]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/bio.c
block: simplify bio_add_page()
[mirror_ubuntu-bionic-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 /*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50
51 /*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125 }
126
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152 out:
153 mutex_unlock(&bio_slab_lock);
154 }
155
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 return bvec_slabs[idx].nr_vecs;
159 }
160
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172 }
173
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
176 {
177 struct bio_vec *bvl;
178
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 bvl = mempool_alloc(pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
215
216 /*
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
220 */
221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222
223 /*
224 * Try a slab allocation. If this fails and __GFP_WAIT
225 * is set, retry with the 1-entry mempool
226 */
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
234 return bvl;
235 }
236
237 static void __bio_free(struct bio *bio)
238 {
239 bio_disassociate_task(bio);
240
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
243 }
244
245 static void bio_free(struct bio *bio)
246 {
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
253 if (bio_flagged(bio, BIO_OWNS_VEC))
254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
260 p -= bs->front_pad;
261
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
267 }
268
269 void bio_init(struct bio *bio)
270 {
271 memset(bio, 0, sizeof(*bio));
272 atomic_set(&bio->__bi_remaining, 1);
273 atomic_set(&bio->__bi_cnt, 1);
274 }
275 EXPORT_SYMBOL(bio_init);
276
277 /**
278 * bio_reset - reinitialize a bio
279 * @bio: bio to reset
280 *
281 * Description:
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
286 */
287 void bio_reset(struct bio *bio)
288 {
289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290
291 __bio_free(bio);
292
293 memset(bio, 0, BIO_RESET_BYTES);
294 bio->bi_flags = flags;
295 atomic_set(&bio->__bi_remaining, 1);
296 }
297 EXPORT_SYMBOL(bio_reset);
298
299 static void bio_chain_endio(struct bio *bio)
300 {
301 struct bio *parent = bio->bi_private;
302
303 parent->bi_error = bio->bi_error;
304 bio_endio(parent);
305 bio_put(bio);
306 }
307
308 /*
309 * Increment chain count for the bio. Make sure the CHAIN flag update
310 * is visible before the raised count.
311 */
312 static inline void bio_inc_remaining(struct bio *bio)
313 {
314 bio_set_flag(bio, BIO_CHAIN);
315 smp_mb__before_atomic();
316 atomic_inc(&bio->__bi_remaining);
317 }
318
319 /**
320 * bio_chain - chain bio completions
321 * @bio: the target bio
322 * @parent: the @bio's parent bio
323 *
324 * The caller won't have a bi_end_io called when @bio completes - instead,
325 * @parent's bi_end_io won't be called until both @parent and @bio have
326 * completed; the chained bio will also be freed when it completes.
327 *
328 * The caller must not set bi_private or bi_end_io in @bio.
329 */
330 void bio_chain(struct bio *bio, struct bio *parent)
331 {
332 BUG_ON(bio->bi_private || bio->bi_end_io);
333
334 bio->bi_private = parent;
335 bio->bi_end_io = bio_chain_endio;
336 bio_inc_remaining(parent);
337 }
338 EXPORT_SYMBOL(bio_chain);
339
340 static void bio_alloc_rescue(struct work_struct *work)
341 {
342 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
343 struct bio *bio;
344
345 while (1) {
346 spin_lock(&bs->rescue_lock);
347 bio = bio_list_pop(&bs->rescue_list);
348 spin_unlock(&bs->rescue_lock);
349
350 if (!bio)
351 break;
352
353 generic_make_request(bio);
354 }
355 }
356
357 static void punt_bios_to_rescuer(struct bio_set *bs)
358 {
359 struct bio_list punt, nopunt;
360 struct bio *bio;
361
362 /*
363 * In order to guarantee forward progress we must punt only bios that
364 * were allocated from this bio_set; otherwise, if there was a bio on
365 * there for a stacking driver higher up in the stack, processing it
366 * could require allocating bios from this bio_set, and doing that from
367 * our own rescuer would be bad.
368 *
369 * Since bio lists are singly linked, pop them all instead of trying to
370 * remove from the middle of the list:
371 */
372
373 bio_list_init(&punt);
374 bio_list_init(&nopunt);
375
376 while ((bio = bio_list_pop(current->bio_list)))
377 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
378
379 *current->bio_list = nopunt;
380
381 spin_lock(&bs->rescue_lock);
382 bio_list_merge(&bs->rescue_list, &punt);
383 spin_unlock(&bs->rescue_lock);
384
385 queue_work(bs->rescue_workqueue, &bs->rescue_work);
386 }
387
388 /**
389 * bio_alloc_bioset - allocate a bio for I/O
390 * @gfp_mask: the GFP_ mask given to the slab allocator
391 * @nr_iovecs: number of iovecs to pre-allocate
392 * @bs: the bio_set to allocate from.
393 *
394 * Description:
395 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
396 * backed by the @bs's mempool.
397 *
398 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
399 * able to allocate a bio. This is due to the mempool guarantees. To make this
400 * work, callers must never allocate more than 1 bio at a time from this pool.
401 * Callers that need to allocate more than 1 bio must always submit the
402 * previously allocated bio for IO before attempting to allocate a new one.
403 * Failure to do so can cause deadlocks under memory pressure.
404 *
405 * Note that when running under generic_make_request() (i.e. any block
406 * driver), bios are not submitted until after you return - see the code in
407 * generic_make_request() that converts recursion into iteration, to prevent
408 * stack overflows.
409 *
410 * This would normally mean allocating multiple bios under
411 * generic_make_request() would be susceptible to deadlocks, but we have
412 * deadlock avoidance code that resubmits any blocked bios from a rescuer
413 * thread.
414 *
415 * However, we do not guarantee forward progress for allocations from other
416 * mempools. Doing multiple allocations from the same mempool under
417 * generic_make_request() should be avoided - instead, use bio_set's front_pad
418 * for per bio allocations.
419 *
420 * RETURNS:
421 * Pointer to new bio on success, NULL on failure.
422 */
423 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
424 {
425 gfp_t saved_gfp = gfp_mask;
426 unsigned front_pad;
427 unsigned inline_vecs;
428 unsigned long idx = BIO_POOL_NONE;
429 struct bio_vec *bvl = NULL;
430 struct bio *bio;
431 void *p;
432
433 if (!bs) {
434 if (nr_iovecs > UIO_MAXIOV)
435 return NULL;
436
437 p = kmalloc(sizeof(struct bio) +
438 nr_iovecs * sizeof(struct bio_vec),
439 gfp_mask);
440 front_pad = 0;
441 inline_vecs = nr_iovecs;
442 } else {
443 /* should not use nobvec bioset for nr_iovecs > 0 */
444 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
445 return NULL;
446 /*
447 * generic_make_request() converts recursion to iteration; this
448 * means if we're running beneath it, any bios we allocate and
449 * submit will not be submitted (and thus freed) until after we
450 * return.
