]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/bio.c
Merge tag 'docs-5.1' of git://git.lwn.net/linux
[mirror_ubuntu-jammy-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <linux/blk-cgroup.h>
32
33 #include <trace/events/block.h>
34 #include "blk.h"
35 #include "blk-rq-qos.h"
36
37 /*
38 * Test patch to inline a certain number of bi_io_vec's inside the bio
39 * itself, to shrink a bio data allocation from two mempool calls to one
40 */
41 #define BIO_INLINE_VECS 4
42
43 /*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
48 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
49 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
51 };
52 #undef BV
53
54 /*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
58 struct bio_set fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60
61 /*
62 * Our slab pool management
63 */
64 struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73
74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
78 struct bio_slab *bslab, *new_bio_slabs;
79 unsigned int new_bio_slab_max;
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
86 bslab = &bio_slabs[i];
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
102 new_bio_slab_max = bio_slab_max << 1;
103 new_bio_slabs = krealloc(bio_slabs,
104 new_bio_slab_max * sizeof(struct bio_slab),
105 GFP_KERNEL);
106 if (!new_bio_slabs)
107 goto out_unlock;
108 bio_slab_max = new_bio_slab_max;
109 bio_slabs = new_bio_slabs;
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 SLAB_HWCACHE_ALIGN, NULL);
119 if (!slab)
120 goto out_unlock;
121
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125 out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128 }
129
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155 out:
156 mutex_unlock(&bio_slab_lock);
157 }
158
159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161 return bvec_slabs[--idx].nr_vecs;
162 }
163
164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165 {
166 if (!idx)
167 return;
168 idx--;
169
170 BIO_BUG_ON(idx >= BVEC_POOL_NR);
171
172 if (idx == BVEC_POOL_MAX) {
173 mempool_free(bv, pool);
174 } else {
175 struct biovec_slab *bvs = bvec_slabs + idx;
176
177 kmem_cache_free(bvs->slab, bv);
178 }
179 }
180
181 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 mempool_t *pool)
183 {
184 struct bio_vec *bvl;
185
186 /*
187 * see comment near bvec_array define!
188 */
189 switch (nr) {
190 case 1:
191 *idx = 0;
192 break;
193 case 2 ... 4:
194 *idx = 1;
195 break;
196 case 5 ... 16:
197 *idx = 2;
198 break;
199 case 17 ... 64:
200 *idx = 3;
201 break;
202 case 65 ... 128:
203 *idx = 4;
204 break;
205 case 129 ... BIO_MAX_PAGES:
206 *idx = 5;
207 break;
208 default:
209 return NULL;
210 }
211
212 /*
213 * idx now points to the pool we want to allocate from. only the
214 * 1-vec entry pool is mempool backed.
215 */
216 if (*idx == BVEC_POOL_MAX) {
217 fallback:
218 bvl = mempool_alloc(pool, gfp_mask);
219 } else {
220 struct biovec_slab *bvs = bvec_slabs + *idx;
221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
222
223 /*
224 * Make this allocation restricted and don't dump info on
225 * allocation failures, since we'll fallback to the mempool
226 * in case of failure.
227 */
228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
229
230 /*
231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
232 * is set, retry with the 1-entry mempool
233 */
234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
236 *idx = BVEC_POOL_MAX;
237 goto fallback;
238 }
239 }
240
241 (*idx)++;
242 return bvl;
243 }
244
245 void bio_uninit(struct bio *bio)
246 {
247 bio_disassociate_blkg(bio);
248 }
249 EXPORT_SYMBOL(bio_uninit);
250
251 static void bio_free(struct bio *bio)
252 {
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
256 bio_uninit(bio);
257
258 if (bs) {
259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
265 p -= bs->front_pad;
266
267 mempool_free(p, &bs->bio_pool);
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
272 }
273
274 /*
275 * Users of this function have their own bio allocation. Subsequently,
276 * they must remember to pair any call to bio_init() with bio_uninit()
277 * when IO has completed, or when the bio is released.
278 */
279 void bio_init(struct bio *bio, struct bio_vec *table,
280 unsigned short max_vecs)
281 {
282 memset(bio, 0, sizeof(*bio));
283 atomic_set(&bio->__bi_remaining, 1);
284 atomic_set(&bio->__bi_cnt, 1);
285
286 bio->bi_io_vec = table;
287 bio->bi_max_vecs = max_vecs;
288 }
289 EXPORT_SYMBOL(bio_init);
290
291 /**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301 void bio_reset(struct bio *bio)
302 {
303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304
305 bio_uninit(bio);
306
307 memset(bio, 0, BIO_RESET_BYTES);
308 bio->bi_flags = flags;
309 atomic_set(&bio->__bi_remaining, 1);
310 }
311 EXPORT_SYMBOL(bio_reset);
312
313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 struct bio *parent = bio->bi_private;
316
317 if (!parent->bi_status)
318 parent->bi_status = bio->bi_status;
319 bio_put(bio);
320 return parent;
321 }
322
323 static void bio_chain_endio(struct bio *bio)
324 {
325 bio_endio(__bio_chain_endio(bio));
326 }
327
328 /**
329 * bio_chain - chain bio completions
330 * @bio: the target bio
331 * @parent: the @bio's parent bio
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
345 bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348
349 static void bio_alloc_rescue(struct work_struct *work)
350 {
351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 struct bio *bio;
353
354 while (1) {
355 spin_lock(&bs->rescue_lock);
356 bio = bio_list_pop(&bs->rescue_list);
357 spin_unlock(&bs->rescue_lock);
358
359 if (!bio)
360 break;
361
362 generic_make_request(bio);
363 }
364 }
365
366 static void punt_bios_to_rescuer(struct bio_set *bs)
367 {
368 struct bio_list punt, nopunt;
369 struct bio *bio;
370
371 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 return;
373 /*
374 * In order to guarantee forward progress we must punt only bios that
375 * were allocated from this bio_set; otherwise, if there was a bio on
376 * there for a stacking driver higher up in the stack, processing it
377 * could require allocating bios from this bio_set, and doing that from
378 * our own rescuer would be bad.
379 *
380 * Since bio lists are singly linked, pop them all instead of trying to
381 * remove from the middle of the list:
382 */
383
384 bio_list_init(&punt);
385 bio_list_init(&nopunt);
386
387 while ((bio = bio_list_pop(&current->bio_list[0])))
388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
389 current->bio_list[0] = nopunt;
390
391 bio_list_init(&nopunt);
392 while ((bio = bio_list_pop(&current->bio_list[1])))
393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 current->bio_list[1] = nopunt;
395
396 spin_lock(&bs->rescue_lock);
397 bio_list_merge(&bs->rescue_list, &punt);
398 spin_unlock(&bs->rescue_lock);
399
400 queue_work(bs->rescue_workqueue, &bs->rescue_work);
401 }
402
403 /**
404 * bio_alloc_bioset - allocate a bio for I/O
405 * @gfp_mask: the GFP_* mask given to the slab allocator
406 * @nr_iovecs: number of iovecs to pre-allocate
407 * @bs: the bio_set to allocate from.
408 *
409 * Description:
410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411 * backed by the @bs's mempool.
412 *
413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414 * always be able to allocate a bio. This is due to the mempool guarantees.
415 * To make this work, callers must never allocate more than 1 bio at a time
416 * from this pool. Callers that need to allocate more than 1 bio must always
417 * submit the previously allocated bio for IO before attempting to allocate
418 * a new one. Failure to do so can cause deadlocks under memory pressure.
