]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/bio.c
UBUNTU: SAUCE: whitelist platforms that needs save/restore ASPM L1SS for suspend...
[mirror_ubuntu-jammy-kernel.git] / block / bio.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27
28 struct bio_alloc_cache {
29 struct bio_list free_list;
30 unsigned int nr;
31 };
32
33 static struct biovec_slab {
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43
44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
54 case 129 ... BIO_MAX_VECS:
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60 }
61
62 /*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68
69 /*
70 * Our slab pool management
71 */
72 struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80
81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84
85 if (!bslab)
86 return NULL;
87
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
90 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
91 if (!bslab->slab)
92 goto fail_alloc_slab;
93
94 bslab->slab_ref = 1;
95 bslab->slab_size = size;
96
97 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
98 return bslab;
99
100 kmem_cache_destroy(bslab->slab);
101
102 fail_alloc_slab:
103 kfree(bslab);
104 return NULL;
105 }
106
107 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
108 {
109 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
110 }
111
112 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
113 {
114 unsigned int size = bs_bio_slab_size(bs);
115 struct bio_slab *bslab;
116
117 mutex_lock(&bio_slab_lock);
118 bslab = xa_load(&bio_slabs, size);
119 if (bslab)
120 bslab->slab_ref++;
121 else
122 bslab = create_bio_slab(size);
123 mutex_unlock(&bio_slab_lock);
124
125 if (bslab)
126 return bslab->slab;
127 return NULL;
128 }
129
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 struct bio_slab *bslab = NULL;
133 unsigned int slab_size = bs_bio_slab_size(bs);
134
135 mutex_lock(&bio_slab_lock);
136
137 bslab = xa_load(&bio_slabs, slab_size);
138 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
139 goto out;
140
141 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
142
143 WARN_ON(!bslab->slab_ref);
144
145 if (--bslab->slab_ref)
146 goto out;
147
148 xa_erase(&bio_slabs, slab_size);
149
150 kmem_cache_destroy(bslab->slab);
151 kfree(bslab);
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
157 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
158 {
159 BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
160
161 if (nr_vecs == BIO_MAX_VECS)
162 mempool_free(bv, pool);
163 else if (nr_vecs > BIO_INLINE_VECS)
164 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
165 }
166
167 /*
168 * Make the first allocation restricted and don't dump info on allocation
169 * failures, since we'll fall back to the mempool in case of failure.
170 */
171 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
172 {
173 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
174 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
175 }
176
177 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
178 gfp_t gfp_mask)
179 {
180 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
181
182 if (WARN_ON_ONCE(!bvs))
183 return NULL;
184
185 /*
186 * Upgrade the nr_vecs request to take full advantage of the allocation.
187 * We also rely on this in the bvec_free path.
188 */
189 *nr_vecs = bvs->nr_vecs;
190
191 /*
192 * Try a slab allocation first for all smaller allocations. If that
193 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
194 * The mempool is sized to handle up to BIO_MAX_VECS entries.
195 */
196 if (*nr_vecs < BIO_MAX_VECS) {
197 struct bio_vec *bvl;
198
199 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
200 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
201 return bvl;
202 *nr_vecs = BIO_MAX_VECS;
203 }
204
205 return mempool_alloc(pool, gfp_mask);
206 }
207
208 void bio_uninit(struct bio *bio)
209 {
210 #ifdef CONFIG_BLK_CGROUP
211 if (bio->bi_blkg) {
212 blkg_put(bio->bi_blkg);
213 bio->bi_blkg = NULL;
214 }
215 #endif
216 if (bio_integrity(bio))
217 bio_integrity_free(bio);
218
219 bio_crypt_free_ctx(bio);
220 }
221 EXPORT_SYMBOL(bio_uninit);
222
223 static void bio_free(struct bio *bio)
224 {
225 struct bio_set *bs = bio->bi_pool;
226 void *p;
227
228 bio_uninit(bio);
229
230 if (bs) {
231 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
232
233 /*
234 * If we have front padding, adjust the bio pointer before freeing
235 */
236 p = bio;
237 p -= bs->front_pad;
238
239 mempool_free(p, &bs->bio_pool);
240 } else {
241 /* Bio was allocated by bio_kmalloc() */
242 kfree(bio);
243 }
244 }
245
246 /*
247 * Users of this function have their own bio allocation. Subsequently,
248 * they must remember to pair any call to bio_init() with bio_uninit()
249 * when IO has completed, or when the bio is released.
250 */
251 void bio_init(struct bio *bio, struct bio_vec *table,
252 unsigned short max_vecs)
253 {
254 bio->bi_next = NULL;
255 bio->bi_bdev = NULL;
256 bio->bi_opf = 0;
257 bio->bi_flags = 0;
258 bio->bi_ioprio = 0;
259 bio->bi_write_hint = 0;
260 bio->bi_status = 0;
261 bio->bi_iter.bi_sector = 0;
262 bio->bi_iter.bi_size = 0;
263 bio->bi_iter.bi_idx = 0;
264 bio->bi_iter.bi_bvec_done = 0;
265 bio->bi_end_io = NULL;
266 bio->bi_private = NULL;
267 #ifdef CONFIG_BLK_CGROUP
268 bio->bi_blkg = NULL;
269 bio->bi_issue.value = 0;
270 #ifdef CONFIG_BLK_CGROUP_IOCOST
271 bio->bi_iocost_cost = 0;
272 #endif
273 #endif
274 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
275 bio->bi_crypt_context = NULL;
276 #endif
277 #ifdef CONFIG_BLK_DEV_INTEGRITY
278 bio->bi_integrity = NULL;
279 #endif
280 bio->bi_vcnt = 0;
281
282 atomic_set(&bio->__bi_remaining, 1);
283 atomic_set(&bio->__bi_cnt, 1);
284
285 bio->bi_max_vecs = max_vecs;
286 bio->bi_io_vec = table;
287 bio->bi_pool = NULL;
288 }
289 EXPORT_SYMBOL(bio_init);
290
291 /**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301 void bio_reset(struct bio *bio)
302 {
303 bio_uninit(bio);
304 memset(bio, 0, BIO_RESET_BYTES);
305 atomic_set(&bio->__bi_remaining, 1);
306 }
307 EXPORT_SYMBOL(bio_reset);
308
309 static struct bio *__bio_chain_endio(struct bio *bio)
310 {
311 struct bio *parent = bio->bi_private;
312
313 if (bio->bi_status && !parent->bi_status)
314 parent->bi_status = bio->bi_status;
315 bio_put(bio);
316 return parent;
317 }
318
319 static void bio_chain_endio(struct bio *bio)
320 {
321 bio_endio(__bio_chain_endio(bio));
322 }
323
324 /**
325 * bio_chain - chain bio completions
326 * @bio: the target bio
327 * @parent: the parent bio of @bio
328 *
329 * The caller won't have a bi_end_io called when @bio completes - instead,
330 * @parent's bi_end_io won't be called until both @parent and @bio have
331 * completed; the chained bio will also be freed when it completes.
