]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/bio.c
a6fb6a0b429550d0559924afac6cb7326b2669d2
[mirror_ubuntu-jammy-kernel.git] / block / bio.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27
28 struct bio_alloc_cache {
29 struct bio_list free_list;
30 unsigned int nr;
31 };
32
33 static struct biovec_slab {
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43
44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
54 case 129 ... BIO_MAX_VECS:
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60 }
61
62 /*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68
69 /*
70 * Our slab pool management
71 */
72 struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80
81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84
85 if (!bslab)
86 return NULL;
87
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
90 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
91 if (!bslab->slab)
92 goto fail_alloc_slab;
93
94 bslab->slab_ref = 1;
95 bslab->slab_size = size;
96
97 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
98 return bslab;
99
100 kmem_cache_destroy(bslab->slab);
101
102 fail_alloc_slab:
103 kfree(bslab);
104 return NULL;
105 }
106
107 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
108 {
109 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
110 }
111
112 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
113 {
114 unsigned int size = bs_bio_slab_size(bs);
115 struct bio_slab *bslab;
116
117 mutex_lock(&bio_slab_lock);
118 bslab = xa_load(&bio_slabs, size);
119 if (bslab)
120 bslab->slab_ref++;
121 else
122 bslab = create_bio_slab(size);
123 mutex_unlock(&bio_slab_lock);
124
125 if (bslab)
126 return bslab->slab;
127 return NULL;
128 }
129
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 struct bio_slab *bslab = NULL;
133 unsigned int slab_size = bs_bio_slab_size(bs);
134
135 mutex_lock(&bio_slab_lock);
136
137 bslab = xa_load(&bio_slabs, slab_size);
138 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
139 goto out;
140
141 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
142
143 WARN_ON(!bslab->slab_ref);
144
145 if (--bslab->slab_ref)
146 goto out;
147
148 xa_erase(&bio_slabs, slab_size);
149
150 kmem_cache_destroy(bslab->slab);
151 kfree(bslab);
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
157 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
158 {
159 BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
160
161 if (nr_vecs == BIO_MAX_VECS)
162 mempool_free(bv, pool);
163 else if (nr_vecs > BIO_INLINE_VECS)
164 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
165 }
166
167 /*
168 * Make the first allocation restricted and don't dump info on allocation
169 * failures, since we'll fall back to the mempool in case of failure.
170 */
171 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
172 {
173 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
174 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
175 }
176
177 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
178 gfp_t gfp_mask)
179 {
180 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
181
182 if (WARN_ON_ONCE(!bvs))
183 return NULL;
184
185 /*
186 * Upgrade the nr_vecs request to take full advantage of the allocation.
187 * We also rely on this in the bvec_free path.
188 */
189 *nr_vecs = bvs->nr_vecs;
190
191 /*
192 * Try a slab allocation first for all smaller allocations. If that
193 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
194 * The mempool is sized to handle up to BIO_MAX_VECS entries.
195 */
196 if (*nr_vecs < BIO_MAX_VECS) {
197 struct bio_vec *bvl;
198
199 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
200 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
201 return bvl;
202 *nr_vecs = BIO_MAX_VECS;
203 }
204
205 return mempool_alloc(pool, gfp_mask);
206 }
207
208 void bio_uninit(struct bio *bio)
209 {
210 #ifdef CONFIG_BLK_CGROUP
211 if (bio->bi_blkg) {
212 blkg_put(bio->bi_blkg);
213 bio->bi_blkg = NULL;
214 }
215 #endif
216 if (bio_integrity(bio))
217 bio_integrity_free(bio);
218
219 bio_crypt_free_ctx(bio);
220 }
221 EXPORT_SYMBOL(bio_uninit);
222
223 static void bio_free(struct bio *bio)
224 {
225 struct bio_set *bs = bio->bi_pool;
226 void *p;
227
228 bio_uninit(bio);
229
230 if (bs) {
231 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
232
233 /*
234 * If we have front padding, adjust the bio pointer before freeing
235 */
236 p = bio;
237 p -= bs->front_pad;
238
239 mempool_free(p, &bs->bio_pool);
240 } else {
241 /* Bio was allocated by bio_kmalloc() */
242 kfree(bio);
243 }
244 }
245
246 /*
247 * Users of this function have their own bio allocation. Subsequently,
248 * they must remember to pair any call to bio_init() with bio_uninit()
249 * when IO has completed, or when the bio is released.
250 */
251 void bio_init(struct bio *bio, struct bio_vec *table,
252 unsigned short max_vecs)
253 {
254 bio->bi_next = NULL;
255 bio->bi_bdev = NULL;
256 bio->bi_opf = 0;
257 bio->bi_flags = 0;
258 bio->bi_ioprio = 0;
259 bio->bi_write_hint = 0;
260 bio->bi_status = 0;
261 bio->bi_iter.bi_sector = 0;
262 bio->bi_iter.bi_size = 0;
263 bio->bi_iter.bi_idx = 0;
264 bio->bi_iter.bi_bvec_done = 0;
265 bio->bi_end_io = NULL;
266 bio->bi_private = NULL;
267 #ifdef CONFIG_BLK_CGROUP
268 bio->bi_blkg = NULL;
269 bio->bi_issue.value = 0;
270 #ifdef CONFIG_BLK_CGROUP_IOCOST
271 bio->bi_iocost_cost = 0;
272 #endif
273 #endif
274 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
275 bio->bi_crypt_context = NULL;
276 #endif
277 #ifdef CONFIG_BLK_DEV_INTEGRITY
278 bio->bi_integrity = NULL;
279 #endif
280 bio->bi_vcnt = 0;
281
282 atomic_set(&bio->__bi_remaining, 1);
283 atomic_set(&bio->__bi_cnt, 1);
284
285 bio->bi_max_vecs = max_vecs;
286 bio->bi_io_vec = table;
287 bio->bi_pool = NULL;
288 }
289 EXPORT_SYMBOL(bio_init);
290
291 /**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301 void bio_reset(struct bio *bio)
302 {
303 bio_uninit(bio);
304 memset(bio, 0, BIO_RESET_BYTES);
305 atomic_set(&bio->__bi_remaining, 1);
306 }
307 EXPORT_SYMBOL(bio_reset);
308
309 static struct bio *__bio_chain_endio(struct bio *bio)
310 {
311 struct bio *parent = bio->bi_private;
312
313 if (bio->bi_status && !parent->bi_status)
314 parent->bi_status = bio->bi_status;
315 bio_put(bio);
316 return parent;
317 }
318
319 static void bio_chain_endio(struct bio *bio)
320 {
321 bio_endio(__bio_chain_endio(bio));
322 }
323
324 /**
325 * bio_chain - chain bio completions
326 * @bio: the target bio
327 * @parent: the parent bio of @bio
328 *
329 * The caller won't have a bi_end_io called when @bio completes - instead,
330 * @parent's bi_end_io won't be called until both @parent and @bio have
331 * completed; the chained bio will also be freed when it completes.
