]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/bio.c
blk-throttle: add downgrade logic
[mirror_ubuntu-jammy-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 /*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50
51 /*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125 }
126
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152 out:
153 mutex_unlock(&bio_slab_lock);
154 }
155
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 return bvec_slabs[idx].nr_vecs;
159 }
160
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 if (!idx)
164 return;
165 idx--;
166
167 BIO_BUG_ON(idx >= BVEC_POOL_NR);
168
169 if (idx == BVEC_POOL_MAX) {
170 mempool_free(bv, pool);
171 } else {
172 struct biovec_slab *bvs = bvec_slabs + idx;
173
174 kmem_cache_free(bvs->slab, bv);
175 }
176 }
177
178 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
179 mempool_t *pool)
180 {
181 struct bio_vec *bvl;
182
183 /*
184 * see comment near bvec_array define!
185 */
186 switch (nr) {
187 case 1:
188 *idx = 0;
189 break;
190 case 2 ... 4:
191 *idx = 1;
192 break;
193 case 5 ... 16:
194 *idx = 2;
195 break;
196 case 17 ... 64:
197 *idx = 3;
198 break;
199 case 65 ... 128:
200 *idx = 4;
201 break;
202 case 129 ... BIO_MAX_PAGES:
203 *idx = 5;
204 break;
205 default:
206 return NULL;
207 }
208
209 /*
210 * idx now points to the pool we want to allocate from. only the
211 * 1-vec entry pool is mempool backed.
212 */
213 if (*idx == BVEC_POOL_MAX) {
214 fallback:
215 bvl = mempool_alloc(pool, gfp_mask);
216 } else {
217 struct biovec_slab *bvs = bvec_slabs + *idx;
218 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
219
220 /*
221 * Make this allocation restricted and don't dump info on
222 * allocation failures, since we'll fallback to the mempool
223 * in case of failure.
224 */
225 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
226
227 /*
228 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
229 * is set, retry with the 1-entry mempool
230 */
231 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
232 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
233 *idx = BVEC_POOL_MAX;
234 goto fallback;
235 }
236 }
237
238 (*idx)++;
239 return bvl;
240 }
241
242 static void __bio_free(struct bio *bio)
243 {
244 bio_disassociate_task(bio);
245
246 if (bio_integrity(bio))
247 bio_integrity_free(bio);
248 }
249
250 static void bio_free(struct bio *bio)
251 {
252 struct bio_set *bs = bio->bi_pool;
253 void *p;
254
255 __bio_free(bio);
256
257 if (bs) {
258 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259
260 /*
261 * If we have front padding, adjust the bio pointer before freeing
262 */
263 p = bio;
264 p -= bs->front_pad;
265
266 mempool_free(p, bs->bio_pool);
267 } else {
268 /* Bio was allocated by bio_kmalloc() */
269 kfree(bio);
270 }
271 }
272
273 void bio_init(struct bio *bio, struct bio_vec *table,
274 unsigned short max_vecs)
275 {
276 memset(bio, 0, sizeof(*bio));
277 atomic_set(&bio->__bi_remaining, 1);
278 atomic_set(&bio->__bi_cnt, 1);
279
280 bio->bi_io_vec = table;
281 bio->bi_max_vecs = max_vecs;
282 }
283 EXPORT_SYMBOL(bio_init);
284
285 /**
286 * bio_reset - reinitialize a bio
287 * @bio: bio to reset
288 *
289 * Description:
290 * After calling bio_reset(), @bio will be in the same state as a freshly
291 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
292 * preserved are the ones that are initialized by bio_alloc_bioset(). See
293 * comment in struct bio.
294 */
295 void bio_reset(struct bio *bio)
296 {
297 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
298
299 __bio_free(bio);
300
301 memset(bio, 0, BIO_RESET_BYTES);
302 bio->bi_flags = flags;
303 atomic_set(&bio->__bi_remaining, 1);
304 }
305 EXPORT_SYMBOL(bio_reset);
306
307 static struct bio *__bio_chain_endio(struct bio *bio)
308 {
309 struct bio *parent = bio->bi_private;
310
311 if (!parent->bi_error)
312 parent->bi_error = bio->bi_error;
313 bio_put(bio);
314 return parent;
315 }
316
317 static void bio_chain_endio(struct bio *bio)
318 {
319 bio_endio(__bio_chain_endio(bio));
320 }
321
322 /**
323 * bio_chain - chain bio completions
324 * @bio: the target bio
325 * @parent: the @bio's parent bio
326 *
327 * The caller won't have a bi_end_io called when @bio completes - instead,
328 * @parent's bi_end_io won't be called until both @parent and @bio have
329 * completed; the chained bio will also be freed when it completes.
330 *
331 * The caller must not set bi_private or bi_end_io in @bio.
332 */
333 void bio_chain(struct bio *bio, struct bio *parent)
334 {
335 BUG_ON(bio->bi_private || bio->bi_end_io);
336
337 bio->bi_private = parent;
338 bio->bi_end_io = bio_chain_endio;
339 bio_inc_remaining(parent);
340 }
341 EXPORT_SYMBOL(bio_chain);
342
343 static void bio_alloc_rescue(struct work_struct *work)
344 {
345 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
346 struct bio *bio;
347
348 while (1) {
349 spin_lock(&bs->rescue_lock);
350 bio = bio_list_pop(&bs->rescue_list);
351 spin_unlock(&bs->rescue_lock);
352
353 if (!bio)
354 break;
355
356 generic_make_request(bio);
357 }
358 }
359
360 static void punt_bios_to_rescuer(struct bio_set *bs)
361 {
362 struct bio_list punt, nopunt;
363 struct bio *bio;
364
365 /*
366 * In order to guarantee forward progress we must punt only bios that
367 * were allocated from this bio_set; otherwise, if there was a bio on
368 * there for a stacking driver higher up in the stack, processing it
369 * could require allocating bios from this bio_set, and doing that from
370 * our own rescuer would be bad.
371 *
372 * Since bio lists are singly linked, pop them all instead of trying to
373 * remove from the middle of the list:
374 */
375
376 bio_list_init(&punt);
377 bio_list_init(&nopunt);
378
379 while ((bio = bio_list_pop(&current->bio_list[0])))
380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 current->bio_list[0] = nopunt;
382
383 bio_list_init(&nopunt);
384 while ((bio = bio_list_pop(&current->bio_list[1])))
385 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
386 current->bio_list[1] = nopunt;
387
388 spin_lock(&bs->rescue_lock);
389 bio_list_merge(&bs->rescue_list, &punt);
390 spin_unlock(&bs->rescue_lock);
391
392 queue_work(bs->rescue_workqueue, &bs->rescue_work);
393 }
394
395 /**
396 * bio_alloc_bioset - allocate a bio for I/O
397 * @gfp_mask: the GFP_ mask given to the slab allocator
398 * @nr_iovecs: number of iovecs to pre-allocate
399 * @bs: the bio_set to allocate from.
400 *
401 * Description:
402 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
403 * backed by the @bs's mempool.
404 *
405 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
406 * always be able to allocate a bio. This is due to the mempool guarantees.
407 * To make this work, callers must never allocate more than 1 bio at a time
408 * from this pool. Callers that need to allocate more than 1 bio must always
409 * submit the previously allocated bio for IO before attempting to allocate
410 * a new one. Failure to do so can cause deadlocks under memory pressure.