332 *
333 * The caller must not set bi_private or bi_end_io in @bio.
334 */
335 void bio_chain(struct bio *bio, struct bio *parent)
336 {
337 BUG_ON(bio->bi_private || bio->bi_end_io);
338
339 bio->bi_private = parent;
340 bio->bi_end_io = bio_chain_endio;
341 bio_inc_remaining(parent);
342 }
343 EXPORT_SYMBOL(bio_chain);
344
345 static void bio_alloc_rescue(struct work_struct *work)
346 {
347 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
348 struct bio *bio;
349
350 while (1) {
351 spin_lock(&bs->rescue_lock);
352 bio = bio_list_pop(&bs->rescue_list);
353 spin_unlock(&bs->rescue_lock);
354
355 if (!bio)
356 break;
357
358 submit_bio_noacct(bio);
359 }
360 }
361
362 static void punt_bios_to_rescuer(struct bio_set *bs)
363 {
364 struct bio_list punt, nopunt;
365 struct bio *bio;
366
367 if (WARN_ON_ONCE(!bs->rescue_workqueue))
368 return;
369 /*
370 * In order to guarantee forward progress we must punt only bios that
371 * were allocated from this bio_set; otherwise, if there was a bio on
372 * there for a stacking driver higher up in the stack, processing it
373 * could require allocating bios from this bio_set, and doing that from
374 * our own rescuer would be bad.
375 *
376 * Since bio lists are singly linked, pop them all instead of trying to
377 * remove from the middle of the list:
378 */
379
380 bio_list_init(&punt);
381 bio_list_init(&nopunt);
382
383 while ((bio = bio_list_pop(&current->bio_list[0])))
384 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
385 current->bio_list[0] = nopunt;
386
387 bio_list_init(&nopunt);
388 while ((bio = bio_list_pop(&current->bio_list[1])))
389 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
390 current->bio_list[1] = nopunt;
391
392 spin_lock(&bs->rescue_lock);
393 bio_list_merge(&bs->rescue_list, &punt);
394 spin_unlock(&bs->rescue_lock);
395
396 queue_work(bs->rescue_workqueue, &bs->rescue_work);
397 }
398
399 /**
400 * bio_alloc_bioset - allocate a bio for I/O
401 * @gfp_mask: the GFP_* mask given to the slab allocator
402 * @nr_iovecs: number of iovecs to pre-allocate
403 * @bs: the bio_set to allocate from.
404 *
405 * Allocate a bio from the mempools in @bs.
406 *
407 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
408 * allocate a bio. This is due to the mempool guarantees. To make this work,
409 * callers must never allocate more than 1 bio at a time from the general pool.
410 * Callers that need to allocate more than 1 bio must always submit the
411 * previously allocated bio for IO before attempting to allocate a new one.
412 * Failure to do so can cause deadlocks under memory pressure.
413 *
414 * Note that when running under submit_bio_noacct() (i.e. any block driver),
415 * bios are not submitted until after you return - see the code in
416 * submit_bio_noacct() that converts recursion into iteration, to prevent
417 * stack overflows.
418 *
419 * This would normally mean allocating multiple bios under submit_bio_noacct()
420 * would be susceptible to deadlocks, but we have
421 * deadlock avoidance code that resubmits any blocked bios from a rescuer
422 * thread.
423 *
424 * However, we do not guarantee forward progress for allocations from other
425 * mempools. Doing multiple allocations from the same mempool under
426 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
427 * for per bio allocations.
428 *
429 * Returns: Pointer to new bio on success, NULL on failure.
430 */
431 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
432 struct bio_set *bs)
433 {
434 gfp_t saved_gfp = gfp_mask;
435 struct bio *bio;
436 void *p;
437
438 /* should not use nobvec bioset for nr_iovecs > 0 */
439 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
440 return NULL;
441
442 /*
443 * submit_bio_noacct() converts recursion to iteration; this means if
444 * we're running beneath it, any bios we allocate and submit will not be
445 * submitted (and thus freed) until after we return.
446 *
447 * This exposes us to a potential deadlock if we allocate multiple bios
448 * from the same bio_set() while running underneath submit_bio_noacct().
449 * If we were to allocate multiple bios (say a stacking block driver
450 * that was splitting bios), we would deadlock if we exhausted the
451 * mempool's reserve.
452 *
453 * We solve this, and guarantee forward progress, with a rescuer
454 * workqueue per bio_set. If we go to allocate and there are bios on
455 * current->bio_list, we first try the allocation without
456 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
457 * blocking to the rescuer workqueue before we retry with the original
458 * gfp_flags.
459 */
460 if (current->bio_list &&
461 (!bio_list_empty(&current->bio_list[0]) ||
462 !bio_list_empty(&current->bio_list[1])) &&
463 bs->rescue_workqueue)
464 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
465
466 p = mempool_alloc(&bs->bio_pool, gfp_mask);
467 if (!p && gfp_mask != saved_gfp) {
468 punt_bios_to_rescuer(bs);
469 gfp_mask = saved_gfp;
470 p = mempool_alloc(&bs->bio_pool, gfp_mask);
471 }
472 if (unlikely(!p))
473 return NULL;
474
475 bio = p + bs->front_pad;
476 if (nr_iovecs > BIO_INLINE_VECS) {
477 struct bio_vec *bvl = NULL;
478
479 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
480 if (!bvl && gfp_mask != saved_gfp) {
481 punt_bios_to_rescuer(bs);
482 gfp_mask = saved_gfp;
483 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
484 }
485 if (unlikely(!bvl))
486 goto err_free;
487
488 bio_init(bio, bvl, nr_iovecs);
489 } else if (nr_iovecs) {
490 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
491 } else {
492 bio_init(bio, NULL, 0);
493 }
494
495 bio->bi_pool = bs;
496 return bio;
497
498 err_free:
499 mempool_free(p, &bs->bio_pool);
500 return NULL;
501 }
502 EXPORT_SYMBOL(bio_alloc_bioset);
503
504 /**
505 * bio_kmalloc - kmalloc a bio for I/O
506 * @gfp_mask: the GFP_* mask given to the slab allocator
507 * @nr_iovecs: number of iovecs to pre-allocate
508 *
509 * Use kmalloc to allocate and initialize a bio.