332 *
333 * The caller must not set bi_private or bi_end_io in @bio.
334 */
335 void bio_chain(struct bio *bio, struct bio *parent)
336 {
337 BUG_ON(bio->bi_private || bio->bi_end_io);
338
339 bio->bi_private = parent;
340 bio->bi_end_io = bio_chain_endio;
341 bio_inc_remaining(parent);
342 }
343 EXPORT_SYMBOL(bio_chain);
344
345 static void bio_alloc_rescue(struct work_struct *work)
346 {
347 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
348 struct bio *bio;
349
350 while (1) {
351 spin_lock(&bs->rescue_lock);
352 bio = bio_list_pop(&bs->rescue_list);
353 spin_unlock(&bs->rescue_lock);
354
355 if (!bio)
356 break;
357
358 submit_bio_noacct(bio);
359 }
360 }
361
362 static void punt_bios_to_rescuer(struct bio_set *bs)
363 {
364 struct bio_list punt, nopunt;
365 struct bio *bio;
366
367 if (WARN_ON_ONCE(!bs->rescue_workqueue))
368 return;
369 /*
370 * In order to guarantee forward progress we must punt only bios that
371 * were allocated from this bio_set; otherwise, if there was a bio on
372 * there for a stacking driver higher up in the stack, processing it
373 * could require allocating bios from this bio_set, and doing that from
374 * our own rescuer would be bad.
375 *
376 * Since bio lists are singly linked, pop them all instead of trying to
377 * remove from the middle of the list:
378 */
379
380 bio_list_init(&punt);
381 bio_list_init(&nopunt);
382
383 while ((bio = bio_list_pop(&current->bio_list[0])))
384 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
385 current->bio_list[0] = nopunt;
386
387 bio_list_init(&nopunt);
388 while ((bio = bio_list_pop(&current->bio_list[1])))
389 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
390 current->bio_list[1] = nopunt;
391
392 spin_lock(&bs->rescue_lock);
393 bio_list_merge(&bs->rescue_list, &punt);
394 spin_unlock(&bs->rescue_lock);
395
396 queue_work(bs->rescue_workqueue, &bs->rescue_work);
397 }
398
399 /**
400 * bio_alloc_bioset - allocate a bio for I/O
401 * @gfp_mask: the GFP_* mask given to the slab allocator
402 * @nr_iovecs: number of iovecs to pre-allocate
403 * @bs: the bio_set to allocate from.
404 *
405 * Allocate a bio from the mempools in @bs.
406 *
407 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
408 * allocate a bio. This is due to the mempool guarantees. To make this work,
409 * callers must never allocate more than 1 bio at a time from the general pool.
410 * Callers that need to allocate more than 1 bio must always submit the
411 * previously allocated bio for IO before attempting to allocate a new one.
412 * Failure to do so can cause deadlocks under memory pressure.
413 *
414 * Note that when running under submit_bio_noacct() (i.e. any block driver),
415 * bios are not submitted until after you return - see the code in
416 * submit_bio_noacct() that converts recursion into iteration, to prevent
417 * stack overflows.
418 *
419 * This would normally mean allocating multiple bios under submit_bio_noacct()
420 * would be susceptible to deadlocks, but we have
421 * deadlock avoidance code that resubmits any blocked bios from a rescuer
422 * thread.
423 *
424 * However, we do not guarantee forward progress for allocations from other
425 * mempools. Doing multiple allocations from the same mempool under
426 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
427 * for per bio allocations.
428 *
429 * Returns: Pointer to new bio on success, NULL on failure.
430 */
431 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
432 struct bio_set *bs)
433 {
434 gfp_t saved_gfp = gfp_mask;
435 struct bio *bio;
436 void *p;
437
438 /* should not use nobvec bioset for nr_iovecs > 0 */
439 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
440 return NULL;
441
442 /*
443 * submit_bio_noacct() converts recursion to iteration; this means if
444 * we're running beneath it, any bios we allocate and submit will not be
445 * submitted (and thus freed) until after we return.
446 *
447 * This exposes us to a potential deadlock if we allocate multiple bios
448 * from the same bio_set() while running underneath submit_bio_noacct().
449 * If we were to allocate multiple bios (say a stacking block driver
450 * that was splitting bios), we would deadlock if we exhausted the
451 * mempool's reserve.
452 *
453 * We solve this, and guarantee forward progress, with a rescuer
454 * workqueue per bio_set. If we go to allocate and there are bios on
455 * current->bio_list, we first try the allocation without
456 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
457 * blocking to the rescuer workqueue before we retry with the original
458 * gfp_flags.
459 */
460 if (current->bio_list &&
461 (!bio_list_empty(&current->bio_list[0]) ||
462 !bio_list_empty(&current->bio_list[1])) &&
463 bs->rescue_workqueue)
464 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
465
466 p = mempool_alloc(&bs->bio_pool, gfp_mask);
467 if (!p && gfp_mask != saved_gfp) {
468 punt_bios_to_rescuer(bs);
469 gfp_mask = saved_gfp;
470 p = mempool_alloc(&bs->bio_pool, gfp_mask);
471 }
472 if (unlikely(!p))
473 return NULL;
474
475 bio = p + bs->front_pad;
476 if (nr_iovecs > BIO_INLINE_VECS) {
477 struct bio_vec *bvl = NULL;
478
479 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
480 if (!bvl && gfp_mask != saved_gfp) {
481 punt_bios_to_rescuer(bs);
482 gfp_mask = saved_gfp;
483 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
484 }
485 if (unlikely(!bvl))
486 goto err_free;
487
488 bio_init(bio, bvl, nr_iovecs);
489 } else if (nr_iovecs) {
490 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
491 } else {
492 bio_init(bio, NULL, 0);
493 }
494
495 bio->bi_pool = bs;
496 return bio;
497
498 err_free:
499 mempool_free(p, &bs->bio_pool);
500 return NULL;
501 }
502 EXPORT_SYMBOL(bio_alloc_bioset);
503
504 /**
505 * bio_kmalloc - kmalloc a bio for I/O
506 * @gfp_mask: the GFP_* mask given to the slab allocator
507 * @nr_iovecs: number of iovecs to pre-allocate
508 *
509 * Use kmalloc to allocate and initialize a bio.
