]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/bio.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 /*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50
51 /*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125 }
126
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152 out:
153 mutex_unlock(&bio_slab_lock);
154 }
155
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 return bvec_slabs[idx].nr_vecs;
159 }
160
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 if (!idx)
164 return;
165 idx--;
166
167 BIO_BUG_ON(idx >= BVEC_POOL_NR);
168
169 if (idx == BVEC_POOL_MAX) {
170 mempool_free(bv, pool);
171 } else {
172 struct biovec_slab *bvs = bvec_slabs + idx;
173
174 kmem_cache_free(bvs->slab, bv);
175 }
176 }
177
178 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
179 mempool_t *pool)
180 {
181 struct bio_vec *bvl;
182
183 /*
184 * see comment near bvec_array define!
185 */
186 switch (nr) {
187 case 1:
188 *idx = 0;
189 break;
190 case 2 ... 4:
191 *idx = 1;
192 break;
193 case 5 ... 16:
194 *idx = 2;
195 break;
196 case 17 ... 64:
197 *idx = 3;
198 break;
199 case 65 ... 128:
200 *idx = 4;
201 break;
202 case 129 ... BIO_MAX_PAGES:
203 *idx = 5;
204 break;
205 default:
206 return NULL;
207 }
208
209 /*
210 * idx now points to the pool we want to allocate from. only the
211 * 1-vec entry pool is mempool backed.
212 */
213 if (*idx == BVEC_POOL_MAX) {
214 fallback:
215 bvl = mempool_alloc(pool, gfp_mask);
216 } else {
217 struct biovec_slab *bvs = bvec_slabs + *idx;
218 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
219
220 /*
221 * Make this allocation restricted and don't dump info on
222 * allocation failures, since we'll fallback to the mempool
223 * in case of failure.
224 */
225 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
226
227 /*
228 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
229 * is set, retry with the 1-entry mempool
230 */
231 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
232 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
233 *idx = BVEC_POOL_MAX;
234 goto fallback;
235 }
236 }
237
238 (*idx)++;
239 return bvl;
240 }
241
242 static void __bio_free(struct bio *bio)
243 {
244 bio_disassociate_task(bio);
245
246 if (bio_integrity(bio))
247 bio_integrity_free(bio);
248 }
249
250 static void bio_free(struct bio *bio)
251 {
252 struct bio_set *bs = bio->bi_pool;
253 void *p;
254
255 __bio_free(bio);
256
257 if (bs) {
258 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259
260 /*
261 * If we have front padding, adjust the bio pointer before freeing
262 */
263 p = bio;
264 p -= bs->front_pad;
265
266 mempool_free(p, bs->bio_pool);
267 } else {
268 /* Bio was allocated by bio_kmalloc() */
269 kfree(bio);
270 }
271 }
272
273 void bio_init(struct bio *bio, struct bio_vec *table,
274 unsigned short max_vecs)
275 {
276 memset(bio, 0, sizeof(*bio));
277 atomic_set(&bio->__bi_remaining, 1);
278 atomic_set(&bio->__bi_cnt, 1);
279
280 bio->bi_io_vec = table;
281 bio->bi_max_vecs = max_vecs;
282 }
283 EXPORT_SYMBOL(bio_init);
284
285 /**
286 * bio_reset - reinitialize a bio
287 * @bio: bio to reset
288 *
289 * Description:
290 * After calling bio_reset(), @bio will be in the same state as a freshly
291 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
292 * preserved are the ones that are initialized by bio_alloc_bioset(). See
293 * comment in struct bio.
294 */
295 void bio_reset(struct bio *bio)
296 {
297 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
298
299 __bio_free(bio);
300
301 memset(bio, 0, BIO_RESET_BYTES);
302 bio->bi_flags = flags;
303 atomic_set(&bio->__bi_remaining, 1);
304 }
305 EXPORT_SYMBOL(bio_reset);
306
307 static struct bio *__bio_chain_endio(struct bio *bio)
308 {
309 struct bio *parent = bio->bi_private;
310
311 if (!parent->bi_error)
312 parent->bi_error = bio->bi_error;
313 bio_put(bio);
314 return parent;
315 }
316
317 static void bio_chain_endio(struct bio *bio)
318 {
319 bio_endio(__bio_chain_endio(bio));
320 }
321
322 /**
323 * bio_chain - chain bio completions
324 * @bio: the target bio
325 * @parent: the @bio's parent bio
326 *
327 * The caller won't have a bi_end_io called when @bio completes - instead,
328 * @parent's bi_end_io won't be called until both @parent and @bio have
329 * completed; the chained bio will also be freed when it completes.
330 *
331 * The caller must not set bi_private or bi_end_io in @bio.
332 */
333 void bio_chain(struct bio *bio, struct bio *parent)
334 {
335 BUG_ON(bio->bi_private || bio->bi_end_io);
336
337 bio->bi_private = parent;
338 bio->bi_end_io = bio_chain_endio;
339 bio_inc_remaining(parent);
340 }
341 EXPORT_SYMBOL(bio_chain);
342
343 static void bio_alloc_rescue(struct work_struct *work)
344 {
345 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
346 struct bio *bio;
347
348 while (1) {
349 spin_lock(&bs->rescue_lock);
350 bio = bio_list_pop(&bs->rescue_list);
351 spin_unlock(&bs->rescue_lock);
352
353 if (!bio)
354 break;
355
356 generic_make_request(bio);
357 }
358 }
359
360 static void punt_bios_to_rescuer(struct bio_set *bs)
361 {
362 struct bio_list punt, nopunt;
363 struct bio *bio;
364
365 /*
366 * In order to guarantee forward progress we must punt only bios that
367 * were allocated from this bio_set; otherwise, if there was a bio on
368 * there for a stacking driver higher up in the stack, processing it
369 * could require allocating bios from this bio_set, and doing that from
370 * our own rescuer would be bad.
371 *
372 * Since bio lists are singly linked, pop them all instead of trying to
373 * remove from the middle of the list:
374 */
375
376 bio_list_init(&punt);
377 bio_list_init(&nopunt);
378
379 while ((bio = bio_list_pop(current->bio_list)))
380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381
382 *current->bio_list = nopunt;
383
384 spin_lock(&bs->rescue_lock);
385 bio_list_merge(&bs->rescue_list, &punt);
386 spin_unlock(&bs->rescue_lock);
387
388 queue_work(bs->rescue_workqueue, &bs->rescue_work);
389 }
390
391 /**
392 * bio_alloc_bioset - allocate a bio for I/O
393 * @gfp_mask: the GFP_ mask given to the slab allocator
394 * @nr_iovecs: number of iovecs to pre-allocate
395 * @bs: the bio_set to allocate from.
396 *
397 * Description:
398 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
399 * backed by the @bs's mempool.
400 *
401 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
402 * always be able to allocate a bio. This is due to the mempool guarantees.
403 * To make this work, callers must never allocate more than 1 bio at a time
404 * from this pool. Callers that need to allocate more than 1 bio must always
405 * submit the previously allocated bio for IO before attempting to allocate
406 * a new one. Failure to do so can cause deadlocks under memory pressure.
407 *
408 * Note that when running under generic_make_request() (i.e. any block
409 * driver), bios are not submitted until after you return - see the code in
410 * generic_make_request() that converts recursion into iteration, to prevent
411 * stack overflows.
