]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/bio.c
block: merge __bio_map_kern into bio_map_kern
[mirror_ubuntu-zesty-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 /*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50
51 /*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125 }
126
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152 out:
153 mutex_unlock(&bio_slab_lock);
154 }
155
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 return bvec_slabs[idx].nr_vecs;
159 }
160
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172 }
173
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
176 {
177 struct bio_vec *bvl;
178
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 bvl = mempool_alloc(pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
215
216 /*
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
220 */
221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222
223 /*
224 * Try a slab allocation. If this fails and __GFP_WAIT
225 * is set, retry with the 1-entry mempool
226 */
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
234 return bvl;
235 }
236
237 static void __bio_free(struct bio *bio)
238 {
239 bio_disassociate_task(bio);
240
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
243 }
244
245 static void bio_free(struct bio *bio)
246 {
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
253 if (bio_flagged(bio, BIO_OWNS_VEC))
254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
260 p -= bs->front_pad;
261
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
267 }
268
269 void bio_init(struct bio *bio)
270 {
271 memset(bio, 0, sizeof(*bio));
272 bio->bi_flags = 1 << BIO_UPTODATE;
273 atomic_set(&bio->bi_remaining, 1);
274 atomic_set(&bio->bi_cnt, 1);
275 }
276 EXPORT_SYMBOL(bio_init);
277
278 /**
279 * bio_reset - reinitialize a bio
280 * @bio: bio to reset
281 *
282 * Description:
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
287 */
288 void bio_reset(struct bio *bio)
289 {
290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291
292 __bio_free(bio);
293
294 memset(bio, 0, BIO_RESET_BYTES);
295 bio->bi_flags = flags|(1 << BIO_UPTODATE);
296 atomic_set(&bio->bi_remaining, 1);
297 }
298 EXPORT_SYMBOL(bio_reset);
299
300 static void bio_chain_endio(struct bio *bio, int error)
301 {
302 bio_endio(bio->bi_private, error);
303 bio_put(bio);
304 }
305
306 /**
307 * bio_chain - chain bio completions
308 * @bio: the target bio
309 * @parent: the @bio's parent bio
310 *
311 * The caller won't have a bi_end_io called when @bio completes - instead,
312 * @parent's bi_end_io won't be called until both @parent and @bio have
313 * completed; the chained bio will also be freed when it completes.
314 *
315 * The caller must not set bi_private or bi_end_io in @bio.
316 */
317 void bio_chain(struct bio *bio, struct bio *parent)
318 {
319 BUG_ON(bio->bi_private || bio->bi_end_io);
320
321 bio->bi_private = parent;
322 bio->bi_end_io = bio_chain_endio;
323 atomic_inc(&parent->bi_remaining);
324 }
325 EXPORT_SYMBOL(bio_chain);
326
327 static void bio_alloc_rescue(struct work_struct *work)
328 {
329 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
330 struct bio *bio;
331
332 while (1) {
333 spin_lock(&bs->rescue_lock);
334 bio = bio_list_pop(&bs->rescue_list);
335 spin_unlock(&bs->rescue_lock);
336
337 if (!bio)
338 break;
339
340 generic_make_request(bio);
341 }
342 }
343
344 static void punt_bios_to_rescuer(struct bio_set *bs)
345 {
346 struct bio_list punt, nopunt;
347 struct bio *bio;
348
349 /*
350 * In order to guarantee forward progress we must punt only bios that
351 * were allocated from this bio_set; otherwise, if there was a bio on
352 * there for a stacking driver higher up in the stack, processing it
353 * could require allocating bios from this bio_set, and doing that from
354 * our own rescuer would be bad.
355 *
356 * Since bio lists are singly linked, pop them all instead of trying to
357 * remove from the middle of the list:
358 */
359
360 bio_list_init(&punt);
361 bio_list_init(&nopunt);
362
363 while ((bio = bio_list_pop(current->bio_list)))
364 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
365
366 *current->bio_list = nopunt;
367
368 spin_lock(&bs->rescue_lock);
369 bio_list_merge(&bs->rescue_list, &punt);
370 spin_unlock(&bs->rescue_lock);
371
372 queue_work(bs->rescue_workqueue, &bs->rescue_work);
373 }
374
375 /**
376 * bio_alloc_bioset - allocate a bio for I/O
377 * @gfp_mask: the GFP_ mask given to the slab allocator
378 * @nr_iovecs: number of iovecs to pre-allocate
379 * @bs: the bio_set to allocate from.
380 *
381 * Description:
382 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
383 * backed by the @bs's mempool.
384 *
385 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
386 * able to allocate a bio. This is due to the mempool guarantees. To make this
387 * work, callers must never allocate more than 1 bio at a time from this pool.
388 * Callers that need to allocate more than 1 bio must always submit the
389 * previously allocated bio for IO before attempting to allocate a new one.
390 * Failure to do so can cause deadlocks under memory pressure.
391 *
392 * Note that when running under generic_make_request() (i.e. any block
393 * driver), bios are not submitted until after you return - see the code in
394 * generic_make_request() that converts recursion into iteration, to prevent
395 * stack overflows.
396 *
397 * This would normally mean allocating multiple bios under
398 * generic_make_request() would be susceptible to deadlocks, but we have
399 * deadlock avoidance code that resubmits any blocked bios from a rescuer
400 * thread.
401 *
402 * However, we do not guarantee forward progress for allocations from other
403 * mempools. Doing multiple allocations from the same mempool under
404 * generic_make_request() should be avoided - instead, use bio_set's front_pad
405 * for per bio allocations.
406 *
407 * RETURNS:
408 * Pointer to new bio on success, NULL on failure.
409 */
410 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
411 {
412 gfp_t saved_gfp = gfp_mask;
413 unsigned front_pad;
414 unsigned inline_vecs;
415 unsigned long idx = BIO_POOL_NONE;
416 struct bio_vec *bvl = NULL;
417 struct bio *bio;
418 void *p;
419
420 if (!bs) {
421 if (nr_iovecs > UIO_MAXIOV)
422 return NULL;
423
424 p = kmalloc(sizeof(struct bio) +
425 nr_iovecs * sizeof(struct bio_vec),
426 gfp_mask);
427 front_pad = 0;
428 inline_vecs = nr_iovecs;
429 } else {
430 /* should not use nobvec bioset for nr_iovecs > 0 */
431 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
432 return NULL;
433 /*
434 * generic_make_request() converts recursion to iteration; this
435 * means if we're running beneath it, any bios we allocate and
436 * submit will not be submitted (and thus freed) until after we
437 * return.
438 *
439 * This exposes us to a potential deadlock if we allocate
440 * multiple bios from the same bio_set() while running
441 * underneath generic_make_request(). If we were to allocate
442 * multiple bios (say a stacking block driver that was splitting
443 * bios), we would deadlock if we exhausted the mempool's
444 * reserve.