510 *
511 * Returns: Pointer to new bio on success, NULL on failure.
512 */
513 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
514 {
515 struct bio *bio;
516
517 if (nr_iovecs > UIO_MAXIOV)
518 return NULL;
519
520 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
521 if (unlikely(!bio))
522 return NULL;
523 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
524 bio->bi_pool = NULL;
525 return bio;
526 }
527 EXPORT_SYMBOL(bio_kmalloc);
528
529 void zero_fill_bio(struct bio *bio)
530 {
531 struct bio_vec bv;
532 struct bvec_iter iter;
533
534 bio_for_each_segment(bv, bio, iter)
535 memzero_bvec(&bv);
536 }
537 EXPORT_SYMBOL(zero_fill_bio);
538
539 /**
540 * bio_truncate - truncate the bio to small size of @new_size
541 * @bio: the bio to be truncated
542 * @new_size: new size for truncating the bio
543 *
544 * Description:
545 * Truncate the bio to new size of @new_size. If bio_op(bio) is
546 * REQ_OP_READ, zero the truncated part. This function should only
547 * be used for handling corner cases, such as bio eod.
548 */
549 void bio_truncate(struct bio *bio, unsigned new_size)
550 {
551 struct bio_vec bv;
552 struct bvec_iter iter;
553 unsigned int done = 0;
554 bool truncated = false;
555
556 if (new_size >= bio->bi_iter.bi_size)
557 return;
558
559 if (bio_op(bio) != REQ_OP_READ)
560 goto exit;
561
562 bio_for_each_segment(bv, bio, iter) {
563 if (done + bv.bv_len > new_size) {
564 unsigned offset;
565
566 if (!truncated)
567 offset = new_size - done;
568 else
569 offset = 0;
570 zero_user(bv.bv_page, offset, bv.bv_len - offset);
571 truncated = true;
572 }
573 done += bv.bv_len;
574 }
575
576 exit:
577 /*
578 * Don't touch bvec table here and make it really immutable, since
579 * fs bio user has to retrieve all pages via bio_for_each_segment_all
580 * in its .end_bio() callback.
581 *
582 * It is enough to truncate bio by updating .bi_size since we can make
583 * correct bvec with the updated .bi_size for drivers.
584 */
585 bio->bi_iter.bi_size = new_size;
586 }
587
588 /**
589 * guard_bio_eod - truncate a BIO to fit the block device
590 * @bio: bio to truncate
591 *
592 * This allows us to do IO even on the odd last sectors of a device, even if the
593 * block size is some multiple of the physical sector size.
594 *
595 * We'll just truncate the bio to the size of the device, and clear the end of
596 * the buffer head manually. Truly out-of-range accesses will turn into actual
597 * I/O errors, this only handles the "we need to be able to do I/O at the final
598 * sector" case.
599 */
600 void guard_bio_eod(struct bio *bio)
601 {
602 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
603
604 if (!maxsector)
605 return;
606
607 /*
608 * If the *whole* IO is past the end of the device,
609 * let it through, and the IO layer will turn it into
610 * an EIO.
611 */
612 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
613 return;
614
615 maxsector -= bio->bi_iter.bi_sector;
616 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
617 return;
618
619 bio_truncate(bio, maxsector << 9);
620 }
621
622 #define ALLOC_CACHE_MAX 512
623 #define ALLOC_CACHE_SLACK 64
624
625 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
626 unsigned int nr)
627 {
628 unsigned int i = 0;
629 struct bio *bio;
630
631 while ((bio = bio_list_pop(&cache->free_list)) != NULL) {
632 cache->nr--;
633 bio_free(bio);
634 if (++i == nr)
635 break;
636 }
637 }
638
639 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
640 {
641 struct bio_set *bs;
642
643 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
644 if (bs->cache) {
645 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
646
647 bio_alloc_cache_prune(cache, -1U);
648 }
649 return 0;
650 }
651
652 static void bio_alloc_cache_destroy(struct bio_set *bs)
653 {
654 int cpu;
655
656 if (!bs->cache)
657 return;
658
659 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
660 for_each_possible_cpu(cpu) {
661 struct bio_alloc_cache *cache;
662
663 cache = per_cpu_ptr(bs->cache, cpu);
664 bio_alloc_cache_prune(cache, -1U);
665 }
666 free_percpu(bs->cache);
667 }
668
669 /**
670 * bio_put - release a reference to a bio
671 * @bio: bio to release reference to
672 *
673 * Description:
674 * Put a reference to a &struct bio, either one you have gotten with
675 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
676 **/
677 void bio_put(struct bio *bio)
678 {
679 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
680 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
681 if (!atomic_dec_and_test(&bio->__bi_cnt))
682 return;
683 }
684
685 if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
686 struct bio_alloc_cache *cache;
687
688 bio_uninit(bio);
689 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
690 bio_list_add_head(&cache->free_list, bio);
691 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
692 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
693 put_cpu();
694 } else {
695 bio_free(bio);
696 }
697 }
698 EXPORT_SYMBOL(bio_put);
699
700 /**
701 * __bio_clone_fast - clone a bio that shares the original bio's biovec
702 * @bio: destination bio
703 * @bio_src: bio to clone
704 *
705 * Clone a &bio. Caller will own the returned bio, but not
706 * the actual data it points to. Reference count of returned
707 * bio will be one.
708 *
709 * Caller must ensure that @bio_src is not freed before @bio.