412 *
413 * This would normally mean allocating multiple bios under
414 * generic_make_request() would be susceptible to deadlocks, but we have
415 * deadlock avoidance code that resubmits any blocked bios from a rescuer
416 * thread.
417 *
418 * However, we do not guarantee forward progress for allocations from other
419 * mempools. Doing multiple allocations from the same mempool under
420 * generic_make_request() should be avoided - instead, use bio_set's front_pad
421 * for per bio allocations.
422 *
423 * RETURNS:
424 * Pointer to new bio on success, NULL on failure.
425 */
426 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
427 {
428 gfp_t saved_gfp = gfp_mask;
429 unsigned front_pad;
430 unsigned inline_vecs;
431 struct bio_vec *bvl = NULL;
432 struct bio *bio;
433 void *p;
434
435 if (!bs) {
436 if (nr_iovecs > UIO_MAXIOV)
437 return NULL;
438
439 p = kmalloc(sizeof(struct bio) +
440 nr_iovecs * sizeof(struct bio_vec),
441 gfp_mask);
442 front_pad = 0;
443 inline_vecs = nr_iovecs;
444 } else {
445 /* should not use nobvec bioset for nr_iovecs > 0 */
446 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
447 return NULL;
448 /*
449 * generic_make_request() converts recursion to iteration; this
450 * means if we're running beneath it, any bios we allocate and
451 * submit will not be submitted (and thus freed) until after we
452 * return.
453 *
454 * This exposes us to a potential deadlock if we allocate
455 * multiple bios from the same bio_set() while running
456 * underneath generic_make_request(). If we were to allocate
457 * multiple bios (say a stacking block driver that was splitting
458 * bios), we would deadlock if we exhausted the mempool's
459 * reserve.
460 *
461 * We solve this, and guarantee forward progress, with a rescuer
462 * workqueue per bio_set. If we go to allocate and there are
463 * bios on current->bio_list, we first try the allocation
464 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
465 * bios we would be blocking to the rescuer workqueue before
466 * we retry with the original gfp_flags.
467 */
468
469 if (current->bio_list && !bio_list_empty(current->bio_list))
470 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
471
472 p = mempool_alloc(bs->bio_pool, gfp_mask);
473 if (!p && gfp_mask != saved_gfp) {
474 punt_bios_to_rescuer(bs);
475 gfp_mask = saved_gfp;
476 p = mempool_alloc(bs->bio_pool, gfp_mask);
477 }
478
479 front_pad = bs->front_pad;
480 inline_vecs = BIO_INLINE_VECS;
481 }
482
483 if (unlikely(!p))
484 return NULL;
485
486 bio = p + front_pad;
487 bio_init(bio, NULL, 0);
488
489 if (nr_iovecs > inline_vecs) {
490 unsigned long idx = 0;
491
492 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
493 if (!bvl && gfp_mask != saved_gfp) {
494 punt_bios_to_rescuer(bs);
495 gfp_mask = saved_gfp;
496 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
497 }
498
499 if (unlikely(!bvl))
500 goto err_free;
501
502 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
503 } else if (nr_iovecs) {
504 bvl = bio->bi_inline_vecs;
505 }
506
507 bio->bi_pool = bs;
508 bio->bi_max_vecs = nr_iovecs;
509 bio->bi_io_vec = bvl;
510 return bio;
511
512 err_free:
513 mempool_free(p, bs->bio_pool);
514 return NULL;
515 }
516 EXPORT_SYMBOL(bio_alloc_bioset);
517
518 void zero_fill_bio(struct bio *bio)
519 {
520 unsigned long flags;
521 struct bio_vec bv;
522 struct bvec_iter iter;
523
524 bio_for_each_segment(bv, bio, iter) {
525 char *data = bvec_kmap_irq(&bv, &flags);
526 memset(data, 0, bv.bv_len);
527 flush_dcache_page(bv.bv_page);
528 bvec_kunmap_irq(data, &flags);
529 }
530 }
531 EXPORT_SYMBOL(zero_fill_bio);
532
533 /**
534 * bio_put - release a reference to a bio
535 * @bio: bio to release reference to
536 *
537 * Description:
538 * Put a reference to a &struct bio, either one you have gotten with
539 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
540 **/
541 void bio_put(struct bio *bio)
542 {
543 if (!bio_flagged(bio, BIO_REFFED))
544 bio_free(bio);
545 else {
546 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
547
548 /*
549 * last put frees it
550 */
551 if (atomic_dec_and_test(&bio->__bi_cnt))
552 bio_free(bio);
553 }
554 }
555 EXPORT_SYMBOL(bio_put);
556
557 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
558 {
559 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
560 blk_recount_segments(q, bio);
561
562 return bio->bi_phys_segments;
563 }
564 EXPORT_SYMBOL(bio_phys_segments);
565
566 /**
567 * __bio_clone_fast - clone a bio that shares the original bio's biovec
568 * @bio: destination bio
569 * @bio_src: bio to clone
570 *
571 * Clone a &bio. Caller will own the returned bio, but not
572 * the actual data it points to. Reference count of returned
573 * bio will be one.
574 *
575 * Caller must ensure that @bio_src is not freed before @bio.
576 */
577 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
578 {
579 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
580
581 /*
582 * most users will be overriding ->bi_bdev with a new target,
583 * so we don't set nor calculate new physical/hw segment counts here
584 */
585 bio->bi_bdev = bio_src->bi_bdev;
586 bio_set_flag(bio, BIO_CLONED);
587 bio->bi_opf = bio_src->bi_opf;
588 bio->bi_iter = bio_src->bi_iter;
589 bio->bi_io_vec = bio_src->bi_io_vec;
590
591 bio_clone_blkcg_association(bio, bio_src);
592 }
593 EXPORT_SYMBOL(__bio_clone_fast);
594
595 /**
596 * bio_clone_fast - clone a bio that shares the original bio's biovec
597 * @bio: bio to clone
598 * @gfp_mask: allocation priority
599 * @bs: bio_set to allocate from
600 *
601 * Like __bio_clone_fast, only also allocates the returned bio
602 */
603 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
604 {
605 struct bio *b;
606
607 b = bio_alloc_bioset(gfp_mask, 0, bs);
608 if (!b)
609 return NULL;
610
611 __bio_clone_fast(b, bio);
612
613 if (bio_integrity(bio)) {
614 int ret;
615
616 ret = bio_integrity_clone(b, bio, gfp_mask);
617
618 if (ret < 0) {
619 bio_put(b);
620 return NULL;
621 }
622 }
623
624 return b;
625 }
626 EXPORT_SYMBOL(bio_clone_fast);
627
628 static struct bio *__bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
629 struct bio_set *bs, int offset,
630 int size)
631 {
632 struct bvec_iter iter;
633 struct bio_vec bv;
634 struct bio *bio;
635 struct bvec_iter iter_src = bio_src->bi_iter;
636
637 /* for supporting partial clone */
638 if (offset || size != bio_src->bi_iter.bi_size) {
639 bio_advance_iter(bio_src, &iter_src, offset);
640 iter_src.bi_size = size;
641 }
642
643 /*
644 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
645 * bio_src->bi_io_vec to bio->bi_io_vec.
646 *
647 * We can't do that anymore, because:
648 *
649 * - The point of cloning the biovec is to produce a bio with a biovec
650 * the caller can modify: bi_idx and bi_bvec_done should be 0.
651 *
652 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
653 * we tried to clone the whole thing bio_alloc_bioset() would fail.
