]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/bio.c
Merge branch 'for-4.12/asus' into for-linus
[mirror_ubuntu-artful-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 /*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50
51 /*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125 }
126
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152 out:
153 mutex_unlock(&bio_slab_lock);
154 }
155
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 return bvec_slabs[idx].nr_vecs;
159 }
160
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 if (!idx)
164 return;
165 idx--;
166
167 BIO_BUG_ON(idx >= BVEC_POOL_NR);
168
169 if (idx == BVEC_POOL_MAX) {
170 mempool_free(bv, pool);
171 } else {
172 struct biovec_slab *bvs = bvec_slabs + idx;
173
174 kmem_cache_free(bvs->slab, bv);
175 }
176 }
177
178 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
179 mempool_t *pool)
180 {
181 struct bio_vec *bvl;
182
183 /*
184 * see comment near bvec_array define!
185 */
186 switch (nr) {
187 case 1:
188 *idx = 0;
189 break;
190 case 2 ... 4:
191 *idx = 1;
192 break;
193 case 5 ... 16:
194 *idx = 2;
195 break;
196 case 17 ... 64:
197 *idx = 3;
198 break;
199 case 65 ... 128:
200 *idx = 4;
201 break;
202 case 129 ... BIO_MAX_PAGES:
203 *idx = 5;
204 break;
205 default:
206 return NULL;
207 }
208
209 /*
210 * idx now points to the pool we want to allocate from. only the
211 * 1-vec entry pool is mempool backed.
212 */
213 if (*idx == BVEC_POOL_MAX) {
214 fallback:
215 bvl = mempool_alloc(pool, gfp_mask);
216 } else {
217 struct biovec_slab *bvs = bvec_slabs + *idx;
218 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
219
220 /*
221 * Make this allocation restricted and don't dump info on
222 * allocation failures, since we'll fallback to the mempool
223 * in case of failure.
224 */
225 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
226
227 /*
228 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
229 * is set, retry with the 1-entry mempool
230 */
231 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
232 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
233 *idx = BVEC_POOL_MAX;
234 goto fallback;
235 }
236 }
237
238 (*idx)++;
239 return bvl;
240 }
241
242 static void __bio_free(struct bio *bio)
243 {
244 bio_disassociate_task(bio);
245
246 if (bio_integrity(bio))
247 bio_integrity_free(bio);
248 }
249
250 static void bio_free(struct bio *bio)
251 {
252 struct bio_set *bs = bio->bi_pool;
253 void *p;
254
255 __bio_free(bio);
256
257 if (bs) {
258 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259
260 /*
261 * If we have front padding, adjust the bio pointer before freeing
262 */
263 p = bio;
264 p -= bs->front_pad;
265
266 mempool_free(p, bs->bio_pool);
267 } else {
268 /* Bio was allocated by bio_kmalloc() */
269 kfree(bio);
270 }
271 }
272
273 void bio_init(struct bio *bio, struct bio_vec *table,
274 unsigned short max_vecs)
275 {
276 memset(bio, 0, sizeof(*bio));
277 atomic_set(&bio->__bi_remaining, 1);
278 atomic_set(&bio->__bi_cnt, 1);
279
280 bio->bi_io_vec = table;
281 bio->bi_max_vecs = max_vecs;
282 }
283 EXPORT_SYMBOL(bio_init);
284
285 /**
286 * bio_reset - reinitialize a bio
287 * @bio: bio to reset
288 *
289 * Description:
290 * After calling bio_reset(), @bio will be in the same state as a freshly
291 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
292 * preserved are the ones that are initialized by bio_alloc_bioset(). See
293 * comment in struct bio.
294 */
295 void bio_reset(struct bio *bio)
296 {
297 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
298
299 __bio_free(bio);
300
301 memset(bio, 0, BIO_RESET_BYTES);
302 bio->bi_flags = flags;
303 atomic_set(&bio->__bi_remaining, 1);
304 }
305 EXPORT_SYMBOL(bio_reset);
306
307 static struct bio *__bio_chain_endio(struct bio *bio)
308 {
309 struct bio *parent = bio->bi_private;
310
311 if (!parent->bi_error)
312 parent->bi_error = bio->bi_error;
313 bio_put(bio);
314 return parent;
315 }
316
317 static void bio_chain_endio(struct bio *bio)
318 {
319 bio_endio(__bio_chain_endio(bio));
320 }
321
322 /**
323 * bio_chain - chain bio completions
324 * @bio: the target bio
325 * @parent: the @bio's parent bio
326 *
327 * The caller won't have a bi_end_io called when @bio completes - instead,
328 * @parent's bi_end_io won't be called until both @parent and @bio have
329 * completed; the chained bio will also be freed when it completes.
330 *
331 * The caller must not set bi_private or bi_end_io in @bio.
332 */
333 void bio_chain(struct bio *bio, struct bio *parent)
334 {
335 BUG_ON(bio->bi_private || bio->bi_end_io);
336
337 bio->bi_private = parent;
338 bio->bi_end_io = bio_chain_endio;
339 bio_inc_remaining(parent);
340 }
341 EXPORT_SYMBOL(bio_chain);
342
343 static void bio_alloc_rescue(struct work_struct *work)
344 {
345 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
346 struct bio *bio;
347
348 while (1) {
349 spin_lock(&bs->rescue_lock);
350 bio = bio_list_pop(&bs->rescue_list);
351 spin_unlock(&bs->rescue_lock);
352
353 if (!bio)
354 break;
355
356 generic_make_request(bio);
357 }
358 }
359
360 static void punt_bios_to_rescuer(struct bio_set *bs)
361 {
362 struct bio_list punt, nopunt;
363 struct bio *bio;
364
365 /*
366 * In order to guarantee forward progress we must punt only bios that
367 * were allocated from this bio_set; otherwise, if there was a bio on
368 * there for a stacking driver higher up in the stack, processing it
369 * could require allocating bios from this bio_set, and doing that from
370 * our own rescuer would be bad.
371 *
372 * Since bio lists are singly linked, pop them all instead of trying to
373 * remove from the middle of the list:
374 */
375
376 bio_list_init(&punt);
377 bio_list_init(&nopunt);
378
379 while ((bio = bio_list_pop(&current->bio_list[0])))
380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 current->bio_list[0] = nopunt;
382
383 bio_list_init(&nopunt);
384 while ((bio = bio_list_pop(&current->bio_list[1])))
385 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
386 current->bio_list[1] = nopunt;
387
388 spin_lock(&bs->rescue_lock);
389 bio_list_merge(&bs->rescue_list, &punt);
390 spin_unlock(&bs->rescue_lock);
391
392 queue_work(bs->rescue_workqueue, &bs->rescue_work);
393 }
394
395 /**
396 * bio_alloc_bioset - allocate a bio for I/O
397 * @gfp_mask: the GFP_ mask given to the slab allocator
398 * @nr_iovecs: number of iovecs to pre-allocate
399 * @bs: the bio_set to allocate from.
400 *
401 * Description:
402 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
403 * backed by the @bs's mempool.
404 *
405 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
406 * always be able to allocate a bio. This is due to the mempool guarantees.
407 * To make this work, callers must never allocate more than 1 bio at a time
408 * from this pool. Callers that need to allocate more than 1 bio must always
409 * submit the previously allocated bio for IO before attempting to allocate
410 * a new one. Failure to do so can cause deadlocks under memory pressure.