451 *
452 * This exposes us to a potential deadlock if we allocate
453 * multiple bios from the same bio_set() while running
454 * underneath generic_make_request(). If we were to allocate
455 * multiple bios (say a stacking block driver that was splitting
456 * bios), we would deadlock if we exhausted the mempool's
457 * reserve.
458 *
459 * We solve this, and guarantee forward progress, with a rescuer
460 * workqueue per bio_set. If we go to allocate and there are
461 * bios on current->bio_list, we first try the allocation
462 * without __GFP_WAIT; if that fails, we punt those bios we
463 * would be blocking to the rescuer workqueue before we retry
464 * with the original gfp_flags.
465 */
466
467 if (current->bio_list && !bio_list_empty(current->bio_list))
468 gfp_mask &= ~__GFP_WAIT;
469
470 p = mempool_alloc(bs->bio_pool, gfp_mask);
471 if (!p && gfp_mask != saved_gfp) {
472 punt_bios_to_rescuer(bs);
473 gfp_mask = saved_gfp;
474 p = mempool_alloc(bs->bio_pool, gfp_mask);
475 }
476
477 front_pad = bs->front_pad;
478 inline_vecs = BIO_INLINE_VECS;
479 }
480
481 if (unlikely(!p))
482 return NULL;
483
484 bio = p + front_pad;
485 bio_init(bio);
486
487 if (nr_iovecs > inline_vecs) {
488 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
489 if (!bvl && gfp_mask != saved_gfp) {
490 punt_bios_to_rescuer(bs);
491 gfp_mask = saved_gfp;
492 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
493 }
494
495 if (unlikely(!bvl))
496 goto err_free;
497
498 bio_set_flag(bio, BIO_OWNS_VEC);
499 } else if (nr_iovecs) {
500 bvl = bio->bi_inline_vecs;
501 }
502
503 bio->bi_pool = bs;
504 bio->bi_flags |= idx << BIO_POOL_OFFSET;
505 bio->bi_max_vecs = nr_iovecs;
506 bio->bi_io_vec = bvl;
507 return bio;
508
509 err_free:
510 mempool_free(p, bs->bio_pool);
511 return NULL;
512 }
513 EXPORT_SYMBOL(bio_alloc_bioset);
514
515 void zero_fill_bio(struct bio *bio)
516 {
517 unsigned long flags;
518 struct bio_vec bv;
519 struct bvec_iter iter;
520
521 bio_for_each_segment(bv, bio, iter) {
522 char *data = bvec_kmap_irq(&bv, &flags);
523 memset(data, 0, bv.bv_len);
524 flush_dcache_page(bv.bv_page);
525 bvec_kunmap_irq(data, &flags);
526 }
527 }
528 EXPORT_SYMBOL(zero_fill_bio);
529
530 /**
531 * bio_put - release a reference to a bio
532 * @bio: bio to release reference to
533 *
534 * Description:
535 * Put a reference to a &struct bio, either one you have gotten with
536 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
537 **/
538 void bio_put(struct bio *bio)
539 {
540 if (!bio_flagged(bio, BIO_REFFED))
541 bio_free(bio);
542 else {
543 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
544
545 /*
546 * last put frees it
547 */
548 if (atomic_dec_and_test(&bio->__bi_cnt))
549 bio_free(bio);
550 }
551 }
552 EXPORT_SYMBOL(bio_put);
553
554 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
555 {
556 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
557 blk_recount_segments(q, bio);
558
559 return bio->bi_phys_segments;
560 }
561 EXPORT_SYMBOL(bio_phys_segments);
562
563 /**
564 * __bio_clone_fast - clone a bio that shares the original bio's biovec
565 * @bio: destination bio
566 * @bio_src: bio to clone
567 *
568 * Clone a &bio. Caller will own the returned bio, but not
569 * the actual data it points to. Reference count of returned
570 * bio will be one.
571 *
572 * Caller must ensure that @bio_src is not freed before @bio.
573 */
574 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
575 {
576 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
577
578 /*
579 * most users will be overriding ->bi_bdev with a new target,
580 * so we don't set nor calculate new physical/hw segment counts here
581 */
582 bio->bi_bdev = bio_src->bi_bdev;
583 bio_set_flag(bio, BIO_CLONED);
584 bio->bi_rw = bio_src->bi_rw;
585 bio->bi_iter = bio_src->bi_iter;
586 bio->bi_io_vec = bio_src->bi_io_vec;
587 }
588 EXPORT_SYMBOL(__bio_clone_fast);
589
590 /**
591 * bio_clone_fast - clone a bio that shares the original bio's biovec
592 * @bio: bio to clone
593 * @gfp_mask: allocation priority
594 * @bs: bio_set to allocate from
595 *
596 * Like __bio_clone_fast, only also allocates the returned bio
597 */
598 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
599 {
600 struct bio *b;
601
602 b = bio_alloc_bioset(gfp_mask, 0, bs);
603 if (!b)
604 return NULL;
605
606 __bio_clone_fast(b, bio);
607
608 if (bio_integrity(bio)) {
609 int ret;
610
611 ret = bio_integrity_clone(b, bio, gfp_mask);
612
613 if (ret < 0) {
614 bio_put(b);
615 return NULL;
616 }
617 }
618
619 return b;
620 }
621 EXPORT_SYMBOL(bio_clone_fast);
622
623 /**
624 * bio_clone_bioset - clone a bio
625 * @bio_src: bio to clone
626 * @gfp_mask: allocation priority
627 * @bs: bio_set to allocate from
628 *
629 * Clone bio. Caller will own the returned bio, but not the actual data it
630 * points to. Reference count of returned bio will be one.
631 */
632 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
633 struct bio_set *bs)
634 {
635 struct bvec_iter iter;
636 struct bio_vec bv;
637 struct bio *bio;
638
639 /*
640 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
641 * bio_src->bi_io_vec to bio->bi_io_vec.
642 *
643 * We can't do that anymore, because:
644 *
645 * - The point of cloning the biovec is to produce a bio with a biovec
646 * the caller can modify: bi_idx and bi_bvec_done should be 0.
647 *
648 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
649 * we tried to clone the whole thing bio_alloc_bioset() would fail.
650 * But the clone should succeed as long as the number of biovecs we
651 * actually need to allocate is fewer than BIO_MAX_PAGES.
652 *
653 * - Lastly, bi_vcnt should not be looked at or relied upon by code
654 * that does not own the bio - reason being drivers don't use it for
655 * iterating over the biovec anymore, so expecting it to be kept up
656 * to date (i.e. for clones that share the parent biovec) is just
657 * asking for trouble and would force extra work on
658 * __bio_clone_fast() anyways.