445 *
446 * We solve this, and guarantee forward progress, with a rescuer
447 * workqueue per bio_set. If we go to allocate and there are
448 * bios on current->bio_list, we first try the allocation
449 * without __GFP_WAIT; if that fails, we punt those bios we
450 * would be blocking to the rescuer workqueue before we retry
451 * with the original gfp_flags.
452 */
453
454 if (current->bio_list && !bio_list_empty(current->bio_list))
455 gfp_mask &= ~__GFP_WAIT;
456
457 p = mempool_alloc(bs->bio_pool, gfp_mask);
458 if (!p && gfp_mask != saved_gfp) {
459 punt_bios_to_rescuer(bs);
460 gfp_mask = saved_gfp;
461 p = mempool_alloc(bs->bio_pool, gfp_mask);
462 }
463
464 front_pad = bs->front_pad;
465 inline_vecs = BIO_INLINE_VECS;
466 }
467
468 if (unlikely(!p))
469 return NULL;
470
471 bio = p + front_pad;
472 bio_init(bio);
473
474 if (nr_iovecs > inline_vecs) {
475 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
476 if (!bvl && gfp_mask != saved_gfp) {
477 punt_bios_to_rescuer(bs);
478 gfp_mask = saved_gfp;
479 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
480 }
481
482 if (unlikely(!bvl))
483 goto err_free;
484
485 bio->bi_flags |= 1 << BIO_OWNS_VEC;
486 } else if (nr_iovecs) {
487 bvl = bio->bi_inline_vecs;
488 }
489
490 bio->bi_pool = bs;
491 bio->bi_flags |= idx << BIO_POOL_OFFSET;
492 bio->bi_max_vecs = nr_iovecs;
493 bio->bi_io_vec = bvl;
494 return bio;
495
496 err_free:
497 mempool_free(p, bs->bio_pool);
498 return NULL;
499 }
500 EXPORT_SYMBOL(bio_alloc_bioset);
501
502 void zero_fill_bio(struct bio *bio)
503 {
504 unsigned long flags;
505 struct bio_vec bv;
506 struct bvec_iter iter;
507
508 bio_for_each_segment(bv, bio, iter) {
509 char *data = bvec_kmap_irq(&bv, &flags);
510 memset(data, 0, bv.bv_len);
511 flush_dcache_page(bv.bv_page);
512 bvec_kunmap_irq(data, &flags);
513 }
514 }
515 EXPORT_SYMBOL(zero_fill_bio);
516
517 /**
518 * bio_put - release a reference to a bio
519 * @bio: bio to release reference to
520 *
521 * Description:
522 * Put a reference to a &struct bio, either one you have gotten with
523 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
524 **/
525 void bio_put(struct bio *bio)
526 {
527 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
528
529 /*
530 * last put frees it
531 */
532 if (atomic_dec_and_test(&bio->bi_cnt))
533 bio_free(bio);
534 }
535 EXPORT_SYMBOL(bio_put);
536
537 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
538 {
539 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
540 blk_recount_segments(q, bio);
541
542 return bio->bi_phys_segments;
543 }
544 EXPORT_SYMBOL(bio_phys_segments);
545
546 /**
547 * __bio_clone_fast - clone a bio that shares the original bio's biovec
548 * @bio: destination bio
549 * @bio_src: bio to clone
550 *
551 * Clone a &bio. Caller will own the returned bio, but not
552 * the actual data it points to. Reference count of returned
553 * bio will be one.
554 *
555 * Caller must ensure that @bio_src is not freed before @bio.
556 */
557 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
558 {
559 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
560
561 /*
562 * most users will be overriding ->bi_bdev with a new target,
563 * so we don't set nor calculate new physical/hw segment counts here
564 */
565 bio->bi_bdev = bio_src->bi_bdev;
566 bio->bi_flags |= 1 << BIO_CLONED;
567 bio->bi_rw = bio_src->bi_rw;
568 bio->bi_iter = bio_src->bi_iter;
569 bio->bi_io_vec = bio_src->bi_io_vec;
570 }
571 EXPORT_SYMBOL(__bio_clone_fast);
572
573 /**
574 * bio_clone_fast - clone a bio that shares the original bio's biovec
575 * @bio: bio to clone
576 * @gfp_mask: allocation priority
577 * @bs: bio_set to allocate from
578 *
579 * Like __bio_clone_fast, only also allocates the returned bio
580 */
581 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
582 {
583 struct bio *b;
584
585 b = bio_alloc_bioset(gfp_mask, 0, bs);
586 if (!b)
587 return NULL;
588
589 __bio_clone_fast(b, bio);
590
591 if (bio_integrity(bio)) {
592 int ret;
593
594 ret = bio_integrity_clone(b, bio, gfp_mask);
595
596 if (ret < 0) {
597 bio_put(b);
598 return NULL;
599 }
600 }
601
602 return b;
603 }
604 EXPORT_SYMBOL(bio_clone_fast);
605
606 /**
607 * bio_clone_bioset - clone a bio
608 * @bio_src: bio to clone
609 * @gfp_mask: allocation priority
610 * @bs: bio_set to allocate from
611 *
612 * Clone bio. Caller will own the returned bio, but not the actual data it
613 * points to. Reference count of returned bio will be one.
614 */
615 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
616 struct bio_set *bs)
617 {
618 struct bvec_iter iter;
619 struct bio_vec bv;
620 struct bio *bio;
621
622 /*
623 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
624 * bio_src->bi_io_vec to bio->bi_io_vec.
625 *
626 * We can't do that anymore, because:
627 *
628 * - The point of cloning the biovec is to produce a bio with a biovec
629 * the caller can modify: bi_idx and bi_bvec_done should be 0.
630 *
631 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
632 * we tried to clone the whole thing bio_alloc_bioset() would fail.
633 * But the clone should succeed as long as the number of biovecs we
634 * actually need to allocate is fewer than BIO_MAX_PAGES.
635 *
636 * - Lastly, bi_vcnt should not be looked at or relied upon by code
637 * that does not own the bio - reason being drivers don't use it for
638 * iterating over the biovec anymore, so expecting it to be kept up
639 * to date (i.e. for clones that share the parent biovec) is just
640 * asking for trouble and would force extra work on
641 * __bio_clone_fast() anyways.
642 */
643
644 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
645 if (!bio)
646 return NULL;
647
648 bio->bi_bdev = bio_src->bi_bdev;
649 bio->bi_rw = bio_src->bi_rw;
650 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
651 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
652
653 if (bio->bi_rw & REQ_DISCARD)
654 goto integrity_clone;
655
656 if (bio->bi_rw & REQ_WRITE_SAME) {
657 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
658 goto integrity_clone;
659 }
660
661 bio_for_each_segment(bv, bio_src, iter)
662 bio->bi_io_vec[bio->bi_vcnt++] = bv;
663
664 integrity_clone:
665 if (bio_integrity(bio_src)) {
666 int ret;
667
668 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
669 if (ret < 0) {
670 bio_put(bio);
671 return NULL;
672 }
673 }
674
675 return bio;
676 }
677 EXPORT_SYMBOL(bio_clone_bioset);
678
679 /**
680 * bio_get_nr_vecs - return approx number of vecs
681 * @bdev: I/O target
682 *
683 * Return the approximate number of pages we can send to this target.