411 *
412 * Note that when running under generic_make_request() (i.e. any block
413 * driver), bios are not submitted until after you return - see the code in
414 * generic_make_request() that converts recursion into iteration, to prevent
415 * stack overflows.
416 *
417 * This would normally mean allocating multiple bios under
418 * generic_make_request() would be susceptible to deadlocks, but we have
419 * deadlock avoidance code that resubmits any blocked bios from a rescuer
420 * thread.
421 *
422 * However, we do not guarantee forward progress for allocations from other
423 * mempools. Doing multiple allocations from the same mempool under
424 * generic_make_request() should be avoided - instead, use bio_set's front_pad
425 * for per bio allocations.
426 *
427 * RETURNS:
428 * Pointer to new bio on success, NULL on failure.
429 */
430 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
431 {
432 gfp_t saved_gfp = gfp_mask;
433 unsigned front_pad;
434 unsigned inline_vecs;
435 struct bio_vec *bvl = NULL;
436 struct bio *bio;
437 void *p;
438
439 if (!bs) {
440 if (nr_iovecs > UIO_MAXIOV)
441 return NULL;
442
443 p = kmalloc(sizeof(struct bio) +
444 nr_iovecs * sizeof(struct bio_vec),
445 gfp_mask);
446 front_pad = 0;
447 inline_vecs = nr_iovecs;
448 } else {
449 /* should not use nobvec bioset for nr_iovecs > 0 */
450 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
451 return NULL;
452 /*
453 * generic_make_request() converts recursion to iteration; this
454 * means if we're running beneath it, any bios we allocate and
455 * submit will not be submitted (and thus freed) until after we
456 * return.
457 *
458 * This exposes us to a potential deadlock if we allocate
459 * multiple bios from the same bio_set() while running
460 * underneath generic_make_request(). If we were to allocate
461 * multiple bios (say a stacking block driver that was splitting
462 * bios), we would deadlock if we exhausted the mempool's
463 * reserve.
464 *
465 * We solve this, and guarantee forward progress, with a rescuer
466 * workqueue per bio_set. If we go to allocate and there are
467 * bios on current->bio_list, we first try the allocation
468 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
469 * bios we would be blocking to the rescuer workqueue before
470 * we retry with the original gfp_flags.
471 */
472
473 if (current->bio_list &&
474 (!bio_list_empty(&current->bio_list[0]) ||
475 !bio_list_empty(&current->bio_list[1])))
476 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
477
478 p = mempool_alloc(bs->bio_pool, gfp_mask);
479 if (!p && gfp_mask != saved_gfp) {
480 punt_bios_to_rescuer(bs);
481 gfp_mask = saved_gfp;
482 p = mempool_alloc(bs->bio_pool, gfp_mask);
483 }
484
485 front_pad = bs->front_pad;
486 inline_vecs = BIO_INLINE_VECS;
487 }
488
489 if (unlikely(!p))
490 return NULL;
491
492 bio = p + front_pad;
493 bio_init(bio, NULL, 0);
494
495 if (nr_iovecs > inline_vecs) {
496 unsigned long idx = 0;
497
498 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
499 if (!bvl && gfp_mask != saved_gfp) {
500 punt_bios_to_rescuer(bs);
501 gfp_mask = saved_gfp;
502 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
503 }
504
505 if (unlikely(!bvl))
506 goto err_free;
507
508 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
509 } else if (nr_iovecs) {
510 bvl = bio->bi_inline_vecs;
511 }
512
513 bio->bi_pool = bs;
514 bio->bi_max_vecs = nr_iovecs;
515 bio->bi_io_vec = bvl;
516 return bio;
517
518 err_free:
519 mempool_free(p, bs->bio_pool);
520 return NULL;
521 }
522 EXPORT_SYMBOL(bio_alloc_bioset);
523
524 void zero_fill_bio(struct bio *bio)
525 {
526 unsigned long flags;
527 struct bio_vec bv;
528 struct bvec_iter iter;
529
530 bio_for_each_segment(bv, bio, iter) {
531 char *data = bvec_kmap_irq(&bv, &flags);
532 memset(data, 0, bv.bv_len);
533 flush_dcache_page(bv.bv_page);
534 bvec_kunmap_irq(data, &flags);
535 }
536 }
537 EXPORT_SYMBOL(zero_fill_bio);
538
539 /**
540 * bio_put - release a reference to a bio
541 * @bio: bio to release reference to
542 *
543 * Description:
544 * Put a reference to a &struct bio, either one you have gotten with
545 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
546 **/
547 void bio_put(struct bio *bio)
548 {
549 if (!bio_flagged(bio, BIO_REFFED))
550 bio_free(bio);
551 else {
552 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
553
554 /*
555 * last put frees it
556 */
557 if (atomic_dec_and_test(&bio->__bi_cnt))
558 bio_free(bio);
559 }
560 }
561 EXPORT_SYMBOL(bio_put);
562
563 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
564 {
565 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
566 blk_recount_segments(q, bio);
567
568 return bio->bi_phys_segments;
569 }
570 EXPORT_SYMBOL(bio_phys_segments);
571
572 /**
573 * __bio_clone_fast - clone a bio that shares the original bio's biovec
574 * @bio: destination bio
575 * @bio_src: bio to clone
576 *
577 * Clone a &bio. Caller will own the returned bio, but not
578 * the actual data it points to. Reference count of returned
579 * bio will be one.
580 *
581 * Caller must ensure that @bio_src is not freed before @bio.
582 */
583 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
584 {
585 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
586
587 /*
588 * most users will be overriding ->bi_bdev with a new target,
589 * so we don't set nor calculate new physical/hw segment counts here
590 */
591 bio->bi_bdev = bio_src->bi_bdev;
592 bio_set_flag(bio, BIO_CLONED);
593 bio->bi_opf = bio_src->bi_opf;
594 bio->bi_iter = bio_src->bi_iter;
595 bio->bi_io_vec = bio_src->bi_io_vec;
596
597 bio_clone_blkcg_association(bio, bio_src);
598 }
599 EXPORT_SYMBOL(__bio_clone_fast);
600
601 /**
602 * bio_clone_fast - clone a bio that shares the original bio's biovec
603 * @bio: bio to clone
604 * @gfp_mask: allocation priority
605 * @bs: bio_set to allocate from
606 *
607 * Like __bio_clone_fast, only also allocates the returned bio
608 */
609 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
610 {
611 struct bio *b;
612
613 b = bio_alloc_bioset(gfp_mask, 0, bs);
614 if (!b)
615 return NULL;
616
617 __bio_clone_fast(b, bio);
618
619 if (bio_integrity(bio)) {
620 int ret;
621
622 ret = bio_integrity_clone(b, bio, gfp_mask);
623
624 if (ret < 0) {
625 bio_put(b);
626 return NULL;
627 }
628 }
629
630 return b;
631 }
632 EXPORT_SYMBOL(bio_clone_fast);
633
634 static struct bio *__bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
635 struct bio_set *bs, int offset,
636 int size)
637 {
638 struct bvec_iter iter;
639 struct bio_vec bv;
640 struct bio *bio;
641 struct bvec_iter iter_src = bio_src->bi_iter;
642
643 /* for supporting partial clone */
644 if (offset || size != bio_src->bi_iter.bi_size) {
645 bio_advance_iter(bio_src, &iter_src, offset);
646 iter_src.bi_size = size;
647 }
648
649 /*
650 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
651 * bio_src->bi_io_vec to bio->bi_io_vec.