659 */
660
661 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
662 if (!bio)
663 return NULL;
664
665 bio->bi_bdev = bio_src->bi_bdev;
666 bio->bi_rw = bio_src->bi_rw;
667 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
668 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
669
670 if (bio->bi_rw & REQ_DISCARD)
671 goto integrity_clone;
672
673 if (bio->bi_rw & REQ_WRITE_SAME) {
674 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
675 goto integrity_clone;
676 }
677
678 bio_for_each_segment(bv, bio_src, iter)
679 bio->bi_io_vec[bio->bi_vcnt++] = bv;
680
681 integrity_clone:
682 if (bio_integrity(bio_src)) {
683 int ret;
684
685 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
686 if (ret < 0) {
687 bio_put(bio);
688 return NULL;
689 }
690 }
691
692 return bio;
693 }
694 EXPORT_SYMBOL(bio_clone_bioset);
695
696 /**
697 * bio_get_nr_vecs - return approx number of vecs
698 * @bdev: I/O target
699 *
700 * Return the approximate number of pages we can send to this target.
701 * There's no guarantee that you will be able to fit this number of pages
702 * into a bio, it does not account for dynamic restrictions that vary
703 * on offset.
704 */
705 int bio_get_nr_vecs(struct block_device *bdev)
706 {
707 struct request_queue *q = bdev_get_queue(bdev);
708 int nr_pages;
709
710 nr_pages = min_t(unsigned,
711 queue_max_segments(q),
712 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
713
714 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
715
716 }
717 EXPORT_SYMBOL(bio_get_nr_vecs);
718
719 /**
720 * bio_add_pc_page - attempt to add page to bio
721 * @q: the target queue
722 * @bio: destination bio
723 * @page: page to add
724 * @len: vec entry length
725 * @offset: vec entry offset
726 *
727 * Attempt to add a page to the bio_vec maplist. This can fail for a
728 * number of reasons, such as the bio being full or target block device
729 * limitations. The target block device must allow bio's up to PAGE_SIZE,
730 * so it is always possible to add a single page to an empty bio.
731 *
732 * This should only be used by REQ_PC bios.
733 */
734 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
735 *page, unsigned int len, unsigned int offset)
736 {
737 int retried_segments = 0;
738 struct bio_vec *bvec;
739
740 /*
741 * cloned bio must not modify vec list
742 */
743 if (unlikely(bio_flagged(bio, BIO_CLONED)))
744 return 0;
745
746 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
747 return 0;
748
749 /*
750 * For filesystems with a blocksize smaller than the pagesize
751 * we will often be called with the same page as last time and
752 * a consecutive offset. Optimize this special case.
753 */
754 if (bio->bi_vcnt > 0) {
755 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
756
757 if (page == prev->bv_page &&
758 offset == prev->bv_offset + prev->bv_len) {
759 prev->bv_len += len;
760 bio->bi_iter.bi_size += len;
761 goto done;
762 }
763
764 /*
765 * If the queue doesn't support SG gaps and adding this
766 * offset would create a gap, disallow it.
767 */
768 if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
769 bvec_gap_to_prev(prev, offset))
770 return 0;
771 }
772
773 if (bio->bi_vcnt >= bio->bi_max_vecs)
774 return 0;
775
776 /*
777 * setup the new entry, we might clear it again later if we
778 * cannot add the page
779 */
780 bvec = &bio->bi_io_vec[bio->bi_vcnt];
781 bvec->bv_page = page;
782 bvec->bv_len = len;
783 bvec->bv_offset = offset;
784 bio->bi_vcnt++;
785 bio->bi_phys_segments++;
786 bio->bi_iter.bi_size += len;
787
788 /*
789 * Perform a recount if the number of segments is greater
790 * than queue_max_segments(q).
791 */
792
793 while (bio->bi_phys_segments > queue_max_segments(q)) {
794
795 if (retried_segments)
796 goto failed;
797
798 retried_segments = 1;
799 blk_recount_segments(q, bio);
800 }
801
802 /* If we may be able to merge these biovecs, force a recount */
803 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
804 bio_clear_flag(bio, BIO_SEG_VALID);
805
806 done:
807 return len;
808
809 failed:
810 bvec->bv_page = NULL;
811 bvec->bv_len = 0;
812 bvec->bv_offset = 0;
813 bio->bi_vcnt--;
814 bio->bi_iter.bi_size -= len;
815 blk_recount_segments(q, bio);
816 return 0;
817 }
818 EXPORT_SYMBOL(bio_add_pc_page);
819
820 /**
821 * bio_add_page - attempt to add page to bio
822 * @bio: destination bio
823 * @page: page to add
824 * @len: vec entry length
825 * @offset: vec entry offset
826 *
827 * Attempt to add a page to the bio_vec maplist. This will only fail
828 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
829 */
830 int bio_add_page(struct bio *bio, struct page *page,
831 unsigned int len, unsigned int offset)
832 {
833 struct bio_vec *bv;
834
835 /*
836 * cloned bio must not modify vec list
837 */
838 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
839 return 0;
840
841 /*
842 * For filesystems with a blocksize smaller than the pagesize
843 * we will often be called with the same page as last time and
844 * a consecutive offset. Optimize this special case.
845 */
846 if (bio->bi_vcnt > 0) {
847 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
848
849 if (page == bv->bv_page &&
850 offset == bv->bv_offset + bv->bv_len) {
851 bv->bv_len += len;
852 goto done;
853 }
854 }
855
856 if (bio->bi_vcnt >= bio->bi_max_vecs)
857 return 0;
858
859 bv = &bio->bi_io_vec[bio->bi_vcnt];
860 bv->bv_page = page;
861 bv->bv_len = len;
862 bv->bv_offset = offset;
863
864 bio->bi_vcnt++;
865 done:
866 bio->bi_iter.bi_size += len;
867 return len;
868 }
869 EXPORT_SYMBOL(bio_add_page);
870
871 struct submit_bio_ret {
872 struct completion event;
873 int error;
874 };
875
876 static void submit_bio_wait_endio(struct bio *bio)
877 {
878 struct submit_bio_ret *ret = bio->bi_private;
879
880 ret->error = bio->bi_error;
881 complete(&ret->event);
882 }
883
884 /**
885 * submit_bio_wait - submit a bio, and wait until it completes
886 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
887 * @bio: The &struct bio which describes the I/O
888 *
889 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
890 * bio_endio() on failure.
891 */
892 int submit_bio_wait(int rw, struct bio *bio)
893 {
894 struct submit_bio_ret ret;
895
896 rw |= REQ_SYNC;
897 init_completion(&ret.event);
898 bio->bi_private = &ret;
899 bio->bi_end_io = submit_bio_wait_endio;
900 submit_bio(rw, bio);
901 wait_for_completion(&ret.event);
902
903 return ret.error;
904 }
905 EXPORT_SYMBOL(submit_bio_wait);
906
907 /**
908 * bio_advance - increment/complete a bio by some number of bytes
909 * @bio: bio to advance
910 * @bytes: number of bytes to complete
911 *
912 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
913 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
914 * be updated on the last bvec as well.
915 *
916 * @bio will then represent the remaining, uncompleted portion of the io.