654 * But the clone should succeed as long as the number of biovecs we
655 * actually need to allocate is fewer than BIO_MAX_PAGES.
656 *
657 * - Lastly, bi_vcnt should not be looked at or relied upon by code
658 * that does not own the bio - reason being drivers don't use it for
659 * iterating over the biovec anymore, so expecting it to be kept up
660 * to date (i.e. for clones that share the parent biovec) is just
661 * asking for trouble and would force extra work on
662 * __bio_clone_fast() anyways.
663 */
664
665 bio = bio_alloc_bioset(gfp_mask, __bio_segments(bio_src,
666 &iter_src), bs);
667 if (!bio)
668 return NULL;
669 bio->bi_bdev = bio_src->bi_bdev;
670 bio->bi_opf = bio_src->bi_opf;
671 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
672 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
673
674 switch (bio_op(bio)) {
675 case REQ_OP_DISCARD:
676 case REQ_OP_SECURE_ERASE:
677 case REQ_OP_WRITE_ZEROES:
678 break;
679 case REQ_OP_WRITE_SAME:
680 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
681 break;
682 default:
683 __bio_for_each_segment(bv, bio_src, iter, iter_src)
684 bio->bi_io_vec[bio->bi_vcnt++] = bv;
685 break;
686 }
687
688 if (bio_integrity(bio_src)) {
689 int ret;
690
691 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
692 if (ret < 0) {
693 bio_put(bio);
694 return NULL;
695 }
696 }
697
698 bio_clone_blkcg_association(bio, bio_src);
699
700 return bio;
701 }
702
703 /**
704 * bio_clone_bioset - clone a bio
705 * @bio_src: bio to clone
706 * @gfp_mask: allocation priority
707 * @bs: bio_set to allocate from
708 *
709 * Clone bio. Caller will own the returned bio, but not the actual data it
710 * points to. Reference count of returned bio will be one.
711 */
712 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
713 struct bio_set *bs)
714 {
715 return __bio_clone_bioset(bio_src, gfp_mask, bs, 0,
716 bio_src->bi_iter.bi_size);
717 }
718 EXPORT_SYMBOL(bio_clone_bioset);
719
720 /**
721 * bio_clone_bioset_partial - clone a partial bio
722 * @bio_src: bio to clone
723 * @gfp_mask: allocation priority
724 * @bs: bio_set to allocate from
725 * @offset: cloned starting from the offset
726 * @size: size for the cloned bio
727 *
728 * Clone bio. Caller will own the returned bio, but not the actual data it
729 * points to. Reference count of returned bio will be one.
730 */
731 struct bio *bio_clone_bioset_partial(struct bio *bio_src, gfp_t gfp_mask,
732 struct bio_set *bs, int offset,
733 int size)
734 {
735 return __bio_clone_bioset(bio_src, gfp_mask, bs, offset, size);
736 }
737 EXPORT_SYMBOL(bio_clone_bioset_partial);
738
739 /**
740 * bio_add_pc_page - attempt to add page to bio
741 * @q: the target queue
742 * @bio: destination bio
743 * @page: page to add
744 * @len: vec entry length
745 * @offset: vec entry offset
746 *
747 * Attempt to add a page to the bio_vec maplist. This can fail for a
748 * number of reasons, such as the bio being full or target block device
749 * limitations. The target block device must allow bio's up to PAGE_SIZE,
750 * so it is always possible to add a single page to an empty bio.
751 *
752 * This should only be used by REQ_PC bios.
753 */
754 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
755 *page, unsigned int len, unsigned int offset)
756 {
757 int retried_segments = 0;
758 struct bio_vec *bvec;
759
760 /*
761 * cloned bio must not modify vec list
762 */
763 if (unlikely(bio_flagged(bio, BIO_CLONED)))
764 return 0;
765
766 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
767 return 0;
768
769 /*
770 * For filesystems with a blocksize smaller than the pagesize
771 * we will often be called with the same page as last time and
772 * a consecutive offset. Optimize this special case.
773 */
774 if (bio->bi_vcnt > 0) {
775 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
776
777 if (page == prev->bv_page &&
778 offset == prev->bv_offset + prev->bv_len) {
779 prev->bv_len += len;
780 bio->bi_iter.bi_size += len;
781 goto done;
782 }
783
784 /*
785 * If the queue doesn't support SG gaps and adding this
786 * offset would create a gap, disallow it.
787 */
788 if (bvec_gap_to_prev(q, prev, offset))
789 return 0;
790 }
791
792 if (bio->bi_vcnt >= bio->bi_max_vecs)
793 return 0;
794
795 /*
796 * setup the new entry, we might clear it again later if we
797 * cannot add the page
798 */
799 bvec = &bio->bi_io_vec[bio->bi_vcnt];
800 bvec->bv_page = page;
801 bvec->bv_len = len;
802 bvec->bv_offset = offset;
803 bio->bi_vcnt++;
804 bio->bi_phys_segments++;
805 bio->bi_iter.bi_size += len;
806
807 /*
808 * Perform a recount if the number of segments is greater
809 * than queue_max_segments(q).
810 */
811
812 while (bio->bi_phys_segments > queue_max_segments(q)) {
813
814 if (retried_segments)
815 goto failed;
816
817 retried_segments = 1;
818 blk_recount_segments(q, bio);
819 }
820
821 /* If we may be able to merge these biovecs, force a recount */
822 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
823 bio_clear_flag(bio, BIO_SEG_VALID);
824
825 done:
826 return len;
827
828 failed:
829 bvec->bv_page = NULL;
830 bvec->bv_len = 0;
831 bvec->bv_offset = 0;
832 bio->bi_vcnt--;
833 bio->bi_iter.bi_size -= len;
834 blk_recount_segments(q, bio);
835 return 0;
836 }
837 EXPORT_SYMBOL(bio_add_pc_page);
838
839 /**
840 * bio_add_page - attempt to add page to bio
841 * @bio: destination bio
842 * @page: page to add
843 * @len: vec entry length
844 * @offset: vec entry offset
845 *
846 * Attempt to add a page to the bio_vec maplist. This will only fail
847 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
848 */
849 int bio_add_page(struct bio *bio, struct page *page,
850 unsigned int len, unsigned int offset)
851 {
852 struct bio_vec *bv;
853
854 /*
855 * cloned bio must not modify vec list
856 */
857 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
858 return 0;
859
860 /*
861 * For filesystems with a blocksize smaller than the pagesize
862 * we will often be called with the same page as last time and
863 * a consecutive offset. Optimize this special case.
864 */
865 if (bio->bi_vcnt > 0) {
866 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
867
868 if (page == bv->bv_page &&
869 offset == bv->bv_offset + bv->bv_len) {
870 bv->bv_len += len;
871 goto done;
872 }
873 }
874
875 if (bio->bi_vcnt >= bio->bi_max_vecs)
876 return 0;
877
878 bv = &bio->bi_io_vec[bio->bi_vcnt];
879 bv->bv_page = page;
880 bv->bv_len = len;
881 bv->bv_offset = offset;
882
883 bio->bi_vcnt++;
884 done:
885 bio->bi_iter.bi_size += len;
886 return len;
887 }
888 EXPORT_SYMBOL(bio_add_page);
889
890 /**
891 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
892 * @bio: bio to add pages to
893 * @iter: iov iterator describing the region to be mapped
894 *
895 * Pins as many pages from *iter and appends them to @bio's bvec array. The
896 * pages will have to be released using put_page() when done.