684 * There's no guarantee that you will be able to fit this number of pages
685 * into a bio, it does not account for dynamic restrictions that vary
686 * on offset.
687 */
688 int bio_get_nr_vecs(struct block_device *bdev)
689 {
690 struct request_queue *q = bdev_get_queue(bdev);
691 int nr_pages;
692
693 nr_pages = min_t(unsigned,
694 queue_max_segments(q),
695 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
696
697 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
698
699 }
700 EXPORT_SYMBOL(bio_get_nr_vecs);
701
702 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
703 *page, unsigned int len, unsigned int offset,
704 unsigned int max_sectors)
705 {
706 int retried_segments = 0;
707 struct bio_vec *bvec;
708
709 /*
710 * cloned bio must not modify vec list
711 */
712 if (unlikely(bio_flagged(bio, BIO_CLONED)))
713 return 0;
714
715 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
716 return 0;
717
718 /*
719 * For filesystems with a blocksize smaller than the pagesize
720 * we will often be called with the same page as last time and
721 * a consecutive offset. Optimize this special case.
722 */
723 if (bio->bi_vcnt > 0) {
724 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
725
726 if (page == prev->bv_page &&
727 offset == prev->bv_offset + prev->bv_len) {
728 unsigned int prev_bv_len = prev->bv_len;
729 prev->bv_len += len;
730
731 if (q->merge_bvec_fn) {
732 struct bvec_merge_data bvm = {
733 /* prev_bvec is already charged in
734 bi_size, discharge it in order to
735 simulate merging updated prev_bvec
736 as new bvec. */
737 .bi_bdev = bio->bi_bdev,
738 .bi_sector = bio->bi_iter.bi_sector,
739 .bi_size = bio->bi_iter.bi_size -
740 prev_bv_len,
741 .bi_rw = bio->bi_rw,
742 };
743
744 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
745 prev->bv_len -= len;
746 return 0;
747 }
748 }
749
750 bio->bi_iter.bi_size += len;
751 goto done;
752 }
753
754 /*
755 * If the queue doesn't support SG gaps and adding this
756 * offset would create a gap, disallow it.
757 */
758 if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
759 bvec_gap_to_prev(prev, offset))
760 return 0;
761 }
762
763 if (bio->bi_vcnt >= bio->bi_max_vecs)
764 return 0;
765
766 /*
767 * setup the new entry, we might clear it again later if we
768 * cannot add the page
769 */
770 bvec = &bio->bi_io_vec[bio->bi_vcnt];
771 bvec->bv_page = page;
772 bvec->bv_len = len;
773 bvec->bv_offset = offset;
774 bio->bi_vcnt++;
775 bio->bi_phys_segments++;
776 bio->bi_iter.bi_size += len;
777
778 /*
779 * Perform a recount if the number of segments is greater
780 * than queue_max_segments(q).
781 */
782
783 while (bio->bi_phys_segments > queue_max_segments(q)) {
784
785 if (retried_segments)
786 goto failed;
787
788 retried_segments = 1;
789 blk_recount_segments(q, bio);
790 }
791
792 /*
793 * if queue has other restrictions (eg varying max sector size
794 * depending on offset), it can specify a merge_bvec_fn in the
795 * queue to get further control
796 */
797 if (q->merge_bvec_fn) {
798 struct bvec_merge_data bvm = {
799 .bi_bdev = bio->bi_bdev,
800 .bi_sector = bio->bi_iter.bi_sector,
801 .bi_size = bio->bi_iter.bi_size - len,
802 .bi_rw = bio->bi_rw,
803 };
804
805 /*
806 * merge_bvec_fn() returns number of bytes it can accept
807 * at this offset
808 */
809 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len)
810 goto failed;
811 }
812
813 /* If we may be able to merge these biovecs, force a recount */
814 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
815 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
816
817 done:
818 return len;
819
820 failed:
821 bvec->bv_page = NULL;
822 bvec->bv_len = 0;
823 bvec->bv_offset = 0;
824 bio->bi_vcnt--;
825 bio->bi_iter.bi_size -= len;
826 blk_recount_segments(q, bio);
827 return 0;
828 }
829
830 /**
831 * bio_add_pc_page - attempt to add page to bio
832 * @q: the target queue
833 * @bio: destination bio
834 * @page: page to add
835 * @len: vec entry length
836 * @offset: vec entry offset
837 *
838 * Attempt to add a page to the bio_vec maplist. This can fail for a
839 * number of reasons, such as the bio being full or target block device
840 * limitations. The target block device must allow bio's up to PAGE_SIZE,
841 * so it is always possible to add a single page to an empty bio.
842 *
843 * This should only be used by REQ_PC bios.
844 */
845 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
846 unsigned int len, unsigned int offset)
847 {
848 return __bio_add_page(q, bio, page, len, offset,
849 queue_max_hw_sectors(q));
850 }
851 EXPORT_SYMBOL(bio_add_pc_page);
852
853 /**
854 * bio_add_page - attempt to add page to bio
855 * @bio: destination bio
856 * @page: page to add
857 * @len: vec entry length
858 * @offset: vec entry offset
859 *
860 * Attempt to add a page to the bio_vec maplist. This can fail for a
861 * number of reasons, such as the bio being full or target block device
862 * limitations. The target block device must allow bio's up to PAGE_SIZE,
863 * so it is always possible to add a single page to an empty bio.
864 */
865 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
866 unsigned int offset)
867 {
868 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
869 unsigned int max_sectors;
870
871 max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
872 if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
873 max_sectors = len >> 9;
874
875 return __bio_add_page(q, bio, page, len, offset, max_sectors);
876 }
877 EXPORT_SYMBOL(bio_add_page);
878
879 struct submit_bio_ret {
880 struct completion event;
881 int error;
882 };
883
884 static void submit_bio_wait_endio(struct bio *bio, int error)
885 {
886 struct submit_bio_ret *ret = bio->bi_private;
887
888 ret->error = error;
889 complete(&ret->event);
890 }
891
892 /**
893 * submit_bio_wait - submit a bio, and wait until it completes
894 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
895 * @bio: The &struct bio which describes the I/O
896 *
897 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
898 * bio_endio() on failure.
899 */
900 int submit_bio_wait(int rw, struct bio *bio)
901 {
902 struct submit_bio_ret ret;
903
904 rw |= REQ_SYNC;
905 init_completion(&ret.event);
906 bio->bi_private = &ret;
907 bio->bi_end_io = submit_bio_wait_endio;
908 submit_bio(rw, bio);
909 wait_for_completion(&ret.event);
910
911 return ret.error;
912 }
913 EXPORT_SYMBOL(submit_bio_wait);
914
915 /**
916 * bio_advance - increment/complete a bio by some number of bytes
917 * @bio: bio to advance
918 * @bytes: number of bytes to complete
919 *
920 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
921 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
922 * be updated on the last bvec as well.