419 *
420 * Note that when running under generic_make_request() (i.e. any block
421 * driver), bios are not submitted until after you return - see the code in
422 * generic_make_request() that converts recursion into iteration, to prevent
423 * stack overflows.
424 *
425 * This would normally mean allocating multiple bios under
426 * generic_make_request() would be susceptible to deadlocks, but we have
427 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * thread.
429 *
430 * However, we do not guarantee forward progress for allocations from other
431 * mempools. Doing multiple allocations from the same mempool under
432 * generic_make_request() should be avoided - instead, use bio_set's front_pad
433 * for per bio allocations.
434 *
435 * RETURNS:
436 * Pointer to new bio on success, NULL on failure.
437 */
438 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 struct bio_set *bs)
440 {
441 gfp_t saved_gfp = gfp_mask;
442 unsigned front_pad;
443 unsigned inline_vecs;
444 struct bio_vec *bvl = NULL;
445 struct bio *bio;
446 void *p;
447
448 if (!bs) {
449 if (nr_iovecs > UIO_MAXIOV)
450 return NULL;
451
452 p = kmalloc(sizeof(struct bio) +
453 nr_iovecs * sizeof(struct bio_vec),
454 gfp_mask);
455 front_pad = 0;
456 inline_vecs = nr_iovecs;
457 } else {
458 /* should not use nobvec bioset for nr_iovecs > 0 */
459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 nr_iovecs > 0))
461 return NULL;
462 /*
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
467 *
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
474 *
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
481 */
482
483 if (current->bio_list &&
484 (!bio_list_empty(&current->bio_list[0]) ||
485 !bio_list_empty(&current->bio_list[1])) &&
486 bs->rescue_workqueue)
487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
488
489 p = mempool_alloc(&bs->bio_pool, gfp_mask);
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
494 }
495
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
498 }
499
500 if (unlikely(!p))
501 return NULL;
502
503 bio = p + front_pad;
504 bio_init(bio, NULL, 0);
505
506 if (nr_iovecs > inline_vecs) {
507 unsigned long idx = 0;
508
509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
514 }
515
516 if (unlikely(!bvl))
517 goto err_free;
518
519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
522 }
523
524 bio->bi_pool = bs;
525 bio->bi_max_vecs = nr_iovecs;
526 bio->bi_io_vec = bvl;
527 return bio;
528
529 err_free:
530 mempool_free(p, &bs->bio_pool);
531 return NULL;
532 }
533 EXPORT_SYMBOL(bio_alloc_bioset);
534
535 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
536 {
537 unsigned long flags;
538 struct bio_vec bv;
539 struct bvec_iter iter;
540
541 __bio_for_each_segment(bv, bio, iter, start) {
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
545 bvec_kunmap_irq(data, &flags);
546 }
547 }
548 EXPORT_SYMBOL(zero_fill_bio_iter);
549
550 /**
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
553 *
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
557 **/
558 void bio_put(struct bio *bio)
559 {
560 if (!bio_flagged(bio, BIO_REFFED))
561 bio_free(bio);
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564
565 /*
566 * last put frees it
567 */
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
570 }
571 }
572 EXPORT_SYMBOL(bio_put);
573
574 int bio_phys_segments(struct request_queue *q, struct bio *bio)
575 {
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
578
579 return bio->bi_phys_segments;
580 }
581
582 /**
583 * __bio_clone_fast - clone a bio that shares the original bio's biovec
584 * @bio: destination bio
585 * @bio_src: bio to clone
586 *
587 * Clone a &bio. Caller will own the returned bio, but not
588 * the actual data it points to. Reference count of returned
589 * bio will be one.
590 *
591 * Caller must ensure that @bio_src is not freed before @bio.
592 */
593 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
594 {
595 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
596
597 /*
598 * most users will be overriding ->bi_disk with a new target,
599 * so we don't set nor calculate new physical/hw segment counts here
600 */
601 bio->bi_disk = bio_src->bi_disk;
602 bio->bi_partno = bio_src->bi_partno;
603 bio_set_flag(bio, BIO_CLONED);
604 if (bio_flagged(bio_src, BIO_THROTTLED))
605 bio_set_flag(bio, BIO_THROTTLED);
606 bio->bi_opf = bio_src->bi_opf;
607 bio->bi_ioprio = bio_src->bi_ioprio;
608 bio->bi_write_hint = bio_src->bi_write_hint;
609 bio->bi_iter = bio_src->bi_iter;
610 bio->bi_io_vec = bio_src->bi_io_vec;
611
612 bio_clone_blkg_association(bio, bio_src);
613 blkcg_bio_issue_init(bio);
614 }
615 EXPORT_SYMBOL(__bio_clone_fast);
616
617 /**
618 * bio_clone_fast - clone a bio that shares the original bio's biovec
619 * @bio: bio to clone
620 * @gfp_mask: allocation priority
621 * @bs: bio_set to allocate from
622 *
623 * Like __bio_clone_fast, only also allocates the returned bio
624 */
625 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
626 {
627 struct bio *b;
628
629 b = bio_alloc_bioset(gfp_mask, 0, bs);
630 if (!b)
631 return NULL;
632
633 __bio_clone_fast(b, bio);
634
635 if (bio_integrity(bio)) {
636 int ret;
637
638 ret = bio_integrity_clone(b, bio, gfp_mask);
639
640 if (ret < 0) {
641 bio_put(b);
642 return NULL;
643 }
644 }
645
646 return b;
647 }
648 EXPORT_SYMBOL(bio_clone_fast);
649
650 /**
651 * bio_add_pc_page - attempt to add page to bio
652 * @q: the target queue
653 * @bio: destination bio
654 * @page: page to add
655 * @len: vec entry length
656 * @offset: vec entry offset
657 *
658 * Attempt to add a page to the bio_vec maplist. This can fail for a
659 * number of reasons, such as the bio being full or target block device
660 * limitations. The target block device must allow bio's up to PAGE_SIZE,
661 * so it is always possible to add a single page to an empty bio.
662 *
663 * This should only be used by REQ_PC bios.
664 */
665 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
666 *page, unsigned int len, unsigned int offset)
667 {
668 int retried_segments = 0;
669 struct bio_vec *bvec;
670
671 /*
672 * cloned bio must not modify vec list
673 */
674 if (unlikely(bio_flagged(bio, BIO_CLONED)))
675 return 0;
676
677 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
678 return 0;
679
680 /*
681 * For filesystems with a blocksize smaller than the pagesize
682 * we will often be called with the same page as last time and
683 * a consecutive offset. Optimize this special case.
684 */
685 if (bio->bi_vcnt > 0) {
686 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
687
688 if (page == prev->bv_page &&
689 offset == prev->bv_offset + prev->bv_len) {
690 prev->bv_len += len;
691 bio->bi_iter.bi_size += len;
692 goto done;
693 }
694
695 /*
696 * If the queue doesn't support SG gaps and adding this
697 * offset would create a gap, disallow it.
698 */
699 if (bvec_gap_to_prev(q, prev, offset))
700 return 0;
701 }
702
703 if (bio_full(bio))
704 return 0;
705
706 /*
707 * setup the new entry, we might clear it again later if we
708 * cannot add the page
709 */
710 bvec = &bio->bi_io_vec[bio->bi_vcnt];
711 bvec->bv_page = page;
712 bvec->bv_len = len;
713 bvec->bv_offset = offset;
714 bio->bi_vcnt++;
715 bio->bi_phys_segments++;
716 bio->bi_iter.bi_size += len;
717
718 /*
719 * Perform a recount if the number of segments is greater
720 * than queue_max_segments(q).