897 */
898 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
899 {
900 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
901 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
902 struct page **pages = (struct page **)bv;
903 size_t offset, diff;
904 ssize_t size;
905
906 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
907 if (unlikely(size <= 0))
908 return size ? size : -EFAULT;
909 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
910
911 /*
912 * Deep magic below: We need to walk the pinned pages backwards
913 * because we are abusing the space allocated for the bio_vecs
914 * for the page array. Because the bio_vecs are larger than the
915 * page pointers by definition this will always work. But it also
916 * means we can't use bio_add_page, so any changes to it's semantics
917 * need to be reflected here as well.
918 */
919 bio->bi_iter.bi_size += size;
920 bio->bi_vcnt += nr_pages;
921
922 diff = (nr_pages * PAGE_SIZE - offset) - size;
923 while (nr_pages--) {
924 bv[nr_pages].bv_page = pages[nr_pages];
925 bv[nr_pages].bv_len = PAGE_SIZE;
926 bv[nr_pages].bv_offset = 0;
927 }
928
929 bv[0].bv_offset += offset;
930 bv[0].bv_len -= offset;
931 if (diff)
932 bv[bio->bi_vcnt - 1].bv_len -= diff;
933
934 iov_iter_advance(iter, size);
935 return 0;
936 }
937 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
938
939 struct submit_bio_ret {
940 struct completion event;
941 int error;
942 };
943
944 static void submit_bio_wait_endio(struct bio *bio)
945 {
946 struct submit_bio_ret *ret = bio->bi_private;
947
948 ret->error = bio->bi_error;
949 complete(&ret->event);
950 }
951
952 /**
953 * submit_bio_wait - submit a bio, and wait until it completes
954 * @bio: The &struct bio which describes the I/O
955 *
956 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
957 * bio_endio() on failure.
958 */
959 int submit_bio_wait(struct bio *bio)
960 {
961 struct submit_bio_ret ret;
962
963 init_completion(&ret.event);
964 bio->bi_private = &ret;
965 bio->bi_end_io = submit_bio_wait_endio;
966 bio->bi_opf |= REQ_SYNC;
967 submit_bio(bio);
968 wait_for_completion_io(&ret.event);
969
970 return ret.error;
971 }
972 EXPORT_SYMBOL(submit_bio_wait);
973
974 /**
975 * bio_advance - increment/complete a bio by some number of bytes
976 * @bio: bio to advance
977 * @bytes: number of bytes to complete
978 *
979 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
980 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
981 * be updated on the last bvec as well.
982 *
983 * @bio will then represent the remaining, uncompleted portion of the io.
984 */
985 void bio_advance(struct bio *bio, unsigned bytes)
986 {
987 if (bio_integrity(bio))
988 bio_integrity_advance(bio, bytes);
989
990 bio_advance_iter(bio, &bio->bi_iter, bytes);
991 }
992 EXPORT_SYMBOL(bio_advance);
993
994 /**
995 * bio_alloc_pages - allocates a single page for each bvec in a bio
996 * @bio: bio to allocate pages for
997 * @gfp_mask: flags for allocation
998 *
999 * Allocates pages up to @bio->bi_vcnt.
1000 *
1001 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
1002 * freed.
1003 */
1004 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
1005 {
1006 int i;
1007 struct bio_vec *bv;
1008
1009 bio_for_each_segment_all(bv, bio, i) {
1010 bv->bv_page = alloc_page(gfp_mask);
1011 if (!bv->bv_page) {
1012 while (--bv >= bio->bi_io_vec)
1013 __free_page(bv->bv_page);
1014 return -ENOMEM;
1015 }
1016 }
1017
1018 return 0;
1019 }
1020 EXPORT_SYMBOL(bio_alloc_pages);
1021
1022 /**
1023 * bio_copy_data - copy contents of data buffers from one chain of bios to
1024 * another
1025 * @src: source bio list
1026 * @dst: destination bio list
1027 *
1028 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1029 * @src and @dst as linked lists of bios.
1030 *
1031 * Stops when it reaches the end of either @src or @dst - that is, copies
1032 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1033 */
1034 void bio_copy_data(struct bio *dst, struct bio *src)
1035 {
1036 struct bvec_iter src_iter, dst_iter;
1037 struct bio_vec src_bv, dst_bv;
1038 void *src_p, *dst_p;
1039 unsigned bytes;
1040
1041 src_iter = src->bi_iter;
1042 dst_iter = dst->bi_iter;
1043
1044 while (1) {
1045 if (!src_iter.bi_size) {
1046 src = src->bi_next;
1047 if (!src)
1048 break;
1049
1050 src_iter = src->bi_iter;
1051 }
1052
1053 if (!dst_iter.bi_size) {
1054 dst = dst->bi_next;
1055 if (!dst)
1056 break;
1057
1058 dst_iter = dst->bi_iter;
1059 }
1060
1061 src_bv = bio_iter_iovec(src, src_iter);
1062 dst_bv = bio_iter_iovec(dst, dst_iter);
1063
1064 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1065
1066 src_p = kmap_atomic(src_bv.bv_page);
1067 dst_p = kmap_atomic(dst_bv.bv_page);
1068
1069 memcpy(dst_p + dst_bv.bv_offset,
1070 src_p + src_bv.bv_offset,
1071 bytes);
1072
1073 kunmap_atomic(dst_p);
1074 kunmap_atomic(src_p);
1075
1076 bio_advance_iter(src, &src_iter, bytes);
1077 bio_advance_iter(dst, &dst_iter, bytes);
1078 }
1079 }
1080 EXPORT_SYMBOL(bio_copy_data);
1081
1082 struct bio_map_data {
1083 int is_our_pages;
1084 struct iov_iter iter;
1085 struct iovec iov[];
1086 };
1087
1088 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1089 gfp_t gfp_mask)
1090 {
1091 if (iov_count > UIO_MAXIOV)
1092 return NULL;
1093
1094 return kmalloc(sizeof(struct bio_map_data) +
1095 sizeof(struct iovec) * iov_count, gfp_mask);
1096 }
1097
1098 /**
1099 * bio_copy_from_iter - copy all pages from iov_iter to bio
1100 * @bio: The &struct bio which describes the I/O as destination
1101 * @iter: iov_iter as source
1102 *
1103 * Copy all pages from iov_iter to bio.
1104 * Returns 0 on success, or error on failure.
1105 */
1106 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1107 {
1108 int i;
1109 struct bio_vec *bvec;
1110
1111 bio_for_each_segment_all(bvec, bio, i) {
1112 ssize_t ret;
1113
1114 ret = copy_page_from_iter(bvec->bv_page,
1115 bvec->bv_offset,
1116 bvec->bv_len,
1117 &iter);
1118
1119 if (!iov_iter_count(&iter))
1120 break;
1121
1122 if (ret < bvec->bv_len)
1123 return -EFAULT;
1124 }
1125
1126 return 0;
1127 }
1128
1129 /**
1130 * bio_copy_to_iter - copy all pages from bio to iov_iter
1131 * @bio: The &struct bio which describes the I/O as source
1132 * @iter: iov_iter as destination
1133 *
1134 * Copy all pages from bio to iov_iter.
1135 * Returns 0 on success, or error on failure.