710 */
711 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
712 {
713 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
714
715 /*
716 * most users will be overriding ->bi_bdev with a new target,
717 * so we don't set nor calculate new physical/hw segment counts here
718 */
719 bio->bi_bdev = bio_src->bi_bdev;
720 bio_set_flag(bio, BIO_CLONED);
721 if (bio_flagged(bio_src, BIO_THROTTLED))
722 bio_set_flag(bio, BIO_THROTTLED);
723 if (bio_flagged(bio_src, BIO_REMAPPED))
724 bio_set_flag(bio, BIO_REMAPPED);
725 bio->bi_opf = bio_src->bi_opf;
726 bio->bi_ioprio = bio_src->bi_ioprio;
727 bio->bi_write_hint = bio_src->bi_write_hint;
728 bio->bi_iter = bio_src->bi_iter;
729 bio->bi_io_vec = bio_src->bi_io_vec;
730
731 bio_clone_blkg_association(bio, bio_src);
732 blkcg_bio_issue_init(bio);
733 }
734 EXPORT_SYMBOL(__bio_clone_fast);
735
736 /**
737 * bio_clone_fast - clone a bio that shares the original bio's biovec
738 * @bio: bio to clone
739 * @gfp_mask: allocation priority
740 * @bs: bio_set to allocate from
741 *
742 * Like __bio_clone_fast, only also allocates the returned bio
743 */
744 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
745 {
746 struct bio *b;
747
748 b = bio_alloc_bioset(gfp_mask, 0, bs);
749 if (!b)
750 return NULL;
751
752 __bio_clone_fast(b, bio);
753
754 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
755 goto err_put;
756
757 if (bio_integrity(bio) &&
758 bio_integrity_clone(b, bio, gfp_mask) < 0)
759 goto err_put;
760
761 return b;
762
763 err_put:
764 bio_put(b);
765 return NULL;
766 }
767 EXPORT_SYMBOL(bio_clone_fast);
768
769 const char *bio_devname(struct bio *bio, char *buf)
770 {
771 return bdevname(bio->bi_bdev, buf);
772 }
773 EXPORT_SYMBOL(bio_devname);
774
775 static inline bool page_is_mergeable(const struct bio_vec *bv,
776 struct page *page, unsigned int len, unsigned int off,
777 bool *same_page)
778 {
779 size_t bv_end = bv->bv_offset + bv->bv_len;
780 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
781 phys_addr_t page_addr = page_to_phys(page);
782
783 if (vec_end_addr + 1 != page_addr + off)
784 return false;
785 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
786 return false;
787
788 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
789 if (*same_page)
790 return true;
791 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
792 }
793
794 /*
795 * Try to merge a page into a segment, while obeying the hardware segment
796 * size limit. This is not for normal read/write bios, but for passthrough
797 * or Zone Append operations that we can't split.
798 */
799 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
800 struct page *page, unsigned len,
801 unsigned offset, bool *same_page)
802 {
803 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
804 unsigned long mask = queue_segment_boundary(q);
805 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
806 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
807
808 if ((addr1 | mask) != (addr2 | mask))
809 return false;
810 if (bv->bv_len + len > queue_max_segment_size(q))
811 return false;
812 return __bio_try_merge_page(bio, page, len, offset, same_page);
813 }
814
815 /**
816 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
817 * @q: the target queue
818 * @bio: destination bio
819 * @page: page to add
820 * @len: vec entry length
821 * @offset: vec entry offset
822 * @max_sectors: maximum number of sectors that can be added
823 * @same_page: return if the segment has been merged inside the same page
824 *
825 * Add a page to a bio while respecting the hardware max_sectors, max_segment
826 * and gap limitations.
827 */
828 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
829 struct page *page, unsigned int len, unsigned int offset,
830 unsigned int max_sectors, bool *same_page)
831 {
832 struct bio_vec *bvec;
833
834 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
835 return 0;
836
837 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
838 return 0;
839
840 if (bio->bi_vcnt > 0) {
841 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
842 return len;
843
844 /*
845 * If the queue doesn't support SG gaps and adding this segment
846 * would create a gap, disallow it.
847 */
848 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
849 if (bvec_gap_to_prev(q, bvec, offset))
850 return 0;
851 }
852
853 if (bio_full(bio, len))
854 return 0;
855
856 if (bio->bi_vcnt >= queue_max_segments(q))
857 return 0;
858
859 bvec = &bio->bi_io_vec[bio->bi_vcnt];
860 bvec->bv_page = page;
861 bvec->bv_len = len;
862 bvec->bv_offset = offset;
863 bio->bi_vcnt++;
864 bio->bi_iter.bi_size += len;
865 return len;
866 }
867
868 /**
869 * bio_add_pc_page - attempt to add page to passthrough bio
870 * @q: the target queue
871 * @bio: destination bio
872 * @page: page to add
873 * @len: vec entry length
874 * @offset: vec entry offset
875 *
876 * Attempt to add a page to the bio_vec maplist. This can fail for a
877 * number of reasons, such as the bio being full or target block device
878 * limitations. The target block device must allow bio's up to PAGE_SIZE,
879 * so it is always possible to add a single page to an empty bio.
880 *
881 * This should only be used by passthrough bios.
882 */
883 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
884 struct page *page, unsigned int len, unsigned int offset)
885 {
886 bool same_page = false;
887 return bio_add_hw_page(q, bio, page, len, offset,
888 queue_max_hw_sectors(q), &same_page);
889 }
890 EXPORT_SYMBOL(bio_add_pc_page);
891
892 /**
893 * bio_add_zone_append_page - attempt to add page to zone-append bio
894 * @bio: destination bio
895 * @page: page to add
896 * @len: vec entry length
897 * @offset: vec entry offset
898 *
899 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
900 * for a zone-append request. This can fail for a number of reasons, such as the
901 * bio being full or the target block device is not a zoned block device or
902 * other limitations of the target block device. The target block device must
903 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
904 * to an empty bio.
905 *
906 * Returns: number of bytes added to the bio, or 0 in case of a failure.
907 */
908 int bio_add_zone_append_page(struct bio *bio, struct page *page,
909 unsigned int len, unsigned int offset)
910 {
911 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
912 bool same_page = false;
913
914 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
915 return 0;
916
917 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
918 return 0;
919
920 return bio_add_hw_page(q, bio, page, len, offset,
921 queue_max_zone_append_sectors(q), &same_page);
922 }
923 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
924
925 /**
926 * __bio_try_merge_page - try appending data to an existing bvec.