721 */
722
723 while (bio->bi_phys_segments > queue_max_segments(q)) {
724
725 if (retried_segments)
726 goto failed;
727
728 retried_segments = 1;
729 blk_recount_segments(q, bio);
730 }
731
732 /* If we may be able to merge these biovecs, force a recount */
733 if (bio->bi_vcnt > 1 && biovec_phys_mergeable(q, bvec - 1, bvec))
734 bio_clear_flag(bio, BIO_SEG_VALID);
735
736 done:
737 return len;
738
739 failed:
740 bvec->bv_page = NULL;
741 bvec->bv_len = 0;
742 bvec->bv_offset = 0;
743 bio->bi_vcnt--;
744 bio->bi_iter.bi_size -= len;
745 blk_recount_segments(q, bio);
746 return 0;
747 }
748 EXPORT_SYMBOL(bio_add_pc_page);
749
750 /**
751 * __bio_try_merge_page - try appending data to an existing bvec.
752 * @bio: destination bio
753 * @page: page to add
754 * @len: length of the data to add
755 * @off: offset of the data in @page
756 * @same_page: if %true only merge if the new data is in the same physical
757 * page as the last segment of the bio.
758 *
759 * Try to add the data at @page + @off to the last bvec of @bio. This is a
760 * a useful optimisation for file systems with a block size smaller than the
761 * page size.
762 *
763 * Return %true on success or %false on failure.
764 */
765 bool __bio_try_merge_page(struct bio *bio, struct page *page,
766 unsigned int len, unsigned int off, bool same_page)
767 {
768 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
769 return false;
770
771 if (bio->bi_vcnt > 0) {
772 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
773 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
774 bv->bv_offset + bv->bv_len - 1;
775 phys_addr_t page_addr = page_to_phys(page);
776
777 if (vec_end_addr + 1 != page_addr + off)
778 return false;
779 if (same_page && (vec_end_addr & PAGE_MASK) != page_addr)
780 return false;
781
782 bv->bv_len += len;
783 bio->bi_iter.bi_size += len;
784 return true;
785 }
786 return false;
787 }
788 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
789
790 /**
791 * __bio_add_page - add page to a bio in a new segment
792 * @bio: destination bio
793 * @page: page to add
794 * @len: length of the data to add
795 * @off: offset of the data in @page
796 *
797 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
798 * that @bio has space for another bvec.
799 */
800 void __bio_add_page(struct bio *bio, struct page *page,
801 unsigned int len, unsigned int off)
802 {
803 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
804
805 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
806 WARN_ON_ONCE(bio_full(bio));
807
808 bv->bv_page = page;
809 bv->bv_offset = off;
810 bv->bv_len = len;
811
812 bio->bi_iter.bi_size += len;
813 bio->bi_vcnt++;
814 }
815 EXPORT_SYMBOL_GPL(__bio_add_page);
816
817 /**
818 * bio_add_page - attempt to add page to bio
819 * @bio: destination bio
820 * @page: page to add
821 * @len: vec entry length
822 * @offset: vec entry offset
823 *
824 * Attempt to add a page to the bio_vec maplist. This will only fail
825 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
826 */
827 int bio_add_page(struct bio *bio, struct page *page,
828 unsigned int len, unsigned int offset)
829 {
830 if (!__bio_try_merge_page(bio, page, len, offset, false)) {
831 if (bio_full(bio))
832 return 0;
833 __bio_add_page(bio, page, len, offset);
834 }
835 return len;
836 }
837 EXPORT_SYMBOL(bio_add_page);
838
839 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
840 {
841 const struct bio_vec *bv = iter->bvec;
842 unsigned int len;
843 size_t size;
844
845 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
846 return -EINVAL;
847
848 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
849 size = bio_add_page(bio, bv->bv_page, len,
850 bv->bv_offset + iter->iov_offset);
851 if (size == len) {
852 struct page *page;
853 int i;
854
855 /*
856 * For the normal O_DIRECT case, we could skip grabbing this
857 * reference and then not have to put them again when IO
858 * completes. But this breaks some in-kernel users, like
859 * splicing to/from a loop device, where we release the pipe
860 * pages unconditionally. If we can fix that case, we can
861 * get rid of the get here and the need to call
862 * bio_release_pages() at IO completion time.
863 */
864 mp_bvec_for_each_page(page, bv, i)
865 get_page(page);
866 iov_iter_advance(iter, size);
867 return 0;
868 }
869
870 return -EINVAL;
871 }
872
873 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
874
875 /**
876 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
877 * @bio: bio to add pages to
878 * @iter: iov iterator describing the region to be mapped
879 *
880 * Pins pages from *iter and appends them to @bio's bvec array. The
881 * pages will have to be released using put_page() when done.
882 * For multi-segment *iter, this function only adds pages from the
883 * the next non-empty segment of the iov iterator.
884 */
885 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
886 {
887 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
888 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
889 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
890 struct page **pages = (struct page **)bv;
891 ssize_t size, left;
892 unsigned len, i;
893 size_t offset;
894
895 /*
896 * Move page array up in the allocated memory for the bio vecs as far as
897 * possible so that we can start filling biovecs from the beginning
898 * without overwriting the temporary page array.
899 */
900 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
901 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
902
903 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
904 if (unlikely(size <= 0))
905 return size ? size : -EFAULT;
906
907 for (left = size, i = 0; left > 0; left -= len, i++) {
908 struct page *page = pages[i];
909
910 len = min_t(size_t, PAGE_SIZE - offset, left);
911 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
912 return -EINVAL;
913 offset = 0;
914 }
915
916 iov_iter_advance(iter, size);
917 return 0;
918 }
919
920 /**
921 * bio_iov_iter_get_pages - add user or kernel pages to a bio
922 * @bio: bio to add pages to
923 * @iter: iov iterator describing the region to be added
924 *
925 * This takes either an iterator pointing to user memory, or one pointing to
926 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
927 * map them into the kernel. On IO completion, the caller should put those
928 * pages. For now, when adding kernel pages, we still grab a reference to the
929 * page. This isn't strictly needed for the common case, but some call paths
930 * end up releasing pages from eg a pipe and we can't easily control these.
931 * See comment in __bio_iov_bvec_add_pages().
932 *
933 * The function tries, but does not guarantee, to pin as many pages as
934 * fit into the bio, or are requested in *iter, whatever is smaller. If
935 * MM encounters an error pinning the requested pages, it stops. Error
936 * is returned only if 0 pages could be pinned.
937 */
938 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
939 {
940 const bool is_bvec = iov_iter_is_bvec(iter);
941 unsigned short orig_vcnt = bio->bi_vcnt;
942
943 do {
944 int ret;
945
946 if (is_bvec)
947 ret = __bio_iov_bvec_add_pages(bio, iter);
948 else
949 ret = __bio_iov_iter_get_pages(bio, iter);
950
951 if (unlikely(ret))
952 return bio->bi_vcnt > orig_vcnt ? 0 : ret;
953
954 } while (iov_iter_count(iter) && !bio_full(bio));
955
956 return 0;
957 }
958
959 static void submit_bio_wait_endio(struct bio *bio)
960 {
961 complete(bio->bi_private);
962 }
963
964 /**
965 * submit_bio_wait - submit a bio, and wait until it completes
966 * @bio: The &struct bio which describes the I/O
967 *
968 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
969 * bio_endio() on failure.
