]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - block/bio.c
Merge tag 'sound-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[mirror_ubuntu-eoan-kernel.git] / block / bio.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19
20 #include <trace/events/block.h>
21 #include "blk.h"
22 #include "blk-rq-qos.h"
23
24 /*
25 * Test patch to inline a certain number of bi_io_vec's inside the bio
26 * itself, to shrink a bio data allocation from two mempool calls to one
27 */
28 #define BIO_INLINE_VECS 4
29
30 /*
31 * if you change this list, also change bvec_alloc or things will
32 * break badly! cannot be bigger than what you can fit into an
33 * unsigned short
34 */
35 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
36 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
37 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
38 };
39 #undef BV
40
41 /*
42 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
43 * IO code that does not need private memory pools.
44 */
45 struct bio_set fs_bio_set;
46 EXPORT_SYMBOL(fs_bio_set);
47
48 /*
49 * Our slab pool management
50 */
51 struct bio_slab {
52 struct kmem_cache *slab;
53 unsigned int slab_ref;
54 unsigned int slab_size;
55 char name[8];
56 };
57 static DEFINE_MUTEX(bio_slab_lock);
58 static struct bio_slab *bio_slabs;
59 static unsigned int bio_slab_nr, bio_slab_max;
60
61 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
62 {
63 unsigned int sz = sizeof(struct bio) + extra_size;
64 struct kmem_cache *slab = NULL;
65 struct bio_slab *bslab, *new_bio_slabs;
66 unsigned int new_bio_slab_max;
67 unsigned int i, entry = -1;
68
69 mutex_lock(&bio_slab_lock);
70
71 i = 0;
72 while (i < bio_slab_nr) {
73 bslab = &bio_slabs[i];
74
75 if (!bslab->slab && entry == -1)
76 entry = i;
77 else if (bslab->slab_size == sz) {
78 slab = bslab->slab;
79 bslab->slab_ref++;
80 break;
81 }
82 i++;
83 }
84
85 if (slab)
86 goto out_unlock;
87
88 if (bio_slab_nr == bio_slab_max && entry == -1) {
89 new_bio_slab_max = bio_slab_max << 1;
90 new_bio_slabs = krealloc(bio_slabs,
91 new_bio_slab_max * sizeof(struct bio_slab),
92 GFP_KERNEL);
93 if (!new_bio_slabs)
94 goto out_unlock;
95 bio_slab_max = new_bio_slab_max;
96 bio_slabs = new_bio_slabs;
97 }
98 if (entry == -1)
99 entry = bio_slab_nr++;
100
101 bslab = &bio_slabs[entry];
102
103 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
104 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
105 SLAB_HWCACHE_ALIGN, NULL);
106 if (!slab)
107 goto out_unlock;
108
109 bslab->slab = slab;
110 bslab->slab_ref = 1;
111 bslab->slab_size = sz;
112 out_unlock:
113 mutex_unlock(&bio_slab_lock);
114 return slab;
115 }
116
117 static void bio_put_slab(struct bio_set *bs)
118 {
119 struct bio_slab *bslab = NULL;
120 unsigned int i;
121
122 mutex_lock(&bio_slab_lock);
123
124 for (i = 0; i < bio_slab_nr; i++) {
125 if (bs->bio_slab == bio_slabs[i].slab) {
126 bslab = &bio_slabs[i];
127 break;
128 }
129 }
130
131 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
132 goto out;
133
134 WARN_ON(!bslab->slab_ref);
135
136 if (--bslab->slab_ref)
137 goto out;
138
139 kmem_cache_destroy(bslab->slab);
140 bslab->slab = NULL;
141
142 out:
143 mutex_unlock(&bio_slab_lock);
144 }
145
146 unsigned int bvec_nr_vecs(unsigned short idx)
147 {
148 return bvec_slabs[--idx].nr_vecs;
149 }
150
151 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
152 {
153 if (!idx)
154 return;
155 idx--;
156
157 BIO_BUG_ON(idx >= BVEC_POOL_NR);
158
159 if (idx == BVEC_POOL_MAX) {
160 mempool_free(bv, pool);
161 } else {
162 struct biovec_slab *bvs = bvec_slabs + idx;
163
164 kmem_cache_free(bvs->slab, bv);
165 }
166 }
167
168 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
169 mempool_t *pool)
170 {
171 struct bio_vec *bvl;
172
173 /*
174 * see comment near bvec_array define!
175 */
176 switch (nr) {
177 case 1:
178 *idx = 0;
179 break;
180 case 2 ... 4:
181 *idx = 1;
182 break;
183 case 5 ... 16:
184 *idx = 2;
185 break;
186 case 17 ... 64:
187 *idx = 3;
188 break;
189 case 65 ... 128:
190 *idx = 4;
191 break;
192 case 129 ... BIO_MAX_PAGES:
193 *idx = 5;
194 break;
195 default:
196 return NULL;
197 }
198
199 /*
200 * idx now points to the pool we want to allocate from. only the
201 * 1-vec entry pool is mempool backed.
202 */
203 if (*idx == BVEC_POOL_MAX) {
204 fallback:
205 bvl = mempool_alloc(pool, gfp_mask);
206 } else {
207 struct biovec_slab *bvs = bvec_slabs + *idx;
208 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
209
210 /*
211 * Make this allocation restricted and don't dump info on
212 * allocation failures, since we'll fallback to the mempool
213 * in case of failure.
214 */
215 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
216
217 /*
218 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
219 * is set, retry with the 1-entry mempool
220 */
221 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
222 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
223 *idx = BVEC_POOL_MAX;
224 goto fallback;
225 }
226 }
227
228 (*idx)++;
229 return bvl;
230 }
231
232 void bio_uninit(struct bio *bio)
233 {
234 bio_disassociate_blkg(bio);
235 }
236 EXPORT_SYMBOL(bio_uninit);
237
238 static void bio_free(struct bio *bio)
239 {
240 struct bio_set *bs = bio->bi_pool;
241 void *p;
242
243 bio_uninit(bio);
244
245 if (bs) {
246 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
247
248 /*
249 * If we have front padding, adjust the bio pointer before freeing
250 */
251 p = bio;
252 p -= bs->front_pad;
253
254 mempool_free(p, &bs->bio_pool);
255 } else {
256 /* Bio was allocated by bio_kmalloc() */
257 kfree(bio);
258 }
259 }
260
261 /*
262 * Users of this function have their own bio allocation. Subsequently,
263 * they must remember to pair any call to bio_init() with bio_uninit()
264 * when IO has completed, or when the bio is released.
265 */
266 void bio_init(struct bio *bio, struct bio_vec *table,
267 unsigned short max_vecs)
268 {
269 memset(bio, 0, sizeof(*bio));
270 atomic_set(&bio->__bi_remaining, 1);
271 atomic_set(&bio->__bi_cnt, 1);
272
273 bio->bi_io_vec = table;
274 bio->bi_max_vecs = max_vecs;
275 }
276 EXPORT_SYMBOL(bio_init);
277
278 /**
279 * bio_reset - reinitialize a bio
280 * @bio: bio to reset
281 *
282 * Description:
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
287 */
288 void bio_reset(struct bio *bio)
289 {
290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291
292 bio_uninit(bio);
293
294 memset(bio, 0, BIO_RESET_BYTES);
295 bio->bi_flags = flags;
296 atomic_set(&bio->__bi_remaining, 1);
297 }
298 EXPORT_SYMBOL(bio_reset);
299
300 static struct bio *__bio_chain_endio(struct bio *bio)
301 {
302 struct bio *parent = bio->bi_private;
303
304 if (!parent->bi_status)
305 parent->bi_status = bio->bi_status;
306 bio_put(bio);
307 return parent;
308 }
309
310 static void bio_chain_endio(struct bio *bio)
311 {
312 bio_endio(__bio_chain_endio(bio));
313 }
314
315 /**
316 * bio_chain - chain bio completions
317 * @bio: the target bio
318 * @parent: the @bio's parent bio
319 *
320 * The caller won't have a bi_end_io called when @bio completes - instead,
321 * @parent's bi_end_io won't be called until both @parent and @bio have
322 * completed; the chained bio will also be freed when it completes.
323 *
324 * The caller must not set bi_private or bi_end_io in @bio.