411 *
412 * Note that when running under generic_make_request() (i.e. any block
413 * driver), bios are not submitted until after you return - see the code in
414 * generic_make_request() that converts recursion into iteration, to prevent
415 * stack overflows.
416 *
417 * This would normally mean allocating multiple bios under
418 * generic_make_request() would be susceptible to deadlocks, but we have
419 * deadlock avoidance code that resubmits any blocked bios from a rescuer
420 * thread.
421 *
422 * However, we do not guarantee forward progress for allocations from other
423 * mempools. Doing multiple allocations from the same mempool under
424 * generic_make_request() should be avoided - instead, use bio_set's front_pad
425 * for per bio allocations.
426 *
427 * RETURNS:
428 * Pointer to new bio on success, NULL on failure.
429 */
430 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
431 struct bio_set *bs)
432 {
433 gfp_t saved_gfp = gfp_mask;
434 unsigned front_pad;
435 unsigned inline_vecs;
436 struct bio_vec *bvl = NULL;
437 struct bio *bio;
438 void *p;
439
440 if (!bs) {
441 if (nr_iovecs > UIO_MAXIOV)
442 return NULL;
443
444 p = kmalloc(sizeof(struct bio) +
445 nr_iovecs * sizeof(struct bio_vec),
446 gfp_mask);
447 front_pad = 0;
448 inline_vecs = nr_iovecs;
449 } else {
450 /* should not use nobvec bioset for nr_iovecs > 0 */
451 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
452 return NULL;
453 /*
454 * generic_make_request() converts recursion to iteration; this
455 * means if we're running beneath it, any bios we allocate and
456 * submit will not be submitted (and thus freed) until after we
457 * return.
458 *
459 * This exposes us to a potential deadlock if we allocate
460 * multiple bios from the same bio_set() while running
461 * underneath generic_make_request(). If we were to allocate
462 * multiple bios (say a stacking block driver that was splitting
463 * bios), we would deadlock if we exhausted the mempool's
464 * reserve.
465 *
466 * We solve this, and guarantee forward progress, with a rescuer
467 * workqueue per bio_set. If we go to allocate and there are
468 * bios on current->bio_list, we first try the allocation
469 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
470 * bios we would be blocking to the rescuer workqueue before
471 * we retry with the original gfp_flags.
472 */
473
474 if (current->bio_list &&
475 (!bio_list_empty(&current->bio_list[0]) ||
476 !bio_list_empty(&current->bio_list[1])))
477 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
478
479 p = mempool_alloc(bs->bio_pool, gfp_mask);
480 if (!p && gfp_mask != saved_gfp) {
481 punt_bios_to_rescuer(bs);
482 gfp_mask = saved_gfp;
483 p = mempool_alloc(bs->bio_pool, gfp_mask);
484 }
485
486 front_pad = bs->front_pad;
487 inline_vecs = BIO_INLINE_VECS;
488 }
489
490 if (unlikely(!p))
491 return NULL;
492
493 bio = p + front_pad;
494 bio_init(bio, NULL, 0);
495
496 if (nr_iovecs > inline_vecs) {
497 unsigned long idx = 0;
498
499 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
500 if (!bvl && gfp_mask != saved_gfp) {
501 punt_bios_to_rescuer(bs);
502 gfp_mask = saved_gfp;
503 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
504 }
505
506 if (unlikely(!bvl))
507 goto err_free;
508
509 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
510 } else if (nr_iovecs) {
511 bvl = bio->bi_inline_vecs;
512 }
513
514 bio->bi_pool = bs;
515 bio->bi_max_vecs = nr_iovecs;
516 bio->bi_io_vec = bvl;
517 return bio;
518
519 err_free:
520 mempool_free(p, bs->bio_pool);
521 return NULL;
522 }
523 EXPORT_SYMBOL(bio_alloc_bioset);
524
525 void zero_fill_bio(struct bio *bio)
526 {
527 unsigned long flags;
528 struct bio_vec bv;
529 struct bvec_iter iter;
530
531 bio_for_each_segment(bv, bio, iter) {
532 char *data = bvec_kmap_irq(&bv, &flags);
533 memset(data, 0, bv.bv_len);
534 flush_dcache_page(bv.bv_page);
535 bvec_kunmap_irq(data, &flags);
536 }
537 }
538 EXPORT_SYMBOL(zero_fill_bio);
539
540 /**
541 * bio_put - release a reference to a bio
542 * @bio: bio to release reference to
543 *
544 * Description:
545 * Put a reference to a &struct bio, either one you have gotten with
546 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
547 **/
548 void bio_put(struct bio *bio)
549 {
550 if (!bio_flagged(bio, BIO_REFFED))
551 bio_free(bio);
552 else {
553 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
554
555 /*
556 * last put frees it
557 */
558 if (atomic_dec_and_test(&bio->__bi_cnt))
559 bio_free(bio);
560 }
561 }
562 EXPORT_SYMBOL(bio_put);
563
564 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
565 {
566 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
567 blk_recount_segments(q, bio);
568
569 return bio->bi_phys_segments;
570 }
571 EXPORT_SYMBOL(bio_phys_segments);
572
573 /**
574 * __bio_clone_fast - clone a bio that shares the original bio's biovec
575 * @bio: destination bio
576 * @bio_src: bio to clone
577 *
578 * Clone a &bio. Caller will own the returned bio, but not
579 * the actual data it points to. Reference count of returned
580 * bio will be one.
581 *
582 * Caller must ensure that @bio_src is not freed before @bio.
583 */
584 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
585 {
586 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
587
588 /*
589 * most users will be overriding ->bi_bdev with a new target,
590 * so we don't set nor calculate new physical/hw segment counts here
591 */
592 bio->bi_bdev = bio_src->bi_bdev;
593 bio_set_flag(bio, BIO_CLONED);
594 bio->bi_opf = bio_src->bi_opf;
595 bio->bi_iter = bio_src->bi_iter;
596 bio->bi_io_vec = bio_src->bi_io_vec;
597
598 bio_clone_blkcg_association(bio, bio_src);
599 }
600 EXPORT_SYMBOL(__bio_clone_fast);
601
602 /**
603 * bio_clone_fast - clone a bio that shares the original bio's biovec
604 * @bio: bio to clone
605 * @gfp_mask: allocation priority
606 * @bs: bio_set to allocate from
607 *
608 * Like __bio_clone_fast, only also allocates the returned bio
609 */
610 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
611 {
612 struct bio *b;
613
614 b = bio_alloc_bioset(gfp_mask, 0, bs);
615 if (!b)
616 return NULL;
617
618 __bio_clone_fast(b, bio);
619
620 if (bio_integrity(bio)) {
621 int ret;
622
623 ret = bio_integrity_clone(b, bio, gfp_mask);
624
625 if (ret < 0) {
626 bio_put(b);
627 return NULL;
628 }
629 }
630
631 return b;
632 }
633 EXPORT_SYMBOL(bio_clone_fast);
634
635 static struct bio *__bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
636 struct bio_set *bs, int offset,
637 int size)
638 {
639 struct bvec_iter iter;
640 struct bio_vec bv;
641 struct bio *bio;
642 struct bvec_iter iter_src = bio_src->bi_iter;
643
644 /* for supporting partial clone */
645 if (offset || size != bio_src->bi_iter.bi_size) {
646 bio_advance_iter(bio_src, &iter_src, offset);
647 iter_src.bi_size = size;
648 }
649
650 /*
651 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
652 * bio_src->bi_io_vec to bio->bi_io_vec.