970 *
971 * WARNING: Unlike to how submit_bio() is usually used, this function does not
972 * result in bio reference to be consumed. The caller must drop the reference
973 * on his own.
974 */
975 int submit_bio_wait(struct bio *bio)
976 {
977 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
978
979 bio->bi_private = &done;
980 bio->bi_end_io = submit_bio_wait_endio;
981 bio->bi_opf |= REQ_SYNC;
982 submit_bio(bio);
983 wait_for_completion_io(&done);
984
985 return blk_status_to_errno(bio->bi_status);
986 }
987 EXPORT_SYMBOL(submit_bio_wait);
988
989 /**
990 * bio_advance - increment/complete a bio by some number of bytes
991 * @bio: bio to advance
992 * @bytes: number of bytes to complete
993 *
994 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
995 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
996 * be updated on the last bvec as well.
997 *
998 * @bio will then represent the remaining, uncompleted portion of the io.
999 */
1000 void bio_advance(struct bio *bio, unsigned bytes)
1001 {
1002 if (bio_integrity(bio))
1003 bio_integrity_advance(bio, bytes);
1004
1005 bio_advance_iter(bio, &bio->bi_iter, bytes);
1006 }
1007 EXPORT_SYMBOL(bio_advance);
1008
1009 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1010 struct bio *src, struct bvec_iter *src_iter)
1011 {
1012 struct bio_vec src_bv, dst_bv;
1013 void *src_p, *dst_p;
1014 unsigned bytes;
1015
1016 while (src_iter->bi_size && dst_iter->bi_size) {
1017 src_bv = bio_iter_iovec(src, *src_iter);
1018 dst_bv = bio_iter_iovec(dst, *dst_iter);
1019
1020 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1021
1022 src_p = kmap_atomic(src_bv.bv_page);
1023 dst_p = kmap_atomic(dst_bv.bv_page);
1024
1025 memcpy(dst_p + dst_bv.bv_offset,
1026 src_p + src_bv.bv_offset,
1027 bytes);
1028
1029 kunmap_atomic(dst_p);
1030 kunmap_atomic(src_p);
1031
1032 flush_dcache_page(dst_bv.bv_page);
1033
1034 bio_advance_iter(src, src_iter, bytes);
1035 bio_advance_iter(dst, dst_iter, bytes);
1036 }
1037 }
1038 EXPORT_SYMBOL(bio_copy_data_iter);
1039
1040 /**
1041 * bio_copy_data - copy contents of data buffers from one bio to another
1042 * @src: source bio
1043 * @dst: destination bio
1044 *
1045 * Stops when it reaches the end of either @src or @dst - that is, copies
1046 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1047 */
1048 void bio_copy_data(struct bio *dst, struct bio *src)
1049 {
1050 struct bvec_iter src_iter = src->bi_iter;
1051 struct bvec_iter dst_iter = dst->bi_iter;
1052
1053 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1054 }
1055 EXPORT_SYMBOL(bio_copy_data);
1056
1057 /**
1058 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1059 * another
1060 * @src: source bio list
1061 * @dst: destination bio list
1062 *
1063 * Stops when it reaches the end of either the @src list or @dst list - that is,
1064 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1065 * bios).
1066 */
1067 void bio_list_copy_data(struct bio *dst, struct bio *src)
1068 {
1069 struct bvec_iter src_iter = src->bi_iter;
1070 struct bvec_iter dst_iter = dst->bi_iter;
1071
1072 while (1) {
1073 if (!src_iter.bi_size) {
1074 src = src->bi_next;
1075 if (!src)
1076 break;
1077
1078 src_iter = src->bi_iter;
1079 }
1080
1081 if (!dst_iter.bi_size) {
1082 dst = dst->bi_next;
1083 if (!dst)
1084 break;
1085
1086 dst_iter = dst->bi_iter;
1087 }
1088
1089 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1090 }
1091 }
1092 EXPORT_SYMBOL(bio_list_copy_data);
1093
1094 struct bio_map_data {
1095 int is_our_pages;
1096 struct iov_iter iter;
1097 struct iovec iov[];
1098 };
1099
1100 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1101 gfp_t gfp_mask)
1102 {
1103 struct bio_map_data *bmd;
1104 if (data->nr_segs > UIO_MAXIOV)
1105 return NULL;
1106
1107 bmd = kmalloc(sizeof(struct bio_map_data) +
1108 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1109 if (!bmd)
1110 return NULL;
1111 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1112 bmd->iter = *data;
1113 bmd->iter.iov = bmd->iov;
1114 return bmd;
1115 }
1116
1117 /**
1118 * bio_copy_from_iter - copy all pages from iov_iter to bio
1119 * @bio: The &struct bio which describes the I/O as destination
1120 * @iter: iov_iter as source
1121 *
1122 * Copy all pages from iov_iter to bio.
1123 * Returns 0 on success, or error on failure.
1124 */
1125 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1126 {
1127 int i;
1128 struct bio_vec *bvec;
1129 struct bvec_iter_all iter_all;
1130
1131 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1132 ssize_t ret;
1133
1134 ret = copy_page_from_iter(bvec->bv_page,
1135 bvec->bv_offset,
1136 bvec->bv_len,
1137 iter);
1138
1139 if (!iov_iter_count(iter))
1140 break;
1141
1142 if (ret < bvec->bv_len)
1143 return -EFAULT;
1144 }
1145
1146 return 0;
1147 }
1148
1149 /**
1150 * bio_copy_to_iter - copy all pages from bio to iov_iter
1151 * @bio: The &struct bio which describes the I/O as source
1152 * @iter: iov_iter as destination
1153 *
1154 * Copy all pages from bio to iov_iter.
1155 * Returns 0 on success, or error on failure.
1156 */
1157 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1158 {
1159 int i;
1160 struct bio_vec *bvec;
1161 struct bvec_iter_all iter_all;
1162
1163 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1164 ssize_t ret;
1165
1166 ret = copy_page_to_iter(bvec->bv_page,
1167 bvec->bv_offset,
1168 bvec->bv_len,
1169 &iter);
1170
1171 if (!iov_iter_count(&iter))
1172 break;
1173
1174 if (ret < bvec->bv_len)
1175 return -EFAULT;
1176 }
1177
1178 return 0;
1179 }
1180
1181 void bio_free_pages(struct bio *bio)
1182 {
1183 struct bio_vec *bvec;
1184 int i;
1185 struct bvec_iter_all iter_all;
1186
1187 bio_for_each_segment_all(bvec, bio, i, iter_all)
1188 __free_page(bvec->bv_page);
1189 }
1190 EXPORT_SYMBOL(bio_free_pages);
1191
1192 /**
1193 * bio_uncopy_user - finish previously mapped bio
1194 * @bio: bio being terminated
1195 *
1196 * Free pages allocated from bio_copy_user_iov() and write back data
1197 * to user space in case of a read.
1198 */
1199 int bio_uncopy_user(struct bio *bio)
1200 {
1201 struct bio_map_data *bmd = bio->bi_private;
1202 int ret = 0;
1203
1204 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1205 /*
1206 * if we're in a workqueue, the request is orphaned, so
1207 * don't copy into a random user address space, just free
1208 * and return -EINTR so user space doesn't expect any data.