510 *
511 * Returns: Pointer to new bio on success, NULL on failure.
512 */
513 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
514 {
515 struct bio *bio;
516
517 if (nr_iovecs > UIO_MAXIOV)
518 return NULL;
519
520 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
521 if (unlikely(!bio))
522 return NULL;
523 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
524 bio->bi_pool = NULL;
525 return bio;
526 }
527 EXPORT_SYMBOL(bio_kmalloc);
528
529 void zero_fill_bio(struct bio *bio)
530 {
531 struct bio_vec bv;
532 struct bvec_iter iter;
533
534 bio_for_each_segment(bv, bio, iter)
535 memzero_bvec(&bv);
536 }
537 EXPORT_SYMBOL(zero_fill_bio);
538
539 /**
540 * bio_truncate - truncate the bio to small size of @new_size
541 * @bio: the bio to be truncated
542 * @new_size: new size for truncating the bio
543 *
544 * Description:
545 * Truncate the bio to new size of @new_size. If bio_op(bio) is
546 * REQ_OP_READ, zero the truncated part. This function should only
547 * be used for handling corner cases, such as bio eod.
548 */
549 void bio_truncate(struct bio *bio, unsigned new_size)
550 {
551 struct bio_vec bv;
552 struct bvec_iter iter;
553 unsigned int done = 0;
554 bool truncated = false;
555
556 if (new_size >= bio->bi_iter.bi_size)
557 return;
558
559 if (bio_op(bio) != REQ_OP_READ)
560 goto exit;
561
562 bio_for_each_segment(bv, bio, iter) {
563 if (done + bv.bv_len > new_size) {
564 unsigned offset;
565
566 if (!truncated)
567 offset = new_size - done;
568 else
569 offset = 0;
570 zero_user(bv.bv_page, bv.bv_offset + offset,
571 bv.bv_len - offset);
572 truncated = true;
573 }
574 done += bv.bv_len;
575 }
576
577 exit:
578 /*
579 * Don't touch bvec table here and make it really immutable, since
580 * fs bio user has to retrieve all pages via bio_for_each_segment_all
581 * in its .end_bio() callback.
582 *
583 * It is enough to truncate bio by updating .bi_size since we can make
584 * correct bvec with the updated .bi_size for drivers.
585 */
586 bio->bi_iter.bi_size = new_size;
587 }
588
589 /**
590 * guard_bio_eod - truncate a BIO to fit the block device
591 * @bio: bio to truncate
592 *
593 * This allows us to do IO even on the odd last sectors of a device, even if the
594 * block size is some multiple of the physical sector size.
595 *
596 * We'll just truncate the bio to the size of the device, and clear the end of
597 * the buffer head manually. Truly out-of-range accesses will turn into actual
598 * I/O errors, this only handles the "we need to be able to do I/O at the final
599 * sector" case.
600 */
601 void guard_bio_eod(struct bio *bio)
602 {
603 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
604
605 if (!maxsector)
606 return;
607
608 /*
609 * If the *whole* IO is past the end of the device,
610 * let it through, and the IO layer will turn it into
611 * an EIO.
612 */
613 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
614 return;
615
616 maxsector -= bio->bi_iter.bi_sector;
617 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
618 return;
619
620 bio_truncate(bio, maxsector << 9);
621 }
622
623 #define ALLOC_CACHE_MAX 512
624 #define ALLOC_CACHE_SLACK 64
625
626 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
627 unsigned int nr)
628 {
629 unsigned int i = 0;
630 struct bio *bio;
631
632 while ((bio = bio_list_pop(&cache->free_list)) != NULL) {
633 cache->nr--;
634 bio_free(bio);
635 if (++i == nr)
636 break;
637 }
638 }
639
640 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
641 {
642 struct bio_set *bs;
643
644 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
645 if (bs->cache) {
646 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
647
648 bio_alloc_cache_prune(cache, -1U);
649 }
650 return 0;
651 }
652
653 static void bio_alloc_cache_destroy(struct bio_set *bs)
654 {
655 int cpu;
656
657 if (!bs->cache)
658 return;
659
660 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
661 for_each_possible_cpu(cpu) {
662 struct bio_alloc_cache *cache;
663
664 cache = per_cpu_ptr(bs->cache, cpu);
665 bio_alloc_cache_prune(cache, -1U);
666 }
667 free_percpu(bs->cache);
668 bs->cache = NULL;
669 }
670
671 /**
672 * bio_put - release a reference to a bio
673 * @bio: bio to release reference to
674 *
675 * Description:
676 * Put a reference to a &struct bio, either one you have gotten with
677 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
678 **/
679 void bio_put(struct bio *bio)
680 {
681 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
682 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
683 if (!atomic_dec_and_test(&bio->__bi_cnt))
684 return;
685 }
686
687 if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
688 struct bio_alloc_cache *cache;
689
690 bio_uninit(bio);
691 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
692 bio_list_add_head(&cache->free_list, bio);
693 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
694 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
695 put_cpu();
696 } else {
697 bio_free(bio);
698 }
699 }
700 EXPORT_SYMBOL(bio_put);
701
702 /**
703 * __bio_clone_fast - clone a bio that shares the original bio's biovec
704 * @bio: destination bio
705 * @bio_src: bio to clone
706 *
707 * Clone a &bio. Caller will own the returned bio, but not
708 * the actual data it points to. Reference count of returned
709 * bio will be one.
710 *
711 * Caller must ensure that @bio_src is not freed before @bio.