927 * @bio: destination bio
928 * @page: start page to add
929 * @len: length of the data to add
930 * @off: offset of the data relative to @page
931 * @same_page: return if the segment has been merged inside the same page
932 *
933 * Try to add the data at @page + @off to the last bvec of @bio. This is a
934 * useful optimisation for file systems with a block size smaller than the
935 * page size.
936 *
937 * Warn if (@len, @off) crosses pages in case that @same_page is true.
938 *
939 * Return %true on success or %false on failure.
940 */
941 bool __bio_try_merge_page(struct bio *bio, struct page *page,
942 unsigned int len, unsigned int off, bool *same_page)
943 {
944 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
945 return false;
946
947 if (bio->bi_vcnt > 0) {
948 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
949
950 if (page_is_mergeable(bv, page, len, off, same_page)) {
951 if (bio->bi_iter.bi_size > UINT_MAX - len) {
952 *same_page = false;
953 return false;
954 }
955 bv->bv_len += len;
956 bio->bi_iter.bi_size += len;
957 return true;
958 }
959 }
960 return false;
961 }
962 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
963
964 /**
965 * __bio_add_page - add page(s) to a bio in a new segment
966 * @bio: destination bio
967 * @page: start page to add
968 * @len: length of the data to add, may cross pages
969 * @off: offset of the data relative to @page, may cross pages
970 *
971 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
972 * that @bio has space for another bvec.
973 */
974 void __bio_add_page(struct bio *bio, struct page *page,
975 unsigned int len, unsigned int off)
976 {
977 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
978
979 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
980 WARN_ON_ONCE(bio_full(bio, len));
981
982 bv->bv_page = page;
983 bv->bv_offset = off;
984 bv->bv_len = len;
985
986 bio->bi_iter.bi_size += len;
987 bio->bi_vcnt++;
988
989 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
990 bio_set_flag(bio, BIO_WORKINGSET);
991 }
992 EXPORT_SYMBOL_GPL(__bio_add_page);
993
994 /**
995 * bio_add_page - attempt to add page(s) to bio
996 * @bio: destination bio
997 * @page: start page to add
998 * @len: vec entry length, may cross pages
999 * @offset: vec entry offset relative to @page, may cross pages
1000 *
1001 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1002 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1003 */
1004 int bio_add_page(struct bio *bio, struct page *page,
1005 unsigned int len, unsigned int offset)
1006 {
1007 bool same_page = false;
1008
1009 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1010 if (bio_full(bio, len))
1011 return 0;
1012 __bio_add_page(bio, page, len, offset);
1013 }
1014 return len;
1015 }
1016 EXPORT_SYMBOL(bio_add_page);
1017
1018 void bio_release_pages(struct bio *bio, bool mark_dirty)
1019 {
1020 struct bvec_iter_all iter_all;
1021 struct bio_vec *bvec;
1022
1023 if (bio_flagged(bio, BIO_NO_PAGE_REF))
1024 return;
1025
1026 bio_for_each_segment_all(bvec, bio, iter_all) {
1027 if (mark_dirty && !PageCompound(bvec->bv_page))
1028 set_page_dirty_lock(bvec->bv_page);
1029 put_page(bvec->bv_page);
1030 }
1031 }
1032 EXPORT_SYMBOL_GPL(bio_release_pages);
1033
1034 static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1035 {
1036 WARN_ON_ONCE(bio->bi_max_vecs);
1037
1038 bio->bi_vcnt = iter->nr_segs;
1039 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1040 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1041 bio->bi_iter.bi_size = iter->count;
1042 bio_set_flag(bio, BIO_NO_PAGE_REF);
1043 bio_set_flag(bio, BIO_CLONED);
1044 }
1045
1046 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1047 {
1048 __bio_iov_bvec_set(bio, iter);
1049 iov_iter_advance(iter, iter->count);
1050 return 0;
1051 }
1052
1053 static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
1054 {
1055 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1056 struct iov_iter i = *iter;
1057
1058 iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
1059 __bio_iov_bvec_set(bio, &i);
1060 iov_iter_advance(iter, i.count);
1061 return 0;
1062 }
1063
1064 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1065 {
1066 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1067
1068 for (i = 0; i < nr; i++)
1069 put_page(pages[i]);
1070 }
1071
1072 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1073
1074 /**
1075 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1076 * @bio: bio to add pages to
1077 * @iter: iov iterator describing the region to be mapped
1078 *
1079 * Pins pages from *iter and appends them to @bio's bvec array. The
1080 * pages will have to be released using put_page() when done.
1081 * For multi-segment *iter, this function only adds pages from the
1082 * next non-empty segment of the iov iterator.
1083 */
1084 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1085 {
1086 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1087 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1088 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1089 struct page **pages = (struct page **)bv;
1090 bool same_page = false;
1091 ssize_t size, left;
1092 unsigned len, i;
1093 size_t offset;
1094
1095 /*
1096 * Move page array up in the allocated memory for the bio vecs as far as
1097 * possible so that we can start filling biovecs from the beginning
1098 * without overwriting the temporary page array.
1099 */
1100 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1101 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1102
1103 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1104 if (unlikely(size <= 0))
1105 return size ? size : -EFAULT;
1106
1107 for (left = size, i = 0; left > 0; left -= len, i++) {
1108 struct page *page = pages[i];
1109
1110 len = min_t(size_t, PAGE_SIZE - offset, left);
1111
1112 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1113 if (same_page)
1114 put_page(page);
1115 } else {
1116 if (WARN_ON_ONCE(bio_full(bio, len))) {
1117 bio_put_pages(pages + i, left, offset);
1118 return -EINVAL;
1119 }
1120 __bio_add_page(bio, page, len, offset);
1121 }
1122 offset = 0;
1123 }
1124
1125 iov_iter_advance(iter, size);
1126 return 0;
1127 }
1128
1129 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1130 {
1131 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1132 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1133 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1134 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1135 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1136 struct page **pages = (struct page **)bv;
1137 ssize_t size, left;
1138 unsigned len, i;
1139 size_t offset;
1140 int ret = 0;
1141
1142 if (WARN_ON_ONCE(!max_append_sectors))
1143 return 0;
1144
1145 /*
1146 * Move page array up in the allocated memory for the bio vecs as far as
1147 * possible so that we can start filling biovecs from the beginning
1148 * without overwriting the temporary page array.