1209 */
1210 if (!current->mm)
1211 ret = -EINTR;
1212 else if (bio_data_dir(bio) == READ)
1213 ret = bio_copy_to_iter(bio, bmd->iter);
1214 if (bmd->is_our_pages)
1215 bio_free_pages(bio);
1216 }
1217 kfree(bmd);
1218 bio_put(bio);
1219 return ret;
1220 }
1221
1222 /**
1223 * bio_copy_user_iov - copy user data to bio
1224 * @q: destination block queue
1225 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1226 * @iter: iovec iterator
1227 * @gfp_mask: memory allocation flags
1228 *
1229 * Prepares and returns a bio for indirect user io, bouncing data
1230 * to/from kernel pages as necessary. Must be paired with
1231 * call bio_uncopy_user() on io completion.
1232 */
1233 struct bio *bio_copy_user_iov(struct request_queue *q,
1234 struct rq_map_data *map_data,
1235 struct iov_iter *iter,
1236 gfp_t gfp_mask)
1237 {
1238 struct bio_map_data *bmd;
1239 struct page *page;
1240 struct bio *bio;
1241 int i = 0, ret;
1242 int nr_pages;
1243 unsigned int len = iter->count;
1244 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1245
1246 bmd = bio_alloc_map_data(iter, gfp_mask);
1247 if (!bmd)
1248 return ERR_PTR(-ENOMEM);
1249
1250 /*
1251 * We need to do a deep copy of the iov_iter including the iovecs.
1252 * The caller provided iov might point to an on-stack or otherwise
1253 * shortlived one.
1254 */
1255 bmd->is_our_pages = map_data ? 0 : 1;
1256
1257 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1258 if (nr_pages > BIO_MAX_PAGES)
1259 nr_pages = BIO_MAX_PAGES;
1260
1261 ret = -ENOMEM;
1262 bio = bio_kmalloc(gfp_mask, nr_pages);
1263 if (!bio)
1264 goto out_bmd;
1265
1266 ret = 0;
1267
1268 if (map_data) {
1269 nr_pages = 1 << map_data->page_order;
1270 i = map_data->offset / PAGE_SIZE;
1271 }
1272 while (len) {
1273 unsigned int bytes = PAGE_SIZE;
1274
1275 bytes -= offset;
1276
1277 if (bytes > len)
1278 bytes = len;
1279
1280 if (map_data) {
1281 if (i == map_data->nr_entries * nr_pages) {
1282 ret = -ENOMEM;
1283 break;
1284 }
1285
1286 page = map_data->pages[i / nr_pages];
1287 page += (i % nr_pages);
1288
1289 i++;
1290 } else {
1291 page = alloc_page(q->bounce_gfp | gfp_mask);
1292 if (!page) {
1293 ret = -ENOMEM;
1294 break;
1295 }
1296 }
1297
1298 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1299 break;
1300
1301 len -= bytes;
1302 offset = 0;
1303 }
1304
1305 if (ret)
1306 goto cleanup;
1307
1308 if (map_data)
1309 map_data->offset += bio->bi_iter.bi_size;
1310
1311 /*
1312 * success
1313 */
1314 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1315 (map_data && map_data->from_user)) {
1316 ret = bio_copy_from_iter(bio, iter);
1317 if (ret)
1318 goto cleanup;
1319 } else {
1320 if (bmd->is_our_pages)
1321 zero_fill_bio(bio);
1322 iov_iter_advance(iter, bio->bi_iter.bi_size);
1323 }
1324
1325 bio->bi_private = bmd;
1326 if (map_data && map_data->null_mapped)
1327 bio_set_flag(bio, BIO_NULL_MAPPED);
1328 return bio;
1329 cleanup:
1330 if (!map_data)
1331 bio_free_pages(bio);
1332 bio_put(bio);
1333 out_bmd:
1334 kfree(bmd);
1335 return ERR_PTR(ret);
1336 }
1337
1338 /**
1339 * bio_map_user_iov - map user iovec into bio
1340 * @q: the struct request_queue for the bio
1341 * @iter: iovec iterator
1342 * @gfp_mask: memory allocation flags
1343 *
1344 * Map the user space address into a bio suitable for io to a block
1345 * device. Returns an error pointer in case of error.
1346 */
1347 struct bio *bio_map_user_iov(struct request_queue *q,
1348 struct iov_iter *iter,
1349 gfp_t gfp_mask)
1350 {
1351 int j;
1352 struct bio *bio;
1353 int ret;
1354 struct bio_vec *bvec;
1355 struct bvec_iter_all iter_all;
1356
1357 if (!iov_iter_count(iter))
1358 return ERR_PTR(-EINVAL);
1359
1360 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1361 if (!bio)
1362 return ERR_PTR(-ENOMEM);
1363
1364 while (iov_iter_count(iter)) {
1365 struct page **pages;
1366 ssize_t bytes;
1367 size_t offs, added = 0;
1368 int npages;
1369
1370 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1371 if (unlikely(bytes <= 0)) {
1372 ret = bytes ? bytes : -EFAULT;
1373 goto out_unmap;
1374 }
1375
1376 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1377
1378 if (unlikely(offs & queue_dma_alignment(q))) {
1379 ret = -EINVAL;
1380 j = 0;
1381 } else {
1382 for (j = 0; j < npages; j++) {
1383 struct page *page = pages[j];
1384 unsigned int n = PAGE_SIZE - offs;
1385 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1386
1387 if (n > bytes)
1388 n = bytes;
1389
1390 if (!bio_add_pc_page(q, bio, page, n, offs))
1391 break;
1392
1393 /*
1394 * check if vector was merged with previous
1395 * drop page reference if needed
1396 */
1397 if (bio->bi_vcnt == prev_bi_vcnt)
1398 put_page(page);
1399
1400 added += n;
1401 bytes -= n;
1402 offs = 0;
1403 }
1404 iov_iter_advance(iter, added);
1405 }
1406 /*
1407 * release the pages we didn't map into the bio, if any
1408 */
1409 while (j < npages)
1410 put_page(pages[j++]);
1411 kvfree(pages);
1412 /* couldn't stuff something into bio? */
1413 if (bytes)
1414 break;
1415 }
1416
1417 bio_set_flag(bio, BIO_USER_MAPPED);
1418
1419 /*
1420 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1421 * it would normally disappear when its bi_end_io is run.
1422 * however, we need it for the unmap, so grab an extra
1423 * reference to it
1424 */
1425 bio_get(bio);
1426 return bio;
1427
1428 out_unmap:
1429 bio_for_each_segment_all(bvec, bio, j, iter_all) {
1430 put_page(bvec->bv_page);
1431 }
1432 bio_put(bio);
1433 return ERR_PTR(ret);
1434 }
1435
1436 static void __bio_unmap_user(struct bio *bio)
1437 {
1438 struct bio_vec *bvec;
1439 int i;
1440 struct bvec_iter_all iter_all;
1441
1442 /*
1443 * make sure we dirty pages we wrote to
1444 */
1445 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1446 if (bio_data_dir(bio) == READ)
1447 set_page_dirty_lock(bvec->bv_page);
1448
1449 put_page(bvec->bv_page);
1450 }
1451
1452 bio_put(bio);
1453 }
1454
1455 /**
1456 * bio_unmap_user - unmap a bio
1457 * @bio: the bio being unmapped
1458 *
1459 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1460 * process context.
1461 *
1462 * bio_unmap_user() may sleep.
