }
873 bv->bv_len += len;
874 bio->bi_iter.bi_size += len;
875 return true;
876 }
877 }
878 return false;
879 }
880 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
881
882 /**
883 * __bio_add_page - add page(s) to a bio in a new segment
884 * @bio: destination bio
885 * @page: start page to add
886 * @len: length of the data to add, may cross pages
887 * @off: offset of the data relative to @page, may cross pages
888 *
889 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
890 * that @bio has space for another bvec.
891 */
892 void __bio_add_page(struct bio *bio, struct page *page,
893 unsigned int len, unsigned int off)
894 {
895 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
896
897 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
898 WARN_ON_ONCE(bio_full(bio, len));
899
900 bv->bv_page = page;
901 bv->bv_offset = off;
902 bv->bv_len = len;
903
904 bio->bi_iter.bi_size += len;
905 bio->bi_vcnt++;
906
907 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
908 bio_set_flag(bio, BIO_WORKINGSET);
909 }
910 EXPORT_SYMBOL_GPL(__bio_add_page);
911
912 /**
913 * bio_add_page - attempt to add page(s) to bio
914 * @bio: destination bio
915 * @page: start page to add
916 * @len: vec entry length, may cross pages
917 * @offset: vec entry offset relative to @page, may cross pages
918 *
919 * Attempt to add page(s) to the bio_vec maplist. This will only fail
920 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
921 */
922 int bio_add_page(struct bio *bio, struct page *page,
923 unsigned int len, unsigned int offset)
924 {
925 bool same_page = false;
926
927 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
928 if (bio_full(bio, len))
929 return 0;
930 __bio_add_page(bio, page, len, offset);
931 }
932 return len;
933 }
934 EXPORT_SYMBOL(bio_add_page);
935
936 void bio_release_pages(struct bio *bio, bool mark_dirty)
937 {
938 struct bvec_iter_all iter_all;
939 struct bio_vec *bvec;
940
941 if (bio_flagged(bio, BIO_NO_PAGE_REF))
942 return;
943
944 bio_for_each_segment_all(bvec, bio, iter_all) {
945 if (mark_dirty && !PageCompound(bvec->bv_page))
946 set_page_dirty_lock(bvec->bv_page);
947 put_page(bvec->bv_page);
948 }
949 }
950 EXPORT_SYMBOL_GPL(bio_release_pages);
951
952 static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
953 {
954 WARN_ON_ONCE(bio->bi_max_vecs);
955
956 bio->bi_vcnt = iter->nr_segs;
957 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
958 bio->bi_iter.bi_bvec_done = iter->iov_offset;
959 bio->bi_iter.bi_size = iter->count;
960 bio_set_flag(bio, BIO_NO_PAGE_REF);
961 bio_set_flag(bio, BIO_CLONED);
962 }
963
964 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
965 {
966 __bio_iov_bvec_set(bio, iter);
967 iov_iter_advance(iter, iter->count);
968 return 0;
969 }
970
971 static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
972 {
973 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
974 struct iov_iter i = *iter;
975
976 iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
977 __bio_iov_bvec_set(bio, &i);
978 iov_iter_advance(iter, i.count);
979 return 0;
980 }
981
982 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
983
984 /**
985 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
986 * @bio: bio to add pages to
987 * @iter: iov iterator describing the region to be mapped
988 *
989 * Pins pages from *iter and appends them to @bio's bvec array. The
990 * pages will have to be released using put_page() when done.
991 * For multi-segment *iter, this function only adds pages from the
992 * next non-empty segment of the iov iterator.
993 */
994 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
995 {
996 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
997 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
998 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
999 struct page **pages = (struct page **)bv;
1000 bool same_page = false;
1001 ssize_t size, left;
1002 unsigned len, i;
1003 size_t offset;
1004
1005 /*
1006 * Move page array up in the allocated memory for the bio vecs as far as
1007 * possible so that we can start filling biovecs from the beginning
1008 * without overwriting the temporary page array.