917 */
918 void bio_advance(struct bio *bio, unsigned bytes)
919 {
920 if (bio_integrity(bio))
921 bio_integrity_advance(bio, bytes);
922
923 bio_advance_iter(bio, &bio->bi_iter, bytes);
924 }
925 EXPORT_SYMBOL(bio_advance);
926
927 /**
928 * bio_alloc_pages - allocates a single page for each bvec in a bio
929 * @bio: bio to allocate pages for
930 * @gfp_mask: flags for allocation
931 *
932 * Allocates pages up to @bio->bi_vcnt.
933 *
934 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
935 * freed.
936 */
937 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
938 {
939 int i;
940 struct bio_vec *bv;
941
942 bio_for_each_segment_all(bv, bio, i) {
943 bv->bv_page = alloc_page(gfp_mask);
944 if (!bv->bv_page) {
945 while (--bv >= bio->bi_io_vec)
946 __free_page(bv->bv_page);
947 return -ENOMEM;
948 }
949 }
950
951 return 0;
952 }
953 EXPORT_SYMBOL(bio_alloc_pages);
954
955 /**
956 * bio_copy_data - copy contents of data buffers from one chain of bios to
957 * another
958 * @src: source bio list
959 * @dst: destination bio list
960 *
961 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
962 * @src and @dst as linked lists of bios.
963 *
964 * Stops when it reaches the end of either @src or @dst - that is, copies
965 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
966 */
967 void bio_copy_data(struct bio *dst, struct bio *src)
968 {
969 struct bvec_iter src_iter, dst_iter;
970 struct bio_vec src_bv, dst_bv;
971 void *src_p, *dst_p;
972 unsigned bytes;
973
974 src_iter = src->bi_iter;
975 dst_iter = dst->bi_iter;
976
977 while (1) {
978 if (!src_iter.bi_size) {
979 src = src->bi_next;
980 if (!src)
981 break;
982
983 src_iter = src->bi_iter;
984 }
985
986 if (!dst_iter.bi_size) {
987 dst = dst->bi_next;
988 if (!dst)
989 break;
990
991 dst_iter = dst->bi_iter;
992 }
993
994 src_bv = bio_iter_iovec(src, src_iter);
995 dst_bv = bio_iter_iovec(dst, dst_iter);
996
997 bytes = min(src_bv.bv_len, dst_bv.bv_len);
998
999 src_p = kmap_atomic(src_bv.bv_page);
1000 dst_p = kmap_atomic(dst_bv.bv_page);
1001
1002 memcpy(dst_p + dst_bv.bv_offset,
1003 src_p + src_bv.bv_offset,
1004 bytes);
1005
1006 kunmap_atomic(dst_p);
1007 kunmap_atomic(src_p);
1008
1009 bio_advance_iter(src, &src_iter, bytes);
1010 bio_advance_iter(dst, &dst_iter, bytes);
1011 }
1012 }
1013 EXPORT_SYMBOL(bio_copy_data);
1014
1015 struct bio_map_data {
1016 int is_our_pages;
1017 struct iov_iter iter;
1018 struct iovec iov[];
1019 };
1020
1021 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1022 gfp_t gfp_mask)
1023 {
1024 if (iov_count > UIO_MAXIOV)
1025 return NULL;
1026
1027 return kmalloc(sizeof(struct bio_map_data) +
1028 sizeof(struct iovec) * iov_count, gfp_mask);
1029 }
1030
1031 /**
1032 * bio_copy_from_iter - copy all pages from iov_iter to bio
1033 * @bio: The &struct bio which describes the I/O as destination
1034 * @iter: iov_iter as source
1035 *
1036 * Copy all pages from iov_iter to bio.
1037 * Returns 0 on success, or error on failure.
1038 */
1039 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1040 {
1041 int i;
1042 struct bio_vec *bvec;
1043
1044 bio_for_each_segment_all(bvec, bio, i) {
1045 ssize_t ret;
1046
1047 ret = copy_page_from_iter(bvec->bv_page,
1048 bvec->bv_offset,
1049 bvec->bv_len,
1050 &iter);
1051
1052 if (!iov_iter_count(&iter))
1053 break;
1054
1055 if (ret < bvec->bv_len)
1056 return -EFAULT;
1057 }
1058
1059 return 0;
1060 }
1061
1062 /**
1063 * bio_copy_to_iter - copy all pages from bio to iov_iter
1064 * @bio: The &struct bio which describes the I/O as source
1065 * @iter: iov_iter as destination
1066 *
1067 * Copy all pages from bio to iov_iter.
1068 * Returns 0 on success, or error on failure.
1069 */
1070 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1071 {
1072 int i;
1073 struct bio_vec *bvec;
1074
1075 bio_for_each_segment_all(bvec, bio, i) {
1076 ssize_t ret;
1077
1078 ret = copy_page_to_iter(bvec->bv_page,
1079 bvec->bv_offset,
1080 bvec->bv_len,
1081 &iter);
1082
1083 if (!iov_iter_count(&iter))
1084 break;
1085
1086 if (ret < bvec->bv_len)
1087 return -EFAULT;
1088 }
1089
1090 return 0;
1091 }
1092
1093 static void bio_free_pages(struct bio *bio)
1094 {
1095 struct bio_vec *bvec;
1096 int i;
1097
1098 bio_for_each_segment_all(bvec, bio, i)
1099 __free_page(bvec->bv_page);
1100 }
1101
1102 /**
1103 * bio_uncopy_user - finish previously mapped bio
1104 * @bio: bio being terminated
1105 *
1106 * Free pages allocated from bio_copy_user_iov() and write back data
1107 * to user space in case of a read.
1108 */
1109 int bio_uncopy_user(struct bio *bio)
1110 {
1111 struct bio_map_data *bmd = bio->bi_private;
1112 int ret = 0;
1113
1114 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1115 /*
1116 * if we're in a workqueue, the request is orphaned, so
1117 * don't copy into a random user address space, just free.
1118 */
1119 if (current->mm && bio_data_dir(bio) == READ)
1120 ret = bio_copy_to_iter(bio, bmd->iter);
1121 if (bmd->is_our_pages)
1122 bio_free_pages(bio);
1123 }
1124 kfree(bmd);
1125 bio_put(bio);
1126 return ret;
1127 }
1128 EXPORT_SYMBOL(bio_uncopy_user);
1129
1130 /**
1131 * bio_copy_user_iov - copy user data to bio
1132 * @q: destination block queue
1133 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1134 * @iter: iovec iterator
1135 * @gfp_mask: memory allocation flags
1136 *
1137 * Prepares and returns a bio for indirect user io, bouncing data
1138 * to/from kernel pages as necessary. Must be paired with
1139 * call bio_uncopy_user() on io completion.