652 *
653 * We can't do that anymore, because:
654 *
655 * - The point of cloning the biovec is to produce a bio with a biovec
656 * the caller can modify: bi_idx and bi_bvec_done should be 0.
657 *
658 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
659 * we tried to clone the whole thing bio_alloc_bioset() would fail.
660 * But the clone should succeed as long as the number of biovecs we
661 * actually need to allocate is fewer than BIO_MAX_PAGES.
662 *
663 * - Lastly, bi_vcnt should not be looked at or relied upon by code
664 * that does not own the bio - reason being drivers don't use it for
665 * iterating over the biovec anymore, so expecting it to be kept up
666 * to date (i.e. for clones that share the parent biovec) is just
667 * asking for trouble and would force extra work on
668 * __bio_clone_fast() anyways.
669 */
670
671 bio = bio_alloc_bioset(gfp_mask, __bio_segments(bio_src,
672 &iter_src), bs);
673 if (!bio)
674 return NULL;
675 bio->bi_bdev = bio_src->bi_bdev;
676 bio->bi_opf = bio_src->bi_opf;
677 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
678 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
679
680 switch (bio_op(bio)) {
681 case REQ_OP_DISCARD:
682 case REQ_OP_SECURE_ERASE:
683 case REQ_OP_WRITE_ZEROES:
684 break;
685 case REQ_OP_WRITE_SAME:
686 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
687 break;
688 default:
689 __bio_for_each_segment(bv, bio_src, iter, iter_src)
690 bio->bi_io_vec[bio->bi_vcnt++] = bv;
691 break;
692 }
693
694 if (bio_integrity(bio_src)) {
695 int ret;
696
697 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
698 if (ret < 0) {
699 bio_put(bio);
700 return NULL;
701 }
702 }
703
704 bio_clone_blkcg_association(bio, bio_src);
705
706 return bio;
707 }
708
709 /**
710 * bio_clone_bioset - clone a bio
711 * @bio_src: bio to clone
712 * @gfp_mask: allocation priority
713 * @bs: bio_set to allocate from
714 *
715 * Clone bio. Caller will own the returned bio, but not the actual data it
716 * points to. Reference count of returned bio will be one.
717 */
718 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
719 struct bio_set *bs)
720 {
721 return __bio_clone_bioset(bio_src, gfp_mask, bs, 0,
722 bio_src->bi_iter.bi_size);
723 }
724 EXPORT_SYMBOL(bio_clone_bioset);
725
726 /**
727 * bio_clone_bioset_partial - clone a partial bio
728 * @bio_src: bio to clone
729 * @gfp_mask: allocation priority
730 * @bs: bio_set to allocate from
731 * @offset: cloned starting from the offset
732 * @size: size for the cloned bio
733 *
734 * Clone bio. Caller will own the returned bio, but not the actual data it
735 * points to. Reference count of returned bio will be one.
736 */
737 struct bio *bio_clone_bioset_partial(struct bio *bio_src, gfp_t gfp_mask,
738 struct bio_set *bs, int offset,
739 int size)
740 {
741 return __bio_clone_bioset(bio_src, gfp_mask, bs, offset, size);
742 }
743 EXPORT_SYMBOL(bio_clone_bioset_partial);
744
745 /**
746 * bio_add_pc_page - attempt to add page to bio
747 * @q: the target queue
748 * @bio: destination bio
749 * @page: page to add
750 * @len: vec entry length
751 * @offset: vec entry offset
752 *
753 * Attempt to add a page to the bio_vec maplist. This can fail for a
754 * number of reasons, such as the bio being full or target block device
755 * limitations. The target block device must allow bio's up to PAGE_SIZE,
756 * so it is always possible to add a single page to an empty bio.
757 *
758 * This should only be used by REQ_PC bios.
759 */
760 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
761 *page, unsigned int len, unsigned int offset)
762 {
763 int retried_segments = 0;
764 struct bio_vec *bvec;
765
766 /*
767 * cloned bio must not modify vec list
768 */
769 if (unlikely(bio_flagged(bio, BIO_CLONED)))
770 return 0;
771
772 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
773 return 0;
774
775 /*
776 * For filesystems with a blocksize smaller than the pagesize
777 * we will often be called with the same page as last time and
778 * a consecutive offset. Optimize this special case.
779 */
780 if (bio->bi_vcnt > 0) {
781 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
782
783 if (page == prev->bv_page &&
784 offset == prev->bv_offset + prev->bv_len) {
785 prev->bv_len += len;
786 bio->bi_iter.bi_size += len;
787 goto done;
788 }
789
790 /*
791 * If the queue doesn't support SG gaps and adding this
792 * offset would create a gap, disallow it.
793 */
794 if (bvec_gap_to_prev(q, prev, offset))
795 return 0;
796 }
797
798 if (bio->bi_vcnt >= bio->bi_max_vecs)
799 return 0;
800
801 /*
802 * setup the new entry, we might clear it again later if we
803 * cannot add the page
804 */
805 bvec = &bio->bi_io_vec[bio->bi_vcnt];
806 bvec->bv_page = page;
807 bvec->bv_len = len;
808 bvec->bv_offset = offset;
809 bio->bi_vcnt++;
810 bio->bi_phys_segments++;
811 bio->bi_iter.bi_size += len;
812
813 /*
814 * Perform a recount if the number of segments is greater
815 * than queue_max_segments(q).
816 */
817
818 while (bio->bi_phys_segments > queue_max_segments(q)) {
819
820 if (retried_segments)
821 goto failed;
822
823 retried_segments = 1;
824 blk_recount_segments(q, bio);
825 }
826
827 /* If we may be able to merge these biovecs, force a recount */
828 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
829 bio_clear_flag(bio, BIO_SEG_VALID);
830
831 done:
832 return len;
833
834 failed:
835 bvec->bv_page = NULL;
836 bvec->bv_len = 0;
837 bvec->bv_offset = 0;
838 bio->bi_vcnt--;
839 bio->bi_iter.bi_size -= len;
840 blk_recount_segments(q, bio);
841 return 0;
842 }
843 EXPORT_SYMBOL(bio_add_pc_page);
844
845 /**
846 * bio_add_page - attempt to add page to bio
847 * @bio: destination bio
848 * @page: page to add
849 * @len: vec entry length
850 * @offset: vec entry offset
851 *
852 * Attempt to add a page to the bio_vec maplist. This will only fail
853 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
854 */
855 int bio_add_page(struct bio *bio, struct page *page,
856 unsigned int len, unsigned int offset)
857 {
858 struct bio_vec *bv;
859
860 /*
861 * cloned bio must not modify vec list
862 */
863 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
864 return 0;
865
866 /*
867 * For filesystems with a blocksize smaller than the pagesize
868 * we will often be called with the same page as last time and
869 * a consecutive offset. Optimize this special case.
870 */
871 if (bio->bi_vcnt > 0) {
872 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
873
874 if (page == bv->bv_page &&
875 offset == bv->bv_offset + bv->bv_len) {
876 bv->bv_len += len;
877 goto done;
878 }
879 }
880
881 if (bio->bi_vcnt >= bio->bi_max_vecs)
882 return 0;
883
884 bv = &bio->bi_io_vec[bio->bi_vcnt];
885 bv->bv_page = page;
886 bv->bv_len = len;
887 bv->bv_offset = offset;
888
889 bio->bi_vcnt++;
890 done:
891 bio->bi_iter.bi_size += len;
892 return len;
893 }
894 EXPORT_SYMBOL(bio_add_page);
895
896 /**
897 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
898 * @bio: bio to add pages to
899 * @iter: iov iterator describing the region to be mapped
900 *
901 * Pins as many pages from *iter and appends them to @bio's bvec array. The
902 * pages will have to be released using put_page() when done.