653 *
654 * We can't do that anymore, because:
655 *
656 * - The point of cloning the biovec is to produce a bio with a biovec
657 * the caller can modify: bi_idx and bi_bvec_done should be 0.
658 *
659 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
660 * we tried to clone the whole thing bio_alloc_bioset() would fail.
661 * But the clone should succeed as long as the number of biovecs we
662 * actually need to allocate is fewer than BIO_MAX_PAGES.
663 *
664 * - Lastly, bi_vcnt should not be looked at or relied upon by code
665 * that does not own the bio - reason being drivers don't use it for
666 * iterating over the biovec anymore, so expecting it to be kept up
667 * to date (i.e. for clones that share the parent biovec) is just
668 * asking for trouble and would force extra work on
669 * __bio_clone_fast() anyways.
670 */
671
672 bio = bio_alloc_bioset(gfp_mask, __bio_segments(bio_src,
673 &iter_src), bs);
674 if (!bio)
675 return NULL;
676 bio->bi_bdev = bio_src->bi_bdev;
677 bio->bi_opf = bio_src->bi_opf;
678 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
679 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
680
681 switch (bio_op(bio)) {
682 case REQ_OP_DISCARD:
683 case REQ_OP_SECURE_ERASE:
684 case REQ_OP_WRITE_ZEROES:
685 break;
686 case REQ_OP_WRITE_SAME:
687 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
688 break;
689 default:
690 __bio_for_each_segment(bv, bio_src, iter, iter_src)
691 bio->bi_io_vec[bio->bi_vcnt++] = bv;
692 break;
693 }
694
695 if (bio_integrity(bio_src)) {
696 int ret;
697
698 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
699 if (ret < 0) {
700 bio_put(bio);
701 return NULL;
702 }
703 }
704
705 bio_clone_blkcg_association(bio, bio_src);
706
707 return bio;
708 }
709
710 /**
711 * bio_clone_bioset - clone a bio
712 * @bio_src: bio to clone
713 * @gfp_mask: allocation priority
714 * @bs: bio_set to allocate from
715 *
716 * Clone bio. Caller will own the returned bio, but not the actual data it
717 * points to. Reference count of returned bio will be one.
718 */
719 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
720 struct bio_set *bs)
721 {
722 return __bio_clone_bioset(bio_src, gfp_mask, bs, 0,
723 bio_src->bi_iter.bi_size);
724 }
725 EXPORT_SYMBOL(bio_clone_bioset);
726
727 /**
728 * bio_clone_bioset_partial - clone a partial bio
729 * @bio_src: bio to clone
730 * @gfp_mask: allocation priority
731 * @bs: bio_set to allocate from
732 * @offset: cloned starting from the offset
733 * @size: size for the cloned bio
734 *
735 * Clone bio. Caller will own the returned bio, but not the actual data it
736 * points to. Reference count of returned bio will be one.
737 */
738 struct bio *bio_clone_bioset_partial(struct bio *bio_src, gfp_t gfp_mask,
739 struct bio_set *bs, int offset,
740 int size)
741 {
742 return __bio_clone_bioset(bio_src, gfp_mask, bs, offset, size);
743 }
744 EXPORT_SYMBOL(bio_clone_bioset_partial);
745
746 /**
747 * bio_add_pc_page - attempt to add page to bio
748 * @q: the target queue
749 * @bio: destination bio
750 * @page: page to add
751 * @len: vec entry length
752 * @offset: vec entry offset
753 *
754 * Attempt to add a page to the bio_vec maplist. This can fail for a
755 * number of reasons, such as the bio being full or target block device
756 * limitations. The target block device must allow bio's up to PAGE_SIZE,
757 * so it is always possible to add a single page to an empty bio.
758 *
759 * This should only be used by REQ_PC bios.
760 */
761 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
762 *page, unsigned int len, unsigned int offset)
763 {
764 int retried_segments = 0;
765 struct bio_vec *bvec;
766
767 /*
768 * cloned bio must not modify vec list
769 */
770 if (unlikely(bio_flagged(bio, BIO_CLONED)))
771 return 0;
772
773 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
774 return 0;
775
776 /*
777 * For filesystems with a blocksize smaller than the pagesize
778 * we will often be called with the same page as last time and
779 * a consecutive offset. Optimize this special case.
780 */
781 if (bio->bi_vcnt > 0) {
782 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
783
784 if (page == prev->bv_page &&
785 offset == prev->bv_offset + prev->bv_len) {
786 prev->bv_len += len;
787 bio->bi_iter.bi_size += len;
788 goto done;
789 }
790
791 /*
792 * If the queue doesn't support SG gaps and adding this
793 * offset would create a gap, disallow it.
794 */
795 if (bvec_gap_to_prev(q, prev, offset))
796 return 0;
797 }
798
799 if (bio->bi_vcnt >= bio->bi_max_vecs)
800 return 0;
801
802 /*
803 * setup the new entry, we might clear it again later if we
804 * cannot add the page
805 */
806 bvec = &bio->bi_io_vec[bio->bi_vcnt];
807 bvec->bv_page = page;
808 bvec->bv_len = len;
809 bvec->bv_offset = offset;
810 bio->bi_vcnt++;
811 bio->bi_phys_segments++;
812 bio->bi_iter.bi_size += len;
813
814 /*
815 * Perform a recount if the number of segments is greater
816 * than queue_max_segments(q).
817 */
818
819 while (bio->bi_phys_segments > queue_max_segments(q)) {
820
821 if (retried_segments)
822 goto failed;
823
824 retried_segments = 1;
825 blk_recount_segments(q, bio);
826 }
827
828 /* If we may be able to merge these biovecs, force a recount */
829 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
830 bio_clear_flag(bio, BIO_SEG_VALID);
831
832 done:
833 return len;
834
835 failed:
836 bvec->bv_page = NULL;
837 bvec->bv_len = 0;
838 bvec->bv_offset = 0;
839 bio->bi_vcnt--;
840 bio->bi_iter.bi_size -= len;
841 blk_recount_segments(q, bio);
842 return 0;
843 }
844 EXPORT_SYMBOL(bio_add_pc_page);
845
846 /**
847 * bio_add_page - attempt to add page to bio
848 * @bio: destination bio
849 * @page: page to add
850 * @len: vec entry length
851 * @offset: vec entry offset
852 *
853 * Attempt to add a page to the bio_vec maplist. This will only fail
854 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
855 */
856 int bio_add_page(struct bio *bio, struct page *page,
857 unsigned int len, unsigned int offset)
858 {
859 struct bio_vec *bv;
860
861 /*
862 * cloned bio must not modify vec list
863 */
864 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
865 return 0;
866
867 /*
868 * For filesystems with a blocksize smaller than the pagesize
869 * we will often be called with the same page as last time and
870 * a consecutive offset. Optimize this special case.
871 */
872 if (bio->bi_vcnt > 0) {
873 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
874
875 if (page == bv->bv_page &&
876 offset == bv->bv_offset + bv->bv_len) {
877 bv->bv_len += len;
878 goto done;
879 }
880 }
881
882 if (bio->bi_vcnt >= bio->bi_max_vecs)
883 return 0;
884
885 bv = &bio->bi_io_vec[bio->bi_vcnt];
886 bv->bv_page = page;
887 bv->bv_len = len;
888 bv->bv_offset = offset;
889
890 bio->bi_vcnt++;
891 done:
892 bio->bi_iter.bi_size += len;
893 return len;
894 }
895 EXPORT_SYMBOL(bio_add_page);
896
897 /**
898 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
899 * @bio: bio to add pages to
900 * @iter: iov iterator describing the region to be mapped
901 *
902 * Pins as many pages from *iter and appends them to @bio's bvec array. The
903 * pages will have to be released using put_page() when done.