1140 */
1141 struct bio *bio_copy_user_iov(struct request_queue *q,
1142 struct rq_map_data *map_data,
1143 const struct iov_iter *iter,
1144 gfp_t gfp_mask)
1145 {
1146 struct bio_map_data *bmd;
1147 struct page *page;
1148 struct bio *bio;
1149 int i, ret;
1150 int nr_pages = 0;
1151 unsigned int len = iter->count;
1152 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1153
1154 for (i = 0; i < iter->nr_segs; i++) {
1155 unsigned long uaddr;
1156 unsigned long end;
1157 unsigned long start;
1158
1159 uaddr = (unsigned long) iter->iov[i].iov_base;
1160 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1161 >> PAGE_SHIFT;
1162 start = uaddr >> PAGE_SHIFT;
1163
1164 /*
1165 * Overflow, abort
1166 */
1167 if (end < start)
1168 return ERR_PTR(-EINVAL);
1169
1170 nr_pages += end - start;
1171 }
1172
1173 if (offset)
1174 nr_pages++;
1175
1176 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1177 if (!bmd)
1178 return ERR_PTR(-ENOMEM);
1179
1180 /*
1181 * We need to do a deep copy of the iov_iter including the iovecs.
1182 * The caller provided iov might point to an on-stack or otherwise
1183 * shortlived one.
1184 */
1185 bmd->is_our_pages = map_data ? 0 : 1;
1186 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1187 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1188 iter->nr_segs, iter->count);
1189
1190 ret = -ENOMEM;
1191 bio = bio_kmalloc(gfp_mask, nr_pages);
1192 if (!bio)
1193 goto out_bmd;
1194
1195 if (iter->type & WRITE)
1196 bio->bi_rw |= REQ_WRITE;
1197
1198 ret = 0;
1199
1200 if (map_data) {
1201 nr_pages = 1 << map_data->page_order;
1202 i = map_data->offset / PAGE_SIZE;
1203 }
1204 while (len) {
1205 unsigned int bytes = PAGE_SIZE;
1206
1207 bytes -= offset;
1208
1209 if (bytes > len)
1210 bytes = len;
1211
1212 if (map_data) {
1213 if (i == map_data->nr_entries * nr_pages) {
1214 ret = -ENOMEM;
1215 break;
1216 }
1217
1218 page = map_data->pages[i / nr_pages];
1219 page += (i % nr_pages);
1220
1221 i++;
1222 } else {
1223 page = alloc_page(q->bounce_gfp | gfp_mask);
1224 if (!page) {
1225 ret = -ENOMEM;
1226 break;
1227 }
1228 }
1229
1230 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1231 break;
1232
1233 len -= bytes;
1234 offset = 0;
1235 }
1236
1237 if (ret)
1238 goto cleanup;
1239
1240 /*
1241 * success
1242 */
1243 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1244 (map_data && map_data->from_user)) {
1245 ret = bio_copy_from_iter(bio, *iter);
1246 if (ret)
1247 goto cleanup;
1248 }
1249
1250 bio->bi_private = bmd;
1251 return bio;
1252 cleanup:
1253 if (!map_data)
1254 bio_free_pages(bio);
1255 bio_put(bio);
1256 out_bmd:
1257 kfree(bmd);
1258 return ERR_PTR(ret);
1259 }
1260
1261 /**
1262 * bio_map_user_iov - map user iovec into bio
1263 * @q: the struct request_queue for the bio
1264 * @iter: iovec iterator
1265 * @gfp_mask: memory allocation flags
1266 *
1267 * Map the user space address into a bio suitable for io to a block
1268 * device. Returns an error pointer in case of error.
1269 */
1270 struct bio *bio_map_user_iov(struct request_queue *q,
1271 const struct iov_iter *iter,
1272 gfp_t gfp_mask)
1273 {
1274 int j;
1275 int nr_pages = 0;
1276 struct page **pages;
1277 struct bio *bio;
1278 int cur_page = 0;
1279 int ret, offset;
1280 struct iov_iter i;
1281 struct iovec iov;
1282
1283 iov_for_each(iov, i, *iter) {
1284 unsigned long uaddr = (unsigned long) iov.iov_base;
1285 unsigned long len = iov.iov_len;
1286 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1287 unsigned long start = uaddr >> PAGE_SHIFT;
1288
1289 /*
1290 * Overflow, abort
1291 */
1292 if (end < start)
1293 return ERR_PTR(-EINVAL);
1294
1295 nr_pages += end - start;
1296 /*
1297 * buffer must be aligned to at least hardsector size for now
1298 */
1299 if (uaddr & queue_dma_alignment(q))
1300 return ERR_PTR(-EINVAL);
1301 }
1302
1303 if (!nr_pages)
1304 return ERR_PTR(-EINVAL);
1305
1306 bio = bio_kmalloc(gfp_mask, nr_pages);
1307 if (!bio)
1308 return ERR_PTR(-ENOMEM);
1309
1310 ret = -ENOMEM;
1311 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1312 if (!pages)
1313 goto out;
1314
1315 iov_for_each(iov, i, *iter) {
1316 unsigned long uaddr = (unsigned long) iov.iov_base;
1317 unsigned long len = iov.iov_len;
1318 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1319 unsigned long start = uaddr >> PAGE_SHIFT;
1320 const int local_nr_pages = end - start;
1321 const int page_limit = cur_page + local_nr_pages;
1322
1323 ret = get_user_pages_fast(uaddr, local_nr_pages,
1324 (iter->type & WRITE) != WRITE,
1325 &pages[cur_page]);
1326 if (ret < local_nr_pages) {
1327 ret = -EFAULT;
1328 goto out_unmap;
1329 }
1330
1331 offset = uaddr & ~PAGE_MASK;
1332 for (j = cur_page; j < page_limit; j++) {
1333 unsigned int bytes = PAGE_SIZE - offset;
1334
1335 if (len <= 0)
1336 break;
1337
1338 if (bytes > len)
1339 bytes = len;
1340
1341 /*
1342 * sorry...
1343 */
1344 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1345 bytes)
1346 break;
1347
1348 len -= bytes;
1349 offset = 0;
1350 }
1351
1352 cur_page = j;
1353 /*
1354 * release the pages we didn't map into the bio, if any
1355 */
1356 while (j < page_limit)
1357 page_cache_release(pages[j++]);
1358 }
1359
1360 kfree(pages);
1361
1362 /*
1363 * set data direction, and check if mapped pages need bouncing
1364 */
1365 if (iter->type & WRITE)
1366 bio->bi_rw |= REQ_WRITE;
1367
1368 bio_set_flag(bio, BIO_USER_MAPPED);
1369
1370 /*
1371 * subtle -- if __bio_map_user() ended up bouncing a bio,
1372 * it would normally disappear when its bi_end_io is run.