903 */
904 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
905 {
906 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
907 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
908 struct page **pages = (struct page **)bv;
909 size_t offset, diff;
910 ssize_t size;
911
912 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
913 if (unlikely(size <= 0))
914 return size ? size : -EFAULT;
915 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
916
917 /*
918 * Deep magic below: We need to walk the pinned pages backwards
919 * because we are abusing the space allocated for the bio_vecs
920 * for the page array. Because the bio_vecs are larger than the
921 * page pointers by definition this will always work. But it also
922 * means we can't use bio_add_page, so any changes to it's semantics
923 * need to be reflected here as well.
924 */
925 bio->bi_iter.bi_size += size;
926 bio->bi_vcnt += nr_pages;
927
928 diff = (nr_pages * PAGE_SIZE - offset) - size;
929 while (nr_pages--) {
930 bv[nr_pages].bv_page = pages[nr_pages];
931 bv[nr_pages].bv_len = PAGE_SIZE;
932 bv[nr_pages].bv_offset = 0;
933 }
934
935 bv[0].bv_offset += offset;
936 bv[0].bv_len -= offset;
937 if (diff)
938 bv[bio->bi_vcnt - 1].bv_len -= diff;
939
940 iov_iter_advance(iter, size);
941 return 0;
942 }
943 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
944
945 struct submit_bio_ret {
946 struct completion event;
947 int error;
948 };
949
950 static void submit_bio_wait_endio(struct bio *bio)
951 {
952 struct submit_bio_ret *ret = bio->bi_private;
953
954 ret->error = bio->bi_error;
955 complete(&ret->event);
956 }
957
958 /**
959 * submit_bio_wait - submit a bio, and wait until it completes
960 * @bio: The &struct bio which describes the I/O
961 *
962 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
963 * bio_endio() on failure.
964 */
965 int submit_bio_wait(struct bio *bio)
966 {
967 struct submit_bio_ret ret;
968
969 init_completion(&ret.event);
970 bio->bi_private = &ret;
971 bio->bi_end_io = submit_bio_wait_endio;
972 bio->bi_opf |= REQ_SYNC;
973 submit_bio(bio);
974 wait_for_completion_io(&ret.event);
975
976 return ret.error;
977 }
978 EXPORT_SYMBOL(submit_bio_wait);
979
980 /**
981 * bio_advance - increment/complete a bio by some number of bytes
982 * @bio: bio to advance
983 * @bytes: number of bytes to complete
984 *
985 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
986 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
987 * be updated on the last bvec as well.
988 *
989 * @bio will then represent the remaining, uncompleted portion of the io.
990 */
991 void bio_advance(struct bio *bio, unsigned bytes)
992 {
993 if (bio_integrity(bio))
994 bio_integrity_advance(bio, bytes);
995
996 bio_advance_iter(bio, &bio->bi_iter, bytes);
997 }
998 EXPORT_SYMBOL(bio_advance);
999
1000 /**
1001 * bio_alloc_pages - allocates a single page for each bvec in a bio
1002 * @bio: bio to allocate pages for
1003 * @gfp_mask: flags for allocation
1004 *
1005 * Allocates pages up to @bio->bi_vcnt.
1006 *
1007 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
1008 * freed.
1009 */
1010 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
1011 {
1012 int i;
1013 struct bio_vec *bv;
1014
1015 bio_for_each_segment_all(bv, bio, i) {
1016 bv->bv_page = alloc_page(gfp_mask);
1017 if (!bv->bv_page) {
1018 while (--bv >= bio->bi_io_vec)
1019 __free_page(bv->bv_page);
1020 return -ENOMEM;
1021 }
1022 }
1023
1024 return 0;
1025 }
1026 EXPORT_SYMBOL(bio_alloc_pages);
1027
1028 /**
1029 * bio_copy_data - copy contents of data buffers from one chain of bios to
1030 * another
1031 * @src: source bio list
1032 * @dst: destination bio list
1033 *
1034 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1035 * @src and @dst as linked lists of bios.
1036 *
1037 * Stops when it reaches the end of either @src or @dst - that is, copies
1038 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1039 */
1040 void bio_copy_data(struct bio *dst, struct bio *src)
1041 {
1042 struct bvec_iter src_iter, dst_iter;
1043 struct bio_vec src_bv, dst_bv;
1044 void *src_p, *dst_p;
1045 unsigned bytes;
1046
1047 src_iter = src->bi_iter;
1048 dst_iter = dst->bi_iter;
1049
1050 while (1) {
1051 if (!src_iter.bi_size) {
1052 src = src->bi_next;
1053 if (!src)
1054 break;
1055
1056 src_iter = src->bi_iter;
1057 }
1058
1059 if (!dst_iter.bi_size) {
1060 dst = dst->bi_next;
1061 if (!dst)
1062 break;
1063
1064 dst_iter = dst->bi_iter;
1065 }
1066
1067 src_bv = bio_iter_iovec(src, src_iter);
1068 dst_bv = bio_iter_iovec(dst, dst_iter);
1069
1070 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1071
1072 src_p = kmap_atomic(src_bv.bv_page);
1073 dst_p = kmap_atomic(dst_bv.bv_page);
1074
1075 memcpy(dst_p + dst_bv.bv_offset,
1076 src_p + src_bv.bv_offset,
1077 bytes);
1078
1079 kunmap_atomic(dst_p);
1080 kunmap_atomic(src_p);
1081
1082 bio_advance_iter(src, &src_iter, bytes);
1083 bio_advance_iter(dst, &dst_iter, bytes);
1084 }
1085 }
1086 EXPORT_SYMBOL(bio_copy_data);
1087
1088 struct bio_map_data {
1089 int is_our_pages;
1090 struct iov_iter iter;
1091 struct iovec iov[];
1092 };
1093
1094 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1095 gfp_t gfp_mask)
1096 {
1097 if (iov_count > UIO_MAXIOV)
1098 return NULL;
1099
1100 return kmalloc(sizeof(struct bio_map_data) +
1101 sizeof(struct iovec) * iov_count, gfp_mask);
1102 }
1103
1104 /**
1105 * bio_copy_from_iter - copy all pages from iov_iter to bio
1106 * @bio: The &struct bio which describes the I/O as destination
1107 * @iter: iov_iter as source
1108 *
1109 * Copy all pages from iov_iter to bio.
1110 * Returns 0 on success, or error on failure.
1111 */
1112 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1113 {
1114 int i;
1115 struct bio_vec *bvec;
1116
1117 bio_for_each_segment_all(bvec, bio, i) {
1118 ssize_t ret;
1119
1120 ret = copy_page_from_iter(bvec->bv_page,
1121 bvec->bv_offset,
1122 bvec->bv_len,
1123 &iter);
1124
1125 if (!iov_iter_count(&iter))
1126 break;
1127
1128 if (ret < bvec->bv_len)
1129 return -EFAULT;
1130 }
1131
1132 return 0;
1133 }
1134
1135 /**
1136 * bio_copy_to_iter - copy all pages from bio to iov_iter
1137 * @bio: The &struct bio which describes the I/O as source
1138 * @iter: iov_iter as destination
1139 *
1140 * Copy all pages from bio to iov_iter.