325 */
326 void bio_chain(struct bio *bio, struct bio *parent)
327 {
328 BUG_ON(bio->bi_private || bio->bi_end_io);
329
330 bio->bi_private = parent;
331 bio->bi_end_io = bio_chain_endio;
332 bio_inc_remaining(parent);
333 }
334 EXPORT_SYMBOL(bio_chain);
335
336 static void bio_alloc_rescue(struct work_struct *work)
337 {
338 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
339 struct bio *bio;
340
341 while (1) {
342 spin_lock(&bs->rescue_lock);
343 bio = bio_list_pop(&bs->rescue_list);
344 spin_unlock(&bs->rescue_lock);
345
346 if (!bio)
347 break;
348
349 generic_make_request(bio);
350 }
351 }
352
353 static void punt_bios_to_rescuer(struct bio_set *bs)
354 {
355 struct bio_list punt, nopunt;
356 struct bio *bio;
357
358 if (WARN_ON_ONCE(!bs->rescue_workqueue))
359 return;
360 /*
361 * In order to guarantee forward progress we must punt only bios that
362 * were allocated from this bio_set; otherwise, if there was a bio on
363 * there for a stacking driver higher up in the stack, processing it
364 * could require allocating bios from this bio_set, and doing that from
365 * our own rescuer would be bad.
366 *
367 * Since bio lists are singly linked, pop them all instead of trying to
368 * remove from the middle of the list:
369 */
370
371 bio_list_init(&punt);
372 bio_list_init(&nopunt);
373
374 while ((bio = bio_list_pop(&current->bio_list[0])))
375 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
376 current->bio_list[0] = nopunt;
377
378 bio_list_init(&nopunt);
379 while ((bio = bio_list_pop(&current->bio_list[1])))
380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 current->bio_list[1] = nopunt;
382
383 spin_lock(&bs->rescue_lock);
384 bio_list_merge(&bs->rescue_list, &punt);
385 spin_unlock(&bs->rescue_lock);
386
387 queue_work(bs->rescue_workqueue, &bs->rescue_work);
388 }
389
390 /**
391 * bio_alloc_bioset - allocate a bio for I/O
392 * @gfp_mask: the GFP_* mask given to the slab allocator
393 * @nr_iovecs: number of iovecs to pre-allocate
394 * @bs: the bio_set to allocate from.
395 *
396 * Description:
397 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
398 * backed by the @bs's mempool.
399 *
400 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
401 * always be able to allocate a bio. This is due to the mempool guarantees.
402 * To make this work, callers must never allocate more than 1 bio at a time
403 * from this pool. Callers that need to allocate more than 1 bio must always
404 * submit the previously allocated bio for IO before attempting to allocate
405 * a new one. Failure to do so can cause deadlocks under memory pressure.
406 *
407 * Note that when running under generic_make_request() (i.e. any block
408 * driver), bios are not submitted until after you return - see the code in
409 * generic_make_request() that converts recursion into iteration, to prevent
410 * stack overflows.
411 *
412 * This would normally mean allocating multiple bios under
413 * generic_make_request() would be susceptible to deadlocks, but we have
414 * deadlock avoidance code that resubmits any blocked bios from a rescuer
415 * thread.
416 *
417 * However, we do not guarantee forward progress for allocations from other
418 * mempools. Doing multiple allocations from the same mempool under
419 * generic_make_request() should be avoided - instead, use bio_set's front_pad
420 * for per bio allocations.
421 *
422 * RETURNS:
423 * Pointer to new bio on success, NULL on failure.
424 */
425 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
426 struct bio_set *bs)
427 {
428 gfp_t saved_gfp = gfp_mask;
429 unsigned front_pad;
430 unsigned inline_vecs;
431 struct bio_vec *bvl = NULL;
432 struct bio *bio;
433 void *p;
434
435 if (!bs) {
436 if (nr_iovecs > UIO_MAXIOV)
437 return NULL;
438
439 p = kmalloc(sizeof(struct bio) +
440 nr_iovecs * sizeof(struct bio_vec),
441 gfp_mask);
442 front_pad = 0;
443 inline_vecs = nr_iovecs;
444 } else {
445 /* should not use nobvec bioset for nr_iovecs > 0 */
446 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
447 nr_iovecs > 0))
448 return NULL;
449 /*
450 * generic_make_request() converts recursion to iteration; this
451 * means if we're running beneath it, any bios we allocate and
452 * submit will not be submitted (and thus freed) until after we
453 * return.
454 *
455 * This exposes us to a potential deadlock if we allocate
456 * multiple bios from the same bio_set() while running
457 * underneath generic_make_request(). If we were to allocate
458 * multiple bios (say a stacking block driver that was splitting
459 * bios), we would deadlock if we exhausted the mempool's
460 * reserve.
461 *
462 * We solve this, and guarantee forward progress, with a rescuer
463 * workqueue per bio_set. If we go to allocate and there are
464 * bios on current->bio_list, we first try the allocation
465 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
466 * bios we would be blocking to the rescuer workqueue before
467 * we retry with the original gfp_flags.
468 */
469
470 if (current->bio_list &&
471 (!bio_list_empty(&current->bio_list[0]) ||
472 !bio_list_empty(&current->bio_list[1])) &&
473 bs->rescue_workqueue)
474 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
475
476 p = mempool_alloc(&bs->bio_pool, gfp_mask);
477 if (!p && gfp_mask != saved_gfp) {
478 punt_bios_to_rescuer(bs);
479 gfp_mask = saved_gfp;
480 p = mempool_alloc(&bs->bio_pool, gfp_mask);
481 }
482
483 front_pad = bs->front_pad;
484 inline_vecs = BIO_INLINE_VECS;
485 }
486
487 if (unlikely(!p))
488 return NULL;
489
490 bio = p + front_pad;
491 bio_init(bio, NULL, 0);
492
493 if (nr_iovecs > inline_vecs) {
494 unsigned long idx = 0;
495
496 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
497 if (!bvl && gfp_mask != saved_gfp) {
498 punt_bios_to_rescuer(bs);
499 gfp_mask = saved_gfp;
500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
501 }
502
503 if (unlikely(!bvl))
504 goto err_free;
505
506 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
507 } else if (nr_iovecs) {
508 bvl = bio->bi_inline_vecs;
509 }
510
511 bio->bi_pool = bs;
512 bio->bi_max_vecs = nr_iovecs;
513 bio->bi_io_vec = bvl;
514 return bio;
515
516 err_free:
517 mempool_free(p, &bs->bio_pool);
518 return NULL;
519 }
520 EXPORT_SYMBOL(bio_alloc_bioset);
521
522 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
523 {
524 unsigned long flags;
525 struct bio_vec bv;
526 struct bvec_iter iter;
527
528 __bio_for_each_segment(bv, bio, iter, start) {
529 char *data = bvec_kmap_irq(&bv, &flags);
530 memset(data, 0, bv.bv_len);
531 flush_dcache_page(bv.bv_page);
532 bvec_kunmap_irq(data, &flags);
533 }
534 }
535 EXPORT_SYMBOL(zero_fill_bio_iter);
536
537 /**
538 * bio_put - release a reference to a bio
539 * @bio: bio to release reference to
540 *
541 * Description:
542 * Put a reference to a &struct bio, either one you have gotten with
543 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
544 **/
545 void bio_put(struct bio *bio)
546 {
547 if (!bio_flagged(bio, BIO_REFFED))
548 bio_free(bio);
549 else {
550 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
551
552 /*
553 * last put frees it
554 */
555 if (atomic_dec_and_test(&bio->__bi_cnt))
556 bio_free(bio);
557 }
558 }
559 EXPORT_SYMBOL(bio_put);
560
561 int bio_phys_segments(struct request_queue *q, struct bio *bio)
562 {
563 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
564 blk_recount_segments(q, bio);
565
566 return bio->bi_phys_segments;
567 }
568
569 /**
570 * __bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: destination bio
572 * @bio_src: bio to clone
573 *
574 * Clone a &bio. Caller will own the returned bio, but not
575 * the actual data it points to. Reference count of returned
576 * bio will be one.
577 *
578 * Caller must ensure that @bio_src is not freed before @bio.