923 *
924 * @bio will then represent the remaining, uncompleted portion of the io.
925 */
926 void bio_advance(struct bio *bio, unsigned bytes)
927 {
928 if (bio_integrity(bio))
929 bio_integrity_advance(bio, bytes);
930
931 bio_advance_iter(bio, &bio->bi_iter, bytes);
932 }
933 EXPORT_SYMBOL(bio_advance);
934
935 /**
936 * bio_alloc_pages - allocates a single page for each bvec in a bio
937 * @bio: bio to allocate pages for
938 * @gfp_mask: flags for allocation
939 *
940 * Allocates pages up to @bio->bi_vcnt.
941 *
942 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
943 * freed.
944 */
945 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
946 {
947 int i;
948 struct bio_vec *bv;
949
950 bio_for_each_segment_all(bv, bio, i) {
951 bv->bv_page = alloc_page(gfp_mask);
952 if (!bv->bv_page) {
953 while (--bv >= bio->bi_io_vec)
954 __free_page(bv->bv_page);
955 return -ENOMEM;
956 }
957 }
958
959 return 0;
960 }
961 EXPORT_SYMBOL(bio_alloc_pages);
962
963 /**
964 * bio_copy_data - copy contents of data buffers from one chain of bios to
965 * another
966 * @src: source bio list
967 * @dst: destination bio list
968 *
969 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
970 * @src and @dst as linked lists of bios.
971 *
972 * Stops when it reaches the end of either @src or @dst - that is, copies
973 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
974 */
975 void bio_copy_data(struct bio *dst, struct bio *src)
976 {
977 struct bvec_iter src_iter, dst_iter;
978 struct bio_vec src_bv, dst_bv;
979 void *src_p, *dst_p;
980 unsigned bytes;
981
982 src_iter = src->bi_iter;
983 dst_iter = dst->bi_iter;
984
985 while (1) {
986 if (!src_iter.bi_size) {
987 src = src->bi_next;
988 if (!src)
989 break;
990
991 src_iter = src->bi_iter;
992 }
993
994 if (!dst_iter.bi_size) {
995 dst = dst->bi_next;
996 if (!dst)
997 break;
998
999 dst_iter = dst->bi_iter;
1000 }
1001
1002 src_bv = bio_iter_iovec(src, src_iter);
1003 dst_bv = bio_iter_iovec(dst, dst_iter);
1004
1005 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1006
1007 src_p = kmap_atomic(src_bv.bv_page);
1008 dst_p = kmap_atomic(dst_bv.bv_page);
1009
1010 memcpy(dst_p + dst_bv.bv_offset,
1011 src_p + src_bv.bv_offset,
1012 bytes);
1013
1014 kunmap_atomic(dst_p);
1015 kunmap_atomic(src_p);
1016
1017 bio_advance_iter(src, &src_iter, bytes);
1018 bio_advance_iter(dst, &dst_iter, bytes);
1019 }
1020 }
1021 EXPORT_SYMBOL(bio_copy_data);
1022
1023 struct bio_map_data {
1024 int is_our_pages;
1025 struct iov_iter iter;
1026 struct iovec iov[];
1027 };
1028
1029 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1030 gfp_t gfp_mask)
1031 {
1032 if (iov_count > UIO_MAXIOV)
1033 return NULL;
1034
1035 return kmalloc(sizeof(struct bio_map_data) +
1036 sizeof(struct iovec) * iov_count, gfp_mask);
1037 }
1038
1039 static int __bio_copy_iov(struct bio *bio, const struct iov_iter *iter,
1040 int to_user, int from_user)
1041 {
1042 int ret = 0, i;
1043 struct bio_vec *bvec;
1044 struct iov_iter iov_iter = *iter;
1045
1046 bio_for_each_segment_all(bvec, bio, i) {
1047 char *bv_addr = page_address(bvec->bv_page);
1048 unsigned int bv_len = bvec->bv_len;
1049
1050 while (bv_len && iov_iter.count) {
1051 struct iovec iov = iov_iter_iovec(&iov_iter);
1052 unsigned int bytes = min_t(unsigned int, bv_len,
1053 iov.iov_len);
1054
1055 if (!ret) {
1056 if (to_user)
1057 ret = copy_to_user(iov.iov_base,
1058 bv_addr, bytes);
1059
1060 if (from_user)
1061 ret = copy_from_user(bv_addr,
1062 iov.iov_base,
1063 bytes);
1064
1065 if (ret)
1066 ret = -EFAULT;
1067 }
1068
1069 bv_len -= bytes;
1070 bv_addr += bytes;
1071 iov_iter_advance(&iov_iter, bytes);
1072 }
1073 }
1074
1075 return ret;
1076 }
1077
1078 static void bio_free_pages(struct bio *bio)
1079 {
1080 struct bio_vec *bvec;
1081 int i;
1082
1083 bio_for_each_segment_all(bvec, bio, i)
1084 __free_page(bvec->bv_page);
1085 }
1086
1087 /**
1088 * bio_uncopy_user - finish previously mapped bio
1089 * @bio: bio being terminated
1090 *
1091 * Free pages allocated from bio_copy_user_iov() and write back data
1092 * to user space in case of a read.
1093 */
1094 int bio_uncopy_user(struct bio *bio)
1095 {
1096 struct bio_map_data *bmd = bio->bi_private;
1097 int ret = 0;
1098
1099 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1100 /*
1101 * if we're in a workqueue, the request is orphaned, so
1102 * don't copy into a random user address space, just free.
1103 */
1104 if (current->mm)
1105 ret = __bio_copy_iov(bio, &bmd->iter,
1106 bio_data_dir(bio) == READ, 0);
1107 if (bmd->is_our_pages)
1108 bio_free_pages(bio);
1109 }
1110 kfree(bmd);
1111 bio_put(bio);
1112 return ret;
1113 }
1114 EXPORT_SYMBOL(bio_uncopy_user);
1115
1116 /**
1117 * bio_copy_user_iov - copy user data to bio
1118 * @q: destination block queue
1119 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1120 * @iter: iovec iterator
1121 * @gfp_mask: memory allocation flags
1122 *
1123 * Prepares and returns a bio for indirect user io, bouncing data
1124 * to/from kernel pages as necessary. Must be paired with
1125 * call bio_uncopy_user() on io completion.