712 */
713 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
714 {
715 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
716
717 /*
718 * most users will be overriding ->bi_bdev with a new target,
719 * so we don't set nor calculate new physical/hw segment counts here
720 */
721 bio->bi_bdev = bio_src->bi_bdev;
722 bio_set_flag(bio, BIO_CLONED);
723 if (bio_flagged(bio_src, BIO_THROTTLED))
724 bio_set_flag(bio, BIO_THROTTLED);
725 if (bio_flagged(bio_src, BIO_REMAPPED))
726 bio_set_flag(bio, BIO_REMAPPED);
727 bio->bi_opf = bio_src->bi_opf;
728 bio->bi_ioprio = bio_src->bi_ioprio;
729 bio->bi_write_hint = bio_src->bi_write_hint;
730 bio->bi_iter = bio_src->bi_iter;
731 bio->bi_io_vec = bio_src->bi_io_vec;
732
733 bio_clone_blkg_association(bio, bio_src);
734 blkcg_bio_issue_init(bio);
735 }
736 EXPORT_SYMBOL(__bio_clone_fast);
737
738 /**
739 * bio_clone_fast - clone a bio that shares the original bio's biovec
740 * @bio: bio to clone
741 * @gfp_mask: allocation priority
742 * @bs: bio_set to allocate from
743 *
744 * Like __bio_clone_fast, only also allocates the returned bio
745 */
746 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
747 {
748 struct bio *b;
749
750 b = bio_alloc_bioset(gfp_mask, 0, bs);
751 if (!b)
752 return NULL;
753
754 __bio_clone_fast(b, bio);
755
756 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
757 goto err_put;
758
759 if (bio_integrity(bio) &&
760 bio_integrity_clone(b, bio, gfp_mask) < 0)
761 goto err_put;
762
763 return b;
764
765 err_put:
766 bio_put(b);
767 return NULL;
768 }
769 EXPORT_SYMBOL(bio_clone_fast);
770
771 const char *bio_devname(struct bio *bio, char *buf)
772 {
773 return bdevname(bio->bi_bdev, buf);
774 }
775 EXPORT_SYMBOL(bio_devname);
776
777 static inline bool page_is_mergeable(const struct bio_vec *bv,
778 struct page *page, unsigned int len, unsigned int off,
779 bool *same_page)
780 {
781 size_t bv_end = bv->bv_offset + bv->bv_len;
782 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
783 phys_addr_t page_addr = page_to_phys(page);
784
785 if (vec_end_addr + 1 != page_addr + off)
786 return false;
787 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
788 return false;
789
790 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
791 if (*same_page)
792 return true;
793 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
794 }
795
796 /*
797 * Try to merge a page into a segment, while obeying the hardware segment
798 * size limit. This is not for normal read/write bios, but for passthrough
799 * or Zone Append operations that we can't split.
800 */
801 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
802 struct page *page, unsigned len,
803 unsigned offset, bool *same_page)
804 {
805 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
806 unsigned long mask = queue_segment_boundary(q);
807 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
808 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
809
810 if ((addr1 | mask) != (addr2 | mask))
811 return false;
812 if (bv->bv_len + len > queue_max_segment_size(q))
813 return false;
814 return __bio_try_merge_page(bio, page, len, offset, same_page);
815 }
816
817 /**
818 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
819 * @q: the target queue
820 * @bio: destination bio
821 * @page: page to add
822 * @len: vec entry length
823 * @offset: vec entry offset
824 * @max_sectors: maximum number of sectors that can be added
825 * @same_page: return if the segment has been merged inside the same page
826 *
827 * Add a page to a bio while respecting the hardware max_sectors, max_segment
828 * and gap limitations.
829 */
830 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
831 struct page *page, unsigned int len, unsigned int offset,
832 unsigned int max_sectors, bool *same_page)
833 {
834 struct bio_vec *bvec;
835
836 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
837 return 0;
838
839 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
840 return 0;
841
842 if (bio->bi_vcnt > 0) {
843 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
844 return len;
845
846 /*
847 * If the queue doesn't support SG gaps and adding this segment
848 * would create a gap, disallow it.
849 */
850 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
851 if (bvec_gap_to_prev(q, bvec, offset))
852 return 0;
853 }
854
855 if (bio_full(bio, len))
856 return 0;
857
858 if (bio->bi_vcnt >= queue_max_segments(q))
859 return 0;
860
861 bvec = &bio->bi_io_vec[bio->bi_vcnt];
862 bvec->bv_page = page;
863 bvec->bv_len = len;
864 bvec->bv_offset = offset;
865 bio->bi_vcnt++;
866 bio->bi_iter.bi_size += len;
867 return len;
868 }
869
870 /**
871 * bio_add_pc_page - attempt to add page to passthrough bio
872 * @q: the target queue
873 * @bio: destination bio
874 * @page: page to add
875 * @len: vec entry length
876 * @offset: vec entry offset
877 *
878 * Attempt to add a page to the bio_vec maplist. This can fail for a
879 * number of reasons, such as the bio being full or target block device
880 * limitations. The target block device must allow bio's up to PAGE_SIZE,
881 * so it is always possible to add a single page to an empty bio.
882 *
883 * This should only be used by passthrough bios.
884 */
885 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
886 struct page *page, unsigned int len, unsigned int offset)
887 {
888 bool same_page = false;
889 return bio_add_hw_page(q, bio, page, len, offset,
890 queue_max_hw_sectors(q), &same_page);
891 }
892 EXPORT_SYMBOL(bio_add_pc_page);
893
894 /**
895 * bio_add_zone_append_page - attempt to add page to zone-append bio
896 * @bio: destination bio
897 * @page: page to add
898 * @len: vec entry length
899 * @offset: vec entry offset
900 *
901 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
902 * for a zone-append request. This can fail for a number of reasons, such as the
903 * bio being full or the target block device is not a zoned block device or
904 * other limitations of the target block device. The target block device must
905 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
906 * to an empty bio.
907 *
908 * Returns: number of bytes added to the bio, or 0 in case of a failure.
909 */
910 int bio_add_zone_append_page(struct bio *bio, struct page *page,
911 unsigned int len, unsigned int offset)
912 {
913 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
914 bool same_page = false;
915
916 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
917 return 0;
918
919 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
920 return 0;
921
922 return bio_add_hw_page(q, bio, page, len, offset,
923 queue_max_zone_append_sectors(q), &same_page);
924 }
925 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
926
927 /**
928 * __bio_try_merge_page - try appending data to an existing bvec.