1009 */
1010 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1011 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1012
1013 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1014 if (unlikely(size <= 0))
1015 return size ? size : -EFAULT;
1016
1017 for (left = size, i = 0; left > 0; left -= len, i++) {
1018 struct page *page = pages[i];
1019
1020 len = min_t(size_t, PAGE_SIZE - offset, left);
1021
1022 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1023 if (same_page)
1024 put_page(page);
1025 } else {
1026 if (WARN_ON_ONCE(bio_full(bio, len)))
1027 return -EINVAL;
1028 __bio_add_page(bio, page, len, offset);
1029 }
1030 offset = 0;
1031 }
1032
1033 iov_iter_advance(iter, size);
1034 return 0;
1035 }
1036
1037 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1038 {
1039 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1040 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1041 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1042 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1043 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1044 struct page **pages = (struct page **)bv;
1045 ssize_t size, left;
1046 unsigned len, i;
1047 size_t offset;
1048 int ret = 0;
1049
1050 if (WARN_ON_ONCE(!max_append_sectors))
1051 return 0;
1052
1053 /*
1054 * Move page array up in the allocated memory for the bio vecs as far as
1055 * possible so that we can start filling biovecs from the beginning
1056 * without overwriting the temporary page array.
1057 */
1058 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1059 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1060
1061 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1062 if (unlikely(size <= 0))
1063 return size ? size : -EFAULT;
1064
1065 for (left = size, i = 0; left > 0; left -= len, i++) {
1066 struct page *page = pages[i];
1067 bool same_page = false;
1068
1069 len = min_t(size_t, PAGE_SIZE - offset, left);
1070 if (bio_add_hw_page(q, bio, page, len, offset,
1071 max_append_sectors, &same_page) != len) {
1072 ret = -EINVAL;
1073 break;
1074 }
1075 if (same_page)
1076 put_page(page);
1077 offset = 0;
1078 }
1079
1080 iov_iter_advance(iter, size - left);
1081 return ret;
1082 }
1083
1084 /**
1085 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1086 * @bio: bio to add pages to
1087 * @iter: iov iterator describing the region to be added
1088 *
1089 * This takes either an iterator pointing to user memory, or one pointing to
1090 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1091 * map them into the kernel. On IO completion, the caller should put those
1092 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1093 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1094 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1095 * completed by a call to ->ki_complete() or returns with an error other than
1096 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1097 * on IO completion. If it isn't, then pages should be released.
1098 *
1099 * The function tries, but does not guarantee, to pin as many pages as
1100 * fit into the bio, or are requested in @iter, whatever is smaller. If
1101 * MM encounters an error pinning the requested pages, it stops. Error
1102 * is returned only if 0 pages could be pinned.
1103 *
1104 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1105 * responsible for setting BIO_WORKINGSET if necessary.
1106 */
1107 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1108 {
1109 int ret = 0;
1110
1111 if (iov_iter_is_bvec(iter)) {
1112 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1113 return bio_iov_bvec_set_append(bio, iter);
1114 return bio_iov_bvec_set(bio, iter);
1115 }
1116
1117 do {
1118 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1119 ret = __bio_iov_append_get_pages(bio, iter);
1120 else
1121 ret = __bio_iov_iter_get_pages(bio, iter);
1122 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1123
1124 /* don't account direct I/O as memory stall */
1125 bio_clear_flag(bio, BIO_WORKINGSET);
1126 return bio->bi_vcnt ? 0 : ret;
1127 }
1128 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1129
1130 static void submit_bio_wait_endio(struct bio *bio)
1131 {
1132 complete(bio->bi_private);
1133 }
1134
1135 /**
1136 * submit_bio_wait - submit a bio, and wait until it completes
1137 * @bio: The &struct bio which describes the I/O
1138 *
1139 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1140 * bio_endio() on failure.
1141 *
1142 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1143 * result in bio reference to be consumed. The caller must drop the reference
1144 * on his own.