579 */
580 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
581 {
582 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
583
584 /*
585 * most users will be overriding ->bi_disk with a new target,
586 * so we don't set nor calculate new physical/hw segment counts here
587 */
588 bio->bi_disk = bio_src->bi_disk;
589 bio->bi_partno = bio_src->bi_partno;
590 bio_set_flag(bio, BIO_CLONED);
591 if (bio_flagged(bio_src, BIO_THROTTLED))
592 bio_set_flag(bio, BIO_THROTTLED);
593 bio->bi_opf = bio_src->bi_opf;
594 bio->bi_ioprio = bio_src->bi_ioprio;
595 bio->bi_write_hint = bio_src->bi_write_hint;
596 bio->bi_iter = bio_src->bi_iter;
597 bio->bi_io_vec = bio_src->bi_io_vec;
598
599 bio_clone_blkg_association(bio, bio_src);
600 blkcg_bio_issue_init(bio);
601 }
602 EXPORT_SYMBOL(__bio_clone_fast);
603
604 /**
605 * bio_clone_fast - clone a bio that shares the original bio's biovec
606 * @bio: bio to clone
607 * @gfp_mask: allocation priority
608 * @bs: bio_set to allocate from
609 *
610 * Like __bio_clone_fast, only also allocates the returned bio
611 */
612 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
613 {
614 struct bio *b;
615
616 b = bio_alloc_bioset(gfp_mask, 0, bs);
617 if (!b)
618 return NULL;
619
620 __bio_clone_fast(b, bio);
621
622 if (bio_integrity(bio)) {
623 int ret;
624
625 ret = bio_integrity_clone(b, bio, gfp_mask);
626
627 if (ret < 0) {
628 bio_put(b);
629 return NULL;
630 }
631 }
632
633 return b;
634 }
635 EXPORT_SYMBOL(bio_clone_fast);
636
637 static inline bool page_is_mergeable(const struct bio_vec *bv,
638 struct page *page, unsigned int len, unsigned int off,
639 bool *same_page)
640 {
641 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
642 bv->bv_offset + bv->bv_len - 1;
643 phys_addr_t page_addr = page_to_phys(page);
644
645 if (vec_end_addr + 1 != page_addr + off)
646 return false;
647 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
648 return false;
649
650 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
651 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
652 return false;
653 return true;
654 }
655
656 /*
657 * Check if the @page can be added to the current segment(@bv), and make
658 * sure to call it only if page_is_mergeable(@bv, @page) is true
659 */
660 static bool can_add_page_to_seg(struct request_queue *q,
661 struct bio_vec *bv, struct page *page, unsigned len,
662 unsigned offset)
663 {
664 unsigned long mask = queue_segment_boundary(q);
665 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
666 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
667
668 if ((addr1 | mask) != (addr2 | mask))
669 return false;
670
671 if (bv->bv_len + len > queue_max_segment_size(q))
672 return false;
673
674 return true;
675 }
676
677 /**
678 * __bio_add_pc_page - attempt to add page to passthrough bio
679 * @q: the target queue
680 * @bio: destination bio
681 * @page: page to add
682 * @len: vec entry length
683 * @offset: vec entry offset
684 * @put_same_page: put the page if it is same with last added page
685 *
686 * Attempt to add a page to the bio_vec maplist. This can fail for a
687 * number of reasons, such as the bio being full or target block device
688 * limitations. The target block device must allow bio's up to PAGE_SIZE,
689 * so it is always possible to add a single page to an empty bio.
690 *
691 * This should only be used by passthrough bios.
692 */
693 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
694 struct page *page, unsigned int len, unsigned int offset,
695 bool put_same_page)
696 {
697 struct bio_vec *bvec;
698 bool same_page = false;
699
700 /*
701 * cloned bio must not modify vec list
702 */
703 if (unlikely(bio_flagged(bio, BIO_CLONED)))
704 return 0;
705
706 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
707 return 0;
708
709 if (bio->bi_vcnt > 0) {
710 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
711
712 if (page == bvec->bv_page &&
713 offset == bvec->bv_offset + bvec->bv_len) {
714 if (put_same_page)
715 put_page(page);
716 bvec->bv_len += len;
717 goto done;
718 }
719
720 /*
721 * If the queue doesn't support SG gaps and adding this
722 * offset would create a gap, disallow it.
723 */
724 if (bvec_gap_to_prev(q, bvec, offset))
725 return 0;
726
727 if (page_is_mergeable(bvec, page, len, offset, &same_page) &&
728 can_add_page_to_seg(q, bvec, page, len, offset)) {
729 bvec->bv_len += len;
730 goto done;
731 }
732 }
733
734 if (bio_full(bio))
735 return 0;
736
737 if (bio->bi_phys_segments >= queue_max_segments(q))
738 return 0;
739
740 bvec = &bio->bi_io_vec[bio->bi_vcnt];
741 bvec->bv_page = page;
742 bvec->bv_len = len;
743 bvec->bv_offset = offset;
744 bio->bi_vcnt++;
745 done:
746 bio->bi_iter.bi_size += len;
747 bio->bi_phys_segments = bio->bi_vcnt;
748 bio_set_flag(bio, BIO_SEG_VALID);
749 return len;
750 }
751
752 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
753 struct page *page, unsigned int len, unsigned int offset)
754 {
755 return __bio_add_pc_page(q, bio, page, len, offset, false);
756 }
757 EXPORT_SYMBOL(bio_add_pc_page);
758
759 /**
760 * __bio_try_merge_page - try appending data to an existing bvec.
761 * @bio: destination bio
762 * @page: start page to add
763 * @len: length of the data to add
764 * @off: offset of the data relative to @page
765 * @same_page: return if the segment has been merged inside the same page
766 *
767 * Try to add the data at @page + @off to the last bvec of @bio. This is a
768 * a useful optimisation for file systems with a block size smaller than the
769 * page size.
770 *
771 * Warn if (@len, @off) crosses pages in case that @same_page is true.
772 *
773 * Return %true on success or %false on failure.
774 */
775 bool __bio_try_merge_page(struct bio *bio, struct page *page,
776 unsigned int len, unsigned int off, bool *same_page)
777 {
778 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
779 return false;
780
781 if (bio->bi_vcnt > 0) {
782 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
783
784 if (page_is_mergeable(bv, page, len, off, same_page)) {
785 bv->bv_len += len;
786 bio->bi_iter.bi_size += len;
787 return true;
788 }
789 }
790 return false;
791 }
792 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
793
794 /**
795 * __bio_add_page - add page(s) to a bio in a new segment
796 * @bio: destination bio
797 * @page: start page to add
798 * @len: length of the data to add, may cross pages
799 * @off: offset of the data relative to @page, may cross pages
800 *
801 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
802 * that @bio has space for another bvec.
803 */
804 void __bio_add_page(struct bio *bio, struct page *page,
805 unsigned int len, unsigned int off)
806 {
807 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
808
809 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
810 WARN_ON_ONCE(bio_full(bio));
811
812 bv->bv_page = page;
813 bv->bv_offset = off;
814 bv->bv_len = len;
815
816 bio->bi_iter.bi_size += len;
817 bio->bi_vcnt++;
818 }
819 EXPORT_SYMBOL_GPL(__bio_add_page);
820
821 /**
822 * bio_add_page - attempt to add page(s) to bio
823 * @bio: destination bio
824 * @page: start page to add
825 * @len: vec entry length, may cross pages
826 * @offset: vec entry offset relative to @page, may cross pages
827 *
828 * Attempt to add page(s) to the bio_vec maplist. This will only fail
829 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
830 */
831 int bio_add_page(struct bio *bio, struct page *page,
832 unsigned int len, unsigned int offset)
833 {
834 bool same_page = false;
835
836 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
837 if (bio_full(bio))
838 return 0;
839 __bio_add_page(bio, page, len, offset);
840 }
841 return len;
842 }
843 EXPORT_SYMBOL(bio_add_page);
844
845 static void bio_get_pages(struct bio *bio)
846 {
847 struct bvec_iter_all iter_all;
848 struct bio_vec *bvec;
849
850 bio_for_each_segment_all(bvec, bio, iter_all)
851 get_page(bvec->bv_page);
852 }
853
854 static void bio_release_pages(struct bio *bio)
855 {
856 struct bvec_iter_all iter_all;
857 struct bio_vec *bvec;
858
859 bio_for_each_segment_all(bvec, bio, iter_all)
860 put_page(bvec->bv_page);
861 }
862
863 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
864 {
865 const struct bio_vec *bv = iter->bvec;
866 unsigned int len;
867 size_t size;
868
869 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
870 return -EINVAL;
871
872 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
873 size = bio_add_page(bio, bv->bv_page, len,
874 bv->bv_offset + iter->iov_offset);
875 if (unlikely(size != len))
876 return -EINVAL;
877 iov_iter_advance(iter, size);
878 return 0;
879 }
880
881 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
882
883 /**
884 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
885 * @bio: bio to add pages to
886 * @iter: iov iterator describing the region to be mapped
887 *
888 * Pins pages from *iter and appends them to @bio's bvec array. The
889 * pages will have to be released using put_page() when done.