1463 */
1464 void bio_unmap_user(struct bio *bio)
1465 {
1466 __bio_unmap_user(bio);
1467 bio_put(bio);
1468 }
1469
1470 static void bio_map_kern_endio(struct bio *bio)
1471 {
1472 bio_put(bio);
1473 }
1474
1475 /**
1476 * bio_map_kern - map kernel address into bio
1477 * @q: the struct request_queue for the bio
1478 * @data: pointer to buffer to map
1479 * @len: length in bytes
1480 * @gfp_mask: allocation flags for bio allocation
1481 *
1482 * Map the kernel address into a bio suitable for io to a block
1483 * device. Returns an error pointer in case of error.
1484 */
1485 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1486 gfp_t gfp_mask)
1487 {
1488 unsigned long kaddr = (unsigned long)data;
1489 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1490 unsigned long start = kaddr >> PAGE_SHIFT;
1491 const int nr_pages = end - start;
1492 int offset, i;
1493 struct bio *bio;
1494
1495 bio = bio_kmalloc(gfp_mask, nr_pages);
1496 if (!bio)
1497 return ERR_PTR(-ENOMEM);
1498
1499 offset = offset_in_page(kaddr);
1500 for (i = 0; i < nr_pages; i++) {
1501 unsigned int bytes = PAGE_SIZE - offset;
1502
1503 if (len <= 0)
1504 break;
1505
1506 if (bytes > len)
1507 bytes = len;
1508
1509 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1510 offset) < bytes) {
1511 /* we don't support partial mappings */
1512 bio_put(bio);
1513 return ERR_PTR(-EINVAL);
1514 }
1515
1516 data += bytes;
1517 len -= bytes;
1518 offset = 0;
1519 }
1520
1521 bio->bi_end_io = bio_map_kern_endio;
1522 return bio;
1523 }
1524 EXPORT_SYMBOL(bio_map_kern);
1525
1526 static void bio_copy_kern_endio(struct bio *bio)
1527 {
1528 bio_free_pages(bio);
1529 bio_put(bio);
1530 }
1531
1532 static void bio_copy_kern_endio_read(struct bio *bio)
1533 {
1534 char *p = bio->bi_private;
1535 struct bio_vec *bvec;
1536 int i;
1537 struct bvec_iter_all iter_all;
1538
1539 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1540 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1541 p += bvec->bv_len;
1542 }
1543
1544 bio_copy_kern_endio(bio);
1545 }
1546
1547 /**
1548 * bio_copy_kern - copy kernel address into bio
1549 * @q: the struct request_queue for the bio
1550 * @data: pointer to buffer to copy
1551 * @len: length in bytes
1552 * @gfp_mask: allocation flags for bio and page allocation
1553 * @reading: data direction is READ
1554 *
1555 * copy the kernel address into a bio suitable for io to a block
1556 * device. Returns an error pointer in case of error.
1557 */
1558 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1559 gfp_t gfp_mask, int reading)
1560 {
1561 unsigned long kaddr = (unsigned long)data;
1562 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1563 unsigned long start = kaddr >> PAGE_SHIFT;
1564 struct bio *bio;
1565 void *p = data;
1566 int nr_pages = 0;
1567
1568 /*
1569 * Overflow, abort
1570 */
1571 if (end < start)
1572 return ERR_PTR(-EINVAL);
1573
1574 nr_pages = end - start;
1575 bio = bio_kmalloc(gfp_mask, nr_pages);
1576 if (!bio)
1577 return ERR_PTR(-ENOMEM);
1578
1579 while (len) {
1580 struct page *page;
1581 unsigned int bytes = PAGE_SIZE;
1582
1583 if (bytes > len)
1584 bytes = len;
1585
1586 page = alloc_page(q->bounce_gfp | gfp_mask);
1587 if (!page)
1588 goto cleanup;
1589
1590 if (!reading)
1591 memcpy(page_address(page), p, bytes);
1592
1593 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1594 break;
1595
1596 len -= bytes;
1597 p += bytes;
1598 }
1599
1600 if (reading) {
1601 bio->bi_end_io = bio_copy_kern_endio_read;
1602 bio->bi_private = data;
1603 } else {
1604 bio->bi_end_io = bio_copy_kern_endio;
1605 }
1606
1607 return bio;
1608
1609 cleanup:
1610 bio_free_pages(bio);
1611 bio_put(bio);
1612 return ERR_PTR(-ENOMEM);
1613 }
1614
1615 /*
1616 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1617 * for performing direct-IO in BIOs.
1618 *
1619 * The problem is that we cannot run set_page_dirty() from interrupt context
1620 * because the required locks are not interrupt-safe. So what we can do is to
1621 * mark the pages dirty _before_ performing IO. And in interrupt context,
1622 * check that the pages are still dirty. If so, fine. If not, redirty them
1623 * in process context.
1624 *
1625 * We special-case compound pages here: normally this means reads into hugetlb
1626 * pages. The logic in here doesn't really work right for compound pages
1627 * because the VM does not uniformly chase down the head page in all cases.
1628 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1629 * handle them at all. So we skip compound pages here at an early stage.
1630 *
1631 * Note that this code is very hard to test under normal circumstances because
1632 * direct-io pins the pages with get_user_pages(). This makes
1633 * is_page_cache_freeable return false, and the VM will not clean the pages.
1634 * But other code (eg, flusher threads) could clean the pages if they are mapped
1635 * pagecache.
1636 *
1637 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1638 * deferred bio dirtying paths.
1639 */
1640
1641 /*
1642 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1643 */
1644 void bio_set_pages_dirty(struct bio *bio)
1645 {
1646 struct bio_vec *bvec;
1647 int i;
1648 struct bvec_iter_all iter_all;
1649
1650 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1651 if (!PageCompound(bvec->bv_page))
1652 set_page_dirty_lock(bvec->bv_page);
1653 }
1654 }
1655
1656 static void bio_release_pages(struct bio *bio)
1657 {
1658 struct bio_vec *bvec;
1659 int i;
1660 struct bvec_iter_all iter_all;
1661
1662 bio_for_each_segment_all(bvec, bio, i, iter_all)
1663 put_page(bvec->bv_page);
1664 }
1665
1666 /*
1667 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1668 * If they are, then fine. If, however, some pages are clean then they must
1669 * have been written out during the direct-IO read. So we take another ref on
1670 * the BIO and re-dirty the pages in process context.
1671 *
1672 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1673 * here on. It will run one put_page() against each page and will run one
1674 * bio_put() against the BIO.