929 * @bio: destination bio
930 * @page: start page to add
931 * @len: length of the data to add
932 * @off: offset of the data relative to @page
933 * @same_page: return if the segment has been merged inside the same page
934 *
935 * Try to add the data at @page + @off to the last bvec of @bio. This is a
936 * useful optimisation for file systems with a block size smaller than the
937 * page size.
938 *
939 * Warn if (@len, @off) crosses pages in case that @same_page is true.
940 *
941 * Return %true on success or %false on failure.
942 */
943 bool __bio_try_merge_page(struct bio *bio, struct page *page,
944 unsigned int len, unsigned int off, bool *same_page)
945 {
946 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
947 return false;
948
949 if (bio->bi_vcnt > 0) {
950 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
951
952 if (page_is_mergeable(bv, page, len, off, same_page)) {
953 if (bio->bi_iter.bi_size > UINT_MAX - len) {
954 *same_page = false;
955 return false;
956 }
957 bv->bv_len += len;
958 bio->bi_iter.bi_size += len;
959 return true;
960 }
961 }
962 return false;
963 }
964 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
965
966 /**
967 * __bio_add_page - add page(s) to a bio in a new segment
968 * @bio: destination bio
969 * @page: start page to add
970 * @len: length of the data to add, may cross pages
971 * @off: offset of the data relative to @page, may cross pages
972 *
973 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
974 * that @bio has space for another bvec.
975 */
976 void __bio_add_page(struct bio *bio, struct page *page,
977 unsigned int len, unsigned int off)
978 {
979 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
980
981 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
982 WARN_ON_ONCE(bio_full(bio, len));
983
984 bv->bv_page = page;
985 bv->bv_offset = off;
986 bv->bv_len = len;
987
988 bio->bi_iter.bi_size += len;
989 bio->bi_vcnt++;
990
991 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
992 bio_set_flag(bio, BIO_WORKINGSET);
993 }
994 EXPORT_SYMBOL_GPL(__bio_add_page);
995
996 /**
997 * bio_add_page - attempt to add page(s) to bio
998 * @bio: destination bio
999 * @page: start page to add
1000 * @len: vec entry length, may cross pages
1001 * @offset: vec entry offset relative to @page, may cross pages
1002 *
1003 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1004 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1005 */
1006 int bio_add_page(struct bio *bio, struct page *page,
1007 unsigned int len, unsigned int offset)
1008 {
1009 bool same_page = false;
1010
1011 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1012 if (bio_full(bio, len))
1013 return 0;
1014 __bio_add_page(bio, page, len, offset);
1015 }
1016 return len;
1017 }
1018 EXPORT_SYMBOL(bio_add_page);
1019
1020 void bio_release_pages(struct bio *bio, bool mark_dirty)
1021 {
1022 struct bvec_iter_all iter_all;
1023 struct bio_vec *bvec;
1024
1025 if (bio_flagged(bio, BIO_NO_PAGE_REF))
1026 return;
1027
1028 bio_for_each_segment_all(bvec, bio, iter_all) {
1029 if (mark_dirty && !PageCompound(bvec->bv_page))
1030 set_page_dirty_lock(bvec->bv_page);
1031 put_page(bvec->bv_page);
1032 }
1033 }
1034 EXPORT_SYMBOL_GPL(bio_release_pages);
1035
1036 static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1037 {
1038 WARN_ON_ONCE(bio->bi_max_vecs);
1039
1040 bio->bi_vcnt = iter->nr_segs;
1041 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1042 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1043 bio->bi_iter.bi_size = iter->count;
1044 bio_set_flag(bio, BIO_NO_PAGE_REF);
1045 bio_set_flag(bio, BIO_CLONED);
1046 }
1047
1048 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1049 {
1050 __bio_iov_bvec_set(bio, iter);
1051 iov_iter_advance(iter, iter->count);
1052 return 0;
1053 }
1054
1055 static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
1056 {
1057 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1058 struct iov_iter i = *iter;
1059
1060 iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
1061 __bio_iov_bvec_set(bio, &i);
1062 iov_iter_advance(iter, i.count);
1063 return 0;
1064 }
1065
1066 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1067 {
1068 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1069
1070 for (i = 0; i < nr; i++)
1071 put_page(pages[i]);
1072 }
1073
1074 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1075
1076 /**
1077 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1078 * @bio: bio to add pages to
1079 * @iter: iov iterator describing the region to be mapped
1080 *
1081 * Pins pages from *iter and appends them to @bio's bvec array. The
1082 * pages will have to be released using put_page() when done.
1083 * For multi-segment *iter, this function only adds pages from the
1084 * next non-empty segment of the iov iterator.
1085 */
1086 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1087 {
1088 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1089 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1090 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1091 struct page **pages = (struct page **)bv;
1092 bool same_page = false;
1093 ssize_t size, left;
1094 unsigned len, i;
1095 size_t offset;
1096
1097 /*
1098 * Move page array up in the allocated memory for the bio vecs as far as
1099 * possible so that we can start filling biovecs from the beginning
1100 * without overwriting the temporary page array.
1101 */
1102 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1103 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1104
1105 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1106 if (unlikely(size <= 0))
1107 return size ? size : -EFAULT;
1108
1109 for (left = size, i = 0; left > 0; left -= len, i++) {
1110 struct page *page = pages[i];
1111
1112 len = min_t(size_t, PAGE_SIZE - offset, left);
1113
1114 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1115 if (same_page)
1116 put_page(page);
1117 } else {
1118 if (WARN_ON_ONCE(bio_full(bio, len))) {
1119 bio_put_pages(pages + i, left, offset);
1120 return -EINVAL;
1121 }
1122 __bio_add_page(bio, page, len, offset);
1123 }
1124 offset = 0;
1125 }
1126
1127 iov_iter_advance(iter, size);
1128 return 0;
1129 }
1130
1131 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1132 {
1133 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1134 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1135 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1136 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1137 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1138 struct page **pages = (struct page **)bv;
1139 ssize_t size, left;
1140 unsigned len, i;
1141 size_t offset;
1142 int ret = 0;
1143
1144 if (WARN_ON_ONCE(!max_append_sectors))
1145 return 0;
1146
1147 /*
1148 * Move page array up in the allocated memory for the bio vecs as far as
1149 * possible so that we can start filling biovecs from the beginning
1150 * without overwriting the temporary page array.