1126 */
1127 struct bio *bio_copy_user_iov(struct request_queue *q,
1128 struct rq_map_data *map_data,
1129 const struct iov_iter *iter,
1130 gfp_t gfp_mask)
1131 {
1132 struct bio_map_data *bmd;
1133 struct page *page;
1134 struct bio *bio;
1135 int i, ret;
1136 int nr_pages = 0;
1137 unsigned int len = iter->count;
1138 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1139
1140 for (i = 0; i < iter->nr_segs; i++) {
1141 unsigned long uaddr;
1142 unsigned long end;
1143 unsigned long start;
1144
1145 uaddr = (unsigned long) iter->iov[i].iov_base;
1146 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1147 >> PAGE_SHIFT;
1148 start = uaddr >> PAGE_SHIFT;
1149
1150 /*
1151 * Overflow, abort
1152 */
1153 if (end < start)
1154 return ERR_PTR(-EINVAL);
1155
1156 nr_pages += end - start;
1157 }
1158
1159 if (offset)
1160 nr_pages++;
1161
1162 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1163 if (!bmd)
1164 return ERR_PTR(-ENOMEM);
1165
1166 /*
1167 * We need to do a deep copy of the iov_iter including the iovecs.
1168 * The caller provided iov might point to an on-stack or otherwise
1169 * shortlived one.
1170 */
1171 bmd->is_our_pages = map_data ? 0 : 1;
1172 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1173 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1174 iter->nr_segs, iter->count);
1175
1176 ret = -ENOMEM;
1177 bio = bio_kmalloc(gfp_mask, nr_pages);
1178 if (!bio)
1179 goto out_bmd;
1180
1181 if (iter->type & WRITE)
1182 bio->bi_rw |= REQ_WRITE;
1183
1184 ret = 0;
1185
1186 if (map_data) {
1187 nr_pages = 1 << map_data->page_order;
1188 i = map_data->offset / PAGE_SIZE;
1189 }
1190 while (len) {
1191 unsigned int bytes = PAGE_SIZE;
1192
1193 bytes -= offset;
1194
1195 if (bytes > len)
1196 bytes = len;
1197
1198 if (map_data) {
1199 if (i == map_data->nr_entries * nr_pages) {
1200 ret = -ENOMEM;
1201 break;
1202 }
1203
1204 page = map_data->pages[i / nr_pages];
1205 page += (i % nr_pages);
1206
1207 i++;
1208 } else {
1209 page = alloc_page(q->bounce_gfp | gfp_mask);
1210 if (!page) {
1211 ret = -ENOMEM;
1212 break;
1213 }
1214 }
1215
1216 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1217 break;
1218
1219 len -= bytes;
1220 offset = 0;
1221 }
1222
1223 if (ret)
1224 goto cleanup;
1225
1226 /*
1227 * success
1228 */
1229 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1230 (map_data && map_data->from_user)) {
1231 ret = __bio_copy_iov(bio, iter, 0, 1);
1232 if (ret)
1233 goto cleanup;
1234 }
1235
1236 bio->bi_private = bmd;
1237 return bio;
1238 cleanup:
1239 if (!map_data)
1240 bio_free_pages(bio);
1241 bio_put(bio);
1242 out_bmd:
1243 kfree(bmd);
1244 return ERR_PTR(ret);
1245 }
1246
1247 static struct bio *__bio_map_user_iov(struct request_queue *q,
1248 struct block_device *bdev,
1249 const struct iov_iter *iter,
1250 gfp_t gfp_mask)
1251 {
1252 int j;
1253 int nr_pages = 0;
1254 struct page **pages;
1255 struct bio *bio;
1256 int cur_page = 0;
1257 int ret, offset;
1258 struct iov_iter i;
1259 struct iovec iov;
1260
1261 iov_for_each(iov, i, *iter) {
1262 unsigned long uaddr = (unsigned long) iov.iov_base;
1263 unsigned long len = iov.iov_len;
1264 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1265 unsigned long start = uaddr >> PAGE_SHIFT;
1266
1267 /*
1268 * Overflow, abort
1269 */
1270 if (end < start)
1271 return ERR_PTR(-EINVAL);
1272
1273 nr_pages += end - start;
1274 /*
1275 * buffer must be aligned to at least hardsector size for now
1276 */
1277 if (uaddr & queue_dma_alignment(q))
1278 return ERR_PTR(-EINVAL);
1279 }
1280
1281 if (!nr_pages)
1282 return ERR_PTR(-EINVAL);
1283
1284 bio = bio_kmalloc(gfp_mask, nr_pages);
1285 if (!bio)
1286 return ERR_PTR(-ENOMEM);
1287
1288 ret = -ENOMEM;
1289 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1290 if (!pages)
1291 goto out;
1292
1293 iov_for_each(iov, i, *iter) {
1294 unsigned long uaddr = (unsigned long) iov.iov_base;
1295 unsigned long len = iov.iov_len;
1296 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1297 unsigned long start = uaddr >> PAGE_SHIFT;
1298 const int local_nr_pages = end - start;
1299 const int page_limit = cur_page + local_nr_pages;
1300
1301 ret = get_user_pages_fast(uaddr, local_nr_pages,
1302 (iter->type & WRITE) != WRITE,
1303 &pages[cur_page]);
1304 if (ret < local_nr_pages) {
1305 ret = -EFAULT;
1306 goto out_unmap;
1307 }
1308
1309 offset = uaddr & ~PAGE_MASK;
1310 for (j = cur_page; j < page_limit; j++) {
1311 unsigned int bytes = PAGE_SIZE - offset;
1312
1313 if (len <= 0)
1314 break;
1315
1316 if (bytes > len)
1317 bytes = len;
1318
1319 /*
1320 * sorry...
1321 */
1322 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1323 bytes)
1324 break;
1325
1326 len -= bytes;
1327 offset = 0;
1328 }
1329
1330 cur_page = j;
1331 /*
1332 * release the pages we didn't map into the bio, if any
1333 */
1334 while (j < page_limit)
1335 page_cache_release(pages[j++]);
1336 }
1337
1338 kfree(pages);
1339
1340 /*
1341 * set data direction, and check if mapped pages need bouncing
1342 */
1343 if (iter->type & WRITE)
1344 bio->bi_rw |= REQ_WRITE;
1345
1346 bio->bi_bdev = bdev;
1347 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1348 return bio;
1349
1350 out_unmap:
1351 for (j = 0; j < nr_pages; j++) {
1352 if (!pages[j])
1353 break;
1354 page_cache_release(pages[j]);
1355 }
1356 out:
1357 kfree(pages);
1358 bio_put(bio);
1359 return ERR_PTR(ret);
1360 }
1361
1362 /**
1363 * bio_map_user_iov - map user iovec into bio
1364 * @q: the struct request_queue for the bio
1365 * @bdev: destination block device
1366 * @iter: iovec iterator
1367 * @gfp_mask: memory allocation flags
1368 *
1369 * Map the user space address into a bio suitable for io to a block
1370 * device. Returns an error pointer in case of error.
1371 */
1372 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1373 const struct iov_iter *iter,
1374 gfp_t gfp_mask)
1375 {
1376 struct bio *bio;
1377
1378 bio = __bio_map_user_iov(q, bdev, iter, gfp_mask);
1379 if (IS_ERR(bio))
1380 return bio;
1381
1382 /*
1383 * subtle -- if __bio_map_user() ended up bouncing a bio,
1384 * it would normally disappear when its bi_end_io is run.