1141 * Returns 0 on success, or error on failure.
1142 */
1143 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1144 {
1145 int i;
1146 struct bio_vec *bvec;
1147
1148 bio_for_each_segment_all(bvec, bio, i) {
1149 ssize_t ret;
1150
1151 ret = copy_page_to_iter(bvec->bv_page,
1152 bvec->bv_offset,
1153 bvec->bv_len,
1154 &iter);
1155
1156 if (!iov_iter_count(&iter))
1157 break;
1158
1159 if (ret < bvec->bv_len)
1160 return -EFAULT;
1161 }
1162
1163 return 0;
1164 }
1165
1166 void bio_free_pages(struct bio *bio)
1167 {
1168 struct bio_vec *bvec;
1169 int i;
1170
1171 bio_for_each_segment_all(bvec, bio, i)
1172 __free_page(bvec->bv_page);
1173 }
1174 EXPORT_SYMBOL(bio_free_pages);
1175
1176 /**
1177 * bio_uncopy_user - finish previously mapped bio
1178 * @bio: bio being terminated
1179 *
1180 * Free pages allocated from bio_copy_user_iov() and write back data
1181 * to user space in case of a read.
1182 */
1183 int bio_uncopy_user(struct bio *bio)
1184 {
1185 struct bio_map_data *bmd = bio->bi_private;
1186 int ret = 0;
1187
1188 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1189 /*
1190 * if we're in a workqueue, the request is orphaned, so
1191 * don't copy into a random user address space, just free
1192 * and return -EINTR so user space doesn't expect any data.
1193 */
1194 if (!current->mm)
1195 ret = -EINTR;
1196 else if (bio_data_dir(bio) == READ)
1197 ret = bio_copy_to_iter(bio, bmd->iter);
1198 if (bmd->is_our_pages)
1199 bio_free_pages(bio);
1200 }
1201 kfree(bmd);
1202 bio_put(bio);
1203 return ret;
1204 }
1205
1206 /**
1207 * bio_copy_user_iov - copy user data to bio
1208 * @q: destination block queue
1209 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1210 * @iter: iovec iterator
1211 * @gfp_mask: memory allocation flags
1212 *
1213 * Prepares and returns a bio for indirect user io, bouncing data
1214 * to/from kernel pages as necessary. Must be paired with
1215 * call bio_uncopy_user() on io completion.
1216 */
1217 struct bio *bio_copy_user_iov(struct request_queue *q,
1218 struct rq_map_data *map_data,
1219 const struct iov_iter *iter,
1220 gfp_t gfp_mask)
1221 {
1222 struct bio_map_data *bmd;
1223 struct page *page;
1224 struct bio *bio;
1225 int i, ret;
1226 int nr_pages = 0;
1227 unsigned int len = iter->count;
1228 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1229
1230 for (i = 0; i < iter->nr_segs; i++) {
1231 unsigned long uaddr;
1232 unsigned long end;
1233 unsigned long start;
1234
1235 uaddr = (unsigned long) iter->iov[i].iov_base;
1236 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1237 >> PAGE_SHIFT;
1238 start = uaddr >> PAGE_SHIFT;
1239
1240 /*
1241 * Overflow, abort
1242 */
1243 if (end < start)
1244 return ERR_PTR(-EINVAL);
1245
1246 nr_pages += end - start;
1247 }
1248
1249 if (offset)
1250 nr_pages++;
1251
1252 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1253 if (!bmd)
1254 return ERR_PTR(-ENOMEM);
1255
1256 /*
1257 * We need to do a deep copy of the iov_iter including the iovecs.
1258 * The caller provided iov might point to an on-stack or otherwise
1259 * shortlived one.
1260 */
1261 bmd->is_our_pages = map_data ? 0 : 1;
1262 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1263 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1264 iter->nr_segs, iter->count);
1265
1266 ret = -ENOMEM;
1267 bio = bio_kmalloc(gfp_mask, nr_pages);
1268 if (!bio)
1269 goto out_bmd;
1270
1271 ret = 0;
1272
1273 if (map_data) {
1274 nr_pages = 1 << map_data->page_order;
1275 i = map_data->offset / PAGE_SIZE;
1276 }
1277 while (len) {
1278 unsigned int bytes = PAGE_SIZE;
1279
1280 bytes -= offset;
1281
1282 if (bytes > len)
1283 bytes = len;
1284
1285 if (map_data) {
1286 if (i == map_data->nr_entries * nr_pages) {
1287 ret = -ENOMEM;
1288 break;
1289 }
1290
1291 page = map_data->pages[i / nr_pages];
1292 page += (i % nr_pages);
1293
1294 i++;
1295 } else {
1296 page = alloc_page(q->bounce_gfp | gfp_mask);
1297 if (!page) {
1298 ret = -ENOMEM;
1299 break;
1300 }
1301 }
1302
1303 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1304 break;
1305
1306 len -= bytes;
1307 offset = 0;
1308 }
1309
1310 if (ret)
1311 goto cleanup;
1312
1313 /*
1314 * success
1315 */
1316 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1317 (map_data && map_data->from_user)) {
1318 ret = bio_copy_from_iter(bio, *iter);
1319 if (ret)
1320 goto cleanup;
1321 }
1322
1323 bio->bi_private = bmd;
1324 return bio;
1325 cleanup:
1326 if (!map_data)
1327 bio_free_pages(bio);
1328 bio_put(bio);
1329 out_bmd:
1330 kfree(bmd);
1331 return ERR_PTR(ret);
1332 }
1333
1334 /**
1335 * bio_map_user_iov - map user iovec into bio
1336 * @q: the struct request_queue for the bio
1337 * @iter: iovec iterator
1338 * @gfp_mask: memory allocation flags
1339 *
1340 * Map the user space address into a bio suitable for io to a block
1341 * device. Returns an error pointer in case of error.
1342 */
1343 struct bio *bio_map_user_iov(struct request_queue *q,
1344 const struct iov_iter *iter,
1345 gfp_t gfp_mask)
1346 {
1347 int j;
1348 int nr_pages = 0;
1349 struct page **pages;
1350 struct bio *bio;
1351 int cur_page = 0;
1352 int ret, offset;
1353 struct iov_iter i;
1354 struct iovec iov;
1355
1356 iov_for_each(iov, i, *iter) {
1357 unsigned long uaddr = (unsigned long) iov.iov_base;
1358 unsigned long len = iov.iov_len;
1359 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1360 unsigned long start = uaddr >> PAGE_SHIFT;
1361
1362 /*
1363 * Overflow, abort
1364 */
1365 if (end < start)
1366 return ERR_PTR(-EINVAL);
1367
1368 nr_pages += end - start;
1369 /*
1370 * buffer must be aligned to at least logical block size for now
1371 */
1372 if (uaddr & queue_dma_alignment(q))
1373 return ERR_PTR(-EINVAL);
1374 }
1375
1376 if (!nr_pages)
1377 return ERR_PTR(-EINVAL);
1378
1379 bio = bio_kmalloc(gfp_mask, nr_pages);
1380 if (!bio)
1381 return ERR_PTR(-ENOMEM);
1382
1383 ret = -ENOMEM;
1384 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1385 if (!pages)
1386 goto out;
1387
1388 iov_for_each(iov, i, *iter) {
1389 unsigned long uaddr = (unsigned long) iov.iov_base;
1390 unsigned long len = iov.iov_len;
1391 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1392 unsigned long start = uaddr >> PAGE_SHIFT;
1393 const int local_nr_pages = end - start;
1394 const int page_limit = cur_page + local_nr_pages;
1395
1396 ret = get_user_pages_fast(uaddr, local_nr_pages,
1397 (iter->type & WRITE) != WRITE,
1398 &pages[cur_page]);
1399 if (ret < local_nr_pages) {
1400 ret = -EFAULT;
1401 goto out_unmap;
1402 }
1403
1404 offset = offset_in_page(uaddr);
1405 for (j = cur_page; j < page_limit; j++) {
1406 unsigned int bytes = PAGE_SIZE - offset;
1407
1408 if (len <= 0)
1409 break;
1410
1411 if (bytes > len)
1412 bytes = len;
1413
1414 /*
1415 * sorry...