890 * For multi-segment *iter, this function only adds pages from the
891 * the next non-empty segment of the iov iterator.
892 */
893 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
894 {
895 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
896 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
897 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
898 struct page **pages = (struct page **)bv;
899 bool same_page = false;
900 ssize_t size, left;
901 unsigned len, i;
902 size_t offset;
903
904 /*
905 * Move page array up in the allocated memory for the bio vecs as far as
906 * possible so that we can start filling biovecs from the beginning
907 * without overwriting the temporary page array.
908 */
909 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
910 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
911
912 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
913 if (unlikely(size <= 0))
914 return size ? size : -EFAULT;
915
916 for (left = size, i = 0; left > 0; left -= len, i++) {
917 struct page *page = pages[i];
918
919 len = min_t(size_t, PAGE_SIZE - offset, left);
920
921 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
922 if (same_page)
923 put_page(page);
924 } else {
925 if (WARN_ON_ONCE(bio_full(bio)))
926 return -EINVAL;
927 __bio_add_page(bio, page, len, offset);
928 }
929 offset = 0;
930 }
931
932 iov_iter_advance(iter, size);
933 return 0;
934 }
935
936 /**
937 * bio_iov_iter_get_pages - add user or kernel pages to a bio
938 * @bio: bio to add pages to
939 * @iter: iov iterator describing the region to be added
940 *
941 * This takes either an iterator pointing to user memory, or one pointing to
942 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
943 * map them into the kernel. On IO completion, the caller should put those
944 * pages. If we're adding kernel pages, and the caller told us it's safe to
945 * do so, we just have to add the pages to the bio directly. We don't grab an
946 * extra reference to those pages (the user should already have that), and we
947 * don't put the page on IO completion. The caller needs to check if the bio is
948 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
949 * released.
950 *
951 * The function tries, but does not guarantee, to pin as many pages as
952 * fit into the bio, or are requested in *iter, whatever is smaller. If
953 * MM encounters an error pinning the requested pages, it stops. Error
954 * is returned only if 0 pages could be pinned.
955 */
956 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
957 {
958 const bool is_bvec = iov_iter_is_bvec(iter);
959 int ret;
960
961 if (WARN_ON_ONCE(bio->bi_vcnt))
962 return -EINVAL;
963
964 do {
965 if (is_bvec)
966 ret = __bio_iov_bvec_add_pages(bio, iter);
967 else
968 ret = __bio_iov_iter_get_pages(bio, iter);
969 } while (!ret && iov_iter_count(iter) && !bio_full(bio));
970
971 if (iov_iter_bvec_no_ref(iter))
972 bio_set_flag(bio, BIO_NO_PAGE_REF);
973 else if (is_bvec)
974 bio_get_pages(bio);
975
976 return bio->bi_vcnt ? 0 : ret;
977 }
978
979 static void submit_bio_wait_endio(struct bio *bio)
980 {
981 complete(bio->bi_private);
982 }
983
984 /**
985 * submit_bio_wait - submit a bio, and wait until it completes
986 * @bio: The &struct bio which describes the I/O
987 *
988 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
989 * bio_endio() on failure.
990 *
991 * WARNING: Unlike to how submit_bio() is usually used, this function does not
992 * result in bio reference to be consumed. The caller must drop the reference
993 * on his own.
994 */
995 int submit_bio_wait(struct bio *bio)
996 {
997 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
998
999 bio->bi_private = &done;
1000 bio->bi_end_io = submit_bio_wait_endio;
1001 bio->bi_opf |= REQ_SYNC;
1002 submit_bio(bio);
1003 wait_for_completion_io(&done);
1004
1005 return blk_status_to_errno(bio->bi_status);
1006 }
1007 EXPORT_SYMBOL(submit_bio_wait);
1008
1009 /**
1010 * bio_advance - increment/complete a bio by some number of bytes
1011 * @bio: bio to advance
1012 * @bytes: number of bytes to complete
1013 *
1014 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1015 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1016 * be updated on the last bvec as well.
1017 *
1018 * @bio will then represent the remaining, uncompleted portion of the io.
1019 */
1020 void bio_advance(struct bio *bio, unsigned bytes)
1021 {
1022 if (bio_integrity(bio))
1023 bio_integrity_advance(bio, bytes);
1024
1025 bio_advance_iter(bio, &bio->bi_iter, bytes);
1026 }
1027 EXPORT_SYMBOL(bio_advance);
1028
1029 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1030 struct bio *src, struct bvec_iter *src_iter)
1031 {
1032 struct bio_vec src_bv, dst_bv;
1033 void *src_p, *dst_p;
1034 unsigned bytes;
1035
1036 while (src_iter->bi_size && dst_iter->bi_size) {
1037 src_bv = bio_iter_iovec(src, *src_iter);
1038 dst_bv = bio_iter_iovec(dst, *dst_iter);
1039
1040 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1041
1042 src_p = kmap_atomic(src_bv.bv_page);
1043 dst_p = kmap_atomic(dst_bv.bv_page);
1044
1045 memcpy(dst_p + dst_bv.bv_offset,
1046 src_p + src_bv.bv_offset,
1047 bytes);
1048
1049 kunmap_atomic(dst_p);
1050 kunmap_atomic(src_p);
1051
1052 flush_dcache_page(dst_bv.bv_page);
1053
1054 bio_advance_iter(src, src_iter, bytes);
1055 bio_advance_iter(dst, dst_iter, bytes);
1056 }
1057 }
1058 EXPORT_SYMBOL(bio_copy_data_iter);
1059
1060 /**
1061 * bio_copy_data - copy contents of data buffers from one bio to another
1062 * @src: source bio
1063 * @dst: destination bio
1064 *
1065 * Stops when it reaches the end of either @src or @dst - that is, copies
1066 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1067 */
1068 void bio_copy_data(struct bio *dst, struct bio *src)
1069 {
1070 struct bvec_iter src_iter = src->bi_iter;
1071 struct bvec_iter dst_iter = dst->bi_iter;
1072
1073 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1074 }
1075 EXPORT_SYMBOL(bio_copy_data);
1076
1077 /**
1078 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1079 * another
1080 * @src: source bio list
1081 * @dst: destination bio list
1082 *
1083 * Stops when it reaches the end of either the @src list or @dst list - that is,
1084 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1085 * bios).
1086 */
1087 void bio_list_copy_data(struct bio *dst, struct bio *src)
1088 {
1089 struct bvec_iter src_iter = src->bi_iter;
1090 struct bvec_iter dst_iter = dst->bi_iter;
1091
1092 while (1) {
1093 if (!src_iter.bi_size) {
1094 src = src->bi_next;
1095 if (!src)
1096 break;
1097
1098 src_iter = src->bi_iter;
1099 }
1100
1101 if (!dst_iter.bi_size) {
1102 dst = dst->bi_next;
1103 if (!dst)
1104 break;
1105
1106 dst_iter = dst->bi_iter;
1107 }
1108
1109 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1110 }
1111 }
1112 EXPORT_SYMBOL(bio_list_copy_data);
1113
1114 struct bio_map_data {
1115 int is_our_pages;
1116 struct iov_iter iter;
1117 struct iovec iov[];
1118 };
1119
1120 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1121 gfp_t gfp_mask)
1122 {
1123 struct bio_map_data *bmd;
1124 if (data->nr_segs > UIO_MAXIOV)
1125 return NULL;
1126
1127 bmd = kmalloc(sizeof(struct bio_map_data) +
1128 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1129 if (!bmd)
1130 return NULL;
1131 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1132 bmd->iter = *data;
1133 bmd->iter.iov = bmd->iov;
1134 return bmd;
1135 }
1136
1137 /**
1138 * bio_copy_from_iter - copy all pages from iov_iter to bio
1139 * @bio: The &struct bio which describes the I/O as destination
1140 * @iter: iov_iter as source
1141 *
1142 * Copy all pages from iov_iter to bio.