1136 */
1137 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1138 {
1139 int i;
1140 struct bio_vec *bvec;
1141
1142 bio_for_each_segment_all(bvec, bio, i) {
1143 ssize_t ret;
1144
1145 ret = copy_page_to_iter(bvec->bv_page,
1146 bvec->bv_offset,
1147 bvec->bv_len,
1148 &iter);
1149
1150 if (!iov_iter_count(&iter))
1151 break;
1152
1153 if (ret < bvec->bv_len)
1154 return -EFAULT;
1155 }
1156
1157 return 0;
1158 }
1159
1160 void bio_free_pages(struct bio *bio)
1161 {
1162 struct bio_vec *bvec;
1163 int i;
1164
1165 bio_for_each_segment_all(bvec, bio, i)
1166 __free_page(bvec->bv_page);
1167 }
1168 EXPORT_SYMBOL(bio_free_pages);
1169
1170 /**
1171 * bio_uncopy_user - finish previously mapped bio
1172 * @bio: bio being terminated
1173 *
1174 * Free pages allocated from bio_copy_user_iov() and write back data
1175 * to user space in case of a read.
1176 */
1177 int bio_uncopy_user(struct bio *bio)
1178 {
1179 struct bio_map_data *bmd = bio->bi_private;
1180 int ret = 0;
1181
1182 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1183 /*
1184 * if we're in a workqueue, the request is orphaned, so
1185 * don't copy into a random user address space, just free
1186 * and return -EINTR so user space doesn't expect any data.
1187 */
1188 if (!current->mm)
1189 ret = -EINTR;
1190 else if (bio_data_dir(bio) == READ)
1191 ret = bio_copy_to_iter(bio, bmd->iter);
1192 if (bmd->is_our_pages)
1193 bio_free_pages(bio);
1194 }
1195 kfree(bmd);
1196 bio_put(bio);
1197 return ret;
1198 }
1199
1200 /**
1201 * bio_copy_user_iov - copy user data to bio
1202 * @q: destination block queue
1203 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1204 * @iter: iovec iterator
1205 * @gfp_mask: memory allocation flags
1206 *
1207 * Prepares and returns a bio for indirect user io, bouncing data
1208 * to/from kernel pages as necessary. Must be paired with
1209 * call bio_uncopy_user() on io completion.
1210 */
1211 struct bio *bio_copy_user_iov(struct request_queue *q,
1212 struct rq_map_data *map_data,
1213 const struct iov_iter *iter,
1214 gfp_t gfp_mask)
1215 {
1216 struct bio_map_data *bmd;
1217 struct page *page;
1218 struct bio *bio;
1219 int i, ret;
1220 int nr_pages = 0;
1221 unsigned int len = iter->count;
1222 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1223
1224 for (i = 0; i < iter->nr_segs; i++) {
1225 unsigned long uaddr;
1226 unsigned long end;
1227 unsigned long start;
1228
1229 uaddr = (unsigned long) iter->iov[i].iov_base;
1230 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1231 >> PAGE_SHIFT;
1232 start = uaddr >> PAGE_SHIFT;
1233
1234 /*
1235 * Overflow, abort
1236 */
1237 if (end < start)
1238 return ERR_PTR(-EINVAL);
1239
1240 nr_pages += end - start;
1241 }
1242
1243 if (offset)
1244 nr_pages++;
1245
1246 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1247 if (!bmd)
1248 return ERR_PTR(-ENOMEM);
1249
1250 /*
1251 * We need to do a deep copy of the iov_iter including the iovecs.
1252 * The caller provided iov might point to an on-stack or otherwise
1253 * shortlived one.
1254 */
1255 bmd->is_our_pages = map_data ? 0 : 1;
1256 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1257 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1258 iter->nr_segs, iter->count);
1259
1260 ret = -ENOMEM;
1261 bio = bio_kmalloc(gfp_mask, nr_pages);
1262 if (!bio)
1263 goto out_bmd;
1264
1265 ret = 0;
1266
1267 if (map_data) {
1268 nr_pages = 1 << map_data->page_order;
1269 i = map_data->offset / PAGE_SIZE;
1270 }
1271 while (len) {
1272 unsigned int bytes = PAGE_SIZE;
1273
1274 bytes -= offset;
1275
1276 if (bytes > len)
1277 bytes = len;
1278
1279 if (map_data) {
1280 if (i == map_data->nr_entries * nr_pages) {
1281 ret = -ENOMEM;
1282 break;
1283 }
1284
1285 page = map_data->pages[i / nr_pages];
1286 page += (i % nr_pages);
1287
1288 i++;
1289 } else {
1290 page = alloc_page(q->bounce_gfp | gfp_mask);
1291 if (!page) {
1292 ret = -ENOMEM;
1293 break;
1294 }
1295 }
1296
1297 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1298 break;
1299
1300 len -= bytes;
1301 offset = 0;
1302 }
1303
1304 if (ret)
1305 goto cleanup;
1306
1307 /*
1308 * success
1309 */
1310 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1311 (map_data && map_data->from_user)) {
1312 ret = bio_copy_from_iter(bio, *iter);
1313 if (ret)
1314 goto cleanup;
1315 }
1316
1317 bio->bi_private = bmd;
1318 return bio;
1319 cleanup:
1320 if (!map_data)
1321 bio_free_pages(bio);
1322 bio_put(bio);
1323 out_bmd:
1324 kfree(bmd);
1325 return ERR_PTR(ret);
1326 }
1327
1328 /**
1329 * bio_map_user_iov - map user iovec into bio
1330 * @q: the struct request_queue for the bio
1331 * @iter: iovec iterator
1332 * @gfp_mask: memory allocation flags
1333 *
1334 * Map the user space address into a bio suitable for io to a block
1335 * device. Returns an error pointer in case of error.
1336 */
1337 struct bio *bio_map_user_iov(struct request_queue *q,
1338 const struct iov_iter *iter,
1339 gfp_t gfp_mask)
1340 {
1341 int j;
1342 int nr_pages = 0;
1343 struct page **pages;
1344 struct bio *bio;
1345 int cur_page = 0;
1346 int ret, offset;
1347 struct iov_iter i;
1348 struct iovec iov;
1349
1350 iov_for_each(iov, i, *iter) {
1351 unsigned long uaddr = (unsigned long) iov.iov_base;
1352 unsigned long len = iov.iov_len;
1353 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1354 unsigned long start = uaddr >> PAGE_SHIFT;
1355
1356 /*
1357 * Overflow, abort
1358 */
1359 if (end < start)
1360 return ERR_PTR(-EINVAL);
1361
1362 nr_pages += end - start;
1363 /*
1364 * buffer must be aligned to at least logical block size for now
1365 */
1366 if (uaddr & queue_dma_alignment(q))
1367 return ERR_PTR(-EINVAL);
1368 }
1369
1370 if (!nr_pages)
1371 return ERR_PTR(-EINVAL);
1372
1373 bio = bio_kmalloc(gfp_mask, nr_pages);
1374 if (!bio)
1375 return ERR_PTR(-ENOMEM);
1376
1377 ret = -ENOMEM;
1378 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1379 if (!pages)
1380 goto out;
1381
1382 iov_for_each(iov, i, *iter) {
1383 unsigned long uaddr = (unsigned long) iov.iov_base;
1384 unsigned long len = iov.iov_len;
1385 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1386 unsigned long start = uaddr >> PAGE_SHIFT;
1387 const int local_nr_pages = end - start;
1388 const int page_limit = cur_page + local_nr_pages;
1389
1390 ret = get_user_pages_fast(uaddr, local_nr_pages,
1391 (iter->type & WRITE) != WRITE,
1392 &pages[cur_page]);
1393 if (ret < local_nr_pages) {
1394 ret = -EFAULT;
1395 goto out_unmap;
1396 }
1397
1398 offset = offset_in_page(uaddr);
1399 for (j = cur_page; j < page_limit; j++) {
1400 unsigned int bytes = PAGE_SIZE - offset;
1401
1402 if (len <= 0)
1403 break;
1404
1405 if (bytes > len)
1406 bytes = len;
1407
1408 /*
1409 * sorry...