1149 */
1150 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1151 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1152
1153 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1154 if (unlikely(size <= 0))
1155 return size ? size : -EFAULT;
1156
1157 for (left = size, i = 0; left > 0; left -= len, i++) {
1158 struct page *page = pages[i];
1159 bool same_page = false;
1160
1161 len = min_t(size_t, PAGE_SIZE - offset, left);
1162 if (bio_add_hw_page(q, bio, page, len, offset,
1163 max_append_sectors, &same_page) != len) {
1164 bio_put_pages(pages + i, left, offset);
1165 ret = -EINVAL;
1166 break;
1167 }
1168 if (same_page)
1169 put_page(page);
1170 offset = 0;
1171 }
1172
1173 iov_iter_advance(iter, size - left);
1174 return ret;
1175 }
1176
1177 /**
1178 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1179 * @bio: bio to add pages to
1180 * @iter: iov iterator describing the region to be added
1181 *
1182 * This takes either an iterator pointing to user memory, or one pointing to
1183 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1184 * map them into the kernel. On IO completion, the caller should put those
1185 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1186 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1187 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1188 * completed by a call to ->ki_complete() or returns with an error other than
1189 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1190 * on IO completion. If it isn't, then pages should be released.
1191 *
1192 * The function tries, but does not guarantee, to pin as many pages as
1193 * fit into the bio, or are requested in @iter, whatever is smaller. If
1194 * MM encounters an error pinning the requested pages, it stops. Error
1195 * is returned only if 0 pages could be pinned.
1196 *
1197 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1198 * responsible for setting BIO_WORKINGSET if necessary.
1199 */
1200 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1201 {
1202 int ret = 0;
1203
1204 if (iov_iter_is_bvec(iter)) {
1205 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1206 return bio_iov_bvec_set_append(bio, iter);
1207 return bio_iov_bvec_set(bio, iter);
1208 }
1209
1210 do {
1211 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1212 ret = __bio_iov_append_get_pages(bio, iter);
1213 else
1214 ret = __bio_iov_iter_get_pages(bio, iter);
1215 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1216
1217 /* don't account direct I/O as memory stall */
1218 bio_clear_flag(bio, BIO_WORKINGSET);
1219 return bio->bi_vcnt ? 0 : ret;
1220 }
1221 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1222
1223 static void submit_bio_wait_endio(struct bio *bio)
1224 {
1225 complete(bio->bi_private);
1226 }
1227
1228 /**
1229 * submit_bio_wait - submit a bio, and wait until it completes
1230 * @bio: The &struct bio which describes the I/O
1231 *
1232 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1233 * bio_endio() on failure.
1234 *
1235 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1236 * result in bio reference to be consumed. The caller must drop the reference
1237 * on his own.
1238 */
1239 int submit_bio_wait(struct bio *bio)
1240 {
1241 DECLARE_COMPLETION_ONSTACK_MAP(done,
1242 bio->bi_bdev->bd_disk->lockdep_map);
1243 unsigned long hang_check;
1244
1245 bio->bi_private = &done;
1246 bio->bi_end_io = submit_bio_wait_endio;
1247 bio->bi_opf |= REQ_SYNC;
1248 submit_bio(bio);
1249
1250 /* Prevent hang_check timer from firing at us during very long I/O */
1251 hang_check = sysctl_hung_task_timeout_secs;
1252 if (hang_check)
1253 while (!wait_for_completion_io_timeout(&done,
1254 hang_check * (HZ/2)))
1255 ;
1256 else
1257 wait_for_completion_io(&done);
1258
1259 return blk_status_to_errno(bio->bi_status);
1260 }
1261 EXPORT_SYMBOL(submit_bio_wait);
1262
1263 /**
1264 * bio_advance - increment/complete a bio by some number of bytes
1265 * @bio: bio to advance
1266 * @bytes: number of bytes to complete
1267 *
1268 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1269 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1270 * be updated on the last bvec as well.
1271 *
1272 * @bio will then represent the remaining, uncompleted portion of the io.
1273 */
1274 void bio_advance(struct bio *bio, unsigned bytes)
1275 {
1276 if (bio_integrity(bio))
1277 bio_integrity_advance(bio, bytes);
1278
1279 bio_crypt_advance(bio, bytes);
1280 bio_advance_iter(bio, &bio->bi_iter, bytes);
1281 }
1282 EXPORT_SYMBOL(bio_advance);
1283
1284 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1285 struct bio *src, struct bvec_iter *src_iter)
1286 {
1287 while (src_iter->bi_size && dst_iter->bi_size) {
1288 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1289 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1290 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1291 void *src_buf;
1292
1293 src_buf = bvec_kmap_local(&src_bv);
1294 memcpy_to_bvec(&dst_bv, src_buf);
1295 kunmap_local(src_buf);
1296
1297 bio_advance_iter_single(src, src_iter, bytes);
1298 bio_advance_iter_single(dst, dst_iter, bytes);
1299 }
1300 }
1301 EXPORT_SYMBOL(bio_copy_data_iter);
1302
1303 /**
1304 * bio_copy_data - copy contents of data buffers from one bio to another
1305 * @src: source bio
1306 * @dst: destination bio
1307 *
1308 * Stops when it reaches the end of either @src or @dst - that is, copies
1309 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1310 */
1311 void bio_copy_data(struct bio *dst, struct bio *src)
1312 {
1313 struct bvec_iter src_iter = src->bi_iter;
1314 struct bvec_iter dst_iter = dst->bi_iter;
1315
1316 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1317 }
1318 EXPORT_SYMBOL(bio_copy_data);
1319
1320 void bio_free_pages(struct bio *bio)
1321 {
1322 struct bio_vec *bvec;
1323 struct bvec_iter_all iter_all;
1324
1325 bio_for_each_segment_all(bvec, bio, iter_all)
1326 __free_page(bvec->bv_page);
1327 }
1328 EXPORT_SYMBOL(bio_free_pages);
1329
1330 /*
1331 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1332 * for performing direct-IO in BIOs.
1333 *
1334 * The problem is that we cannot run set_page_dirty() from interrupt context
1335 * because the required locks are not interrupt-safe. So what we can do is to
1336 * mark the pages dirty _before_ performing IO. And in interrupt context,
1337 * check that the pages are still dirty. If so, fine. If not, redirty them
1338 * in process context.