1385 * however, we need it for the unmap, so grab an extra
1386 * reference to it
1387 */
1388 bio_get(bio);
1389
1390 return bio;
1391 }
1392
1393 static void __bio_unmap_user(struct bio *bio)
1394 {
1395 struct bio_vec *bvec;
1396 int i;
1397
1398 /*
1399 * make sure we dirty pages we wrote to
1400 */
1401 bio_for_each_segment_all(bvec, bio, i) {
1402 if (bio_data_dir(bio) == READ)
1403 set_page_dirty_lock(bvec->bv_page);
1404
1405 page_cache_release(bvec->bv_page);
1406 }
1407
1408 bio_put(bio);
1409 }
1410
1411 /**
1412 * bio_unmap_user - unmap a bio
1413 * @bio: the bio being unmapped
1414 *
1415 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1416 * a process context.
1417 *
1418 * bio_unmap_user() may sleep.
1419 */
1420 void bio_unmap_user(struct bio *bio)
1421 {
1422 __bio_unmap_user(bio);
1423 bio_put(bio);
1424 }
1425 EXPORT_SYMBOL(bio_unmap_user);
1426
1427 static void bio_map_kern_endio(struct bio *bio, int err)
1428 {
1429 bio_put(bio);
1430 }
1431
1432 /**
1433 * bio_map_kern - map kernel address into bio
1434 * @q: the struct request_queue for the bio
1435 * @data: pointer to buffer to map
1436 * @len: length in bytes
1437 * @gfp_mask: allocation flags for bio allocation
1438 *
1439 * Map the kernel address into a bio suitable for io to a block
1440 * device. Returns an error pointer in case of error.
1441 */
1442 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1443 gfp_t gfp_mask)
1444 {
1445 unsigned long kaddr = (unsigned long)data;
1446 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1447 unsigned long start = kaddr >> PAGE_SHIFT;
1448 const int nr_pages = end - start;
1449 int offset, i;
1450 struct bio *bio;
1451
1452 bio = bio_kmalloc(gfp_mask, nr_pages);
1453 if (!bio)
1454 return ERR_PTR(-ENOMEM);
1455
1456 offset = offset_in_page(kaddr);
1457 for (i = 0; i < nr_pages; i++) {
1458 unsigned int bytes = PAGE_SIZE - offset;
1459
1460 if (len <= 0)
1461 break;
1462
1463 if (bytes > len)
1464 bytes = len;
1465
1466 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1467 offset) < bytes) {
1468 /* we don't support partial mappings */
1469 bio_put(bio);
1470 return ERR_PTR(-EINVAL);
1471 }
1472
1473 data += bytes;
1474 len -= bytes;
1475 offset = 0;
1476 }
1477
1478 bio->bi_end_io = bio_map_kern_endio;
1479 return bio;
1480 }
1481 EXPORT_SYMBOL(bio_map_kern);
1482
1483 static void bio_copy_kern_endio(struct bio *bio, int err)
1484 {
1485 bio_free_pages(bio);
1486 bio_put(bio);
1487 }
1488
1489 static void bio_copy_kern_endio_read(struct bio *bio, int err)
1490 {
1491 char *p = bio->bi_private;
1492 struct bio_vec *bvec;
1493 int i;
1494
1495 bio_for_each_segment_all(bvec, bio, i) {
1496 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1497 p += bvec->bv_len;
1498 }
1499
1500 bio_copy_kern_endio(bio, err);
1501 }
1502
1503 /**
1504 * bio_copy_kern - copy kernel address into bio
1505 * @q: the struct request_queue for the bio
1506 * @data: pointer to buffer to copy
1507 * @len: length in bytes
1508 * @gfp_mask: allocation flags for bio and page allocation
1509 * @reading: data direction is READ
1510 *
1511 * copy the kernel address into a bio suitable for io to a block
1512 * device. Returns an error pointer in case of error.
1513 */
1514 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1515 gfp_t gfp_mask, int reading)
1516 {
1517 unsigned long kaddr = (unsigned long)data;
1518 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1519 unsigned long start = kaddr >> PAGE_SHIFT;
1520 struct bio *bio;
1521 void *p = data;
1522 int nr_pages = 0;
1523
1524 /*
1525 * Overflow, abort
1526 */
1527 if (end < start)
1528 return ERR_PTR(-EINVAL);
1529
1530 nr_pages = end - start;
1531 bio = bio_kmalloc(gfp_mask, nr_pages);
1532 if (!bio)
1533 return ERR_PTR(-ENOMEM);
1534
1535 while (len) {
1536 struct page *page;
1537 unsigned int bytes = PAGE_SIZE;
1538
1539 if (bytes > len)
1540 bytes = len;
1541
1542 page = alloc_page(q->bounce_gfp | gfp_mask);
1543 if (!page)
1544 goto cleanup;
1545
1546 if (!reading)
1547 memcpy(page_address(page), p, bytes);
1548
1549 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1550 break;
1551
1552 len -= bytes;
1553 p += bytes;
1554 }
1555
1556 if (reading) {
1557 bio->bi_end_io = bio_copy_kern_endio_read;
1558 bio->bi_private = data;
1559 } else {
1560 bio->bi_end_io = bio_copy_kern_endio;
1561 bio->bi_rw |= REQ_WRITE;
1562 }
1563
1564 return bio;
1565
1566 cleanup:
1567 bio_free_pages(bio);
1568 bio_put(bio);
1569 return ERR_PTR(-ENOMEM);
1570 }
1571 EXPORT_SYMBOL(bio_copy_kern);
1572
1573 /*
1574 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1575 * for performing direct-IO in BIOs.
1576 *
1577 * The problem is that we cannot run set_page_dirty() from interrupt context
1578 * because the required locks are not interrupt-safe. So what we can do is to
1579 * mark the pages dirty _before_ performing IO. And in interrupt context,
1580 * check that the pages are still dirty. If so, fine. If not, redirty them
1581 * in process context.
1582 *
1583 * We special-case compound pages here: normally this means reads into hugetlb
1584 * pages. The logic in here doesn't really work right for compound pages
1585 * because the VM does not uniformly chase down the head page in all cases.
1586 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1587 * handle them at all. So we skip compound pages here at an early stage.
1588 *
1589 * Note that this code is very hard to test under normal circumstances because
1590 * direct-io pins the pages with get_user_pages(). This makes
1591 * is_page_cache_freeable return false, and the VM will not clean the pages.
1592 * But other code (eg, flusher threads) could clean the pages if they are mapped
1593 * pagecache.
1594 *
1595 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1596 * deferred bio dirtying paths.