1675 */
1676
1677 static void bio_dirty_fn(struct work_struct *work);
1678
1679 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1680 static DEFINE_SPINLOCK(bio_dirty_lock);
1681 static struct bio *bio_dirty_list;
1682
1683 /*
1684 * This runs in process context
1685 */
1686 static void bio_dirty_fn(struct work_struct *work)
1687 {
1688 struct bio *bio, *next;
1689
1690 spin_lock_irq(&bio_dirty_lock);
1691 next = bio_dirty_list;
1692 bio_dirty_list = NULL;
1693 spin_unlock_irq(&bio_dirty_lock);
1694
1695 while ((bio = next) != NULL) {
1696 next = bio->bi_private;
1697
1698 bio_set_pages_dirty(bio);
1699 bio_release_pages(bio);
1700 bio_put(bio);
1701 }
1702 }
1703
1704 void bio_check_pages_dirty(struct bio *bio)
1705 {
1706 struct bio_vec *bvec;
1707 unsigned long flags;
1708 int i;
1709 struct bvec_iter_all iter_all;
1710
1711 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1712 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1713 goto defer;
1714 }
1715
1716 bio_release_pages(bio);
1717 bio_put(bio);
1718 return;
1719 defer:
1720 spin_lock_irqsave(&bio_dirty_lock, flags);
1721 bio->bi_private = bio_dirty_list;
1722 bio_dirty_list = bio;
1723 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1724 schedule_work(&bio_dirty_work);
1725 }
1726
1727 void update_io_ticks(struct hd_struct *part, unsigned long now)
1728 {
1729 unsigned long stamp;
1730 again:
1731 stamp = READ_ONCE(part->stamp);
1732 if (unlikely(stamp != now)) {
1733 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1734 __part_stat_add(part, io_ticks, 1);
1735 }
1736 }
1737 if (part->partno) {
1738 part = &part_to_disk(part)->part0;
1739 goto again;
1740 }
1741 }
1742
1743 void generic_start_io_acct(struct request_queue *q, int op,
1744 unsigned long sectors, struct hd_struct *part)
1745 {
1746 const int sgrp = op_stat_group(op);
1747
1748 part_stat_lock();
1749
1750 update_io_ticks(part, jiffies);
1751 part_stat_inc(part, ios[sgrp]);
1752 part_stat_add(part, sectors[sgrp], sectors);
1753 part_inc_in_flight(q, part, op_is_write(op));
1754
1755 part_stat_unlock();
1756 }
1757 EXPORT_SYMBOL(generic_start_io_acct);
1758
1759 void generic_end_io_acct(struct request_queue *q, int req_op,
1760 struct hd_struct *part, unsigned long start_time)
1761 {
1762 unsigned long now = jiffies;
1763 unsigned long duration = now - start_time;
1764 const int sgrp = op_stat_group(req_op);
1765
1766 part_stat_lock();
1767
1768 update_io_ticks(part, now);
1769 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1770 part_stat_add(part, time_in_queue, duration);
1771 part_dec_in_flight(q, part, op_is_write(req_op));
1772
1773 part_stat_unlock();
1774 }
1775 EXPORT_SYMBOL(generic_end_io_acct);
1776
1777 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1778 void bio_flush_dcache_pages(struct bio *bi)
1779 {
1780 struct bio_vec bvec;
1781 struct bvec_iter iter;
1782
1783 bio_for_each_segment(bvec, bi, iter)
1784 flush_dcache_page(bvec.bv_page);
1785 }
1786 EXPORT_SYMBOL(bio_flush_dcache_pages);
1787 #endif
1788
1789 static inline bool bio_remaining_done(struct bio *bio)
1790 {
1791 /*
1792 * If we're not chaining, then ->__bi_remaining is always 1 and
1793 * we always end io on the first invocation.
1794 */
1795 if (!bio_flagged(bio, BIO_CHAIN))
1796 return true;
1797
1798 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1799
1800 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1801 bio_clear_flag(bio, BIO_CHAIN);
1802 return true;
1803 }
1804
1805 return false;
1806 }
1807
1808 /**
1809 * bio_endio - end I/O on a bio
1810 * @bio: bio
1811 *
1812 * Description:
1813 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1814 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1815 * bio unless they own it and thus know that it has an end_io function.
1816 *
1817 * bio_endio() can be called several times on a bio that has been chained
1818 * using bio_chain(). The ->bi_end_io() function will only be called the
1819 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1820 * generated if BIO_TRACE_COMPLETION is set.
1821 **/
1822 void bio_endio(struct bio *bio)
1823 {
1824 again:
1825 if (!bio_remaining_done(bio))
1826 return;
1827 if (!bio_integrity_endio(bio))
1828 return;
1829
1830 if (bio->bi_disk)
1831 rq_qos_done_bio(bio->bi_disk->queue, bio);
1832
1833 /*
1834 * Need to have a real endio function for chained bios, otherwise
1835 * various corner cases will break (like stacking block devices that
1836 * save/restore bi_end_io) - however, we want to avoid unbounded
1837 * recursion and blowing the stack. Tail call optimization would
1838 * handle this, but compiling with frame pointers also disables
1839 * gcc's sibling call optimization.
1840 */
1841 if (bio->bi_end_io == bio_chain_endio) {
1842 bio = __bio_chain_endio(bio);
1843 goto again;
1844 }
1845
1846 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1847 trace_block_bio_complete(bio->bi_disk->queue, bio,
1848 blk_status_to_errno(bio->bi_status));
1849 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1850 }
1851
1852 blk_throtl_bio_endio(bio);
1853 /* release cgroup info */
1854 bio_uninit(bio);
1855 if (bio->bi_end_io)
1856 bio->bi_end_io(bio);
1857 }
1858 EXPORT_SYMBOL(bio_endio);
1859
1860 /**
1861 * bio_split - split a bio
1862 * @bio: bio to split
1863 * @sectors: number of sectors to split from the front of @bio
1864 * @gfp: gfp mask
1865 * @bs: bio set to allocate from
1866 *
1867 * Allocates and returns a new bio which represents @sectors from the start of
1868 * @bio, and updates @bio to represent the remaining sectors.
1869 *
1870 * Unless this is a discard request the newly allocated bio will point
1871 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1872 * @bio is not freed before the split.
1873 */
1874 struct bio *bio_split(struct bio *bio, int sectors,
1875 gfp_t gfp, struct bio_set *bs)
1876 {
1877 struct bio *split;
1878
1879 BUG_ON(sectors <= 0);
1880 BUG_ON(sectors >= bio_sectors(bio));
1881
1882 split = bio_clone_fast(bio, gfp, bs);
1883 if (!split)
1884 return NULL;
1885
1886 split->bi_iter.bi_size = sectors << 9;
1887
1888 if (bio_integrity(split))
1889 bio_integrity_trim(split);
1890
1891 bio_advance(bio, split->bi_iter.bi_size);
1892
1893 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1894 bio_set_flag(split, BIO_TRACE_COMPLETION);
1895
1896 return split;
1897 }
1898 EXPORT_SYMBOL(bio_split);
1899
1900 /**
1901 * bio_trim - trim a bio
1902 * @bio: bio to trim
1903 * @offset: number of sectors to trim from the front of @bio
1904 * @size: size we want to trim @bio to, in sectors
1905 */
1906 void bio_trim(struct bio *bio, int offset, int size)
1907 {
1908 /* 'bio' is a cloned bio which we need to trim to match
1909 * the given offset and size.
1910 */
1911
1912 size <<= 9;
1913 if (offset == 0 && size == bio->bi_iter.bi_size)
1914 return;
1915
1916 bio_clear_flag(bio, BIO_SEG_VALID);
1917
1918 bio_advance(bio, offset << 9);
1919
1920 bio->bi_iter.bi_size = size;
1921
1922 if (bio_integrity(bio))
1923 bio_integrity_trim(bio);
1924
1925 }
1926 EXPORT_SYMBOL_GPL(bio_trim);
1927
1928 /*
1929 * create memory pools for biovec's in a bio_set.
1930 * use the global biovec slabs created for general use.
1931 */
1932 int biovec_init_pool(mempool_t *pool, int pool_entries)
1933 {
1934 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1935
1936 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1937 }
1938
1939 /*
1940 * bioset_exit - exit a bioset initialized with bioset_init()
1941 *
1942 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1943 * kzalloc()).