1151 */
1152 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1153 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1154
1155 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1156 if (unlikely(size <= 0))
1157 return size ? size : -EFAULT;
1158
1159 for (left = size, i = 0; left > 0; left -= len, i++) {
1160 struct page *page = pages[i];
1161 bool same_page = false;
1162
1163 len = min_t(size_t, PAGE_SIZE - offset, left);
1164 if (bio_add_hw_page(q, bio, page, len, offset,
1165 max_append_sectors, &same_page) != len) {
1166 bio_put_pages(pages + i, left, offset);
1167 ret = -EINVAL;
1168 break;
1169 }
1170 if (same_page)
1171 put_page(page);
1172 offset = 0;
1173 }
1174
1175 iov_iter_advance(iter, size - left);
1176 return ret;
1177 }
1178
1179 /**
1180 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1181 * @bio: bio to add pages to
1182 * @iter: iov iterator describing the region to be added
1183 *
1184 * This takes either an iterator pointing to user memory, or one pointing to
1185 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1186 * map them into the kernel. On IO completion, the caller should put those
1187 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1188 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1189 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1190 * completed by a call to ->ki_complete() or returns with an error other than
1191 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1192 * on IO completion. If it isn't, then pages should be released.
1193 *
1194 * The function tries, but does not guarantee, to pin as many pages as
1195 * fit into the bio, or are requested in @iter, whatever is smaller. If
1196 * MM encounters an error pinning the requested pages, it stops. Error
1197 * is returned only if 0 pages could be pinned.
1198 *
1199 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1200 * responsible for setting BIO_WORKINGSET if necessary.
1201 */
1202 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1203 {
1204 int ret = 0;
1205
1206 if (iov_iter_is_bvec(iter)) {
1207 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1208 return bio_iov_bvec_set_append(bio, iter);
1209 return bio_iov_bvec_set(bio, iter);
1210 }
1211
1212 do {
1213 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1214 ret = __bio_iov_append_get_pages(bio, iter);
1215 else
1216 ret = __bio_iov_iter_get_pages(bio, iter);
1217 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1218
1219 /* don't account direct I/O as memory stall */
1220 bio_clear_flag(bio, BIO_WORKINGSET);
1221 return bio->bi_vcnt ? 0 : ret;
1222 }
1223 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1224
1225 static void submit_bio_wait_endio(struct bio *bio)
1226 {
1227 complete(bio->bi_private);
1228 }
1229
1230 /**
1231 * submit_bio_wait - submit a bio, and wait until it completes
1232 * @bio: The &struct bio which describes the I/O
1233 *
1234 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1235 * bio_endio() on failure.
1236 *
1237 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1238 * result in bio reference to be consumed. The caller must drop the reference
1239 * on his own.
1240 */
1241 int submit_bio_wait(struct bio *bio)
1242 {
1243 DECLARE_COMPLETION_ONSTACK_MAP(done,
1244 bio->bi_bdev->bd_disk->lockdep_map);
1245 unsigned long hang_check;
1246
1247 bio->bi_private = &done;
1248 bio->bi_end_io = submit_bio_wait_endio;
1249 bio->bi_opf |= REQ_SYNC;
1250 submit_bio(bio);
1251
1252 /* Prevent hang_check timer from firing at us during very long I/O */
1253 hang_check = sysctl_hung_task_timeout_secs;
1254 if (hang_check)
1255 while (!wait_for_completion_io_timeout(&done,
1256 hang_check * (HZ/2)))
1257 ;
1258 else
1259 wait_for_completion_io(&done);
1260
1261 return blk_status_to_errno(bio->bi_status);
1262 }
1263 EXPORT_SYMBOL(submit_bio_wait);
1264
1265 /**
1266 * bio_advance - increment/complete a bio by some number of bytes
1267 * @bio: bio to advance
1268 * @bytes: number of bytes to complete
1269 *
1270 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1271 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1272 * be updated on the last bvec as well.
1273 *
1274 * @bio will then represent the remaining, uncompleted portion of the io.
1275 */
1276 void bio_advance(struct bio *bio, unsigned bytes)
1277 {
1278 if (bio_integrity(bio))
1279 bio_integrity_advance(bio, bytes);
1280
1281 bio_crypt_advance(bio, bytes);
1282 bio_advance_iter(bio, &bio->bi_iter, bytes);
1283 }
1284 EXPORT_SYMBOL(bio_advance);
1285
1286 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1287 struct bio *src, struct bvec_iter *src_iter)
1288 {
1289 while (src_iter->bi_size && dst_iter->bi_size) {
1290 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1291 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1292 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1293 void *src_buf = bvec_kmap_local(&src_bv);
1294 void *dst_buf = bvec_kmap_local(&dst_bv);
1295
1296 memcpy(dst_buf, src_buf, bytes);
1297
1298 kunmap_local(dst_buf);
1299 kunmap_local(src_buf);
1300
1301 bio_advance_iter_single(src, src_iter, bytes);
1302 bio_advance_iter_single(dst, dst_iter, bytes);
1303 }
1304 }
1305 EXPORT_SYMBOL(bio_copy_data_iter);
1306
1307 /**
1308 * bio_copy_data - copy contents of data buffers from one bio to another
1309 * @src: source bio
1310 * @dst: destination bio
1311 *
1312 * Stops when it reaches the end of either @src or @dst - that is, copies
1313 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1314 */
1315 void bio_copy_data(struct bio *dst, struct bio *src)
1316 {
1317 struct bvec_iter src_iter = src->bi_iter;
1318 struct bvec_iter dst_iter = dst->bi_iter;
1319
1320 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1321 }
1322 EXPORT_SYMBOL(bio_copy_data);
1323
1324 void bio_free_pages(struct bio *bio)
1325 {
1326 struct bio_vec *bvec;
1327 struct bvec_iter_all iter_all;
1328
1329 bio_for_each_segment_all(bvec, bio, iter_all)
1330 __free_page(bvec->bv_page);
1331 }
1332 EXPORT_SYMBOL(bio_free_pages);
1333
1334 /*
1335 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1336 * for performing direct-IO in BIOs.
1337 *
1338 * The problem is that we cannot run set_page_dirty() from interrupt context
1339 * because the required locks are not interrupt-safe. So what we can do is to
1340 * mark the pages dirty _before_ performing IO. And in interrupt context,
1341 * check that the pages are still dirty. If so, fine. If not, redirty them
1342 * in process context.