1416 */
1417 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1418 bytes)
1419 break;
1420
1421 len -= bytes;
1422 offset = 0;
1423 }
1424
1425 cur_page = j;
1426 /*
1427 * release the pages we didn't map into the bio, if any
1428 */
1429 while (j < page_limit)
1430 put_page(pages[j++]);
1431 }
1432
1433 kfree(pages);
1434
1435 bio_set_flag(bio, BIO_USER_MAPPED);
1436
1437 /*
1438 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1439 * it would normally disappear when its bi_end_io is run.
1440 * however, we need it for the unmap, so grab an extra
1441 * reference to it
1442 */
1443 bio_get(bio);
1444 return bio;
1445
1446 out_unmap:
1447 for (j = 0; j < nr_pages; j++) {
1448 if (!pages[j])
1449 break;
1450 put_page(pages[j]);
1451 }
1452 out:
1453 kfree(pages);
1454 bio_put(bio);
1455 return ERR_PTR(ret);
1456 }
1457
1458 static void __bio_unmap_user(struct bio *bio)
1459 {
1460 struct bio_vec *bvec;
1461 int i;
1462
1463 /*
1464 * make sure we dirty pages we wrote to
1465 */
1466 bio_for_each_segment_all(bvec, bio, i) {
1467 if (bio_data_dir(bio) == READ)
1468 set_page_dirty_lock(bvec->bv_page);
1469
1470 put_page(bvec->bv_page);
1471 }
1472
1473 bio_put(bio);
1474 }
1475
1476 /**
1477 * bio_unmap_user - unmap a bio
1478 * @bio: the bio being unmapped
1479 *
1480 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1481 * process context.
1482 *
1483 * bio_unmap_user() may sleep.
1484 */
1485 void bio_unmap_user(struct bio *bio)
1486 {
1487 __bio_unmap_user(bio);
1488 bio_put(bio);
1489 }
1490
1491 static void bio_map_kern_endio(struct bio *bio)
1492 {
1493 bio_put(bio);
1494 }
1495
1496 /**
1497 * bio_map_kern - map kernel address into bio
1498 * @q: the struct request_queue for the bio
1499 * @data: pointer to buffer to map
1500 * @len: length in bytes
1501 * @gfp_mask: allocation flags for bio allocation
1502 *
1503 * Map the kernel address into a bio suitable for io to a block
1504 * device. Returns an error pointer in case of error.
1505 */
1506 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1507 gfp_t gfp_mask)
1508 {
1509 unsigned long kaddr = (unsigned long)data;
1510 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1511 unsigned long start = kaddr >> PAGE_SHIFT;
1512 const int nr_pages = end - start;
1513 int offset, i;
1514 struct bio *bio;
1515
1516 bio = bio_kmalloc(gfp_mask, nr_pages);
1517 if (!bio)
1518 return ERR_PTR(-ENOMEM);
1519
1520 offset = offset_in_page(kaddr);
1521 for (i = 0; i < nr_pages; i++) {
1522 unsigned int bytes = PAGE_SIZE - offset;
1523
1524 if (len <= 0)
1525 break;
1526
1527 if (bytes > len)
1528 bytes = len;
1529
1530 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1531 offset) < bytes) {
1532 /* we don't support partial mappings */
1533 bio_put(bio);
1534 return ERR_PTR(-EINVAL);
1535 }
1536
1537 data += bytes;
1538 len -= bytes;
1539 offset = 0;
1540 }
1541
1542 bio->bi_end_io = bio_map_kern_endio;
1543 return bio;
1544 }
1545 EXPORT_SYMBOL(bio_map_kern);
1546
1547 static void bio_copy_kern_endio(struct bio *bio)
1548 {
1549 bio_free_pages(bio);
1550 bio_put(bio);
1551 }
1552
1553 static void bio_copy_kern_endio_read(struct bio *bio)
1554 {
1555 char *p = bio->bi_private;
1556 struct bio_vec *bvec;
1557 int i;
1558
1559 bio_for_each_segment_all(bvec, bio, i) {
1560 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1561 p += bvec->bv_len;
1562 }
1563
1564 bio_copy_kern_endio(bio);
1565 }
1566
1567 /**
1568 * bio_copy_kern - copy kernel address into bio
1569 * @q: the struct request_queue for the bio
1570 * @data: pointer to buffer to copy
1571 * @len: length in bytes
1572 * @gfp_mask: allocation flags for bio and page allocation
1573 * @reading: data direction is READ
1574 *
1575 * copy the kernel address into a bio suitable for io to a block
1576 * device. Returns an error pointer in case of error.
1577 */
1578 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1579 gfp_t gfp_mask, int reading)
1580 {
1581 unsigned long kaddr = (unsigned long)data;
1582 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1583 unsigned long start = kaddr >> PAGE_SHIFT;
1584 struct bio *bio;
1585 void *p = data;
1586 int nr_pages = 0;
1587
1588 /*
1589 * Overflow, abort
1590 */
1591 if (end < start)
1592 return ERR_PTR(-EINVAL);
1593
1594 nr_pages = end - start;
1595 bio = bio_kmalloc(gfp_mask, nr_pages);
1596 if (!bio)
1597 return ERR_PTR(-ENOMEM);
1598
1599 while (len) {
1600 struct page *page;
1601 unsigned int bytes = PAGE_SIZE;
1602
1603 if (bytes > len)
1604 bytes = len;
1605
1606 page = alloc_page(q->bounce_gfp | gfp_mask);
1607 if (!page)
1608 goto cleanup;
1609
1610 if (!reading)
1611 memcpy(page_address(page), p, bytes);
1612
1613 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1614 break;
1615
1616 len -= bytes;
1617 p += bytes;
1618 }
1619
1620 if (reading) {
1621 bio->bi_end_io = bio_copy_kern_endio_read;
1622 bio->bi_private = data;
1623 } else {
1624 bio->bi_end_io = bio_copy_kern_endio;
1625 }
1626
1627 return bio;
1628
1629 cleanup:
1630 bio_free_pages(bio);
1631 bio_put(bio);
1632 return ERR_PTR(-ENOMEM);
1633 }
1634
1635 /*
1636 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1637 * for performing direct-IO in BIOs.
1638 *
1639 * The problem is that we cannot run set_page_dirty() from interrupt context
1640 * because the required locks are not interrupt-safe. So what we can do is to
1641 * mark the pages dirty _before_ performing IO. And in interrupt context,
1642 * check that the pages are still dirty. If so, fine. If not, redirty them
1643 * in process context.
1644 *
1645 * We special-case compound pages here: normally this means reads into hugetlb
1646 * pages. The logic in here doesn't really work right for compound pages
1647 * because the VM does not uniformly chase down the head page in all cases.