1410 */
1411 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1412 bytes)
1413 break;
1414
1415 len -= bytes;
1416 offset = 0;
1417 }
1418
1419 cur_page = j;
1420 /*
1421 * release the pages we didn't map into the bio, if any
1422 */
1423 while (j < page_limit)
1424 put_page(pages[j++]);
1425 }
1426
1427 kfree(pages);
1428
1429 bio_set_flag(bio, BIO_USER_MAPPED);
1430
1431 /*
1432 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1433 * it would normally disappear when its bi_end_io is run.
1434 * however, we need it for the unmap, so grab an extra
1435 * reference to it
1436 */
1437 bio_get(bio);
1438 return bio;
1439
1440 out_unmap:
1441 for (j = 0; j < nr_pages; j++) {
1442 if (!pages[j])
1443 break;
1444 put_page(pages[j]);
1445 }
1446 out:
1447 kfree(pages);
1448 bio_put(bio);
1449 return ERR_PTR(ret);
1450 }
1451
1452 static void __bio_unmap_user(struct bio *bio)
1453 {
1454 struct bio_vec *bvec;
1455 int i;
1456
1457 /*
1458 * make sure we dirty pages we wrote to
1459 */
1460 bio_for_each_segment_all(bvec, bio, i) {
1461 if (bio_data_dir(bio) == READ)
1462 set_page_dirty_lock(bvec->bv_page);
1463
1464 put_page(bvec->bv_page);
1465 }
1466
1467 bio_put(bio);
1468 }
1469
1470 /**
1471 * bio_unmap_user - unmap a bio
1472 * @bio: the bio being unmapped
1473 *
1474 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1475 * process context.
1476 *
1477 * bio_unmap_user() may sleep.
1478 */
1479 void bio_unmap_user(struct bio *bio)
1480 {
1481 __bio_unmap_user(bio);
1482 bio_put(bio);
1483 }
1484
1485 static void bio_map_kern_endio(struct bio *bio)
1486 {
1487 bio_put(bio);
1488 }
1489
1490 /**
1491 * bio_map_kern - map kernel address into bio
1492 * @q: the struct request_queue for the bio
1493 * @data: pointer to buffer to map
1494 * @len: length in bytes
1495 * @gfp_mask: allocation flags for bio allocation
1496 *
1497 * Map the kernel address into a bio suitable for io to a block
1498 * device. Returns an error pointer in case of error.
1499 */
1500 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1501 gfp_t gfp_mask)
1502 {
1503 unsigned long kaddr = (unsigned long)data;
1504 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1505 unsigned long start = kaddr >> PAGE_SHIFT;
1506 const int nr_pages = end - start;
1507 int offset, i;
1508 struct bio *bio;
1509
1510 bio = bio_kmalloc(gfp_mask, nr_pages);
1511 if (!bio)
1512 return ERR_PTR(-ENOMEM);
1513
1514 offset = offset_in_page(kaddr);
1515 for (i = 0; i < nr_pages; i++) {
1516 unsigned int bytes = PAGE_SIZE - offset;
1517
1518 if (len <= 0)
1519 break;
1520
1521 if (bytes > len)
1522 bytes = len;
1523
1524 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1525 offset) < bytes) {
1526 /* we don't support partial mappings */
1527 bio_put(bio);
1528 return ERR_PTR(-EINVAL);
1529 }
1530
1531 data += bytes;
1532 len -= bytes;
1533 offset = 0;
1534 }
1535
1536 bio->bi_end_io = bio_map_kern_endio;
1537 return bio;
1538 }
1539 EXPORT_SYMBOL(bio_map_kern);
1540
1541 static void bio_copy_kern_endio(struct bio *bio)
1542 {
1543 bio_free_pages(bio);
1544 bio_put(bio);
1545 }
1546
1547 static void bio_copy_kern_endio_read(struct bio *bio)
1548 {
1549 char *p = bio->bi_private;
1550 struct bio_vec *bvec;
1551 int i;
1552
1553 bio_for_each_segment_all(bvec, bio, i) {
1554 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1555 p += bvec->bv_len;
1556 }
1557
1558 bio_copy_kern_endio(bio);
1559 }
1560
1561 /**
1562 * bio_copy_kern - copy kernel address into bio
1563 * @q: the struct request_queue for the bio
1564 * @data: pointer to buffer to copy
1565 * @len: length in bytes
1566 * @gfp_mask: allocation flags for bio and page allocation
1567 * @reading: data direction is READ
1568 *
1569 * copy the kernel address into a bio suitable for io to a block
1570 * device. Returns an error pointer in case of error.
1571 */
1572 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1573 gfp_t gfp_mask, int reading)
1574 {
1575 unsigned long kaddr = (unsigned long)data;
1576 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1577 unsigned long start = kaddr >> PAGE_SHIFT;
1578 struct bio *bio;
1579 void *p = data;
1580 int nr_pages = 0;
1581
1582 /*
1583 * Overflow, abort
1584 */
1585 if (end < start)
1586 return ERR_PTR(-EINVAL);
1587
1588 nr_pages = end - start;
1589 bio = bio_kmalloc(gfp_mask, nr_pages);
1590 if (!bio)
1591 return ERR_PTR(-ENOMEM);
1592
1593 while (len) {
1594 struct page *page;
1595 unsigned int bytes = PAGE_SIZE;
1596
1597 if (bytes > len)
1598 bytes = len;
1599
1600 page = alloc_page(q->bounce_gfp | gfp_mask);
1601 if (!page)
1602 goto cleanup;
1603
1604 if (!reading)
1605 memcpy(page_address(page), p, bytes);
1606
1607 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1608 break;
1609
1610 len -= bytes;
1611 p += bytes;
1612 }
1613
1614 if (reading) {
1615 bio->bi_end_io = bio_copy_kern_endio_read;
1616 bio->bi_private = data;
1617 } else {
1618 bio->bi_end_io = bio_copy_kern_endio;
1619 }
1620
1621 return bio;
1622
1623 cleanup:
1624 bio_free_pages(bio);
1625 bio_put(bio);
1626 return ERR_PTR(-ENOMEM);
1627 }
1628
1629 /*
1630 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1631 * for performing direct-IO in BIOs.
1632 *
1633 * The problem is that we cannot run set_page_dirty() from interrupt context
1634 * because the required locks are not interrupt-safe. So what we can do is to
1635 * mark the pages dirty _before_ performing IO. And in interrupt context,
1636 * check that the pages are still dirty. If so, fine. If not, redirty them
1637 * in process context.
1638 *
1639 * We special-case compound pages here: normally this means reads into hugetlb
1640 * pages. The logic in here doesn't really work right for compound pages
1641 * because the VM does not uniformly chase down the head page in all cases.
1642 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1643 * handle them at all. So we skip compound pages here at an early stage.