904 */
905 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
906 {
907 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
908 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
909 struct page **pages = (struct page **)bv;
910 size_t offset, diff;
911 ssize_t size;
912
913 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
914 if (unlikely(size <= 0))
915 return size ? size : -EFAULT;
916 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
917
918 /*
919 * Deep magic below: We need to walk the pinned pages backwards
920 * because we are abusing the space allocated for the bio_vecs
921 * for the page array. Because the bio_vecs are larger than the
922 * page pointers by definition this will always work. But it also
923 * means we can't use bio_add_page, so any changes to it's semantics
924 * need to be reflected here as well.
925 */
926 bio->bi_iter.bi_size += size;
927 bio->bi_vcnt += nr_pages;
928
929 diff = (nr_pages * PAGE_SIZE - offset) - size;
930 while (nr_pages--) {
931 bv[nr_pages].bv_page = pages[nr_pages];
932 bv[nr_pages].bv_len = PAGE_SIZE;
933 bv[nr_pages].bv_offset = 0;
934 }
935
936 bv[0].bv_offset += offset;
937 bv[0].bv_len -= offset;
938 if (diff)
939 bv[bio->bi_vcnt - 1].bv_len -= diff;
940
941 iov_iter_advance(iter, size);
942 return 0;
943 }
944 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
945
946 struct submit_bio_ret {
947 struct completion event;
948 int error;
949 };
950
951 static void submit_bio_wait_endio(struct bio *bio)
952 {
953 struct submit_bio_ret *ret = bio->bi_private;
954
955 ret->error = bio->bi_error;
956 complete(&ret->event);
957 }
958
959 /**
960 * submit_bio_wait - submit a bio, and wait until it completes
961 * @bio: The &struct bio which describes the I/O
962 *
963 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
964 * bio_endio() on failure.
965 */
966 int submit_bio_wait(struct bio *bio)
967 {
968 struct submit_bio_ret ret;
969
970 init_completion(&ret.event);
971 bio->bi_private = &ret;
972 bio->bi_end_io = submit_bio_wait_endio;
973 bio->bi_opf |= REQ_SYNC;
974 submit_bio(bio);
975 wait_for_completion_io(&ret.event);
976
977 return ret.error;
978 }
979 EXPORT_SYMBOL(submit_bio_wait);
980
981 /**
982 * bio_advance - increment/complete a bio by some number of bytes
983 * @bio: bio to advance
984 * @bytes: number of bytes to complete
985 *
986 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
987 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
988 * be updated on the last bvec as well.
989 *
990 * @bio will then represent the remaining, uncompleted portion of the io.
991 */
992 void bio_advance(struct bio *bio, unsigned bytes)
993 {
994 if (bio_integrity(bio))
995 bio_integrity_advance(bio, bytes);
996
997 bio_advance_iter(bio, &bio->bi_iter, bytes);
998 }
999 EXPORT_SYMBOL(bio_advance);
1000
1001 /**
1002 * bio_alloc_pages - allocates a single page for each bvec in a bio
1003 * @bio: bio to allocate pages for
1004 * @gfp_mask: flags for allocation
1005 *
1006 * Allocates pages up to @bio->bi_vcnt.
1007 *
1008 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
1009 * freed.
1010 */
1011 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
1012 {
1013 int i;
1014 struct bio_vec *bv;
1015
1016 bio_for_each_segment_all(bv, bio, i) {
1017 bv->bv_page = alloc_page(gfp_mask);
1018 if (!bv->bv_page) {
1019 while (--bv >= bio->bi_io_vec)
1020 __free_page(bv->bv_page);
1021 return -ENOMEM;
1022 }
1023 }
1024
1025 return 0;
1026 }
1027 EXPORT_SYMBOL(bio_alloc_pages);
1028
1029 /**
1030 * bio_copy_data - copy contents of data buffers from one chain of bios to
1031 * another
1032 * @src: source bio list
1033 * @dst: destination bio list
1034 *
1035 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1036 * @src and @dst as linked lists of bios.
1037 *
1038 * Stops when it reaches the end of either @src or @dst - that is, copies
1039 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1040 */
1041 void bio_copy_data(struct bio *dst, struct bio *src)
1042 {
1043 struct bvec_iter src_iter, dst_iter;
1044 struct bio_vec src_bv, dst_bv;
1045 void *src_p, *dst_p;
1046 unsigned bytes;
1047
1048 src_iter = src->bi_iter;
1049 dst_iter = dst->bi_iter;
1050
1051 while (1) {
1052 if (!src_iter.bi_size) {
1053 src = src->bi_next;
1054 if (!src)
1055 break;
1056
1057 src_iter = src->bi_iter;
1058 }
1059
1060 if (!dst_iter.bi_size) {
1061 dst = dst->bi_next;
1062 if (!dst)
1063 break;
1064
1065 dst_iter = dst->bi_iter;
1066 }
1067
1068 src_bv = bio_iter_iovec(src, src_iter);
1069 dst_bv = bio_iter_iovec(dst, dst_iter);
1070
1071 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1072
1073 src_p = kmap_atomic(src_bv.bv_page);
1074 dst_p = kmap_atomic(dst_bv.bv_page);
1075
1076 memcpy(dst_p + dst_bv.bv_offset,
1077 src_p + src_bv.bv_offset,
1078 bytes);
1079
1080 kunmap_atomic(dst_p);
1081 kunmap_atomic(src_p);
1082
1083 bio_advance_iter(src, &src_iter, bytes);
1084 bio_advance_iter(dst, &dst_iter, bytes);
1085 }
1086 }
1087 EXPORT_SYMBOL(bio_copy_data);
1088
1089 struct bio_map_data {
1090 int is_our_pages;
1091 struct iov_iter iter;
1092 struct iovec iov[];
1093 };
1094
1095 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1096 gfp_t gfp_mask)
1097 {
1098 if (iov_count > UIO_MAXIOV)
1099 return NULL;
1100
1101 return kmalloc(sizeof(struct bio_map_data) +
1102 sizeof(struct iovec) * iov_count, gfp_mask);
1103 }
1104
1105 /**
1106 * bio_copy_from_iter - copy all pages from iov_iter to bio
1107 * @bio: The &struct bio which describes the I/O as destination
1108 * @iter: iov_iter as source
1109 *
1110 * Copy all pages from iov_iter to bio.
1111 * Returns 0 on success, or error on failure.
1112 */
1113 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1114 {
1115 int i;
1116 struct bio_vec *bvec;
1117
1118 bio_for_each_segment_all(bvec, bio, i) {
1119 ssize_t ret;
1120
1121 ret = copy_page_from_iter(bvec->bv_page,
1122 bvec->bv_offset,
1123 bvec->bv_len,
1124 &iter);
1125
1126 if (!iov_iter_count(&iter))
1127 break;
1128
1129 if (ret < bvec->bv_len)
1130 return -EFAULT;
1131 }
1132
1133 return 0;
1134 }
1135
1136 /**
1137 * bio_copy_to_iter - copy all pages from bio to iov_iter
1138 * @bio: The &struct bio which describes the I/O as source
1139 * @iter: iov_iter as destination
1140 *
1141 * Copy all pages from bio to iov_iter.