1339 *
1340 * We special-case compound pages here: normally this means reads into hugetlb
1341 * pages. The logic in here doesn't really work right for compound pages
1342 * because the VM does not uniformly chase down the head page in all cases.
1343 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1344 * handle them at all. So we skip compound pages here at an early stage.
1345 *
1346 * Note that this code is very hard to test under normal circumstances because
1347 * direct-io pins the pages with get_user_pages(). This makes
1348 * is_page_cache_freeable return false, and the VM will not clean the pages.
1349 * But other code (eg, flusher threads) could clean the pages if they are mapped
1350 * pagecache.
1351 *
1352 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1353 * deferred bio dirtying paths.
1354 */
1355
1356 /*
1357 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1358 */
1359 void bio_set_pages_dirty(struct bio *bio)
1360 {
1361 struct bio_vec *bvec;
1362 struct bvec_iter_all iter_all;
1363
1364 bio_for_each_segment_all(bvec, bio, iter_all) {
1365 if (!PageCompound(bvec->bv_page))
1366 set_page_dirty_lock(bvec->bv_page);
1367 }
1368 }
1369
1370 /*
1371 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1372 * If they are, then fine. If, however, some pages are clean then they must
1373 * have been written out during the direct-IO read. So we take another ref on
1374 * the BIO and re-dirty the pages in process context.
1375 *
1376 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1377 * here on. It will run one put_page() against each page and will run one
1378 * bio_put() against the BIO.
1379 */
1380
1381 static void bio_dirty_fn(struct work_struct *work);
1382
1383 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1384 static DEFINE_SPINLOCK(bio_dirty_lock);
1385 static struct bio *bio_dirty_list;
1386
1387 /*
1388 * This runs in process context
1389 */
1390 static void bio_dirty_fn(struct work_struct *work)
1391 {
1392 struct bio *bio, *next;
1393
1394 spin_lock_irq(&bio_dirty_lock);
1395 next = bio_dirty_list;
1396 bio_dirty_list = NULL;
1397 spin_unlock_irq(&bio_dirty_lock);
1398
1399 while ((bio = next) != NULL) {
1400 next = bio->bi_private;
1401
1402 bio_release_pages(bio, true);
1403 bio_put(bio);
1404 }
1405 }
1406
1407 void bio_check_pages_dirty(struct bio *bio)
1408 {
1409 struct bio_vec *bvec;
1410 unsigned long flags;
1411 struct bvec_iter_all iter_all;
1412
1413 bio_for_each_segment_all(bvec, bio, iter_all) {
1414 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1415 goto defer;
1416 }
1417
1418 bio_release_pages(bio, false);
1419 bio_put(bio);
1420 return;
1421 defer:
1422 spin_lock_irqsave(&bio_dirty_lock, flags);
1423 bio->bi_private = bio_dirty_list;
1424 bio_dirty_list = bio;
1425 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1426 schedule_work(&bio_dirty_work);
1427 }
1428
1429 static inline bool bio_remaining_done(struct bio *bio)
1430 {
1431 /*
1432 * If we're not chaining, then ->__bi_remaining is always 1 and
1433 * we always end io on the first invocation.
1434 */
1435 if (!bio_flagged(bio, BIO_CHAIN))
1436 return true;
1437
1438 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1439
1440 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1441 bio_clear_flag(bio, BIO_CHAIN);
1442 return true;
1443 }
1444
1445 return false;
1446 }
1447
1448 /**
1449 * bio_endio - end I/O on a bio
1450 * @bio: bio
1451 *
1452 * Description:
1453 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1454 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1455 * bio unless they own it and thus know that it has an end_io function.
1456 *
1457 * bio_endio() can be called several times on a bio that has been chained
1458 * using bio_chain(). The ->bi_end_io() function will only be called the
1459 * last time.
1460 **/
1461 void bio_endio(struct bio *bio)
1462 {
1463 again:
1464 if (!bio_remaining_done(bio))
1465 return;
1466 if (!bio_integrity_endio(bio))
1467 return;
1468
1469 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
1470 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
1471
1472 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1473 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1474 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1475 }
1476
1477 /*
1478 * Need to have a real endio function for chained bios, otherwise
1479 * various corner cases will break (like stacking block devices that
1480 * save/restore bi_end_io) - however, we want to avoid unbounded
1481 * recursion and blowing the stack. Tail call optimization would
1482 * handle this, but compiling with frame pointers also disables
1483 * gcc's sibling call optimization.
1484 */
1485 if (bio->bi_end_io == bio_chain_endio) {
1486 bio = __bio_chain_endio(bio);
1487 goto again;
1488 }
1489
1490 blk_throtl_bio_endio(bio);
1491 /* release cgroup info */
1492 bio_uninit(bio);
1493 if (bio->bi_end_io)
1494 bio->bi_end_io(bio);
1495 }
1496 EXPORT_SYMBOL(bio_endio);
1497
1498 /**
1499 * bio_split - split a bio
1500 * @bio: bio to split
1501 * @sectors: number of sectors to split from the front of @bio
1502 * @gfp: gfp mask
1503 * @bs: bio set to allocate from
1504 *
1505 * Allocates and returns a new bio which represents @sectors from the start of
1506 * @bio, and updates @bio to represent the remaining sectors.
1507 *
1508 * Unless this is a discard request the newly allocated bio will point
1509 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1510 * neither @bio nor @bs are freed before the split bio.
1511 */
1512 struct bio *bio_split(struct bio *bio, int sectors,
1513 gfp_t gfp, struct bio_set *bs)
1514 {
1515 struct bio *split;
1516
1517 BUG_ON(sectors <= 0);
1518 BUG_ON(sectors >= bio_sectors(bio));
1519
1520 /* Zone append commands cannot be split */
1521 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1522 return NULL;
1523
1524 split = bio_clone_fast(bio, gfp, bs);
1525 if (!split)
1526 return NULL;
1527
1528 split->bi_iter.bi_size = sectors << 9;
1529
1530 if (bio_integrity(split))
1531 bio_integrity_trim(split);
1532
1533 bio_advance(bio, split->bi_iter.bi_size);
1534
1535 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1536 bio_set_flag(split, BIO_TRACE_COMPLETION);
1537
1538 return split;
1539 }
1540 EXPORT_SYMBOL(bio_split);
1541
1542 /**
1543 * bio_trim - trim a bio
1544 * @bio: bio to trim
1545 * @offset: number of sectors to trim from the front of @bio
1546 * @size: size we want to trim @bio to, in sectors
1547 *
1548 * This function is typically used for bios that are cloned and submitted
1549 * to the underlying device in parts.