1648 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1649 * handle them at all. So we skip compound pages here at an early stage.
1650 *
1651 * Note that this code is very hard to test under normal circumstances because
1652 * direct-io pins the pages with get_user_pages(). This makes
1653 * is_page_cache_freeable return false, and the VM will not clean the pages.
1654 * But other code (eg, flusher threads) could clean the pages if they are mapped
1655 * pagecache.
1656 *
1657 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1658 * deferred bio dirtying paths.
1659 */
1660
1661 /*
1662 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1663 */
1664 void bio_set_pages_dirty(struct bio *bio)
1665 {
1666 struct bio_vec *bvec;
1667 int i;
1668
1669 bio_for_each_segment_all(bvec, bio, i) {
1670 struct page *page = bvec->bv_page;
1671
1672 if (page && !PageCompound(page))
1673 set_page_dirty_lock(page);
1674 }
1675 }
1676
1677 static void bio_release_pages(struct bio *bio)
1678 {
1679 struct bio_vec *bvec;
1680 int i;
1681
1682 bio_for_each_segment_all(bvec, bio, i) {
1683 struct page *page = bvec->bv_page;
1684
1685 if (page)
1686 put_page(page);
1687 }
1688 }
1689
1690 /*
1691 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1692 * If they are, then fine. If, however, some pages are clean then they must
1693 * have been written out during the direct-IO read. So we take another ref on
1694 * the BIO and the offending pages and re-dirty the pages in process context.
1695 *
1696 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1697 * here on. It will run one put_page() against each page and will run one
1698 * bio_put() against the BIO.
1699 */
1700
1701 static void bio_dirty_fn(struct work_struct *work);
1702
1703 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1704 static DEFINE_SPINLOCK(bio_dirty_lock);
1705 static struct bio *bio_dirty_list;
1706
1707 /*
1708 * This runs in process context
1709 */
1710 static void bio_dirty_fn(struct work_struct *work)
1711 {
1712 unsigned long flags;
1713 struct bio *bio;
1714
1715 spin_lock_irqsave(&bio_dirty_lock, flags);
1716 bio = bio_dirty_list;
1717 bio_dirty_list = NULL;
1718 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1719
1720 while (bio) {
1721 struct bio *next = bio->bi_private;
1722
1723 bio_set_pages_dirty(bio);
1724 bio_release_pages(bio);
1725 bio_put(bio);
1726 bio = next;
1727 }
1728 }
1729
1730 void bio_check_pages_dirty(struct bio *bio)
1731 {
1732 struct bio_vec *bvec;
1733 int nr_clean_pages = 0;
1734 int i;
1735
1736 bio_for_each_segment_all(bvec, bio, i) {
1737 struct page *page = bvec->bv_page;
1738
1739 if (PageDirty(page) || PageCompound(page)) {
1740 put_page(page);
1741 bvec->bv_page = NULL;
1742 } else {
1743 nr_clean_pages++;
1744 }
1745 }
1746
1747 if (nr_clean_pages) {
1748 unsigned long flags;
1749
1750 spin_lock_irqsave(&bio_dirty_lock, flags);
1751 bio->bi_private = bio_dirty_list;
1752 bio_dirty_list = bio;
1753 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1754 schedule_work(&bio_dirty_work);
1755 } else {
1756 bio_put(bio);
1757 }
1758 }
1759
1760 void generic_start_io_acct(int rw, unsigned long sectors,
1761 struct hd_struct *part)
1762 {
1763 int cpu = part_stat_lock();
1764
1765 part_round_stats(cpu, part);
1766 part_stat_inc(cpu, part, ios[rw]);
1767 part_stat_add(cpu, part, sectors[rw], sectors);
1768 part_inc_in_flight(part, rw);
1769
1770 part_stat_unlock();
1771 }
1772 EXPORT_SYMBOL(generic_start_io_acct);
1773
1774 void generic_end_io_acct(int rw, struct hd_struct *part,
1775 unsigned long start_time)
1776 {
1777 unsigned long duration = jiffies - start_time;
1778 int cpu = part_stat_lock();
1779
1780 part_stat_add(cpu, part, ticks[rw], duration);
1781 part_round_stats(cpu, part);
1782 part_dec_in_flight(part, rw);
1783
1784 part_stat_unlock();
1785 }
1786 EXPORT_SYMBOL(generic_end_io_acct);
1787
1788 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1789 void bio_flush_dcache_pages(struct bio *bi)
1790 {
1791 struct bio_vec bvec;
1792 struct bvec_iter iter;
1793
1794 bio_for_each_segment(bvec, bi, iter)
1795 flush_dcache_page(bvec.bv_page);
1796 }
1797 EXPORT_SYMBOL(bio_flush_dcache_pages);
1798 #endif
1799
1800 static inline bool bio_remaining_done(struct bio *bio)
1801 {
1802 /*
1803 * If we're not chaining, then ->__bi_remaining is always 1 and
1804 * we always end io on the first invocation.
1805 */
1806 if (!bio_flagged(bio, BIO_CHAIN))
1807 return true;
1808
1809 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1810
1811 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1812 bio_clear_flag(bio, BIO_CHAIN);
1813 return true;
1814 }
1815
1816 return false;
1817 }
1818
1819 /**
1820 * bio_endio - end I/O on a bio
1821 * @bio: bio
1822 *
1823 * Description:
1824 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1825 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1826 * bio unless they own it and thus know that it has an end_io function.
1827 **/
1828 void bio_endio(struct bio *bio)
1829 {
1830 again:
1831 if (!bio_remaining_done(bio))
1832 return;
1833
1834 /*
1835 * Need to have a real endio function for chained bios, otherwise
1836 * various corner cases will break (like stacking block devices that
1837 * save/restore bi_end_io) - however, we want to avoid unbounded
1838 * recursion and blowing the stack. Tail call optimization would
1839 * handle this, but compiling with frame pointers also disables
1840 * gcc's sibling call optimization.
1841 */
1842 if (bio->bi_end_io == bio_chain_endio) {
1843 bio = __bio_chain_endio(bio);
1844 goto again;
1845 }
1846
1847 if (bio->bi_end_io)
1848 bio->bi_end_io(bio);
1849 }
1850 EXPORT_SYMBOL(bio_endio);
1851
1852 /**
1853 * bio_split - split a bio
1854 * @bio: bio to split
1855 * @sectors: number of sectors to split from the front of @bio
1856 * @gfp: gfp mask
1857 * @bs: bio set to allocate from
1858 *
1859 * Allocates and returns a new bio which represents @sectors from the start of
1860 * @bio, and updates @bio to represent the remaining sectors.
1861 *
1862 * Unless this is a discard request the newly allocated bio will point
1863 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1864 * @bio is not freed before the split.
1865 */
1866 struct bio *bio_split(struct bio *bio, int sectors,
1867 gfp_t gfp, struct bio_set *bs)
1868 {
1869 struct bio *split = NULL;
1870
1871 BUG_ON(sectors <= 0);
1872 BUG_ON(sectors >= bio_sectors(bio));
1873
1874 split = bio_clone_fast(bio, gfp, bs);
1875 if (!split)
1876 return NULL;
1877
1878 split->bi_iter.bi_size = sectors << 9;
1879
1880 if (bio_integrity(split))
1881 bio_integrity_trim(split, 0, sectors);
1882
1883 bio_advance(bio, split->bi_iter.bi_size);
1884
1885 return split;
1886 }
1887 EXPORT_SYMBOL(bio_split);
1888
1889 /**
1890 * bio_trim - trim a bio
1891 * @bio: bio to trim
1892 * @offset: number of sectors to trim from the front of @bio
1893 * @size: size we want to trim @bio to, in sectors
1894 */
1895 void bio_trim(struct bio *bio, int offset, int size)
1896 {
1897 /* 'bio' is a cloned bio which we need to trim to match
1898 * the given offset and size.