1145 */
1146 int submit_bio_wait(struct bio *bio)
1147 {
1148 DECLARE_COMPLETION_ONSTACK_MAP(done,
1149 bio->bi_bdev->bd_disk->lockdep_map);
1150 unsigned long hang_check;
1151
1152 bio->bi_private = &done;
1153 bio->bi_end_io = submit_bio_wait_endio;
1154 bio->bi_opf |= REQ_SYNC;
1155 submit_bio(bio);
1156
1157 /* Prevent hang_check timer from firing at us during very long I/O */
1158 hang_check = sysctl_hung_task_timeout_secs;
1159 if (hang_check)
1160 while (!wait_for_completion_io_timeout(&done,
1161 hang_check * (HZ/2)))
1162 ;
1163 else
1164 wait_for_completion_io(&done);
1165
1166 return blk_status_to_errno(bio->bi_status);
1167 }
1168 EXPORT_SYMBOL(submit_bio_wait);
1169
1170 /**
1171 * bio_advance - increment/complete a bio by some number of bytes
1172 * @bio: bio to advance
1173 * @bytes: number of bytes to complete
1174 *
1175 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1176 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1177 * be updated on the last bvec as well.
1178 *
1179 * @bio will then represent the remaining, uncompleted portion of the io.
1180 */
1181 void bio_advance(struct bio *bio, unsigned bytes)
1182 {
1183 if (bio_integrity(bio))
1184 bio_integrity_advance(bio, bytes);
1185
1186 bio_crypt_advance(bio, bytes);
1187 bio_advance_iter(bio, &bio->bi_iter, bytes);
1188 }
1189 EXPORT_SYMBOL(bio_advance);
1190
1191 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1192 struct bio *src, struct bvec_iter *src_iter)
1193 {
1194 struct bio_vec src_bv, dst_bv;
1195 void *src_p, *dst_p;
1196 unsigned bytes;
1197
1198 while (src_iter->bi_size && dst_iter->bi_size) {
1199 src_bv = bio_iter_iovec(src, *src_iter);
1200 dst_bv = bio_iter_iovec(dst, *dst_iter);
1201
1202 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1203
1204 src_p = kmap_atomic(src_bv.bv_page);
1205 dst_p = kmap_atomic(dst_bv.bv_page);
1206
1207 memcpy(dst_p + dst_bv.bv_offset,
1208 src_p + src_bv.bv_offset,
1209 bytes);
1210
1211 kunmap_atomic(dst_p);
1212 kunmap_atomic(src_p);
1213
1214 flush_dcache_page(dst_bv.bv_page);
1215
1216 bio_advance_iter_single(src, src_iter, bytes);
1217 bio_advance_iter_single(dst, dst_iter, bytes);
1218 }
1219 }
1220 EXPORT_SYMBOL(bio_copy_data_iter);
1221
1222 /**
1223 * bio_copy_data - copy contents of data buffers from one bio to another
1224 * @src: source bio
1225 * @dst: destination bio
1226 *
1227 * Stops when it reaches the end of either @src or @dst - that is, copies
1228 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1229 */
1230 void bio_copy_data(struct bio *dst, struct bio *src)
1231 {
1232 struct bvec_iter src_iter = src->bi_iter;
1233 struct bvec_iter dst_iter = dst->bi_iter;
1234
1235 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1236 }
1237 EXPORT_SYMBOL(bio_copy_data);
1238
1239 /**
1240 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1241 * another
1242 * @src: source bio list
1243 * @dst: destination bio list
1244 *
1245 * Stops when it reaches the end of either the @src list or @dst list - that is,
1246 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1247 * bios).