1373 * however, we need it for the unmap, so grab an extra
1374 * reference to it
1375 */
1376 bio_get(bio);
1377 return bio;
1378
1379 out_unmap:
1380 for (j = 0; j < nr_pages; j++) {
1381 if (!pages[j])
1382 break;
1383 page_cache_release(pages[j]);
1384 }
1385 out:
1386 kfree(pages);
1387 bio_put(bio);
1388 return ERR_PTR(ret);
1389 }
1390
1391 static void __bio_unmap_user(struct bio *bio)
1392 {
1393 struct bio_vec *bvec;
1394 int i;
1395
1396 /*
1397 * make sure we dirty pages we wrote to
1398 */
1399 bio_for_each_segment_all(bvec, bio, i) {
1400 if (bio_data_dir(bio) == READ)
1401 set_page_dirty_lock(bvec->bv_page);
1402
1403 page_cache_release(bvec->bv_page);
1404 }
1405
1406 bio_put(bio);
1407 }
1408
1409 /**
1410 * bio_unmap_user - unmap a bio
1411 * @bio: the bio being unmapped
1412 *
1413 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1414 * a process context.
1415 *
1416 * bio_unmap_user() may sleep.
1417 */
1418 void bio_unmap_user(struct bio *bio)
1419 {
1420 __bio_unmap_user(bio);
1421 bio_put(bio);
1422 }
1423 EXPORT_SYMBOL(bio_unmap_user);
1424
1425 static void bio_map_kern_endio(struct bio *bio)
1426 {
1427 bio_put(bio);
1428 }
1429
1430 /**
1431 * bio_map_kern - map kernel address into bio
1432 * @q: the struct request_queue for the bio
1433 * @data: pointer to buffer to map
1434 * @len: length in bytes
1435 * @gfp_mask: allocation flags for bio allocation
1436 *
1437 * Map the kernel address into a bio suitable for io to a block
1438 * device. Returns an error pointer in case of error.
1439 */
1440 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1441 gfp_t gfp_mask)
1442 {
1443 unsigned long kaddr = (unsigned long)data;
1444 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1445 unsigned long start = kaddr >> PAGE_SHIFT;
1446 const int nr_pages = end - start;
1447 int offset, i;
1448 struct bio *bio;
1449
1450 bio = bio_kmalloc(gfp_mask, nr_pages);
1451 if (!bio)
1452 return ERR_PTR(-ENOMEM);
1453
1454 offset = offset_in_page(kaddr);
1455 for (i = 0; i < nr_pages; i++) {
1456 unsigned int bytes = PAGE_SIZE - offset;
1457
1458 if (len <= 0)
1459 break;
1460
1461 if (bytes > len)
1462 bytes = len;
1463
1464 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1465 offset) < bytes) {
1466 /* we don't support partial mappings */
1467 bio_put(bio);
1468 return ERR_PTR(-EINVAL);
1469 }
1470
1471 data += bytes;
1472 len -= bytes;
1473 offset = 0;
1474 }
1475
1476 bio->bi_end_io = bio_map_kern_endio;
1477 return bio;
1478 }
1479 EXPORT_SYMBOL(bio_map_kern);
1480
1481 static void bio_copy_kern_endio(struct bio *bio)
1482 {
1483 bio_free_pages(bio);
1484 bio_put(bio);
1485 }
1486
1487 static void bio_copy_kern_endio_read(struct bio *bio)
1488 {
1489 char *p = bio->bi_private;
1490 struct bio_vec *bvec;
1491 int i;
1492
1493 bio_for_each_segment_all(bvec, bio, i) {
1494 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1495 p += bvec->bv_len;
1496 }
1497
1498 bio_copy_kern_endio(bio);
1499 }
1500
1501 /**
1502 * bio_copy_kern - copy kernel address into bio
1503 * @q: the struct request_queue for the bio
1504 * @data: pointer to buffer to copy
1505 * @len: length in bytes
1506 * @gfp_mask: allocation flags for bio and page allocation
1507 * @reading: data direction is READ
1508 *
1509 * copy the kernel address into a bio suitable for io to a block
1510 * device. Returns an error pointer in case of error.
1511 */
1512 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1513 gfp_t gfp_mask, int reading)
1514 {
1515 unsigned long kaddr = (unsigned long)data;
1516 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1517 unsigned long start = kaddr >> PAGE_SHIFT;
1518 struct bio *bio;
1519 void *p = data;
1520 int nr_pages = 0;
1521
1522 /*
1523 * Overflow, abort
1524 */
1525 if (end < start)
1526 return ERR_PTR(-EINVAL);
1527
1528 nr_pages = end - start;
1529 bio = bio_kmalloc(gfp_mask, nr_pages);
1530 if (!bio)
1531 return ERR_PTR(-ENOMEM);
1532
1533 while (len) {
1534 struct page *page;
1535 unsigned int bytes = PAGE_SIZE;
1536
1537 if (bytes > len)
1538 bytes = len;
1539
1540 page = alloc_page(q->bounce_gfp | gfp_mask);
1541 if (!page)
1542 goto cleanup;
1543
1544 if (!reading)
1545 memcpy(page_address(page), p, bytes);
1546
1547 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1548 break;
1549
1550 len -= bytes;
1551 p += bytes;
1552 }
1553
1554 if (reading) {
1555 bio->bi_end_io = bio_copy_kern_endio_read;
1556 bio->bi_private = data;
1557 } else {
1558 bio->bi_end_io = bio_copy_kern_endio;
1559 bio->bi_rw |= REQ_WRITE;
1560 }
1561
1562 return bio;
1563
1564 cleanup:
1565 bio_free_pages(bio);
1566 bio_put(bio);
1567 return ERR_PTR(-ENOMEM);
1568 }
1569 EXPORT_SYMBOL(bio_copy_kern);
1570
1571 /*
1572 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1573 * for performing direct-IO in BIOs.
1574 *
1575 * The problem is that we cannot run set_page_dirty() from interrupt context
1576 * because the required locks are not interrupt-safe. So what we can do is to
1577 * mark the pages dirty _before_ performing IO. And in interrupt context,
1578 * check that the pages are still dirty. If so, fine. If not, redirty them
1579 * in process context.
1580 *
1581 * We special-case compound pages here: normally this means reads into hugetlb
1582 * pages. The logic in here doesn't really work right for compound pages
1583 * because the VM does not uniformly chase down the head page in all cases.
1584 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1585 * handle them at all. So we skip compound pages here at an early stage.
1586 *
1587 * Note that this code is very hard to test under normal circumstances because
1588 * direct-io pins the pages with get_user_pages(). This makes
1589 * is_page_cache_freeable return false, and the VM will not clean the pages.
1590 * But other code (eg, flusher threads) could clean the pages if they are mapped
1591 * pagecache.
1592 *
1593 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1594 * deferred bio dirtying paths.