1343 *
1344 * We special-case compound pages here: normally this means reads into hugetlb
1345 * pages. The logic in here doesn't really work right for compound pages
1346 * because the VM does not uniformly chase down the head page in all cases.
1347 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1348 * handle them at all. So we skip compound pages here at an early stage.
1349 *
1350 * Note that this code is very hard to test under normal circumstances because
1351 * direct-io pins the pages with get_user_pages(). This makes
1352 * is_page_cache_freeable return false, and the VM will not clean the pages.
1353 * But other code (eg, flusher threads) could clean the pages if they are mapped
1354 * pagecache.
1355 *
1356 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1357 * deferred bio dirtying paths.
1358 */
1359
1360 /*
1361 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1362 */
1363 void bio_set_pages_dirty(struct bio *bio)
1364 {
1365 struct bio_vec *bvec;
1366 struct bvec_iter_all iter_all;
1367
1368 bio_for_each_segment_all(bvec, bio, iter_all) {
1369 if (!PageCompound(bvec->bv_page))
1370 set_page_dirty_lock(bvec->bv_page);
1371 }
1372 }
1373
1374 /*
1375 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1376 * If they are, then fine. If, however, some pages are clean then they must
1377 * have been written out during the direct-IO read. So we take another ref on
1378 * the BIO and re-dirty the pages in process context.
1379 *
1380 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1381 * here on. It will run one put_page() against each page and will run one
1382 * bio_put() against the BIO.
1383 */
1384
1385 static void bio_dirty_fn(struct work_struct *work);
1386
1387 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1388 static DEFINE_SPINLOCK(bio_dirty_lock);
1389 static struct bio *bio_dirty_list;
1390
1391 /*
1392 * This runs in process context
1393 */
1394 static void bio_dirty_fn(struct work_struct *work)
1395 {
1396 struct bio *bio, *next;
1397
1398 spin_lock_irq(&bio_dirty_lock);
1399 next = bio_dirty_list;
1400 bio_dirty_list = NULL;
1401 spin_unlock_irq(&bio_dirty_lock);
1402
1403 while ((bio = next) != NULL) {
1404 next = bio->bi_private;
1405
1406 bio_release_pages(bio, true);
1407 bio_put(bio);
1408 }
1409 }
1410
1411 void bio_check_pages_dirty(struct bio *bio)
1412 {
1413 struct bio_vec *bvec;
1414 unsigned long flags;
1415 struct bvec_iter_all iter_all;
1416
1417 bio_for_each_segment_all(bvec, bio, iter_all) {
1418 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1419 goto defer;
1420 }
1421
1422 bio_release_pages(bio, false);
1423 bio_put(bio);
1424 return;
1425 defer:
1426 spin_lock_irqsave(&bio_dirty_lock, flags);
1427 bio->bi_private = bio_dirty_list;
1428 bio_dirty_list = bio;
1429 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1430 schedule_work(&bio_dirty_work);
1431 }
1432
1433 static inline bool bio_remaining_done(struct bio *bio)
1434 {
1435 /*
1436 * If we're not chaining, then ->__bi_remaining is always 1 and
1437 * we always end io on the first invocation.
1438 */
1439 if (!bio_flagged(bio, BIO_CHAIN))
1440 return true;
1441
1442 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1443
1444 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1445 bio_clear_flag(bio, BIO_CHAIN);
1446 return true;
1447 }
1448
1449 return false;
1450 }
1451
1452 /**
1453 * bio_endio - end I/O on a bio
1454 * @bio: bio
1455 *
1456 * Description:
1457 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1458 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1459 * bio unless they own it and thus know that it has an end_io function.
1460 *
1461 * bio_endio() can be called several times on a bio that has been chained
1462 * using bio_chain(). The ->bi_end_io() function will only be called the
1463 * last time.
1464 **/
1465 void bio_endio(struct bio *bio)
1466 {
1467 again:
1468 if (!bio_remaining_done(bio))
1469 return;
1470 if (!bio_integrity_endio(bio))
1471 return;
1472
1473 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
1474 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
1475
1476 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1477 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1478 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1479 }
1480
1481 /*
1482 * Need to have a real endio function for chained bios, otherwise
1483 * various corner cases will break (like stacking block devices that
1484 * save/restore bi_end_io) - however, we want to avoid unbounded
1485 * recursion and blowing the stack. Tail call optimization would
1486 * handle this, but compiling with frame pointers also disables
1487 * gcc's sibling call optimization.
1488 */
1489 if (bio->bi_end_io == bio_chain_endio) {
1490 bio = __bio_chain_endio(bio);
1491 goto again;
1492 }
1493
1494 blk_throtl_bio_endio(bio);
1495 /* release cgroup info */
1496 bio_uninit(bio);
1497 if (bio->bi_end_io)
1498 bio->bi_end_io(bio);
1499 }
1500 EXPORT_SYMBOL(bio_endio);
1501
1502 /**
1503 * bio_split - split a bio
1504 * @bio: bio to split
1505 * @sectors: number of sectors to split from the front of @bio
1506 * @gfp: gfp mask
1507 * @bs: bio set to allocate from
1508 *
1509 * Allocates and returns a new bio which represents @sectors from the start of
1510 * @bio, and updates @bio to represent the remaining sectors.
1511 *
1512 * Unless this is a discard request the newly allocated bio will point
1513 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1514 * neither @bio nor @bs are freed before the split bio.
1515 */
1516 struct bio *bio_split(struct bio *bio, int sectors,
1517 gfp_t gfp, struct bio_set *bs)
1518 {
1519 struct bio *split;
1520
1521 BUG_ON(sectors <= 0);
1522 BUG_ON(sectors >= bio_sectors(bio));
1523
1524 /* Zone append commands cannot be split */
1525 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1526 return NULL;
1527
1528 split = bio_clone_fast(bio, gfp, bs);
1529 if (!split)
1530 return NULL;
1531
1532 split->bi_iter.bi_size = sectors << 9;
1533
1534 if (bio_integrity(split))
1535 bio_integrity_trim(split);
1536
1537 bio_advance(bio, split->bi_iter.bi_size);
1538
1539 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1540 bio_set_flag(split, BIO_TRACE_COMPLETION);
1541
1542 return split;
1543 }
1544 EXPORT_SYMBOL(bio_split);
1545
1546 /**
1547 * bio_trim - trim a bio
1548 * @bio: bio to trim
1549 * @offset: number of sectors to trim from the front of @bio
1550 * @size: size we want to trim @bio to, in sectors
1551 *
1552 * This function is typically used for bios that are cloned and submitted
1553 * to the underlying device in parts.