1248 */
1249 void bio_list_copy_data(struct bio *dst, struct bio *src)
1250 {
1251 struct bvec_iter src_iter = src->bi_iter;
1252 struct bvec_iter dst_iter = dst->bi_iter;
1253
1254 while (1) {
1255 if (!src_iter.bi_size) {
1256 src = src->bi_next;
1257 if (!src)
1258 break;
1259
1260 src_iter = src->bi_iter;
1261 }
1262
1263 if (!dst_iter.bi_size) {
1264 dst = dst->bi_next;
1265 if (!dst)
1266 break;
1267
1268 dst_iter = dst->bi_iter;
1269 }
1270
1271 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1272 }
1273 }
1274 EXPORT_SYMBOL(bio_list_copy_data);
1275
1276 void bio_free_pages(struct bio *bio)
1277 {
1278 struct bio_vec *bvec;
1279 struct bvec_iter_all iter_all;
1280
1281 bio_for_each_segment_all(bvec, bio, iter_all)
1282 __free_page(bvec->bv_page);
1283 }
1284 EXPORT_SYMBOL(bio_free_pages);
1285
1286 /*
1287 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1288 * for performing direct-IO in BIOs.
1289 *
1290 * The problem is that we cannot run set_page_dirty() from interrupt context
1291 * because the required locks are not interrupt-safe. So what we can do is to
1292 * mark the pages dirty _before_ performing IO. And in interrupt context,
1293 * check that the pages are still dirty. If so, fine. If not, redirty them
1294 * in process context.
1295 *
1296 * We special-case compound pages here: normally this means reads into hugetlb
1297 * pages. The logic in here doesn't really work right for compound pages
1298 * because the VM does not uniformly chase down the head page in all cases.
1299 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1300 * handle them at all. So we skip compound pages here at an early stage.
1301 *
1302 * Note that this code is very hard to test under normal circumstances because
1303 * direct-io pins the pages with get_user_pages(). This makes
1304 * is_page_cache_freeable return false, and the VM will not clean the pages.
1305 * But other code (eg, flusher threads) could clean the pages if they are mapped
1306 * pagecache.
1307 *
1308 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1309 * deferred bio dirtying paths.
1310 */
1311
1312 /*
1313 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1314 */
1315 void bio_set_pages_dirty(struct bio *bio)
1316 {
1317 struct bio_vec *bvec;
1318 struct bvec_iter_all iter_all;
1319
1320 bio_for_each_segment_all(bvec, bio, iter_all) {
1321 if (!PageCompound(bvec->bv_page))
1322 set_page_dirty_lock(bvec->bv_page);
1323 }
1324 }
1325
1326 /*
1327 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1328 * If they are, then fine. If, however, some pages are clean then they must
1329 * have been written out during the direct-IO read. So we take another ref on
1330 * the BIO and re-dirty the pages in process context.
1331 *
1332 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1333 * here on. It will run one put_page() against each page and will run one
1334 * bio_put() against the BIO.
1335 */
1336
1337 static void bio_dirty_fn(struct work_struct *work);
1338
1339 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1340 static DEFINE_SPINLOCK(bio_dirty_lock);
1341 static struct bio *bio_dirty_list;
1342
1343 /*
1344 * This runs in process context
1345 */
1346 static void bio_dirty_fn(struct work_struct *work)
1347 {
1348 struct bio *bio, *next;
1349
1350 spin_lock_irq(&bio_dirty_lock);
1351 next = bio_dirty_list;
1352 bio_dirty_list = NULL;
1353 spin_unlock_irq(&bio_dirty_lock);
1354
1355 while ((bio = next) != NULL) {
1356 next = bio->bi_private;
1357
1358 bio_release_pages(bio, true);
1359 bio_put(bio);
1360 }
1361 }
1362
1363 void bio_check_pages_dirty(struct bio *bio)
1364 {
1365 struct bio_vec *bvec;
1366 unsigned long flags;
1367 struct bvec_iter_all iter_all;
1368
1369 bio_for_each_segment_all(bvec, bio, iter_all) {
1370 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1371 goto defer;
1372 }
1373
1374 bio_release_pages(bio, false);
1375 bio_put(bio);
1376 return;
1377 defer:
1378 spin_lock_irqsave(&bio_dirty_lock, flags);
1379 bio->bi_private = bio_dirty_list;
1380 bio_dirty_list = bio;
1381 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1382 schedule_work(&bio_dirty_work);
1383 }
1384
1385 static inline bool bio_remaining_done(struct bio *bio)
1386 {
1387 /*
1388 * If we're not chaining, then ->__bi_remaining is always 1 and
1389 * we always end io on the first invocation.