1143 * Returns 0 on success, or error on failure.
1144 */
1145 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1146 {
1147 struct bio_vec *bvec;
1148 struct bvec_iter_all iter_all;
1149
1150 bio_for_each_segment_all(bvec, bio, iter_all) {
1151 ssize_t ret;
1152
1153 ret = copy_page_from_iter(bvec->bv_page,
1154 bvec->bv_offset,
1155 bvec->bv_len,
1156 iter);
1157
1158 if (!iov_iter_count(iter))
1159 break;
1160
1161 if (ret < bvec->bv_len)
1162 return -EFAULT;
1163 }
1164
1165 return 0;
1166 }
1167
1168 /**
1169 * bio_copy_to_iter - copy all pages from bio to iov_iter
1170 * @bio: The &struct bio which describes the I/O as source
1171 * @iter: iov_iter as destination
1172 *
1173 * Copy all pages from bio to iov_iter.
1174 * Returns 0 on success, or error on failure.
1175 */
1176 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1177 {
1178 struct bio_vec *bvec;
1179 struct bvec_iter_all iter_all;
1180
1181 bio_for_each_segment_all(bvec, bio, iter_all) {
1182 ssize_t ret;
1183
1184 ret = copy_page_to_iter(bvec->bv_page,
1185 bvec->bv_offset,
1186 bvec->bv_len,
1187 &iter);
1188
1189 if (!iov_iter_count(&iter))
1190 break;
1191
1192 if (ret < bvec->bv_len)
1193 return -EFAULT;
1194 }
1195
1196 return 0;
1197 }
1198
1199 void bio_free_pages(struct bio *bio)
1200 {
1201 struct bio_vec *bvec;
1202 struct bvec_iter_all iter_all;
1203
1204 bio_for_each_segment_all(bvec, bio, iter_all)
1205 __free_page(bvec->bv_page);
1206 }
1207 EXPORT_SYMBOL(bio_free_pages);
1208
1209 /**
1210 * bio_uncopy_user - finish previously mapped bio
1211 * @bio: bio being terminated
1212 *
1213 * Free pages allocated from bio_copy_user_iov() and write back data
1214 * to user space in case of a read.
1215 */
1216 int bio_uncopy_user(struct bio *bio)
1217 {
1218 struct bio_map_data *bmd = bio->bi_private;
1219 int ret = 0;
1220
1221 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1222 /*
1223 * if we're in a workqueue, the request is orphaned, so
1224 * don't copy into a random user address space, just free
1225 * and return -EINTR so user space doesn't expect any data.
1226 */
1227 if (!current->mm)
1228 ret = -EINTR;
1229 else if (bio_data_dir(bio) == READ)
1230 ret = bio_copy_to_iter(bio, bmd->iter);
1231 if (bmd->is_our_pages)
1232 bio_free_pages(bio);
1233 }
1234 kfree(bmd);
1235 bio_put(bio);
1236 return ret;
1237 }
1238
1239 /**
1240 * bio_copy_user_iov - copy user data to bio
1241 * @q: destination block queue
1242 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1243 * @iter: iovec iterator
1244 * @gfp_mask: memory allocation flags
1245 *
1246 * Prepares and returns a bio for indirect user io, bouncing data
1247 * to/from kernel pages as necessary. Must be paired with
1248 * call bio_uncopy_user() on io completion.
1249 */
1250 struct bio *bio_copy_user_iov(struct request_queue *q,
1251 struct rq_map_data *map_data,
1252 struct iov_iter *iter,
1253 gfp_t gfp_mask)
1254 {
1255 struct bio_map_data *bmd;
1256 struct page *page;
1257 struct bio *bio;
1258 int i = 0, ret;
1259 int nr_pages;
1260 unsigned int len = iter->count;
1261 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1262
1263 bmd = bio_alloc_map_data(iter, gfp_mask);
1264 if (!bmd)
1265 return ERR_PTR(-ENOMEM);
1266
1267 /*
1268 * We need to do a deep copy of the iov_iter including the iovecs.
1269 * The caller provided iov might point to an on-stack or otherwise
1270 * shortlived one.
1271 */
1272 bmd->is_our_pages = map_data ? 0 : 1;
1273
1274 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1275 if (nr_pages > BIO_MAX_PAGES)
1276 nr_pages = BIO_MAX_PAGES;
1277
1278 ret = -ENOMEM;
1279 bio = bio_kmalloc(gfp_mask, nr_pages);
1280 if (!bio)
1281 goto out_bmd;
1282
1283 ret = 0;
1284
1285 if (map_data) {
1286 nr_pages = 1 << map_data->page_order;
1287 i = map_data->offset / PAGE_SIZE;
1288 }
1289 while (len) {
1290 unsigned int bytes = PAGE_SIZE;
1291
1292 bytes -= offset;
1293
1294 if (bytes > len)
1295 bytes = len;
1296
1297 if (map_data) {
1298 if (i == map_data->nr_entries * nr_pages) {
1299 ret = -ENOMEM;
1300 break;
1301 }
1302
1303 page = map_data->pages[i / nr_pages];
1304 page += (i % nr_pages);
1305
1306 i++;
1307 } else {
1308 page = alloc_page(q->bounce_gfp | gfp_mask);
1309 if (!page) {
1310 ret = -ENOMEM;
1311 break;
1312 }
1313 }
1314
1315 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1316 if (!map_data)
1317 __free_page(page);
1318 break;
1319 }
1320
1321 len -= bytes;
1322 offset = 0;
1323 }
1324
1325 if (ret)
1326 goto cleanup;
1327
1328 if (map_data)
1329 map_data->offset += bio->bi_iter.bi_size;
1330
1331 /*
1332 * success
1333 */
1334 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1335 (map_data && map_data->from_user)) {
1336 ret = bio_copy_from_iter(bio, iter);
1337 if (ret)
1338 goto cleanup;
1339 } else {
1340 if (bmd->is_our_pages)
1341 zero_fill_bio(bio);
1342 iov_iter_advance(iter, bio->bi_iter.bi_size);
1343 }
1344
1345 bio->bi_private = bmd;
1346 if (map_data && map_data->null_mapped)
1347 bio_set_flag(bio, BIO_NULL_MAPPED);
1348 return bio;
1349 cleanup:
1350 if (!map_data)
1351 bio_free_pages(bio);
1352 bio_put(bio);
1353 out_bmd:
1354 kfree(bmd);
1355 return ERR_PTR(ret);
1356 }
1357
1358 /**
1359 * bio_map_user_iov - map user iovec into bio
1360 * @q: the struct request_queue for the bio
1361 * @iter: iovec iterator
1362 * @gfp_mask: memory allocation flags
1363 *
1364 * Map the user space address into a bio suitable for io to a block
1365 * device. Returns an error pointer in case of error.