1554 */
1555 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1556 {
1557 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1558 offset + size > bio_sectors(bio)))
1559 return;
1560
1561 size <<= 9;
1562 if (offset == 0 && size == bio->bi_iter.bi_size)
1563 return;
1564
1565 bio_advance(bio, offset << 9);
1566 bio->bi_iter.bi_size = size;
1567
1568 if (bio_integrity(bio))
1569 bio_integrity_trim(bio);
1570 }
1571 EXPORT_SYMBOL_GPL(bio_trim);
1572
1573 /*
1574 * create memory pools for biovec's in a bio_set.
1575 * use the global biovec slabs created for general use.
1576 */
1577 int biovec_init_pool(mempool_t *pool, int pool_entries)
1578 {
1579 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1580
1581 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1582 }
1583
1584 /*
1585 * bioset_exit - exit a bioset initialized with bioset_init()
1586 *
1587 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1588 * kzalloc()).
1589 */
1590 void bioset_exit(struct bio_set *bs)
1591 {
1592 bio_alloc_cache_destroy(bs);
1593 if (bs->rescue_workqueue)
1594 destroy_workqueue(bs->rescue_workqueue);
1595 bs->rescue_workqueue = NULL;
1596
1597 mempool_exit(&bs->bio_pool);
1598 mempool_exit(&bs->bvec_pool);
1599
1600 bioset_integrity_free(bs);
1601 if (bs->bio_slab)
1602 bio_put_slab(bs);
1603 bs->bio_slab = NULL;
1604 }
1605 EXPORT_SYMBOL(bioset_exit);
1606
1607 /**
1608 * bioset_init - Initialize a bio_set
1609 * @bs: pool to initialize
1610 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1611 * @front_pad: Number of bytes to allocate in front of the returned bio
1612 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1613 * and %BIOSET_NEED_RESCUER
1614 *
1615 * Description:
1616 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1617 * to ask for a number of bytes to be allocated in front of the bio.
1618 * Front pad allocation is useful for embedding the bio inside
1619 * another structure, to avoid allocating extra data to go with the bio.
1620 * Note that the bio must be embedded at the END of that structure always,
1621 * or things will break badly.
1622 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1623 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1624 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1625 * dispatch queued requests when the mempool runs out of space.
1626 *
1627 */
1628 int bioset_init(struct bio_set *bs,
1629 unsigned int pool_size,
1630 unsigned int front_pad,
1631 int flags)
1632 {
1633 bs->front_pad = front_pad;
1634 if (flags & BIOSET_NEED_BVECS)
1635 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1636 else
1637 bs->back_pad = 0;
1638
1639 spin_lock_init(&bs->rescue_lock);
1640 bio_list_init(&bs->rescue_list);
1641 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1642
1643 bs->bio_slab = bio_find_or_create_slab(bs);
1644 if (!bs->bio_slab)
1645 return -ENOMEM;
1646
1647 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1648 goto bad;
1649
1650 if ((flags & BIOSET_NEED_BVECS) &&
1651 biovec_init_pool(&bs->bvec_pool, pool_size))
1652 goto bad;
1653
1654 if (flags & BIOSET_NEED_RESCUER) {
1655 bs->rescue_workqueue = alloc_workqueue("bioset",
1656 WQ_MEM_RECLAIM, 0);
1657 if (!bs->rescue_workqueue)
1658 goto bad;
1659 }
1660 if (flags & BIOSET_PERCPU_CACHE) {
1661 bs->cache = alloc_percpu(struct bio_alloc_cache);
1662 if (!bs->cache)
1663 goto bad;
1664 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1665 }
1666
1667 return 0;
1668 bad:
1669 bioset_exit(bs);
1670 return -ENOMEM;
1671 }
1672 EXPORT_SYMBOL(bioset_init);
1673
1674 /*
1675 * Initialize and setup a new bio_set, based on the settings from
1676 * another bio_set.
1677 */
1678 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1679 {
1680 int flags;
1681
1682 flags = 0;
1683 if (src->bvec_pool.min_nr)
1684 flags |= BIOSET_NEED_BVECS;
1685 if (src->rescue_workqueue)
1686 flags |= BIOSET_NEED_RESCUER;
1687
1688 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1689 }
1690 EXPORT_SYMBOL(bioset_init_from_src);
1691
1692 /**
1693 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1694 * @kiocb: kiocb describing the IO
1695 * @nr_vecs: number of iovecs to pre-allocate
1696 * @bs: bio_set to allocate from
1697 *
1698 * Description:
1699 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1700 * used to check if we should dip into the per-cpu bio_set allocation
1701 * cache. The allocation uses GFP_KERNEL internally. On return, the
1702 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1703 * MUST be done from process context, not hard/soft IRQ.
1704 *
1705 */
1706 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1707 struct bio_set *bs)
1708 {
1709 struct bio_alloc_cache *cache;
1710 struct bio *bio;
1711
1712 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1713 return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1714
1715 cache = per_cpu_ptr(bs->cache, get_cpu());
1716 bio = bio_list_pop(&cache->free_list);
1717 if (bio) {
1718 cache->nr--;
1719 put_cpu();
1720 bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1721 bio->bi_pool = bs;
1722 bio_set_flag(bio, BIO_PERCPU_CACHE);
1723 return bio;
1724 }
1725 put_cpu();
1726 bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1727 bio_set_flag(bio, BIO_PERCPU_CACHE);
1728 return bio;
1729 }
1730 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1731
1732 static int __init init_bio(void)
1733 {
1734 int i;
1735
1736 bio_integrity_init();
1737
1738 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1739 struct biovec_slab *bvs = bvec_slabs + i;
1740
1741 bvs->slab = kmem_cache_create(bvs->name,
1742 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1743 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1744 }
1745
1746 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1747 bio_cpu_dead);
1748
1749 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1750 panic("bio: can't allocate bios\n");
1751
1752 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1753 panic("bio: can't create integrity pool\n");
1754
1755 return 0;
1756 }
1757 subsys_initcall(init_bio);