1142 * Returns 0 on success, or error on failure.
1143 */
1144 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1145 {
1146 int i;
1147 struct bio_vec *bvec;
1148
1149 bio_for_each_segment_all(bvec, bio, i) {
1150 ssize_t ret;
1151
1152 ret = copy_page_to_iter(bvec->bv_page,
1153 bvec->bv_offset,
1154 bvec->bv_len,
1155 &iter);
1156
1157 if (!iov_iter_count(&iter))
1158 break;
1159
1160 if (ret < bvec->bv_len)
1161 return -EFAULT;
1162 }
1163
1164 return 0;
1165 }
1166
1167 void bio_free_pages(struct bio *bio)
1168 {
1169 struct bio_vec *bvec;
1170 int i;
1171
1172 bio_for_each_segment_all(bvec, bio, i)
1173 __free_page(bvec->bv_page);
1174 }
1175 EXPORT_SYMBOL(bio_free_pages);
1176
1177 /**
1178 * bio_uncopy_user - finish previously mapped bio
1179 * @bio: bio being terminated
1180 *
1181 * Free pages allocated from bio_copy_user_iov() and write back data
1182 * to user space in case of a read.
1183 */
1184 int bio_uncopy_user(struct bio *bio)
1185 {
1186 struct bio_map_data *bmd = bio->bi_private;
1187 int ret = 0;
1188
1189 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1190 /*
1191 * if we're in a workqueue, the request is orphaned, so
1192 * don't copy into a random user address space, just free
1193 * and return -EINTR so user space doesn't expect any data.
1194 */
1195 if (!current->mm)
1196 ret = -EINTR;
1197 else if (bio_data_dir(bio) == READ)
1198 ret = bio_copy_to_iter(bio, bmd->iter);
1199 if (bmd->is_our_pages)
1200 bio_free_pages(bio);
1201 }
1202 kfree(bmd);
1203 bio_put(bio);
1204 return ret;
1205 }
1206
1207 /**
1208 * bio_copy_user_iov - copy user data to bio
1209 * @q: destination block queue
1210 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1211 * @iter: iovec iterator
1212 * @gfp_mask: memory allocation flags
1213 *
1214 * Prepares and returns a bio for indirect user io, bouncing data
1215 * to/from kernel pages as necessary. Must be paired with
1216 * call bio_uncopy_user() on io completion.
1217 */
1218 struct bio *bio_copy_user_iov(struct request_queue *q,
1219 struct rq_map_data *map_data,
1220 const struct iov_iter *iter,
1221 gfp_t gfp_mask)
1222 {
1223 struct bio_map_data *bmd;
1224 struct page *page;
1225 struct bio *bio;
1226 int i, ret;
1227 int nr_pages = 0;
1228 unsigned int len = iter->count;
1229 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1230
1231 for (i = 0; i < iter->nr_segs; i++) {
1232 unsigned long uaddr;
1233 unsigned long end;
1234 unsigned long start;
1235
1236 uaddr = (unsigned long) iter->iov[i].iov_base;
1237 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1238 >> PAGE_SHIFT;
1239 start = uaddr >> PAGE_SHIFT;
1240
1241 /*
1242 * Overflow, abort
1243 */
1244 if (end < start)
1245 return ERR_PTR(-EINVAL);
1246
1247 nr_pages += end - start;
1248 }
1249
1250 if (offset)
1251 nr_pages++;
1252
1253 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1254 if (!bmd)
1255 return ERR_PTR(-ENOMEM);
1256
1257 /*
1258 * We need to do a deep copy of the iov_iter including the iovecs.
1259 * The caller provided iov might point to an on-stack or otherwise
1260 * shortlived one.
1261 */
1262 bmd->is_our_pages = map_data ? 0 : 1;
1263 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1264 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1265 iter->nr_segs, iter->count);
1266
1267 ret = -ENOMEM;
1268 bio = bio_kmalloc(gfp_mask, nr_pages);
1269 if (!bio)
1270 goto out_bmd;
1271
1272 ret = 0;
1273
1274 if (map_data) {
1275 nr_pages = 1 << map_data->page_order;
1276 i = map_data->offset / PAGE_SIZE;
1277 }
1278 while (len) {
1279 unsigned int bytes = PAGE_SIZE;
1280
1281 bytes -= offset;
1282
1283 if (bytes > len)
1284 bytes = len;
1285
1286 if (map_data) {
1287 if (i == map_data->nr_entries * nr_pages) {
1288 ret = -ENOMEM;
1289 break;
1290 }
1291
1292 page = map_data->pages[i / nr_pages];
1293 page += (i % nr_pages);
1294
1295 i++;
1296 } else {
1297 page = alloc_page(q->bounce_gfp | gfp_mask);
1298 if (!page) {
1299 ret = -ENOMEM;
1300 break;
1301 }
1302 }
1303
1304 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1305 break;
1306
1307 len -= bytes;
1308 offset = 0;
1309 }
1310
1311 if (ret)
1312 goto cleanup;
1313
1314 /*
1315 * success
1316 */
1317 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1318 (map_data && map_data->from_user)) {
1319 ret = bio_copy_from_iter(bio, *iter);
1320 if (ret)
1321 goto cleanup;
1322 }
1323
1324 bio->bi_private = bmd;
1325 return bio;
1326 cleanup:
1327 if (!map_data)
1328 bio_free_pages(bio);
1329 bio_put(bio);
1330 out_bmd:
1331 kfree(bmd);
1332 return ERR_PTR(ret);
1333 }
1334
1335 /**
1336 * bio_map_user_iov - map user iovec into bio
1337 * @q: the struct request_queue for the bio
1338 * @iter: iovec iterator
1339 * @gfp_mask: memory allocation flags
1340 *
1341 * Map the user space address into a bio suitable for io to a block
1342 * device. Returns an error pointer in case of error.
1343 */
1344 struct bio *bio_map_user_iov(struct request_queue *q,
1345 const struct iov_iter *iter,
1346 gfp_t gfp_mask)
1347 {
1348 int j;
1349 int nr_pages = 0;
1350 struct page **pages;
1351 struct bio *bio;
1352 int cur_page = 0;
1353 int ret, offset;
1354 struct iov_iter i;
1355 struct iovec iov;
1356
1357 iov_for_each(iov, i, *iter) {
1358 unsigned long uaddr = (unsigned long) iov.iov_base;
1359 unsigned long len = iov.iov_len;
1360 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1361 unsigned long start = uaddr >> PAGE_SHIFT;
1362
1363 /*
1364 * Overflow, abort
1365 */
1366 if (end < start)
1367 return ERR_PTR(-EINVAL);
1368
1369 nr_pages += end - start;
1370 /*
1371 * buffer must be aligned to at least logical block size for now
1372 */
1373 if (uaddr & queue_dma_alignment(q))
1374 return ERR_PTR(-EINVAL);
1375 }
1376
1377 if (!nr_pages)
1378 return ERR_PTR(-EINVAL);
1379
1380 bio = bio_kmalloc(gfp_mask, nr_pages);
1381 if (!bio)
1382 return ERR_PTR(-ENOMEM);
1383
1384 ret = -ENOMEM;
1385 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1386 if (!pages)
1387 goto out;
1388
1389 iov_for_each(iov, i, *iter) {
1390 unsigned long uaddr = (unsigned long) iov.iov_base;
1391 unsigned long len = iov.iov_len;
1392 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1393 unsigned long start = uaddr >> PAGE_SHIFT;
1394 const int local_nr_pages = end - start;
1395 const int page_limit = cur_page + local_nr_pages;
1396
1397 ret = get_user_pages_fast(uaddr, local_nr_pages,
1398 (iter->type & WRITE) != WRITE,
1399 &pages[cur_page]);
1400 if (ret < local_nr_pages) {
1401 ret = -EFAULT;
1402 goto out_unmap;
1403 }
1404
1405 offset = offset_in_page(uaddr);
1406 for (j = cur_page; j < page_limit; j++) {
1407 unsigned int bytes = PAGE_SIZE - offset;
1408
1409 if (len <= 0)
1410 break;
1411
1412 if (bytes > len)
1413 bytes = len;
1414
1415 /*
1416 * sorry...