1597 */
1598
1599 /*
1600 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1601 */
1602 void bio_set_pages_dirty(struct bio *bio)
1603 {
1604 struct bio_vec *bvec;
1605 int i;
1606
1607 bio_for_each_segment_all(bvec, bio, i) {
1608 struct page *page = bvec->bv_page;
1609
1610 if (page && !PageCompound(page))
1611 set_page_dirty_lock(page);
1612 }
1613 }
1614
1615 static void bio_release_pages(struct bio *bio)
1616 {
1617 struct bio_vec *bvec;
1618 int i;
1619
1620 bio_for_each_segment_all(bvec, bio, i) {
1621 struct page *page = bvec->bv_page;
1622
1623 if (page)
1624 put_page(page);
1625 }
1626 }
1627
1628 /*
1629 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1630 * If they are, then fine. If, however, some pages are clean then they must
1631 * have been written out during the direct-IO read. So we take another ref on
1632 * the BIO and the offending pages and re-dirty the pages in process context.
1633 *
1634 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1635 * here on. It will run one page_cache_release() against each page and will
1636 * run one bio_put() against the BIO.
1637 */
1638
1639 static void bio_dirty_fn(struct work_struct *work);
1640
1641 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1642 static DEFINE_SPINLOCK(bio_dirty_lock);
1643 static struct bio *bio_dirty_list;
1644
1645 /*
1646 * This runs in process context
1647 */
1648 static void bio_dirty_fn(struct work_struct *work)
1649 {
1650 unsigned long flags;
1651 struct bio *bio;
1652
1653 spin_lock_irqsave(&bio_dirty_lock, flags);
1654 bio = bio_dirty_list;
1655 bio_dirty_list = NULL;
1656 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1657
1658 while (bio) {
1659 struct bio *next = bio->bi_private;
1660
1661 bio_set_pages_dirty(bio);
1662 bio_release_pages(bio);
1663 bio_put(bio);
1664 bio = next;
1665 }
1666 }
1667
1668 void bio_check_pages_dirty(struct bio *bio)
1669 {
1670 struct bio_vec *bvec;
1671 int nr_clean_pages = 0;
1672 int i;
1673
1674 bio_for_each_segment_all(bvec, bio, i) {
1675 struct page *page = bvec->bv_page;
1676
1677 if (PageDirty(page) || PageCompound(page)) {
1678 page_cache_release(page);
1679 bvec->bv_page = NULL;
1680 } else {
1681 nr_clean_pages++;
1682 }
1683 }
1684
1685 if (nr_clean_pages) {
1686 unsigned long flags;
1687
1688 spin_lock_irqsave(&bio_dirty_lock, flags);
1689 bio->bi_private = bio_dirty_list;
1690 bio_dirty_list = bio;
1691 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1692 schedule_work(&bio_dirty_work);
1693 } else {
1694 bio_put(bio);
1695 }
1696 }
1697
1698 void generic_start_io_acct(int rw, unsigned long sectors,
1699 struct hd_struct *part)
1700 {
1701 int cpu = part_stat_lock();
1702
1703 part_round_stats(cpu, part);
1704 part_stat_inc(cpu, part, ios[rw]);
1705 part_stat_add(cpu, part, sectors[rw], sectors);
1706 part_inc_in_flight(part, rw);
1707
1708 part_stat_unlock();
1709 }
1710 EXPORT_SYMBOL(generic_start_io_acct);
1711
1712 void generic_end_io_acct(int rw, struct hd_struct *part,
1713 unsigned long start_time)
1714 {
1715 unsigned long duration = jiffies - start_time;
1716 int cpu = part_stat_lock();
1717
1718 part_stat_add(cpu, part, ticks[rw], duration);
1719 part_round_stats(cpu, part);
1720 part_dec_in_flight(part, rw);
1721
1722 part_stat_unlock();
1723 }
1724 EXPORT_SYMBOL(generic_end_io_acct);
1725
1726 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1727 void bio_flush_dcache_pages(struct bio *bi)
1728 {
1729 struct bio_vec bvec;
1730 struct bvec_iter iter;
1731
1732 bio_for_each_segment(bvec, bi, iter)
1733 flush_dcache_page(bvec.bv_page);
1734 }
1735 EXPORT_SYMBOL(bio_flush_dcache_pages);
1736 #endif
1737
1738 /**
1739 * bio_endio - end I/O on a bio
1740 * @bio: bio
1741 * @error: error, if any
1742 *
1743 * Description:
1744 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1745 * preferred way to end I/O on a bio, it takes care of clearing
1746 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1747 * established -Exxxx (-EIO, for instance) error values in case
1748 * something went wrong. No one should call bi_end_io() directly on a
1749 * bio unless they own it and thus know that it has an end_io
1750 * function.
1751 **/
1752 void bio_endio(struct bio *bio, int error)
1753 {
1754 while (bio) {
1755 BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1756
1757 if (error)
1758 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1759 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1760 error = -EIO;
1761
1762 if (!atomic_dec_and_test(&bio->bi_remaining))
1763 return;
1764
1765 /*
1766 * Need to have a real endio function for chained bios,
1767 * otherwise various corner cases will break (like stacking
1768 * block devices that save/restore bi_end_io) - however, we want
1769 * to avoid unbounded recursion and blowing the stack. Tail call
1770 * optimization would handle this, but compiling with frame
1771 * pointers also disables gcc's sibling call optimization.
1772 */
1773 if (bio->bi_end_io == bio_chain_endio) {
1774 struct bio *parent = bio->bi_private;
1775 bio_put(bio);
1776 bio = parent;
1777 } else {
1778 if (bio->bi_end_io)
1779 bio->bi_end_io(bio, error);
1780 bio = NULL;
1781 }
1782 }
1783 }
1784 EXPORT_SYMBOL(bio_endio);
1785
1786 /**
1787 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1788 * @bio: bio
1789 * @error: error, if any
1790 *
1791 * For code that has saved and restored bi_end_io; thing hard before using this
1792 * function, probably you should've cloned the entire bio.
1793 **/
1794 void bio_endio_nodec(struct bio *bio, int error)
1795 {
1796 atomic_inc(&bio->bi_remaining);
1797 bio_endio(bio, error);
1798 }
1799 EXPORT_SYMBOL(bio_endio_nodec);
1800
1801 /**
1802 * bio_split - split a bio
1803 * @bio: bio to split
1804 * @sectors: number of sectors to split from the front of @bio
1805 * @gfp: gfp mask
1806 * @bs: bio set to allocate from
1807 *
1808 * Allocates and returns a new bio which represents @sectors from the start of
1809 * @bio, and updates @bio to represent the remaining sectors.
1810 *
1811 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1812 * responsibility to ensure that @bio is not freed before the split.