1390 */
1391 if (!bio_flagged(bio, BIO_CHAIN))
1392 return true;
1393
1394 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1395
1396 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1397 bio_clear_flag(bio, BIO_CHAIN);
1398 return true;
1399 }
1400
1401 return false;
1402 }
1403
1404 /**
1405 * bio_endio - end I/O on a bio
1406 * @bio: bio
1407 *
1408 * Description:
1409 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1410 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1411 * bio unless they own it and thus know that it has an end_io function.
1412 *
1413 * bio_endio() can be called several times on a bio that has been chained
1414 * using bio_chain(). The ->bi_end_io() function will only be called the
1415 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1416 * generated if BIO_TRACE_COMPLETION is set.
1417 **/
1418 void bio_endio(struct bio *bio)
1419 {
1420 again:
1421 if (!bio_remaining_done(bio))
1422 return;
1423 if (!bio_integrity_endio(bio))
1424 return;
1425
1426 if (bio->bi_bdev)
1427 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
1428
1429 /*
1430 * Need to have a real endio function for chained bios, otherwise
1431 * various corner cases will break (like stacking block devices that
1432 * save/restore bi_end_io) - however, we want to avoid unbounded
1433 * recursion and blowing the stack. Tail call optimization would
1434 * handle this, but compiling with frame pointers also disables
1435 * gcc's sibling call optimization.
1436 */
1437 if (bio->bi_end_io == bio_chain_endio) {
1438 bio = __bio_chain_endio(bio);
1439 goto again;
1440 }
1441
1442 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1443 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1444 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1445 }
1446
1447 blk_throtl_bio_endio(bio);
1448 /* release cgroup info */
1449 bio_uninit(bio);
1450 if (bio->bi_end_io)
1451 bio->bi_end_io(bio);
1452 }
1453 EXPORT_SYMBOL(bio_endio);
1454
1455 /**
1456 * bio_split - split a bio
1457 * @bio: bio to split
1458 * @sectors: number of sectors to split from the front of @bio
1459 * @gfp: gfp mask
1460 * @bs: bio set to allocate from
1461 *
1462 * Allocates and returns a new bio which represents @sectors from the start of
1463 * @bio, and updates @bio to represent the remaining sectors.
1464 *
1465 * Unless this is a discard request the newly allocated bio will point
1466 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1467 * neither @bio nor @bs are freed before the split bio.
1468 */
1469 struct bio *bio_split(struct bio *bio, int sectors,
1470 gfp_t gfp, struct bio_set *bs)
1471 {
1472 struct bio *split;
1473
1474 BUG_ON(sectors <= 0);
1475 BUG_ON(sectors >= bio_sectors(bio));
1476
1477 /* Zone append commands cannot be split */
1478 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1479 return NULL;
1480
1481 split = bio_clone_fast(bio, gfp, bs);
1482 if (!split)
1483 return NULL;
1484
1485 split->bi_iter.bi_size = sectors << 9;
1486
1487 if (bio_integrity(split))
1488 bio_integrity_trim(split);
1489
1490 bio_advance(bio, split->bi_iter.bi_size);
1491
1492 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1493 bio_set_flag(split, BIO_TRACE_COMPLETION);
1494
1495 return split;
1496 }
1497 EXPORT_SYMBOL(bio_split);
1498
1499 /**
1500 * bio_trim - trim a bio
1501 * @bio: bio to trim
1502 * @offset: number of sectors to trim from the front of @bio
1503 * @size: size we want to trim @bio to, in sectors
1504 */
1505 void bio_trim(struct bio *bio, int offset, int size)
1506 {
1507 /* 'bio' is a cloned bio which we need to trim to match
1508 * the given offset and size.
1509 */
1510
1511 size <<= 9;
1512 if (offset == 0 && size == bio->bi_iter.bi_size)
1513 return;
1514
1515 bio_advance(bio, offset << 9);
1516 bio->bi_iter.bi_size = size;
1517
1518 if (bio_integrity(bio))
1519 bio_integrity_trim(bio);
1520
1521 }
1522 EXPORT_SYMBOL_GPL(bio_trim);
1523
1524 /*
1525 * create memory pools for biovec's in a bio_set.