1417 */
1418 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1419 bytes)
1420 break;
1421
1422 len -= bytes;
1423 offset = 0;
1424 }
1425
1426 cur_page = j;
1427 /*
1428 * release the pages we didn't map into the bio, if any
1429 */
1430 while (j < page_limit)
1431 put_page(pages[j++]);
1432 }
1433
1434 kfree(pages);
1435
1436 bio_set_flag(bio, BIO_USER_MAPPED);
1437
1438 /*
1439 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1440 * it would normally disappear when its bi_end_io is run.
1441 * however, we need it for the unmap, so grab an extra
1442 * reference to it
1443 */
1444 bio_get(bio);
1445 return bio;
1446
1447 out_unmap:
1448 for (j = 0; j < nr_pages; j++) {
1449 if (!pages[j])
1450 break;
1451 put_page(pages[j]);
1452 }
1453 out:
1454 kfree(pages);
1455 bio_put(bio);
1456 return ERR_PTR(ret);
1457 }
1458
1459 static void __bio_unmap_user(struct bio *bio)
1460 {
1461 struct bio_vec *bvec;
1462 int i;
1463
1464 /*
1465 * make sure we dirty pages we wrote to
1466 */
1467 bio_for_each_segment_all(bvec, bio, i) {
1468 if (bio_data_dir(bio) == READ)
1469 set_page_dirty_lock(bvec->bv_page);
1470
1471 put_page(bvec->bv_page);
1472 }
1473
1474 bio_put(bio);
1475 }
1476
1477 /**
1478 * bio_unmap_user - unmap a bio
1479 * @bio: the bio being unmapped
1480 *
1481 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1482 * process context.
1483 *
1484 * bio_unmap_user() may sleep.
1485 */
1486 void bio_unmap_user(struct bio *bio)
1487 {
1488 __bio_unmap_user(bio);
1489 bio_put(bio);
1490 }
1491
1492 static void bio_map_kern_endio(struct bio *bio)
1493 {
1494 bio_put(bio);
1495 }
1496
1497 /**
1498 * bio_map_kern - map kernel address into bio
1499 * @q: the struct request_queue for the bio
1500 * @data: pointer to buffer to map
1501 * @len: length in bytes
1502 * @gfp_mask: allocation flags for bio allocation
1503 *
1504 * Map the kernel address into a bio suitable for io to a block
1505 * device. Returns an error pointer in case of error.
1506 */
1507 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1508 gfp_t gfp_mask)
1509 {
1510 unsigned long kaddr = (unsigned long)data;
1511 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1512 unsigned long start = kaddr >> PAGE_SHIFT;
1513 const int nr_pages = end - start;
1514 int offset, i;
1515 struct bio *bio;
1516
1517 bio = bio_kmalloc(gfp_mask, nr_pages);
1518 if (!bio)
1519 return ERR_PTR(-ENOMEM);
1520
1521 offset = offset_in_page(kaddr);
1522 for (i = 0; i < nr_pages; i++) {
1523 unsigned int bytes = PAGE_SIZE - offset;
1524
1525 if (len <= 0)
1526 break;
1527
1528 if (bytes > len)
1529 bytes = len;
1530
1531 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1532 offset) < bytes) {
1533 /* we don't support partial mappings */
1534 bio_put(bio);
1535 return ERR_PTR(-EINVAL);
1536 }
1537
1538 data += bytes;
1539 len -= bytes;
1540 offset = 0;
1541 }
1542
1543 bio->bi_end_io = bio_map_kern_endio;
1544 return bio;
1545 }
1546 EXPORT_SYMBOL(bio_map_kern);
1547
1548 static void bio_copy_kern_endio(struct bio *bio)
1549 {
1550 bio_free_pages(bio);
1551 bio_put(bio);
1552 }
1553
1554 static void bio_copy_kern_endio_read(struct bio *bio)
1555 {
1556 char *p = bio->bi_private;
1557 struct bio_vec *bvec;
1558 int i;
1559
1560 bio_for_each_segment_all(bvec, bio, i) {
1561 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1562 p += bvec->bv_len;
1563 }
1564
1565 bio_copy_kern_endio(bio);
1566 }
1567
1568 /**
1569 * bio_copy_kern - copy kernel address into bio
1570 * @q: the struct request_queue for the bio
1571 * @data: pointer to buffer to copy
1572 * @len: length in bytes
1573 * @gfp_mask: allocation flags for bio and page allocation
1574 * @reading: data direction is READ
1575 *
1576 * copy the kernel address into a bio suitable for io to a block
1577 * device. Returns an error pointer in case of error.
1578 */
1579 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1580 gfp_t gfp_mask, int reading)
1581 {
1582 unsigned long kaddr = (unsigned long)data;
1583 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1584 unsigned long start = kaddr >> PAGE_SHIFT;
1585 struct bio *bio;
1586 void *p = data;
1587 int nr_pages = 0;
1588
1589 /*
1590 * Overflow, abort
1591 */
1592 if (end < start)
1593 return ERR_PTR(-EINVAL);
1594
1595 nr_pages = end - start;
1596 bio = bio_kmalloc(gfp_mask, nr_pages);
1597 if (!bio)
1598 return ERR_PTR(-ENOMEM);
1599
1600 while (len) {
1601 struct page *page;
1602 unsigned int bytes = PAGE_SIZE;
1603
1604 if (bytes > len)
1605 bytes = len;
1606
1607 page = alloc_page(q->bounce_gfp | gfp_mask);
1608 if (!page)
1609 goto cleanup;
1610
1611 if (!reading)
1612 memcpy(page_address(page), p, bytes);
1613
1614 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1615 break;
1616
1617 len -= bytes;
1618 p += bytes;
1619 }
1620
1621 if (reading) {
1622 bio->bi_end_io = bio_copy_kern_endio_read;
1623 bio->bi_private = data;
1624 } else {
1625 bio->bi_end_io = bio_copy_kern_endio;
1626 }
1627
1628 return bio;
1629
1630 cleanup:
1631 bio_free_pages(bio);
1632 bio_put(bio);
1633 return ERR_PTR(-ENOMEM);
1634 }
1635
1636 /*
1637 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1638 * for performing direct-IO in BIOs.
1639 *
1640 * The problem is that we cannot run set_page_dirty() from interrupt context
1641 * because the required locks are not interrupt-safe. So what we can do is to
1642 * mark the pages dirty _before_ performing IO. And in interrupt context,
1643 * check that the pages are still dirty. If so, fine. If not, redirty them
1644 * in process context.
1645 *
1646 * We special-case compound pages here: normally this means reads into hugetlb
1647 * pages. The logic in here doesn't really work right for compound pages
1648 * because the VM does not uniformly chase down the head page in all cases.