1366 */
1367 struct bio *bio_map_user_iov(struct request_queue *q,
1368 struct iov_iter *iter,
1369 gfp_t gfp_mask)
1370 {
1371 int j;
1372 struct bio *bio;
1373 int ret;
1374 struct bio_vec *bvec;
1375 struct bvec_iter_all iter_all;
1376
1377 if (!iov_iter_count(iter))
1378 return ERR_PTR(-EINVAL);
1379
1380 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1381 if (!bio)
1382 return ERR_PTR(-ENOMEM);
1383
1384 while (iov_iter_count(iter)) {
1385 struct page **pages;
1386 ssize_t bytes;
1387 size_t offs, added = 0;
1388 int npages;
1389
1390 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1391 if (unlikely(bytes <= 0)) {
1392 ret = bytes ? bytes : -EFAULT;
1393 goto out_unmap;
1394 }
1395
1396 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1397
1398 if (unlikely(offs & queue_dma_alignment(q))) {
1399 ret = -EINVAL;
1400 j = 0;
1401 } else {
1402 for (j = 0; j < npages; j++) {
1403 struct page *page = pages[j];
1404 unsigned int n = PAGE_SIZE - offs;
1405
1406 if (n > bytes)
1407 n = bytes;
1408
1409 if (!__bio_add_pc_page(q, bio, page, n, offs,
1410 true))
1411 break;
1412
1413 added += n;
1414 bytes -= n;
1415 offs = 0;
1416 }
1417 iov_iter_advance(iter, added);
1418 }
1419 /*
1420 * release the pages we didn't map into the bio, if any
1421 */
1422 while (j < npages)
1423 put_page(pages[j++]);
1424 kvfree(pages);
1425 /* couldn't stuff something into bio? */
1426 if (bytes)
1427 break;
1428 }
1429
1430 bio_set_flag(bio, BIO_USER_MAPPED);
1431
1432 /*
1433 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1434 * it would normally disappear when its bi_end_io is run.
1435 * however, we need it for the unmap, so grab an extra
1436 * reference to it
1437 */
1438 bio_get(bio);
1439 return bio;
1440
1441 out_unmap:
1442 bio_for_each_segment_all(bvec, bio, iter_all) {
1443 put_page(bvec->bv_page);
1444 }
1445 bio_put(bio);
1446 return ERR_PTR(ret);
1447 }
1448
1449 static void __bio_unmap_user(struct bio *bio)
1450 {
1451 struct bio_vec *bvec;
1452 struct bvec_iter_all iter_all;
1453
1454 /*
1455 * make sure we dirty pages we wrote to
1456 */
1457 bio_for_each_segment_all(bvec, bio, iter_all) {
1458 if (bio_data_dir(bio) == READ)
1459 set_page_dirty_lock(bvec->bv_page);
1460
1461 put_page(bvec->bv_page);
1462 }
1463
1464 bio_put(bio);
1465 }
1466
1467 /**
1468 * bio_unmap_user - unmap a bio
1469 * @bio: the bio being unmapped
1470 *
1471 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1472 * process context.
1473 *
1474 * bio_unmap_user() may sleep.
1475 */
1476 void bio_unmap_user(struct bio *bio)
1477 {
1478 __bio_unmap_user(bio);
1479 bio_put(bio);
1480 }
1481
1482 static void bio_map_kern_endio(struct bio *bio)
1483 {
1484 bio_put(bio);
1485 }
1486
1487 /**
1488 * bio_map_kern - map kernel address into bio
1489 * @q: the struct request_queue for the bio
1490 * @data: pointer to buffer to map
1491 * @len: length in bytes
1492 * @gfp_mask: allocation flags for bio allocation
1493 *
1494 * Map the kernel address into a bio suitable for io to a block
1495 * device. Returns an error pointer in case of error.
1496 */
1497 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1498 gfp_t gfp_mask)
1499 {
1500 unsigned long kaddr = (unsigned long)data;
1501 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502 unsigned long start = kaddr >> PAGE_SHIFT;
1503 const int nr_pages = end - start;
1504 int offset, i;
1505 struct bio *bio;
1506
1507 bio = bio_kmalloc(gfp_mask, nr_pages);
1508 if (!bio)
1509 return ERR_PTR(-ENOMEM);
1510
1511 offset = offset_in_page(kaddr);
1512 for (i = 0; i < nr_pages; i++) {
1513 unsigned int bytes = PAGE_SIZE - offset;
1514
1515 if (len <= 0)
1516 break;
1517
1518 if (bytes > len)
1519 bytes = len;
1520
1521 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1522 offset) < bytes) {
1523 /* we don't support partial mappings */
1524 bio_put(bio);
1525 return ERR_PTR(-EINVAL);
1526 }
1527
1528 data += bytes;
1529 len -= bytes;
1530 offset = 0;
1531 }
1532
1533 bio->bi_end_io = bio_map_kern_endio;
1534 return bio;
1535 }
1536 EXPORT_SYMBOL(bio_map_kern);
1537
1538 static void bio_copy_kern_endio(struct bio *bio)
1539 {
1540 bio_free_pages(bio);
1541 bio_put(bio);
1542 }
1543
1544 static void bio_copy_kern_endio_read(struct bio *bio)
1545 {
1546 char *p = bio->bi_private;
1547 struct bio_vec *bvec;
1548 struct bvec_iter_all iter_all;
1549
1550 bio_for_each_segment_all(bvec, bio, iter_all) {
1551 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1552 p += bvec->bv_len;
1553 }
1554
1555 bio_copy_kern_endio(bio);
1556 }
1557
1558 /**
1559 * bio_copy_kern - copy kernel address into bio
1560 * @q: the struct request_queue for the bio
1561 * @data: pointer to buffer to copy
1562 * @len: length in bytes
1563 * @gfp_mask: allocation flags for bio and page allocation
1564 * @reading: data direction is READ
1565 *
1566 * copy the kernel address into a bio suitable for io to a block
1567 * device. Returns an error pointer in case of error.
1568 */
1569 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1570 gfp_t gfp_mask, int reading)
1571 {
1572 unsigned long kaddr = (unsigned long)data;
1573 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1574 unsigned long start = kaddr >> PAGE_SHIFT;
1575 struct bio *bio;
1576 void *p = data;
1577 int nr_pages = 0;
1578
1579 /*
1580 * Overflow, abort
1581 */
1582 if (end < start)
1583 return ERR_PTR(-EINVAL);
1584
1585 nr_pages = end - start;
1586 bio = bio_kmalloc(gfp_mask, nr_pages);
1587 if (!bio)
1588 return ERR_PTR(-ENOMEM);
1589
1590 while (len) {
1591 struct page *page;
1592 unsigned int bytes = PAGE_SIZE;
1593
1594 if (bytes > len)
1595 bytes = len;
1596
1597 page = alloc_page(q->bounce_gfp | gfp_mask);
1598 if (!page)
1599 goto cleanup;
1600
1601 if (!reading)
1602 memcpy(page_address(page), p, bytes);
1603
1604 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1605 break;
1606
1607 len -= bytes;
1608 p += bytes;
1609 }
1610
1611 if (reading) {
1612 bio->bi_end_io = bio_copy_kern_endio_read;
1613 bio->bi_private = data;
1614 } else {
1615 bio->bi_end_io = bio_copy_kern_endio;
1616 }
1617
1618 return bio;
1619
1620 cleanup:
1621 bio_free_pages(bio);
1622 bio_put(bio);
1623 return ERR_PTR(-ENOMEM);
1624 }
1625
1626 /*
1627 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1628 * for performing direct-IO in BIOs.
1629 *
1630 * The problem is that we cannot run set_page_dirty() from interrupt context
1631 * because the required locks are not interrupt-safe. So what we can do is to
1632 * mark the pages dirty _before_ performing IO. And in interrupt context,
1633 * check that the pages are still dirty. If so, fine. If not, redirty them
1634 * in process context.
1635 *
1636 * We special-case compound pages here: normally this means reads into hugetlb
1637 * pages. The logic in here doesn't really work right for compound pages
1638 * because the VM does not uniformly chase down the head page in all cases.
1639 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1640 * handle them at all. So we skip compound pages here at an early stage.
1641 *
1642 * Note that this code is very hard to test under normal circumstances because
1643 * direct-io pins the pages with get_user_pages(). This makes
1644 * is_page_cache_freeable return false, and the VM will not clean the pages.
1645 * But other code (eg, flusher threads) could clean the pages if they are mapped
1646 * pagecache.
1647 *
1648 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1649 * deferred bio dirtying paths.
1650 */
1651
1652 /*
1653 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1654 */
1655 void bio_set_pages_dirty(struct bio *bio)
1656 {
1657 struct bio_vec *bvec;
1658 struct bvec_iter_all iter_all;
1659
1660 bio_for_each_segment_all(bvec, bio, iter_all) {
1661 if (!PageCompound(bvec->bv_page))
1662 set_page_dirty_lock(bvec->bv_page);
1663 }
1664 }
1665
1666 /*
1667 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1668 * If they are, then fine. If, however, some pages are clean then they must
1669 * have been written out during the direct-IO read. So we take another ref on
1670 * the BIO and re-dirty the pages in process context.