1526 * use the global biovec slabs created for general use.
1527 */
1528 int biovec_init_pool(mempool_t *pool, int pool_entries)
1529 {
1530 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1531
1532 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1533 }
1534
1535 /*
1536 * bioset_exit - exit a bioset initialized with bioset_init()
1537 *
1538 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1539 * kzalloc()).
1540 */
1541 void bioset_exit(struct bio_set *bs)
1542 {
1543 if (bs->rescue_workqueue)
1544 destroy_workqueue(bs->rescue_workqueue);
1545 bs->rescue_workqueue = NULL;
1546
1547 mempool_exit(&bs->bio_pool);
1548 mempool_exit(&bs->bvec_pool);
1549
1550 bioset_integrity_free(bs);
1551 if (bs->bio_slab)
1552 bio_put_slab(bs);
1553 bs->bio_slab = NULL;
1554 }
1555 EXPORT_SYMBOL(bioset_exit);
1556
1557 /**
1558 * bioset_init - Initialize a bio_set
1559 * @bs: pool to initialize
1560 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1561 * @front_pad: Number of bytes to allocate in front of the returned bio
1562 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1563 * and %BIOSET_NEED_RESCUER
1564 *
1565 * Description:
1566 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1567 * to ask for a number of bytes to be allocated in front of the bio.
1568 * Front pad allocation is useful for embedding the bio inside
1569 * another structure, to avoid allocating extra data to go with the bio.
1570 * Note that the bio must be embedded at the END of that structure always,
1571 * or things will break badly.
1572 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1573 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1574 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1575 * dispatch queued requests when the mempool runs out of space.
1576 *
1577 */
1578 int bioset_init(struct bio_set *bs,
1579 unsigned int pool_size,
1580 unsigned int front_pad,
1581 int flags)
1582 {
1583 bs->front_pad = front_pad;
1584 if (flags & BIOSET_NEED_BVECS)
1585 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1586 else
1587 bs->back_pad = 0;
1588
1589 spin_lock_init(&bs->rescue_lock);
1590 bio_list_init(&bs->rescue_list);
1591 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1592
1593 bs->bio_slab = bio_find_or_create_slab(bs);
1594 if (!bs->bio_slab)
1595 return -ENOMEM;
1596
1597 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1598 goto bad;
1599
1600 if ((flags & BIOSET_NEED_BVECS) &&
1601 biovec_init_pool(&bs->bvec_pool, pool_size))
1602 goto bad;
1603
1604 if (!(flags & BIOSET_NEED_RESCUER))
1605 return 0;
1606
1607 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1608 if (!bs->rescue_workqueue)
1609 goto bad;
1610
1611 return 0;
1612 bad:
1613 bioset_exit(bs);
1614 return -ENOMEM;
1615 }
1616 EXPORT_SYMBOL(bioset_init);
1617
1618 /*
1619 * Initialize and setup a new bio_set, based on the settings from
1620 * another bio_set.
1621 */
1622 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1623 {
1624 int flags;
1625
1626 flags = 0;
1627 if (src->bvec_pool.min_nr)
1628 flags |= BIOSET_NEED_BVECS;
1629 if (src->rescue_workqueue)
1630 flags |= BIOSET_NEED_RESCUER;
1631
1632 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1633 }
1634 EXPORT_SYMBOL(bioset_init_from_src);
1635
1636 static int __init init_bio(void)
1637 {
1638 int i;
1639
1640 bio_integrity_init();
1641
1642 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1643 struct biovec_slab *bvs = bvec_slabs + i;
1644
1645 bvs->slab = kmem_cache_create(bvs->name,
1646 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1647 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1648 }
1649
1650 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1651 panic("bio: can't allocate bios\n");
1652
1653 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1654 panic("bio: can't create integrity pool\n");
1655
1656 return 0;
1657 }
1658 subsys_initcall(init_bio);