1644 *
1645 * Note that this code is very hard to test under normal circumstances because
1646 * direct-io pins the pages with get_user_pages(). This makes
1647 * is_page_cache_freeable return false, and the VM will not clean the pages.
1648 * But other code (eg, flusher threads) could clean the pages if they are mapped
1649 * pagecache.
1650 *
1651 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1652 * deferred bio dirtying paths.
1653 */
1654
1655 /*
1656 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1657 */
1658 void bio_set_pages_dirty(struct bio *bio)
1659 {
1660 struct bio_vec *bvec;
1661 int i;
1662
1663 bio_for_each_segment_all(bvec, bio, i) {
1664 struct page *page = bvec->bv_page;
1665
1666 if (page && !PageCompound(page))
1667 set_page_dirty_lock(page);
1668 }
1669 }
1670
1671 static void bio_release_pages(struct bio *bio)
1672 {
1673 struct bio_vec *bvec;
1674 int i;
1675
1676 bio_for_each_segment_all(bvec, bio, i) {
1677 struct page *page = bvec->bv_page;
1678
1679 if (page)
1680 put_page(page);
1681 }
1682 }
1683
1684 /*
1685 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1686 * If they are, then fine. If, however, some pages are clean then they must
1687 * have been written out during the direct-IO read. So we take another ref on
1688 * the BIO and the offending pages and re-dirty the pages in process context.
1689 *
1690 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1691 * here on. It will run one put_page() against each page and will run one
1692 * bio_put() against the BIO.
1693 */
1694
1695 static void bio_dirty_fn(struct work_struct *work);
1696
1697 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1698 static DEFINE_SPINLOCK(bio_dirty_lock);
1699 static struct bio *bio_dirty_list;
1700
1701 /*
1702 * This runs in process context
1703 */
1704 static void bio_dirty_fn(struct work_struct *work)
1705 {
1706 unsigned long flags;
1707 struct bio *bio;
1708
1709 spin_lock_irqsave(&bio_dirty_lock, flags);
1710 bio = bio_dirty_list;
1711 bio_dirty_list = NULL;
1712 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1713
1714 while (bio) {
1715 struct bio *next = bio->bi_private;
1716
1717 bio_set_pages_dirty(bio);
1718 bio_release_pages(bio);
1719 bio_put(bio);
1720 bio = next;
1721 }
1722 }
1723
1724 void bio_check_pages_dirty(struct bio *bio)
1725 {
1726 struct bio_vec *bvec;
1727 int nr_clean_pages = 0;
1728 int i;
1729
1730 bio_for_each_segment_all(bvec, bio, i) {
1731 struct page *page = bvec->bv_page;
1732
1733 if (PageDirty(page) || PageCompound(page)) {
1734 put_page(page);
1735 bvec->bv_page = NULL;
1736 } else {
1737 nr_clean_pages++;
1738 }
1739 }
1740
1741 if (nr_clean_pages) {
1742 unsigned long flags;
1743
1744 spin_lock_irqsave(&bio_dirty_lock, flags);
1745 bio->bi_private = bio_dirty_list;
1746 bio_dirty_list = bio;
1747 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1748 schedule_work(&bio_dirty_work);
1749 } else {
1750 bio_put(bio);
1751 }
1752 }
1753
1754 void generic_start_io_acct(int rw, unsigned long sectors,
1755 struct hd_struct *part)
1756 {
1757 int cpu = part_stat_lock();
1758
1759 part_round_stats(cpu, part);
1760 part_stat_inc(cpu, part, ios[rw]);
1761 part_stat_add(cpu, part, sectors[rw], sectors);
1762 part_inc_in_flight(part, rw);
1763
1764 part_stat_unlock();
1765 }
1766 EXPORT_SYMBOL(generic_start_io_acct);
1767
1768 void generic_end_io_acct(int rw, struct hd_struct *part,
1769 unsigned long start_time)
1770 {
1771 unsigned long duration = jiffies - start_time;
1772 int cpu = part_stat_lock();
1773
1774 part_stat_add(cpu, part, ticks[rw], duration);
1775 part_round_stats(cpu, part);
1776 part_dec_in_flight(part, rw);
1777
1778 part_stat_unlock();
1779 }
1780 EXPORT_SYMBOL(generic_end_io_acct);
1781
1782 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1783 void bio_flush_dcache_pages(struct bio *bi)
1784 {
1785 struct bio_vec bvec;
1786 struct bvec_iter iter;
1787
1788 bio_for_each_segment(bvec, bi, iter)
1789 flush_dcache_page(bvec.bv_page);
1790 }
1791 EXPORT_SYMBOL(bio_flush_dcache_pages);
1792 #endif
1793
1794 static inline bool bio_remaining_done(struct bio *bio)
1795 {
1796 /*
1797 * If we're not chaining, then ->__bi_remaining is always 1 and
1798 * we always end io on the first invocation.
1799 */
1800 if (!bio_flagged(bio, BIO_CHAIN))
1801 return true;
1802
1803 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1804
1805 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1806 bio_clear_flag(bio, BIO_CHAIN);
1807 return true;
1808 }
1809
1810 return false;
1811 }
1812
1813 /**
1814 * bio_endio - end I/O on a bio
1815 * @bio: bio
1816 *
1817 * Description:
1818 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1819 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1820 * bio unless they own it and thus know that it has an end_io function.
1821 **/
1822 void bio_endio(struct bio *bio)
1823 {
1824 again:
1825 if (!bio_remaining_done(bio))
1826 return;
1827
1828 /*
1829 * Need to have a real endio function for chained bios, otherwise
1830 * various corner cases will break (like stacking block devices that
1831 * save/restore bi_end_io) - however, we want to avoid unbounded
1832 * recursion and blowing the stack. Tail call optimization would
1833 * handle this, but compiling with frame pointers also disables
1834 * gcc's sibling call optimization.
1835 */
1836 if (bio->bi_end_io == bio_chain_endio) {
1837 bio = __bio_chain_endio(bio);
1838 goto again;
1839 }
1840
1841 if (bio->bi_end_io)
1842 bio->bi_end_io(bio);
1843 }
1844 EXPORT_SYMBOL(bio_endio);
1845
1846 /**
1847 * bio_split - split a bio
1848 * @bio: bio to split
1849 * @sectors: number of sectors to split from the front of @bio
1850 * @gfp: gfp mask
1851 * @bs: bio set to allocate from
1852 *
1853 * Allocates and returns a new bio which represents @sectors from the start of
1854 * @bio, and updates @bio to represent the remaining sectors.
1855 *
1856 * Unless this is a discard request the newly allocated bio will point
1857 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1858 * @bio is not freed before the split.
1859 */
1860 struct bio *bio_split(struct bio *bio, int sectors,
1861 gfp_t gfp, struct bio_set *bs)
1862 {
1863 struct bio *split = NULL;
1864
1865 BUG_ON(sectors <= 0);
1866 BUG_ON(sectors >= bio_sectors(bio));
1867
1868 split = bio_clone_fast(bio, gfp, bs);
1869 if (!split)
1870 return NULL;
1871
1872 split->bi_iter.bi_size = sectors << 9;
1873
1874 if (bio_integrity(split))
1875 bio_integrity_trim(split, 0, sectors);
1876
1877 bio_advance(bio, split->bi_iter.bi_size);
1878
1879 return split;
1880 }
1881 EXPORT_SYMBOL(bio_split);
1882
1883 /**
1884 * bio_trim - trim a bio
1885 * @bio: bio to trim
1886 * @offset: number of sectors to trim from the front of @bio
1887 * @size: size we want to trim @bio to, in sectors
1888 */
1889 void bio_trim(struct bio *bio, int offset, int size)
1890 {
1891 /* 'bio' is a cloned bio which we need to trim to match
1892 * the given offset and size.