1944 */
1945 void bioset_exit(struct bio_set *bs)
1946 {
1947 if (bs->rescue_workqueue)
1948 destroy_workqueue(bs->rescue_workqueue);
1949 bs->rescue_workqueue = NULL;
1950
1951 mempool_exit(&bs->bio_pool);
1952 mempool_exit(&bs->bvec_pool);
1953
1954 bioset_integrity_free(bs);
1955 if (bs->bio_slab)
1956 bio_put_slab(bs);
1957 bs->bio_slab = NULL;
1958 }
1959 EXPORT_SYMBOL(bioset_exit);
1960
1961 /**
1962 * bioset_init - Initialize a bio_set
1963 * @bs: pool to initialize
1964 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1965 * @front_pad: Number of bytes to allocate in front of the returned bio
1966 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1967 * and %BIOSET_NEED_RESCUER
1968 *
1969 * Description:
1970 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1971 * to ask for a number of bytes to be allocated in front of the bio.
1972 * Front pad allocation is useful for embedding the bio inside
1973 * another structure, to avoid allocating extra data to go with the bio.
1974 * Note that the bio must be embedded at the END of that structure always,
1975 * or things will break badly.
1976 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1977 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1978 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1979 * dispatch queued requests when the mempool runs out of space.
1980 *
1981 */
1982 int bioset_init(struct bio_set *bs,
1983 unsigned int pool_size,
1984 unsigned int front_pad,
1985 int flags)
1986 {
1987 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1988
1989 bs->front_pad = front_pad;
1990
1991 spin_lock_init(&bs->rescue_lock);
1992 bio_list_init(&bs->rescue_list);
1993 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1994
1995 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1996 if (!bs->bio_slab)
1997 return -ENOMEM;
1998
1999 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2000 goto bad;
2001
2002 if ((flags & BIOSET_NEED_BVECS) &&
2003 biovec_init_pool(&bs->bvec_pool, pool_size))
2004 goto bad;
2005
2006 if (!(flags & BIOSET_NEED_RESCUER))
2007 return 0;
2008
2009 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2010 if (!bs->rescue_workqueue)
2011 goto bad;
2012
2013 return 0;
2014 bad:
2015 bioset_exit(bs);
2016 return -ENOMEM;
2017 }
2018 EXPORT_SYMBOL(bioset_init);
2019
2020 /*
2021 * Initialize and setup a new bio_set, based on the settings from
2022 * another bio_set.
2023 */
2024 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2025 {
2026 int flags;
2027
2028 flags = 0;
2029 if (src->bvec_pool.min_nr)
2030 flags |= BIOSET_NEED_BVECS;
2031 if (src->rescue_workqueue)
2032 flags |= BIOSET_NEED_RESCUER;
2033
2034 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2035 }
2036 EXPORT_SYMBOL(bioset_init_from_src);
2037
2038 #ifdef CONFIG_BLK_CGROUP
2039
2040 /**
2041 * bio_disassociate_blkg - puts back the blkg reference if associated
2042 * @bio: target bio
2043 *
2044 * Helper to disassociate the blkg from @bio if a blkg is associated.
2045 */
2046 void bio_disassociate_blkg(struct bio *bio)
2047 {
2048 if (bio->bi_blkg) {
2049 blkg_put(bio->bi_blkg);
2050 bio->bi_blkg = NULL;
2051 }
2052 }
2053 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2054
2055 /**
2056 * __bio_associate_blkg - associate a bio with the a blkg
2057 * @bio: target bio
2058 * @blkg: the blkg to associate
2059 *
2060 * This tries to associate @bio with the specified @blkg. Association failure
2061 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2062 * be anything between @blkg and the root_blkg. This situation only happens
2063 * when a cgroup is dying and then the remaining bios will spill to the closest
2064 * alive blkg.
2065 *
2066 * A reference will be taken on the @blkg and will be released when @bio is
2067 * freed.
2068 */
2069 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2070 {
2071 bio_disassociate_blkg(bio);
2072
2073 bio->bi_blkg = blkg_tryget_closest(blkg);
2074 }
2075
2076 /**
2077 * bio_associate_blkg_from_css - associate a bio with a specified css
2078 * @bio: target bio
2079 * @css: target css
2080 *
2081 * Associate @bio with the blkg found by combining the css's blkg and the
2082 * request_queue of the @bio. This falls back to the queue's root_blkg if
2083 * the association fails with the css.
2084 */
2085 void bio_associate_blkg_from_css(struct bio *bio,
2086 struct cgroup_subsys_state *css)
2087 {
2088 struct request_queue *q = bio->bi_disk->queue;
2089 struct blkcg_gq *blkg;
2090
2091 rcu_read_lock();
2092
2093 if (!css || !css->parent)
2094 blkg = q->root_blkg;
2095 else
2096 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2097
2098 __bio_associate_blkg(bio, blkg);
2099
2100 rcu_read_unlock();
2101 }
2102 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2103
2104 #ifdef CONFIG_MEMCG
2105 /**
2106 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2107 * @bio: target bio
2108 * @page: the page to lookup the blkcg from
2109 *
2110 * Associate @bio with the blkg from @page's owning memcg and the respective
2111 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2112 * root_blkg.
2113 */
2114 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2115 {
2116 struct cgroup_subsys_state *css;
2117
2118 if (!page->mem_cgroup)
2119 return;
2120
2121 rcu_read_lock();
2122
2123 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2124 bio_associate_blkg_from_css(bio, css);
2125
2126 rcu_read_unlock();
2127 }
2128 #endif /* CONFIG_MEMCG */
2129
2130 /**
2131 * bio_associate_blkg - associate a bio with a blkg
2132 * @bio: target bio
2133 *
2134 * Associate @bio with the blkg found from the bio's css and request_queue.
2135 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2136 * already associated, the css is reused and association redone as the
2137 * request_queue may have changed.
2138 */
2139 void bio_associate_blkg(struct bio *bio)
2140 {
2141 struct cgroup_subsys_state *css;
2142
2143 rcu_read_lock();
2144
2145 if (bio->bi_blkg)
2146 css = &bio_blkcg(bio)->css;
2147 else
2148 css = blkcg_css();
2149
2150 bio_associate_blkg_from_css(bio, css);
2151
2152 rcu_read_unlock();
2153 }
2154 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2155
2156 /**
2157 * bio_clone_blkg_association - clone blkg association from src to dst bio
2158 * @dst: destination bio
2159 * @src: source bio
2160 */
2161 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2162 {
2163 rcu_read_lock();
2164
2165 if (src->bi_blkg)
2166 __bio_associate_blkg(dst, src->bi_blkg);
2167
2168 rcu_read_unlock();
2169 }
2170 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2171 #endif /* CONFIG_BLK_CGROUP */
2172
2173 static void __init biovec_init_slabs(void)
2174 {
2175 int i;
2176
2177 for (i = 0; i < BVEC_POOL_NR; i++) {
2178 int size;
2179 struct biovec_slab *bvs = bvec_slabs + i;
2180
2181 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2182 bvs->slab = NULL;
2183 continue;
2184 }
2185
2186 size = bvs->nr_vecs * sizeof(struct bio_vec);
2187 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2188 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2189 }
2190 }
2191
2192 static int __init init_bio(void)
2193 {
2194 bio_slab_max = 2;
2195 bio_slab_nr = 0;
2196 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2197 GFP_KERNEL);
2198 if (!bio_slabs)
2199 panic("bio: can't allocate bios\n");
2200
2201 bio_integrity_init();
2202 biovec_init_slabs();
2203
2204 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2205 panic("bio: can't allocate bios\n");
2206
2207 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2208 panic("bio: can't create integrity pool\n");
2209
2210 return 0;
2211 }
2212 subsys_initcall(init_bio);