1649 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1650 * handle them at all. So we skip compound pages here at an early stage.
1651 *
1652 * Note that this code is very hard to test under normal circumstances because
1653 * direct-io pins the pages with get_user_pages(). This makes
1654 * is_page_cache_freeable return false, and the VM will not clean the pages.
1655 * But other code (eg, flusher threads) could clean the pages if they are mapped
1656 * pagecache.
1657 *
1658 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1659 * deferred bio dirtying paths.
1660 */
1661
1662 /*
1663 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1664 */
1665 void bio_set_pages_dirty(struct bio *bio)
1666 {
1667 struct bio_vec *bvec;
1668 int i;
1669
1670 bio_for_each_segment_all(bvec, bio, i) {
1671 struct page *page = bvec->bv_page;
1672
1673 if (page && !PageCompound(page))
1674 set_page_dirty_lock(page);
1675 }
1676 }
1677
1678 static void bio_release_pages(struct bio *bio)
1679 {
1680 struct bio_vec *bvec;
1681 int i;
1682
1683 bio_for_each_segment_all(bvec, bio, i) {
1684 struct page *page = bvec->bv_page;
1685
1686 if (page)
1687 put_page(page);
1688 }
1689 }
1690
1691 /*
1692 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1693 * If they are, then fine. If, however, some pages are clean then they must
1694 * have been written out during the direct-IO read. So we take another ref on
1695 * the BIO and the offending pages and re-dirty the pages in process context.
1696 *
1697 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1698 * here on. It will run one put_page() against each page and will run one
1699 * bio_put() against the BIO.
1700 */
1701
1702 static void bio_dirty_fn(struct work_struct *work);
1703
1704 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1705 static DEFINE_SPINLOCK(bio_dirty_lock);
1706 static struct bio *bio_dirty_list;
1707
1708 /*
1709 * This runs in process context
1710 */
1711 static void bio_dirty_fn(struct work_struct *work)
1712 {
1713 unsigned long flags;
1714 struct bio *bio;
1715
1716 spin_lock_irqsave(&bio_dirty_lock, flags);
1717 bio = bio_dirty_list;
1718 bio_dirty_list = NULL;
1719 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1720
1721 while (bio) {
1722 struct bio *next = bio->bi_private;
1723
1724 bio_set_pages_dirty(bio);
1725 bio_release_pages(bio);
1726 bio_put(bio);
1727 bio = next;
1728 }
1729 }
1730
1731 void bio_check_pages_dirty(struct bio *bio)
1732 {
1733 struct bio_vec *bvec;
1734 int nr_clean_pages = 0;
1735 int i;
1736
1737 bio_for_each_segment_all(bvec, bio, i) {
1738 struct page *page = bvec->bv_page;
1739
1740 if (PageDirty(page) || PageCompound(page)) {
1741 put_page(page);
1742 bvec->bv_page = NULL;
1743 } else {
1744 nr_clean_pages++;
1745 }
1746 }
1747
1748 if (nr_clean_pages) {
1749 unsigned long flags;
1750
1751 spin_lock_irqsave(&bio_dirty_lock, flags);
1752 bio->bi_private = bio_dirty_list;
1753 bio_dirty_list = bio;
1754 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1755 schedule_work(&bio_dirty_work);
1756 } else {
1757 bio_put(bio);
1758 }
1759 }
1760
1761 void generic_start_io_acct(int rw, unsigned long sectors,
1762 struct hd_struct *part)
1763 {
1764 int cpu = part_stat_lock();
1765
1766 part_round_stats(cpu, part);
1767 part_stat_inc(cpu, part, ios[rw]);
1768 part_stat_add(cpu, part, sectors[rw], sectors);
1769 part_inc_in_flight(part, rw);
1770
1771 part_stat_unlock();
1772 }
1773 EXPORT_SYMBOL(generic_start_io_acct);
1774
1775 void generic_end_io_acct(int rw, struct hd_struct *part,
1776 unsigned long start_time)
1777 {
1778 unsigned long duration = jiffies - start_time;
1779 int cpu = part_stat_lock();
1780
1781 part_stat_add(cpu, part, ticks[rw], duration);
1782 part_round_stats(cpu, part);
1783 part_dec_in_flight(part, rw);
1784
1785 part_stat_unlock();
1786 }
1787 EXPORT_SYMBOL(generic_end_io_acct);
1788
1789 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1790 void bio_flush_dcache_pages(struct bio *bi)
1791 {
1792 struct bio_vec bvec;
1793 struct bvec_iter iter;
1794
1795 bio_for_each_segment(bvec, bi, iter)
1796 flush_dcache_page(bvec.bv_page);
1797 }
1798 EXPORT_SYMBOL(bio_flush_dcache_pages);
1799 #endif
1800
1801 static inline bool bio_remaining_done(struct bio *bio)
1802 {
1803 /*
1804 * If we're not chaining, then ->__bi_remaining is always 1 and
1805 * we always end io on the first invocation.
1806 */
1807 if (!bio_flagged(bio, BIO_CHAIN))
1808 return true;
1809
1810 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1811
1812 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1813 bio_clear_flag(bio, BIO_CHAIN);
1814 return true;
1815 }
1816
1817 return false;
1818 }
1819
1820 /**
1821 * bio_endio - end I/O on a bio
1822 * @bio: bio
1823 *
1824 * Description:
1825 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1826 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1827 * bio unless they own it and thus know that it has an end_io function.
1828 **/
1829 void bio_endio(struct bio *bio)
1830 {
1831 again:
1832 if (!bio_remaining_done(bio))
1833 return;
1834
1835 /*
1836 * Need to have a real endio function for chained bios, otherwise
1837 * various corner cases will break (like stacking block devices that
1838 * save/restore bi_end_io) - however, we want to avoid unbounded
1839 * recursion and blowing the stack. Tail call optimization would
1840 * handle this, but compiling with frame pointers also disables
1841 * gcc's sibling call optimization.
1842 */
1843 if (bio->bi_end_io == bio_chain_endio) {
1844 bio = __bio_chain_endio(bio);
1845 goto again;
1846 }
1847
1848 if (bio->bi_end_io)
1849 bio->bi_end_io(bio);
1850 }
1851 EXPORT_SYMBOL(bio_endio);
1852
1853 /**
1854 * bio_split - split a bio
1855 * @bio: bio to split
1856 * @sectors: number of sectors to split from the front of @bio
1857 * @gfp: gfp mask
1858 * @bs: bio set to allocate from
1859 *
1860 * Allocates and returns a new bio which represents @sectors from the start of
1861 * @bio, and updates @bio to represent the remaining sectors.
1862 *
1863 * Unless this is a discard request the newly allocated bio will point
1864 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1865 * @bio is not freed before the split.
1866 */
1867 struct bio *bio_split(struct bio *bio, int sectors,
1868 gfp_t gfp, struct bio_set *bs)
1869 {
1870 struct bio *split = NULL;
1871
1872 BUG_ON(sectors <= 0);
1873 BUG_ON(sectors >= bio_sectors(bio));
1874
1875 split = bio_clone_fast(bio, gfp, bs);
1876 if (!split)
1877 return NULL;
1878
1879 split->bi_iter.bi_size = sectors << 9;
1880
1881 if (bio_integrity(split))
1882 bio_integrity_trim(split, 0, sectors);
1883
1884 bio_advance(bio, split->bi_iter.bi_size);
1885
1886 return split;
1887 }
1888 EXPORT_SYMBOL(bio_split);
1889
1890 /**
1891 * bio_trim - trim a bio
1892 * @bio: bio to trim
1893 * @offset: number of sectors to trim from the front of @bio
1894 * @size: size we want to trim @bio to, in sectors
1895 */
1896 void bio_trim(struct bio *bio, int offset, int size)
1897 {
1898 /* 'bio' is a cloned bio which we need to trim to match
1899 * the given offset and size.