1595 */
1596
1597 /*
1598 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1599 */
1600 void bio_set_pages_dirty(struct bio *bio)
1601 {
1602 struct bio_vec *bvec;
1603 int i;
1604
1605 bio_for_each_segment_all(bvec, bio, i) {
1606 struct page *page = bvec->bv_page;
1607
1608 if (page && !PageCompound(page))
1609 set_page_dirty_lock(page);
1610 }
1611 }
1612
1613 static void bio_release_pages(struct bio *bio)
1614 {
1615 struct bio_vec *bvec;
1616 int i;
1617
1618 bio_for_each_segment_all(bvec, bio, i) {
1619 struct page *page = bvec->bv_page;
1620
1621 if (page)
1622 put_page(page);
1623 }
1624 }
1625
1626 /*
1627 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1628 * If they are, then fine. If, however, some pages are clean then they must
1629 * have been written out during the direct-IO read. So we take another ref on
1630 * the BIO and the offending pages and re-dirty the pages in process context.
1631 *
1632 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1633 * here on. It will run one page_cache_release() against each page and will
1634 * run one bio_put() against the BIO.
1635 */
1636
1637 static void bio_dirty_fn(struct work_struct *work);
1638
1639 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1640 static DEFINE_SPINLOCK(bio_dirty_lock);
1641 static struct bio *bio_dirty_list;
1642
1643 /*
1644 * This runs in process context
1645 */
1646 static void bio_dirty_fn(struct work_struct *work)
1647 {
1648 unsigned long flags;
1649 struct bio *bio;
1650
1651 spin_lock_irqsave(&bio_dirty_lock, flags);
1652 bio = bio_dirty_list;
1653 bio_dirty_list = NULL;
1654 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1655
1656 while (bio) {
1657 struct bio *next = bio->bi_private;
1658
1659 bio_set_pages_dirty(bio);
1660 bio_release_pages(bio);
1661 bio_put(bio);
1662 bio = next;
1663 }
1664 }
1665
1666 void bio_check_pages_dirty(struct bio *bio)
1667 {
1668 struct bio_vec *bvec;
1669 int nr_clean_pages = 0;
1670 int i;
1671
1672 bio_for_each_segment_all(bvec, bio, i) {
1673 struct page *page = bvec->bv_page;
1674
1675 if (PageDirty(page) || PageCompound(page)) {
1676 page_cache_release(page);
1677 bvec->bv_page = NULL;
1678 } else {
1679 nr_clean_pages++;
1680 }
1681 }
1682
1683 if (nr_clean_pages) {
1684 unsigned long flags;
1685
1686 spin_lock_irqsave(&bio_dirty_lock, flags);
1687 bio->bi_private = bio_dirty_list;
1688 bio_dirty_list = bio;
1689 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1690 schedule_work(&bio_dirty_work);
1691 } else {
1692 bio_put(bio);
1693 }
1694 }
1695
1696 void generic_start_io_acct(int rw, unsigned long sectors,
1697 struct hd_struct *part)
1698 {
1699 int cpu = part_stat_lock();
1700
1701 part_round_stats(cpu, part);
1702 part_stat_inc(cpu, part, ios[rw]);
1703 part_stat_add(cpu, part, sectors[rw], sectors);
1704 part_inc_in_flight(part, rw);
1705
1706 part_stat_unlock();
1707 }
1708 EXPORT_SYMBOL(generic_start_io_acct);
1709
1710 void generic_end_io_acct(int rw, struct hd_struct *part,
1711 unsigned long start_time)
1712 {
1713 unsigned long duration = jiffies - start_time;
1714 int cpu = part_stat_lock();
1715
1716 part_stat_add(cpu, part, ticks[rw], duration);
1717 part_round_stats(cpu, part);
1718 part_dec_in_flight(part, rw);
1719
1720 part_stat_unlock();
1721 }
1722 EXPORT_SYMBOL(generic_end_io_acct);
1723
1724 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1725 void bio_flush_dcache_pages(struct bio *bi)
1726 {
1727 struct bio_vec bvec;
1728 struct bvec_iter iter;
1729
1730 bio_for_each_segment(bvec, bi, iter)
1731 flush_dcache_page(bvec.bv_page);
1732 }
1733 EXPORT_SYMBOL(bio_flush_dcache_pages);
1734 #endif
1735
1736 static inline bool bio_remaining_done(struct bio *bio)
1737 {
1738 /*
1739 * If we're not chaining, then ->__bi_remaining is always 1 and
1740 * we always end io on the first invocation.
1741 */
1742 if (!bio_flagged(bio, BIO_CHAIN))
1743 return true;
1744
1745 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1746
1747 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1748 bio_clear_flag(bio, BIO_CHAIN);
1749 return true;
1750 }
1751
1752 return false;
1753 }
1754
1755 /**
1756 * bio_endio - end I/O on a bio
1757 * @bio: bio
1758 *
1759 * Description:
1760 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1761 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1762 * bio unless they own it and thus know that it has an end_io function.
1763 **/
1764 void bio_endio(struct bio *bio)
1765 {
1766 while (bio) {
1767 if (unlikely(!bio_remaining_done(bio)))
1768 break;
1769
1770 /*
1771 * Need to have a real endio function for chained bios,
1772 * otherwise various corner cases will break (like stacking
1773 * block devices that save/restore bi_end_io) - however, we want
1774 * to avoid unbounded recursion and blowing the stack. Tail call
1775 * optimization would handle this, but compiling with frame
1776 * pointers also disables gcc's sibling call optimization.
1777 */
1778 if (bio->bi_end_io == bio_chain_endio) {
1779 struct bio *parent = bio->bi_private;
1780 parent->bi_error = bio->bi_error;
1781 bio_put(bio);
1782 bio = parent;
1783 } else {
1784 if (bio->bi_end_io)
1785 bio->bi_end_io(bio);
1786 bio = NULL;
1787 }
1788 }
1789 }
1790 EXPORT_SYMBOL(bio_endio);
1791
1792 /**
1793 * bio_split - split a bio
1794 * @bio: bio to split
1795 * @sectors: number of sectors to split from the front of @bio
1796 * @gfp: gfp mask
1797 * @bs: bio set to allocate from
1798 *
1799 * Allocates and returns a new bio which represents @sectors from the start of
1800 * @bio, and updates @bio to represent the remaining sectors.
1801 *
1802 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1803 * responsibility to ensure that @bio is not freed before the split.
1804 */
1805 struct bio *bio_split(struct bio *bio, int sectors,
1806 gfp_t gfp, struct bio_set *bs)
1807 {
1808 struct bio *split = NULL;
1809
1810 BUG_ON(sectors <= 0);
1811 BUG_ON(sectors >= bio_sectors(bio));
1812
1813 split = bio_clone_fast(bio, gfp, bs);
1814 if (!split)
1815 return NULL;
1816
1817 split->bi_iter.bi_size = sectors << 9;
1818
1819 if (bio_integrity(split))
1820 bio_integrity_trim(split, 0, sectors);
1821
1822 bio_advance(bio, split->bi_iter.bi_size);
1823
1824 return split;
1825 }
1826 EXPORT_SYMBOL(bio_split);
1827
1828 /**
1829 * bio_trim - trim a bio
1830 * @bio: bio to trim
1831 * @offset: number of sectors to trim from the front of @bio
1832 * @size: size we want to trim @bio to, in sectors
1833 */
1834 void bio_trim(struct bio *bio, int offset, int size)
1835 {
1836 /* 'bio' is a cloned bio which we need to trim to match
1837 * the given offset and size.