1899 */
1900
1901 size <<= 9;
1902 if (offset == 0 && size == bio->bi_iter.bi_size)
1903 return;
1904
1905 bio_clear_flag(bio, BIO_SEG_VALID);
1906
1907 bio_advance(bio, offset << 9);
1908
1909 bio->bi_iter.bi_size = size;
1910 }
1911 EXPORT_SYMBOL_GPL(bio_trim);
1912
1913 /*
1914 * create memory pools for biovec's in a bio_set.
1915 * use the global biovec slabs created for general use.
1916 */
1917 mempool_t *biovec_create_pool(int pool_entries)
1918 {
1919 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1920
1921 return mempool_create_slab_pool(pool_entries, bp->slab);
1922 }
1923
1924 void bioset_free(struct bio_set *bs)
1925 {
1926 if (bs->rescue_workqueue)
1927 destroy_workqueue(bs->rescue_workqueue);
1928
1929 if (bs->bio_pool)
1930 mempool_destroy(bs->bio_pool);
1931
1932 if (bs->bvec_pool)
1933 mempool_destroy(bs->bvec_pool);
1934
1935 bioset_integrity_free(bs);
1936 bio_put_slab(bs);
1937
1938 kfree(bs);
1939 }
1940 EXPORT_SYMBOL(bioset_free);
1941
1942 static struct bio_set *__bioset_create(unsigned int pool_size,
1943 unsigned int front_pad,
1944 bool create_bvec_pool)
1945 {
1946 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1947 struct bio_set *bs;
1948
1949 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1950 if (!bs)
1951 return NULL;
1952
1953 bs->front_pad = front_pad;
1954
1955 spin_lock_init(&bs->rescue_lock);
1956 bio_list_init(&bs->rescue_list);
1957 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1958
1959 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1960 if (!bs->bio_slab) {
1961 kfree(bs);
1962 return NULL;
1963 }
1964
1965 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1966 if (!bs->bio_pool)
1967 goto bad;
1968
1969 if (create_bvec_pool) {
1970 bs->bvec_pool = biovec_create_pool(pool_size);
1971 if (!bs->bvec_pool)
1972 goto bad;
1973 }
1974
1975 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1976 if (!bs->rescue_workqueue)
1977 goto bad;
1978
1979 return bs;
1980 bad:
1981 bioset_free(bs);
1982 return NULL;
1983 }
1984
1985 /**
1986 * bioset_create - Create a bio_set
1987 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1988 * @front_pad: Number of bytes to allocate in front of the returned bio
1989 *
1990 * Description:
1991 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1992 * to ask for a number of bytes to be allocated in front of the bio.
1993 * Front pad allocation is useful for embedding the bio inside
1994 * another structure, to avoid allocating extra data to go with the bio.
1995 * Note that the bio must be embedded at the END of that structure always,
1996 * or things will break badly.
1997 */
1998 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1999 {
2000 return __bioset_create(pool_size, front_pad, true);
2001 }
2002 EXPORT_SYMBOL(bioset_create);
2003
2004 /**
2005 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
2006 * @pool_size: Number of bio to cache in the mempool
2007 * @front_pad: Number of bytes to allocate in front of the returned bio
2008 *
2009 * Description:
2010 * Same functionality as bioset_create() except that mempool is not
2011 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
2012 */
2013 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
2014 {
2015 return __bioset_create(pool_size, front_pad, false);
2016 }
2017 EXPORT_SYMBOL(bioset_create_nobvec);
2018
2019 #ifdef CONFIG_BLK_CGROUP
2020
2021 /**
2022 * bio_associate_blkcg - associate a bio with the specified blkcg
2023 * @bio: target bio
2024 * @blkcg_css: css of the blkcg to associate
2025 *
2026 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2027 * treat @bio as if it were issued by a task which belongs to the blkcg.
2028 *
2029 * This function takes an extra reference of @blkcg_css which will be put
2030 * when @bio is released. The caller must own @bio and is responsible for
2031 * synchronizing calls to this function.
2032 */
2033 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2034 {
2035 if (unlikely(bio->bi_css))
2036 return -EBUSY;
2037 css_get(blkcg_css);
2038 bio->bi_css = blkcg_css;
2039 return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2042
2043 /**
2044 * bio_associate_current - associate a bio with %current
2045 * @bio: target bio
2046 *
2047 * Associate @bio with %current if it hasn't been associated yet. Block
2048 * layer will treat @bio as if it were issued by %current no matter which
2049 * task actually issues it.
2050 *
2051 * This function takes an extra reference of @task's io_context and blkcg
2052 * which will be put when @bio is released. The caller must own @bio,
2053 * ensure %current->io_context exists, and is responsible for synchronizing
2054 * calls to this function.
2055 */
2056 int bio_associate_current(struct bio *bio)
2057 {
2058 struct io_context *ioc;
2059
2060 if (bio->bi_css)
2061 return -EBUSY;
2062
2063 ioc = current->io_context;
2064 if (!ioc)
2065 return -ENOENT;
2066
2067 get_io_context_active(ioc);
2068 bio->bi_ioc = ioc;
2069 bio->bi_css = task_get_css(current, io_cgrp_id);
2070 return 0;
2071 }
2072 EXPORT_SYMBOL_GPL(bio_associate_current);
2073
2074 /**
2075 * bio_disassociate_task - undo bio_associate_current()
2076 * @bio: target bio
2077 */
2078 void bio_disassociate_task(struct bio *bio)
2079 {
2080 if (bio->bi_ioc) {
2081 put_io_context(bio->bi_ioc);
2082 bio->bi_ioc = NULL;
2083 }
2084 if (bio->bi_css) {
2085 css_put(bio->bi_css);
2086 bio->bi_css = NULL;
2087 }
2088 }
2089
2090 /**
2091 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2092 * @dst: destination bio
2093 * @src: source bio
2094 */
2095 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2096 {
2097 if (src->bi_css)
2098 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2099 }
2100
2101 #endif /* CONFIG_BLK_CGROUP */
2102
2103 static void __init biovec_init_slabs(void)
2104 {
2105 int i;
2106
2107 for (i = 0; i < BVEC_POOL_NR; i++) {
2108 int size;
2109 struct biovec_slab *bvs = bvec_slabs + i;
2110
2111 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2112 bvs->slab = NULL;
2113 continue;
2114 }
2115
2116 size = bvs->nr_vecs * sizeof(struct bio_vec);
2117 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2118 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2119 }
2120 }
2121
2122 static int __init init_bio(void)
2123 {
2124 bio_slab_max = 2;
2125 bio_slab_nr = 0;
2126 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2127 if (!bio_slabs)
2128 panic("bio: can't allocate bios\n");
2129
2130 bio_integrity_init();
2131 biovec_init_slabs();
2132
2133 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2134 if (!fs_bio_set)
2135 panic("bio: can't allocate bios\n");
2136
2137 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2138 panic("bio: can't create integrity pool\n");
2139
2140 return 0;
2141 }
2142 subsys_initcall(init_bio);