1900 */
1901
1902 size <<= 9;
1903 if (offset == 0 && size == bio->bi_iter.bi_size)
1904 return;
1905
1906 bio_clear_flag(bio, BIO_SEG_VALID);
1907
1908 bio_advance(bio, offset << 9);
1909
1910 bio->bi_iter.bi_size = size;
1911 }
1912 EXPORT_SYMBOL_GPL(bio_trim);
1913
1914 /*
1915 * create memory pools for biovec's in a bio_set.
1916 * use the global biovec slabs created for general use.
1917 */
1918 mempool_t *biovec_create_pool(int pool_entries)
1919 {
1920 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1921
1922 return mempool_create_slab_pool(pool_entries, bp->slab);
1923 }
1924
1925 void bioset_free(struct bio_set *bs)
1926 {
1927 if (bs->rescue_workqueue)
1928 destroy_workqueue(bs->rescue_workqueue);
1929
1930 if (bs->bio_pool)
1931 mempool_destroy(bs->bio_pool);
1932
1933 if (bs->bvec_pool)
1934 mempool_destroy(bs->bvec_pool);
1935
1936 bioset_integrity_free(bs);
1937 bio_put_slab(bs);
1938
1939 kfree(bs);
1940 }
1941 EXPORT_SYMBOL(bioset_free);
1942
1943 static struct bio_set *__bioset_create(unsigned int pool_size,
1944 unsigned int front_pad,
1945 bool create_bvec_pool)
1946 {
1947 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1948 struct bio_set *bs;
1949
1950 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1951 if (!bs)
1952 return NULL;
1953
1954 bs->front_pad = front_pad;
1955
1956 spin_lock_init(&bs->rescue_lock);
1957 bio_list_init(&bs->rescue_list);
1958 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1959
1960 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1961 if (!bs->bio_slab) {
1962 kfree(bs);
1963 return NULL;
1964 }
1965
1966 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1967 if (!bs->bio_pool)
1968 goto bad;
1969
1970 if (create_bvec_pool) {
1971 bs->bvec_pool = biovec_create_pool(pool_size);
1972 if (!bs->bvec_pool)
1973 goto bad;
1974 }
1975
1976 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1977 if (!bs->rescue_workqueue)
1978 goto bad;
1979
1980 return bs;
1981 bad:
1982 bioset_free(bs);
1983 return NULL;
1984 }
1985
1986 /**
1987 * bioset_create - Create a bio_set
1988 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1989 * @front_pad: Number of bytes to allocate in front of the returned bio
1990 *
1991 * Description:
1992 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1993 * to ask for a number of bytes to be allocated in front of the bio.
1994 * Front pad allocation is useful for embedding the bio inside
1995 * another structure, to avoid allocating extra data to go with the bio.
1996 * Note that the bio must be embedded at the END of that structure always,
1997 * or things will break badly.
1998 */
1999 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
2000 {
2001 return __bioset_create(pool_size, front_pad, true);
2002 }
2003 EXPORT_SYMBOL(bioset_create);
2004
2005 /**
2006 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
2007 * @pool_size: Number of bio to cache in the mempool
2008 * @front_pad: Number of bytes to allocate in front of the returned bio
2009 *
2010 * Description:
2011 * Same functionality as bioset_create() except that mempool is not
2012 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
2013 */
2014 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
2015 {
2016 return __bioset_create(pool_size, front_pad, false);
2017 }
2018 EXPORT_SYMBOL(bioset_create_nobvec);
2019
2020 #ifdef CONFIG_BLK_CGROUP
2021
2022 /**
2023 * bio_associate_blkcg - associate a bio with the specified blkcg
2024 * @bio: target bio
2025 * @blkcg_css: css of the blkcg to associate
2026 *
2027 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2028 * treat @bio as if it were issued by a task which belongs to the blkcg.
2029 *
2030 * This function takes an extra reference of @blkcg_css which will be put
2031 * when @bio is released. The caller must own @bio and is responsible for
2032 * synchronizing calls to this function.
2033 */
2034 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2035 {
2036 if (unlikely(bio->bi_css))
2037 return -EBUSY;
2038 css_get(blkcg_css);
2039 bio->bi_css = blkcg_css;
2040 return 0;
2041 }
2042 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2043
2044 /**
2045 * bio_associate_current - associate a bio with %current
2046 * @bio: target bio
2047 *
2048 * Associate @bio with %current if it hasn't been associated yet. Block
2049 * layer will treat @bio as if it were issued by %current no matter which
2050 * task actually issues it.
2051 *
2052 * This function takes an extra reference of @task's io_context and blkcg
2053 * which will be put when @bio is released. The caller must own @bio,
2054 * ensure %current->io_context exists, and is responsible for synchronizing
2055 * calls to this function.
2056 */
2057 int bio_associate_current(struct bio *bio)
2058 {
2059 struct io_context *ioc;
2060
2061 if (bio->bi_css)
2062 return -EBUSY;
2063
2064 ioc = current->io_context;
2065 if (!ioc)
2066 return -ENOENT;
2067
2068 get_io_context_active(ioc);
2069 bio->bi_ioc = ioc;
2070 bio->bi_css = task_get_css(current, io_cgrp_id);
2071 return 0;
2072 }
2073 EXPORT_SYMBOL_GPL(bio_associate_current);
2074
2075 /**
2076 * bio_disassociate_task - undo bio_associate_current()
2077 * @bio: target bio
2078 */
2079 void bio_disassociate_task(struct bio *bio)
2080 {
2081 if (bio->bi_ioc) {
2082 put_io_context(bio->bi_ioc);
2083 bio->bi_ioc = NULL;
2084 }
2085 if (bio->bi_css) {
2086 css_put(bio->bi_css);
2087 bio->bi_css = NULL;
2088 }
2089 }
2090
2091 /**
2092 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2093 * @dst: destination bio
2094 * @src: source bio
2095 */
2096 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2097 {
2098 if (src->bi_css)
2099 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2100 }
2101
2102 #endif /* CONFIG_BLK_CGROUP */
2103
2104 static void __init biovec_init_slabs(void)
2105 {
2106 int i;
2107
2108 for (i = 0; i < BVEC_POOL_NR; i++) {
2109 int size;
2110 struct biovec_slab *bvs = bvec_slabs + i;
2111
2112 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2113 bvs->slab = NULL;
2114 continue;
2115 }
2116
2117 size = bvs->nr_vecs * sizeof(struct bio_vec);
2118 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2119 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2120 }
2121 }
2122
2123 static int __init init_bio(void)
2124 {
2125 bio_slab_max = 2;
2126 bio_slab_nr = 0;
2127 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2128 if (!bio_slabs)
2129 panic("bio: can't allocate bios\n");
2130
2131 bio_integrity_init();
2132 biovec_init_slabs();
2133
2134 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2135 if (!fs_bio_set)
2136 panic("bio: can't allocate bios\n");
2137
2138 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2139 panic("bio: can't create integrity pool\n");
2140
2141 return 0;
2142 }
2143 subsys_initcall(init_bio);