1671 *
1672 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1673 * here on. It will run one put_page() against each page and will run one
1674 * bio_put() against the BIO.
1675 */
1676
1677 static void bio_dirty_fn(struct work_struct *work);
1678
1679 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1680 static DEFINE_SPINLOCK(bio_dirty_lock);
1681 static struct bio *bio_dirty_list;
1682
1683 /*
1684 * This runs in process context
1685 */
1686 static void bio_dirty_fn(struct work_struct *work)
1687 {
1688 struct bio *bio, *next;
1689
1690 spin_lock_irq(&bio_dirty_lock);
1691 next = bio_dirty_list;
1692 bio_dirty_list = NULL;
1693 spin_unlock_irq(&bio_dirty_lock);
1694
1695 while ((bio = next) != NULL) {
1696 next = bio->bi_private;
1697
1698 bio_set_pages_dirty(bio);
1699 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1700 bio_release_pages(bio);
1701 bio_put(bio);
1702 }
1703 }
1704
1705 void bio_check_pages_dirty(struct bio *bio)
1706 {
1707 struct bio_vec *bvec;
1708 unsigned long flags;
1709 struct bvec_iter_all iter_all;
1710
1711 bio_for_each_segment_all(bvec, bio, iter_all) {
1712 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1713 goto defer;
1714 }
1715
1716 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1717 bio_release_pages(bio);
1718 bio_put(bio);
1719 return;
1720 defer:
1721 spin_lock_irqsave(&bio_dirty_lock, flags);
1722 bio->bi_private = bio_dirty_list;
1723 bio_dirty_list = bio;
1724 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1725 schedule_work(&bio_dirty_work);
1726 }
1727
1728 void update_io_ticks(struct hd_struct *part, unsigned long now)
1729 {
1730 unsigned long stamp;
1731 again:
1732 stamp = READ_ONCE(part->stamp);
1733 if (unlikely(stamp != now)) {
1734 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1735 __part_stat_add(part, io_ticks, 1);
1736 }
1737 }
1738 if (part->partno) {
1739 part = &part_to_disk(part)->part0;
1740 goto again;
1741 }
1742 }
1743
1744 void generic_start_io_acct(struct request_queue *q, int op,
1745 unsigned long sectors, struct hd_struct *part)
1746 {
1747 const int sgrp = op_stat_group(op);
1748
1749 part_stat_lock();
1750
1751 update_io_ticks(part, jiffies);
1752 part_stat_inc(part, ios[sgrp]);
1753 part_stat_add(part, sectors[sgrp], sectors);
1754 part_inc_in_flight(q, part, op_is_write(op));
1755
1756 part_stat_unlock();
1757 }
1758 EXPORT_SYMBOL(generic_start_io_acct);
1759
1760 void generic_end_io_acct(struct request_queue *q, int req_op,
1761 struct hd_struct *part, unsigned long start_time)
1762 {
1763 unsigned long now = jiffies;
1764 unsigned long duration = now - start_time;
1765 const int sgrp = op_stat_group(req_op);
1766
1767 part_stat_lock();
1768
1769 update_io_ticks(part, now);
1770 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1771 part_stat_add(part, time_in_queue, duration);
1772 part_dec_in_flight(q, part, op_is_write(req_op));
1773
1774 part_stat_unlock();
1775 }
1776 EXPORT_SYMBOL(generic_end_io_acct);
1777
1778 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1779 void bio_flush_dcache_pages(struct bio *bi)
1780 {
1781 struct bio_vec bvec;
1782 struct bvec_iter iter;
1783
1784 bio_for_each_segment(bvec, bi, iter)
1785 flush_dcache_page(bvec.bv_page);
1786 }
1787 EXPORT_SYMBOL(bio_flush_dcache_pages);
1788 #endif
1789
1790 static inline bool bio_remaining_done(struct bio *bio)
1791 {
1792 /*
1793 * If we're not chaining, then ->__bi_remaining is always 1 and
1794 * we always end io on the first invocation.
1795 */
1796 if (!bio_flagged(bio, BIO_CHAIN))
1797 return true;
1798
1799 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1800
1801 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1802 bio_clear_flag(bio, BIO_CHAIN);
1803 return true;
1804 }
1805
1806 return false;
1807 }
1808
1809 /**
1810 * bio_endio - end I/O on a bio
1811 * @bio: bio
1812 *
1813 * Description:
1814 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1815 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1816 * bio unless they own it and thus know that it has an end_io function.
1817 *
1818 * bio_endio() can be called several times on a bio that has been chained
1819 * using bio_chain(). The ->bi_end_io() function will only be called the
1820 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1821 * generated if BIO_TRACE_COMPLETION is set.
1822 **/
1823 void bio_endio(struct bio *bio)
1824 {
1825 again:
1826 if (!bio_remaining_done(bio))
1827 return;
1828 if (!bio_integrity_endio(bio))
1829 return;
1830
1831 if (bio->bi_disk)
1832 rq_qos_done_bio(bio->bi_disk->queue, bio);
1833
1834 /*
1835 * Need to have a real endio function for chained bios, otherwise
1836 * various corner cases will break (like stacking block devices that
1837 * save/restore bi_end_io) - however, we want to avoid unbounded
1838 * recursion and blowing the stack. Tail call optimization would
1839 * handle this, but compiling with frame pointers also disables
1840 * gcc's sibling call optimization.
1841 */
1842 if (bio->bi_end_io == bio_chain_endio) {
1843 bio = __bio_chain_endio(bio);
1844 goto again;
1845 }
1846
1847 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1848 trace_block_bio_complete(bio->bi_disk->queue, bio,
1849 blk_status_to_errno(bio->bi_status));
1850 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1851 }
1852
1853 blk_throtl_bio_endio(bio);
1854 /* release cgroup info */
1855 bio_uninit(bio);
1856 if (bio->bi_end_io)
1857 bio->bi_end_io(bio);
1858 }
1859 EXPORT_SYMBOL(bio_endio);
1860
1861 /**
1862 * bio_split - split a bio
1863 * @bio: bio to split
1864 * @sectors: number of sectors to split from the front of @bio
1865 * @gfp: gfp mask
1866 * @bs: bio set to allocate from
1867 *
1868 * Allocates and returns a new bio which represents @sectors from the start of
1869 * @bio, and updates @bio to represent the remaining sectors.
1870 *
1871 * Unless this is a discard request the newly allocated bio will point
1872 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1873 * @bio is not freed before the split.
1874 */
1875 struct bio *bio_split(struct bio *bio, int sectors,
1876 gfp_t gfp, struct bio_set *bs)
1877 {
1878 struct bio *split;
1879
1880 BUG_ON(sectors <= 0);
1881 BUG_ON(sectors >= bio_sectors(bio));
1882
1883 split = bio_clone_fast(bio, gfp, bs);
1884 if (!split)
1885 return NULL;
1886
1887 split->bi_iter.bi_size = sectors << 9;
1888
1889 if (bio_integrity(split))
1890 bio_integrity_trim(split);
1891
1892 bio_advance(bio, split->bi_iter.bi_size);
1893
1894 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1895 bio_set_flag(split, BIO_TRACE_COMPLETION);
1896
1897 return split;
1898 }
1899 EXPORT_SYMBOL(bio_split);
1900
1901 /**
1902 * bio_trim - trim a bio
1903 * @bio: bio to trim
1904 * @offset: number of sectors to trim from the front of @bio
1905 * @size: size we want to trim @bio to, in sectors
1906 */
1907 void bio_trim(struct bio *bio, int offset, int size)
1908 {
1909 /* 'bio' is a cloned bio which we need to trim to match
1910 * the given offset and size.
1911 */
1912
1913 size <<= 9;
1914 if (offset == 0 && size == bio->bi_iter.bi_size)
1915 return;
1916
1917 bio_clear_flag(bio, BIO_SEG_VALID);
1918
1919 bio_advance(bio, offset << 9);
1920
1921 bio->bi_iter.bi_size = size;
1922
1923 if (bio_integrity(bio))
1924 bio_integrity_trim(bio);
1925
1926 }
1927 EXPORT_SYMBOL_GPL(bio_trim);
1928
1929 /*
1930 * create memory pools for biovec's in a bio_set.