1838 */
1839
1840 size <<= 9;
1841 if (offset == 0 && size == bio->bi_iter.bi_size)
1842 return;
1843
1844 bio_clear_flag(bio, BIO_SEG_VALID);
1845
1846 bio_advance(bio, offset << 9);
1847
1848 bio->bi_iter.bi_size = size;
1849 }
1850 EXPORT_SYMBOL_GPL(bio_trim);
1851
1852 /*
1853 * create memory pools for biovec's in a bio_set.
1854 * use the global biovec slabs created for general use.
1855 */
1856 mempool_t *biovec_create_pool(int pool_entries)
1857 {
1858 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1859
1860 return mempool_create_slab_pool(pool_entries, bp->slab);
1861 }
1862
1863 void bioset_free(struct bio_set *bs)
1864 {
1865 if (bs->rescue_workqueue)
1866 destroy_workqueue(bs->rescue_workqueue);
1867
1868 if (bs->bio_pool)
1869 mempool_destroy(bs->bio_pool);
1870
1871 if (bs->bvec_pool)
1872 mempool_destroy(bs->bvec_pool);
1873
1874 bioset_integrity_free(bs);
1875 bio_put_slab(bs);
1876
1877 kfree(bs);
1878 }
1879 EXPORT_SYMBOL(bioset_free);
1880
1881 static struct bio_set *__bioset_create(unsigned int pool_size,
1882 unsigned int front_pad,
1883 bool create_bvec_pool)
1884 {
1885 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1886 struct bio_set *bs;
1887
1888 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1889 if (!bs)
1890 return NULL;
1891
1892 bs->front_pad = front_pad;
1893
1894 spin_lock_init(&bs->rescue_lock);
1895 bio_list_init(&bs->rescue_list);
1896 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1897
1898 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1899 if (!bs->bio_slab) {
1900 kfree(bs);
1901 return NULL;
1902 }
1903
1904 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1905 if (!bs->bio_pool)
1906 goto bad;
1907
1908 if (create_bvec_pool) {
1909 bs->bvec_pool = biovec_create_pool(pool_size);
1910 if (!bs->bvec_pool)
1911 goto bad;
1912 }
1913
1914 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1915 if (!bs->rescue_workqueue)
1916 goto bad;
1917
1918 return bs;
1919 bad:
1920 bioset_free(bs);
1921 return NULL;
1922 }
1923
1924 /**
1925 * bioset_create - Create a bio_set
1926 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1927 * @front_pad: Number of bytes to allocate in front of the returned bio
1928 *
1929 * Description:
1930 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1931 * to ask for a number of bytes to be allocated in front of the bio.
1932 * Front pad allocation is useful for embedding the bio inside
1933 * another structure, to avoid allocating extra data to go with the bio.
1934 * Note that the bio must be embedded at the END of that structure always,
1935 * or things will break badly.
1936 */
1937 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1938 {
1939 return __bioset_create(pool_size, front_pad, true);
1940 }
1941 EXPORT_SYMBOL(bioset_create);
1942
1943 /**
1944 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1945 * @pool_size: Number of bio to cache in the mempool
1946 * @front_pad: Number of bytes to allocate in front of the returned bio
1947 *
1948 * Description:
1949 * Same functionality as bioset_create() except that mempool is not
1950 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1951 */
1952 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1953 {
1954 return __bioset_create(pool_size, front_pad, false);
1955 }
1956 EXPORT_SYMBOL(bioset_create_nobvec);
1957
1958 #ifdef CONFIG_BLK_CGROUP
1959
1960 /**
1961 * bio_associate_blkcg - associate a bio with the specified blkcg
1962 * @bio: target bio
1963 * @blkcg_css: css of the blkcg to associate
1964 *
1965 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1966 * treat @bio as if it were issued by a task which belongs to the blkcg.
1967 *
1968 * This function takes an extra reference of @blkcg_css which will be put
1969 * when @bio is released. The caller must own @bio and is responsible for
1970 * synchronizing calls to this function.
1971 */
1972 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1973 {
1974 if (unlikely(bio->bi_css))
1975 return -EBUSY;
1976 css_get(blkcg_css);
1977 bio->bi_css = blkcg_css;
1978 return 0;
1979 }
1980
1981 /**
1982 * bio_associate_current - associate a bio with %current
1983 * @bio: target bio
1984 *
1985 * Associate @bio with %current if it hasn't been associated yet. Block
1986 * layer will treat @bio as if it were issued by %current no matter which
1987 * task actually issues it.
1988 *
1989 * This function takes an extra reference of @task's io_context and blkcg
1990 * which will be put when @bio is released. The caller must own @bio,
1991 * ensure %current->io_context exists, and is responsible for synchronizing
1992 * calls to this function.
1993 */
1994 int bio_associate_current(struct bio *bio)
1995 {
1996 struct io_context *ioc;
1997
1998 if (bio->bi_css)
1999 return -EBUSY;
2000
2001 ioc = current->io_context;
2002 if (!ioc)
2003 return -ENOENT;
2004
2005 get_io_context_active(ioc);
2006 bio->bi_ioc = ioc;
2007 bio->bi_css = task_get_css(current, blkio_cgrp_id);
2008 return 0;
2009 }
2010
2011 /**
2012 * bio_disassociate_task - undo bio_associate_current()
2013 * @bio: target bio
2014 */
2015 void bio_disassociate_task(struct bio *bio)
2016 {
2017 if (bio->bi_ioc) {
2018 put_io_context(bio->bi_ioc);
2019 bio->bi_ioc = NULL;
2020 }
2021 if (bio->bi_css) {
2022 css_put(bio->bi_css);
2023 bio->bi_css = NULL;
2024 }
2025 }
2026
2027 #endif /* CONFIG_BLK_CGROUP */
2028
2029 static void __init biovec_init_slabs(void)
2030 {
2031 int i;
2032
2033 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2034 int size;
2035 struct biovec_slab *bvs = bvec_slabs + i;
2036
2037 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2038 bvs->slab = NULL;
2039 continue;
2040 }
2041
2042 size = bvs->nr_vecs * sizeof(struct bio_vec);
2043 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2044 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2045 }
2046 }
2047
2048 static int __init init_bio(void)
2049 {
2050 bio_slab_max = 2;
2051 bio_slab_nr = 0;
2052 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2053 if (!bio_slabs)
2054 panic("bio: can't allocate bios\n");
2055
2056 bio_integrity_init();
2057 biovec_init_slabs();
2058
2059 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2060 if (!fs_bio_set)
2061 panic("bio: can't allocate bios\n");
2062
2063 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2064 panic("bio: can't create integrity pool\n");
2065
2066 return 0;
2067 }
2068 subsys_initcall(init_bio);