1893 */
1894
1895 size <<= 9;
1896 if (offset == 0 && size == bio->bi_iter.bi_size)
1897 return;
1898
1899 bio_clear_flag(bio, BIO_SEG_VALID);
1900
1901 bio_advance(bio, offset << 9);
1902
1903 bio->bi_iter.bi_size = size;
1904 }
1905 EXPORT_SYMBOL_GPL(bio_trim);
1906
1907 /*
1908 * create memory pools for biovec's in a bio_set.
1909 * use the global biovec slabs created for general use.
1910 */
1911 mempool_t *biovec_create_pool(int pool_entries)
1912 {
1913 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1914
1915 return mempool_create_slab_pool(pool_entries, bp->slab);
1916 }
1917
1918 void bioset_free(struct bio_set *bs)
1919 {
1920 if (bs->rescue_workqueue)
1921 destroy_workqueue(bs->rescue_workqueue);
1922
1923 if (bs->bio_pool)
1924 mempool_destroy(bs->bio_pool);
1925
1926 if (bs->bvec_pool)
1927 mempool_destroy(bs->bvec_pool);
1928
1929 bioset_integrity_free(bs);
1930 bio_put_slab(bs);
1931
1932 kfree(bs);
1933 }
1934 EXPORT_SYMBOL(bioset_free);
1935
1936 static struct bio_set *__bioset_create(unsigned int pool_size,
1937 unsigned int front_pad,
1938 bool create_bvec_pool)
1939 {
1940 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1941 struct bio_set *bs;
1942
1943 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1944 if (!bs)
1945 return NULL;
1946
1947 bs->front_pad = front_pad;
1948
1949 spin_lock_init(&bs->rescue_lock);
1950 bio_list_init(&bs->rescue_list);
1951 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1952
1953 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1954 if (!bs->bio_slab) {
1955 kfree(bs);
1956 return NULL;
1957 }
1958
1959 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1960 if (!bs->bio_pool)
1961 goto bad;
1962
1963 if (create_bvec_pool) {
1964 bs->bvec_pool = biovec_create_pool(pool_size);
1965 if (!bs->bvec_pool)
1966 goto bad;
1967 }
1968
1969 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1970 if (!bs->rescue_workqueue)
1971 goto bad;
1972
1973 return bs;
1974 bad:
1975 bioset_free(bs);
1976 return NULL;
1977 }
1978
1979 /**
1980 * bioset_create - Create a bio_set
1981 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1982 * @front_pad: Number of bytes to allocate in front of the returned bio
1983 *
1984 * Description:
1985 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1986 * to ask for a number of bytes to be allocated in front of the bio.
1987 * Front pad allocation is useful for embedding the bio inside
1988 * another structure, to avoid allocating extra data to go with the bio.
1989 * Note that the bio must be embedded at the END of that structure always,
1990 * or things will break badly.
1991 */
1992 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1993 {
1994 return __bioset_create(pool_size, front_pad, true);
1995 }
1996 EXPORT_SYMBOL(bioset_create);
1997
1998 /**
1999 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
2000 * @pool_size: Number of bio to cache in the mempool
2001 * @front_pad: Number of bytes to allocate in front of the returned bio
2002 *
2003 * Description:
2004 * Same functionality as bioset_create() except that mempool is not
2005 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
2006 */
2007 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
2008 {
2009 return __bioset_create(pool_size, front_pad, false);
2010 }
2011 EXPORT_SYMBOL(bioset_create_nobvec);
2012
2013 #ifdef CONFIG_BLK_CGROUP
2014
2015 /**
2016 * bio_associate_blkcg - associate a bio with the specified blkcg
2017 * @bio: target bio
2018 * @blkcg_css: css of the blkcg to associate
2019 *
2020 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2021 * treat @bio as if it were issued by a task which belongs to the blkcg.
2022 *
2023 * This function takes an extra reference of @blkcg_css which will be put
2024 * when @bio is released. The caller must own @bio and is responsible for
2025 * synchronizing calls to this function.
2026 */
2027 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2028 {
2029 if (unlikely(bio->bi_css))
2030 return -EBUSY;
2031 css_get(blkcg_css);
2032 bio->bi_css = blkcg_css;
2033 return 0;
2034 }
2035 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2036
2037 /**
2038 * bio_associate_current - associate a bio with %current
2039 * @bio: target bio
2040 *
2041 * Associate @bio with %current if it hasn't been associated yet. Block
2042 * layer will treat @bio as if it were issued by %current no matter which
2043 * task actually issues it.
2044 *
2045 * This function takes an extra reference of @task's io_context and blkcg
2046 * which will be put when @bio is released. The caller must own @bio,
2047 * ensure %current->io_context exists, and is responsible for synchronizing
2048 * calls to this function.
2049 */
2050 int bio_associate_current(struct bio *bio)
2051 {
2052 struct io_context *ioc;
2053
2054 if (bio->bi_css)
2055 return -EBUSY;
2056
2057 ioc = current->io_context;
2058 if (!ioc)
2059 return -ENOENT;
2060
2061 get_io_context_active(ioc);
2062 bio->bi_ioc = ioc;
2063 bio->bi_css = task_get_css(current, io_cgrp_id);
2064 return 0;
2065 }
2066 EXPORT_SYMBOL_GPL(bio_associate_current);
2067
2068 /**
2069 * bio_disassociate_task - undo bio_associate_current()
2070 * @bio: target bio
2071 */
2072 void bio_disassociate_task(struct bio *bio)
2073 {
2074 if (bio->bi_ioc) {
2075 put_io_context(bio->bi_ioc);
2076 bio->bi_ioc = NULL;
2077 }
2078 if (bio->bi_css) {
2079 css_put(bio->bi_css);
2080 bio->bi_css = NULL;
2081 }
2082 }
2083
2084 /**
2085 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2086 * @dst: destination bio
2087 * @src: source bio
2088 */
2089 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2090 {
2091 if (src->bi_css)
2092 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2093 }
2094
2095 #endif /* CONFIG_BLK_CGROUP */
2096
2097 static void __init biovec_init_slabs(void)
2098 {
2099 int i;
2100
2101 for (i = 0; i < BVEC_POOL_NR; i++) {
2102 int size;
2103 struct biovec_slab *bvs = bvec_slabs + i;
2104
2105 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2106 bvs->slab = NULL;
2107 continue;
2108 }
2109
2110 size = bvs->nr_vecs * sizeof(struct bio_vec);
2111 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2112 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2113 }
2114 }
2115
2116 static int __init init_bio(void)
2117 {
2118 bio_slab_max = 2;
2119 bio_slab_nr = 0;
2120 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2121 if (!bio_slabs)
2122 panic("bio: can't allocate bios\n");
2123
2124 bio_integrity_init();
2125 biovec_init_slabs();
2126
2127 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2128 if (!fs_bio_set)
2129 panic("bio: can't allocate bios\n");
2130
2131 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2132 panic("bio: can't create integrity pool\n");
2133
2134 return 0;
2135 }
2136 subsys_initcall(init_bio);