1931 * use the global biovec slabs created for general use.
1932 */
1933 int biovec_init_pool(mempool_t *pool, int pool_entries)
1934 {
1935 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1936
1937 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1938 }
1939
1940 /*
1941 * bioset_exit - exit a bioset initialized with bioset_init()
1942 *
1943 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1944 * kzalloc()).
1945 */
1946 void bioset_exit(struct bio_set *bs)
1947 {
1948 if (bs->rescue_workqueue)
1949 destroy_workqueue(bs->rescue_workqueue);
1950 bs->rescue_workqueue = NULL;
1951
1952 mempool_exit(&bs->bio_pool);
1953 mempool_exit(&bs->bvec_pool);
1954
1955 bioset_integrity_free(bs);
1956 if (bs->bio_slab)
1957 bio_put_slab(bs);
1958 bs->bio_slab = NULL;
1959 }
1960 EXPORT_SYMBOL(bioset_exit);
1961
1962 /**
1963 * bioset_init - Initialize a bio_set
1964 * @bs: pool to initialize
1965 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1966 * @front_pad: Number of bytes to allocate in front of the returned bio
1967 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1968 * and %BIOSET_NEED_RESCUER
1969 *
1970 * Description:
1971 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1972 * to ask for a number of bytes to be allocated in front of the bio.
1973 * Front pad allocation is useful for embedding the bio inside
1974 * another structure, to avoid allocating extra data to go with the bio.
1975 * Note that the bio must be embedded at the END of that structure always,
1976 * or things will break badly.
1977 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1978 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1979 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1980 * dispatch queued requests when the mempool runs out of space.
1981 *
1982 */
1983 int bioset_init(struct bio_set *bs,
1984 unsigned int pool_size,
1985 unsigned int front_pad,
1986 int flags)
1987 {
1988 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1989
1990 bs->front_pad = front_pad;
1991
1992 spin_lock_init(&bs->rescue_lock);
1993 bio_list_init(&bs->rescue_list);
1994 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1995
1996 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1997 if (!bs->bio_slab)
1998 return -ENOMEM;
1999
2000 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2001 goto bad;
2002
2003 if ((flags & BIOSET_NEED_BVECS) &&
2004 biovec_init_pool(&bs->bvec_pool, pool_size))
2005 goto bad;
2006
2007 if (!(flags & BIOSET_NEED_RESCUER))
2008 return 0;
2009
2010 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2011 if (!bs->rescue_workqueue)
2012 goto bad;
2013
2014 return 0;
2015 bad:
2016 bioset_exit(bs);
2017 return -ENOMEM;
2018 }
2019 EXPORT_SYMBOL(bioset_init);
2020
2021 /*
2022 * Initialize and setup a new bio_set, based on the settings from
2023 * another bio_set.
2024 */
2025 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2026 {
2027 int flags;
2028
2029 flags = 0;
2030 if (src->bvec_pool.min_nr)
2031 flags |= BIOSET_NEED_BVECS;
2032 if (src->rescue_workqueue)
2033 flags |= BIOSET_NEED_RESCUER;
2034
2035 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2036 }
2037 EXPORT_SYMBOL(bioset_init_from_src);
2038
2039 #ifdef CONFIG_BLK_CGROUP
2040
2041 /**
2042 * bio_disassociate_blkg - puts back the blkg reference if associated
2043 * @bio: target bio
2044 *
2045 * Helper to disassociate the blkg from @bio if a blkg is associated.
2046 */
2047 void bio_disassociate_blkg(struct bio *bio)
2048 {
2049 if (bio->bi_blkg) {
2050 blkg_put(bio->bi_blkg);
2051 bio->bi_blkg = NULL;
2052 }
2053 }
2054 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2055
2056 /**
2057 * __bio_associate_blkg - associate a bio with the a blkg
2058 * @bio: target bio
2059 * @blkg: the blkg to associate
2060 *
2061 * This tries to associate @bio with the specified @blkg. Association failure
2062 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2063 * be anything between @blkg and the root_blkg. This situation only happens
2064 * when a cgroup is dying and then the remaining bios will spill to the closest
2065 * alive blkg.
2066 *
2067 * A reference will be taken on the @blkg and will be released when @bio is
2068 * freed.
2069 */
2070 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2071 {
2072 bio_disassociate_blkg(bio);
2073
2074 bio->bi_blkg = blkg_tryget_closest(blkg);
2075 }
2076
2077 /**
2078 * bio_associate_blkg_from_css - associate a bio with a specified css
2079 * @bio: target bio
2080 * @css: target css
2081 *
2082 * Associate @bio with the blkg found by combining the css's blkg and the
2083 * request_queue of the @bio. This falls back to the queue's root_blkg if
2084 * the association fails with the css.
2085 */
2086 void bio_associate_blkg_from_css(struct bio *bio,
2087 struct cgroup_subsys_state *css)
2088 {
2089 struct request_queue *q = bio->bi_disk->queue;
2090 struct blkcg_gq *blkg;
2091
2092 rcu_read_lock();
2093
2094 if (!css || !css->parent)
2095 blkg = q->root_blkg;
2096 else
2097 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2098
2099 __bio_associate_blkg(bio, blkg);
2100
2101 rcu_read_unlock();
2102 }
2103 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2104
2105 #ifdef CONFIG_MEMCG
2106 /**
2107 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2108 * @bio: target bio
2109 * @page: the page to lookup the blkcg from
2110 *
2111 * Associate @bio with the blkg from @page's owning memcg and the respective
2112 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2113 * root_blkg.
2114 */
2115 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2116 {
2117 struct cgroup_subsys_state *css;
2118
2119 if (!page->mem_cgroup)
2120 return;
2121
2122 rcu_read_lock();
2123
2124 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2125 bio_associate_blkg_from_css(bio, css);
2126
2127 rcu_read_unlock();
2128 }
2129 #endif /* CONFIG_MEMCG */
2130
2131 /**
2132 * bio_associate_blkg - associate a bio with a blkg
2133 * @bio: target bio
2134 *
2135 * Associate @bio with the blkg found from the bio's css and request_queue.
2136 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2137 * already associated, the css is reused and association redone as the
2138 * request_queue may have changed.
2139 */
2140 void bio_associate_blkg(struct bio *bio)
2141 {
2142 struct cgroup_subsys_state *css;
2143
2144 rcu_read_lock();
2145
2146 if (bio->bi_blkg)
2147 css = &bio_blkcg(bio)->css;
2148 else
2149 css = blkcg_css();
2150
2151 bio_associate_blkg_from_css(bio, css);
2152
2153 rcu_read_unlock();
2154 }
2155 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2156
2157 /**
2158 * bio_clone_blkg_association - clone blkg association from src to dst bio
2159 * @dst: destination bio
2160 * @src: source bio
2161 */
2162 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2163 {
2164 rcu_read_lock();
2165
2166 if (src->bi_blkg)
2167 __bio_associate_blkg(dst, src->bi_blkg);
2168
2169 rcu_read_unlock();
2170 }
2171 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2172 #endif /* CONFIG_BLK_CGROUP */
2173
2174 static void __init biovec_init_slabs(void)
2175 {
2176 int i;
2177
2178 for (i = 0; i < BVEC_POOL_NR; i++) {
2179 int size;
2180 struct biovec_slab *bvs = bvec_slabs + i;
2181
2182 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2183 bvs->slab = NULL;
2184 continue;
2185 }
2186
2187 size = bvs->nr_vecs * sizeof(struct bio_vec);
2188 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2189 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2190 }
2191 }
2192
2193 static int __init init_bio(void)
2194 {
2195 bio_slab_max = 2;
2196 bio_slab_nr = 0;
2197 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2198 GFP_KERNEL);
2199
2200 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2201
2202 if (!bio_slabs)
2203 panic("bio: can't allocate bios\n");
2204
2205 bio_integrity_init();
2206 biovec_init_slabs();
2207
2208 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2209 panic("bio: can't allocate bios\n");
2210
2211 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2212 panic("bio: can't create integrity pool\n");
2213
2214 return 0;
2215 }
2216 subsys_initcall(init_bio);