1813 */
1814 struct bio *bio_split(struct bio *bio, int sectors,
1815 gfp_t gfp, struct bio_set *bs)
1816 {
1817 struct bio *split = NULL;
1818
1819 BUG_ON(sectors <= 0);
1820 BUG_ON(sectors >= bio_sectors(bio));
1821
1822 split = bio_clone_fast(bio, gfp, bs);
1823 if (!split)
1824 return NULL;
1825
1826 split->bi_iter.bi_size = sectors << 9;
1827
1828 if (bio_integrity(split))
1829 bio_integrity_trim(split, 0, sectors);
1830
1831 bio_advance(bio, split->bi_iter.bi_size);
1832
1833 return split;
1834 }
1835 EXPORT_SYMBOL(bio_split);
1836
1837 /**
1838 * bio_trim - trim a bio
1839 * @bio: bio to trim
1840 * @offset: number of sectors to trim from the front of @bio
1841 * @size: size we want to trim @bio to, in sectors
1842 */
1843 void bio_trim(struct bio *bio, int offset, int size)
1844 {
1845 /* 'bio' is a cloned bio which we need to trim to match
1846 * the given offset and size.
1847 */
1848
1849 size <<= 9;
1850 if (offset == 0 && size == bio->bi_iter.bi_size)
1851 return;
1852
1853 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1854
1855 bio_advance(bio, offset << 9);
1856
1857 bio->bi_iter.bi_size = size;
1858 }
1859 EXPORT_SYMBOL_GPL(bio_trim);
1860
1861 /*
1862 * create memory pools for biovec's in a bio_set.
1863 * use the global biovec slabs created for general use.
1864 */
1865 mempool_t *biovec_create_pool(int pool_entries)
1866 {
1867 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1868
1869 return mempool_create_slab_pool(pool_entries, bp->slab);
1870 }
1871
1872 void bioset_free(struct bio_set *bs)
1873 {
1874 if (bs->rescue_workqueue)
1875 destroy_workqueue(bs->rescue_workqueue);
1876
1877 if (bs->bio_pool)
1878 mempool_destroy(bs->bio_pool);
1879
1880 if (bs->bvec_pool)
1881 mempool_destroy(bs->bvec_pool);
1882
1883 bioset_integrity_free(bs);
1884 bio_put_slab(bs);
1885
1886 kfree(bs);
1887 }
1888 EXPORT_SYMBOL(bioset_free);
1889
1890 static struct bio_set *__bioset_create(unsigned int pool_size,
1891 unsigned int front_pad,
1892 bool create_bvec_pool)
1893 {
1894 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1895 struct bio_set *bs;
1896
1897 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1898 if (!bs)
1899 return NULL;
1900
1901 bs->front_pad = front_pad;
1902
1903 spin_lock_init(&bs->rescue_lock);
1904 bio_list_init(&bs->rescue_list);
1905 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1906
1907 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1908 if (!bs->bio_slab) {
1909 kfree(bs);
1910 return NULL;
1911 }
1912
1913 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1914 if (!bs->bio_pool)
1915 goto bad;
1916
1917 if (create_bvec_pool) {
1918 bs->bvec_pool = biovec_create_pool(pool_size);
1919 if (!bs->bvec_pool)
1920 goto bad;
1921 }
1922
1923 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1924 if (!bs->rescue_workqueue)
1925 goto bad;
1926
1927 return bs;
1928 bad:
1929 bioset_free(bs);
1930 return NULL;
1931 }
1932
1933 /**
1934 * bioset_create - Create a bio_set
1935 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1936 * @front_pad: Number of bytes to allocate in front of the returned bio
1937 *
1938 * Description:
1939 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1940 * to ask for a number of bytes to be allocated in front of the bio.
1941 * Front pad allocation is useful for embedding the bio inside
1942 * another structure, to avoid allocating extra data to go with the bio.
1943 * Note that the bio must be embedded at the END of that structure always,
1944 * or things will break badly.
1945 */
1946 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1947 {
1948 return __bioset_create(pool_size, front_pad, true);
1949 }
1950 EXPORT_SYMBOL(bioset_create);
1951
1952 /**
1953 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1954 * @pool_size: Number of bio to cache in the mempool
1955 * @front_pad: Number of bytes to allocate in front of the returned bio
1956 *
1957 * Description:
1958 * Same functionality as bioset_create() except that mempool is not
1959 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1960 */
1961 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1962 {
1963 return __bioset_create(pool_size, front_pad, false);
1964 }
1965 EXPORT_SYMBOL(bioset_create_nobvec);
1966
1967 #ifdef CONFIG_BLK_CGROUP
1968 /**
1969 * bio_associate_current - associate a bio with %current
1970 * @bio: target bio
1971 *
1972 * Associate @bio with %current if it hasn't been associated yet. Block
1973 * layer will treat @bio as if it were issued by %current no matter which
1974 * task actually issues it.
1975 *
1976 * This function takes an extra reference of @task's io_context and blkcg
1977 * which will be put when @bio is released. The caller must own @bio,
1978 * ensure %current->io_context exists, and is responsible for synchronizing
1979 * calls to this function.
1980 */
1981 int bio_associate_current(struct bio *bio)
1982 {
1983 struct io_context *ioc;
1984 struct cgroup_subsys_state *css;
1985
1986 if (bio->bi_ioc)
1987 return -EBUSY;
1988
1989 ioc = current->io_context;
1990 if (!ioc)
1991 return -ENOENT;
1992
1993 /* acquire active ref on @ioc and associate */
1994 get_io_context_active(ioc);
1995 bio->bi_ioc = ioc;
1996
1997 /* associate blkcg if exists */
1998 rcu_read_lock();
1999 css = task_css(current, blkio_cgrp_id);
2000 if (css && css_tryget_online(css))
2001 bio->bi_css = css;
2002 rcu_read_unlock();
2003
2004 return 0;
2005 }
2006
2007 /**
2008 * bio_disassociate_task - undo bio_associate_current()
2009 * @bio: target bio
2010 */
2011 void bio_disassociate_task(struct bio *bio)
2012 {
2013 if (bio->bi_ioc) {
2014 put_io_context(bio->bi_ioc);
2015 bio->bi_ioc = NULL;
2016 }
2017 if (bio->bi_css) {
2018 css_put(bio->bi_css);
2019 bio->bi_css = NULL;
2020 }
2021 }
2022
2023 #endif /* CONFIG_BLK_CGROUP */
2024
2025 static void __init biovec_init_slabs(void)
2026 {
2027 int i;
2028
2029 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2030 int size;
2031 struct biovec_slab *bvs = bvec_slabs + i;
2032
2033 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2034 bvs->slab = NULL;
2035 continue;
2036 }
2037
2038 size = bvs->nr_vecs * sizeof(struct bio_vec);
2039 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2040 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2041 }
2042 }
2043
2044 static int __init init_bio(void)
2045 {
2046 bio_slab_max = 2;
2047 bio_slab_nr = 0;
2048 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2049 if (!bio_slabs)
2050 panic("bio: can't allocate bios\n");
2051
2052 bio_integrity_init();
2053 biovec_init_slabs();
2054
2055 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2056 if (!fs_bio_set)
2057 panic("bio: can't allocate bios\n");
2058
2059 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2060 panic("bio: can't create integrity pool\n");
2061
2062 return 0;
2063 }
2064 subsys_initcall(init_bio);