1550 */
1551 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1552 {
1553 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1554 offset + size > bio->bi_iter.bi_size))
1555 return;
1556
1557 size <<= 9;
1558 if (offset == 0 && size == bio->bi_iter.bi_size)
1559 return;
1560
1561 bio_advance(bio, offset << 9);
1562 bio->bi_iter.bi_size = size;
1563
1564 if (bio_integrity(bio))
1565 bio_integrity_trim(bio);
1566 }
1567 EXPORT_SYMBOL_GPL(bio_trim);
1568
1569 /*
1570 * create memory pools for biovec's in a bio_set.
1571 * use the global biovec slabs created for general use.
1572 */
1573 int biovec_init_pool(mempool_t *pool, int pool_entries)
1574 {
1575 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1576
1577 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1578 }
1579
1580 /*
1581 * bioset_exit - exit a bioset initialized with bioset_init()
1582 *
1583 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1584 * kzalloc()).
1585 */
1586 void bioset_exit(struct bio_set *bs)
1587 {
1588 bio_alloc_cache_destroy(bs);
1589 if (bs->rescue_workqueue)
1590 destroy_workqueue(bs->rescue_workqueue);
1591 bs->rescue_workqueue = NULL;
1592
1593 mempool_exit(&bs->bio_pool);
1594 mempool_exit(&bs->bvec_pool);
1595
1596 bioset_integrity_free(bs);
1597 if (bs->bio_slab)
1598 bio_put_slab(bs);
1599 bs->bio_slab = NULL;
1600 }
1601 EXPORT_SYMBOL(bioset_exit);
1602
1603 /**
1604 * bioset_init - Initialize a bio_set
1605 * @bs: pool to initialize
1606 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1607 * @front_pad: Number of bytes to allocate in front of the returned bio
1608 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1609 * and %BIOSET_NEED_RESCUER
1610 *
1611 * Description:
1612 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1613 * to ask for a number of bytes to be allocated in front of the bio.
1614 * Front pad allocation is useful for embedding the bio inside
1615 * another structure, to avoid allocating extra data to go with the bio.
1616 * Note that the bio must be embedded at the END of that structure always,
1617 * or things will break badly.
1618 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1619 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1620 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1621 * dispatch queued requests when the mempool runs out of space.
1622 *
1623 */
1624 int bioset_init(struct bio_set *bs,
1625 unsigned int pool_size,
1626 unsigned int front_pad,
1627 int flags)
1628 {
1629 bs->front_pad = front_pad;
1630 if (flags & BIOSET_NEED_BVECS)
1631 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1632 else
1633 bs->back_pad = 0;
1634
1635 spin_lock_init(&bs->rescue_lock);
1636 bio_list_init(&bs->rescue_list);
1637 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1638
1639 bs->bio_slab = bio_find_or_create_slab(bs);
1640 if (!bs->bio_slab)
1641 return -ENOMEM;
1642
1643 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1644 goto bad;
1645
1646 if ((flags & BIOSET_NEED_BVECS) &&
1647 biovec_init_pool(&bs->bvec_pool, pool_size))
1648 goto bad;
1649
1650 if (flags & BIOSET_NEED_RESCUER) {
1651 bs->rescue_workqueue = alloc_workqueue("bioset",
1652 WQ_MEM_RECLAIM, 0);
1653 if (!bs->rescue_workqueue)
1654 goto bad;
1655 }
1656 if (flags & BIOSET_PERCPU_CACHE) {
1657 bs->cache = alloc_percpu(struct bio_alloc_cache);
1658 if (!bs->cache)
1659 goto bad;
1660 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1661 }
1662
1663 return 0;
1664 bad:
1665 bioset_exit(bs);
1666 return -ENOMEM;
1667 }
1668 EXPORT_SYMBOL(bioset_init);
1669
1670 /*
1671 * Initialize and setup a new bio_set, based on the settings from
1672 * another bio_set.
1673 */
1674 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1675 {
1676 int flags;
1677
1678 flags = 0;
1679 if (src->bvec_pool.min_nr)
1680 flags |= BIOSET_NEED_BVECS;
1681 if (src->rescue_workqueue)
1682 flags |= BIOSET_NEED_RESCUER;
1683
1684 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1685 }
1686 EXPORT_SYMBOL(bioset_init_from_src);
1687
1688 /**
1689 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1690 * @kiocb: kiocb describing the IO
1691 * @nr_vecs: number of iovecs to pre-allocate
1692 * @bs: bio_set to allocate from
1693 *
1694 * Description:
1695 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1696 * used to check if we should dip into the per-cpu bio_set allocation
1697 * cache. The allocation uses GFP_KERNEL internally. On return, the
1698 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1699 * MUST be done from process context, not hard/soft IRQ.
1700 *
1701 */
1702 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1703 struct bio_set *bs)
1704 {
1705 struct bio_alloc_cache *cache;
1706 struct bio *bio;
1707
1708 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1709 return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1710
1711 cache = per_cpu_ptr(bs->cache, get_cpu());
1712 bio = bio_list_pop(&cache->free_list);
1713 if (bio) {
1714 cache->nr--;
1715 put_cpu();
1716 bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1717 bio->bi_pool = bs;
1718 bio_set_flag(bio, BIO_PERCPU_CACHE);
1719 return bio;
1720 }
1721 put_cpu();
1722 bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1723 bio_set_flag(bio, BIO_PERCPU_CACHE);
1724 return bio;
1725 }
1726 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1727
1728 static int __init init_bio(void)
1729 {
1730 int i;
1731
1732 bio_integrity_init();
1733
1734 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1735 struct biovec_slab *bvs = bvec_slabs + i;
1736
1737 bvs->slab = kmem_cache_create(bvs->name,
1738 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1739 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1740 }
1741
1742 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1743 bio_cpu_dead);
1744
1745 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1746 panic("bio: can't allocate bios\n");
1747
1748 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1749 panic("bio: can't create integrity pool\n");
1750
1751 return 0;
1752 }
1753 subsys_initcall(init_bio);