]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/bio.c
Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / block / bio.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19
20 #include <trace/events/block.h>
21 #include "blk.h"
22 #include "blk-rq-qos.h"
23
24 /*
25 * Test patch to inline a certain number of bi_io_vec's inside the bio
26 * itself, to shrink a bio data allocation from two mempool calls to one
27 */
28 #define BIO_INLINE_VECS 4
29
30 /*
31 * if you change this list, also change bvec_alloc or things will
32 * break badly! cannot be bigger than what you can fit into an
33 * unsigned short
34 */
35 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
36 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
37 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
38 };
39 #undef BV
40
41 /*
42 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
43 * IO code that does not need private memory pools.
44 */
45 struct bio_set fs_bio_set;
46 EXPORT_SYMBOL(fs_bio_set);
47
48 /*
49 * Our slab pool management
50 */
51 struct bio_slab {
52 struct kmem_cache *slab;
53 unsigned int slab_ref;
54 unsigned int slab_size;
55 char name[8];
56 };
57 static DEFINE_MUTEX(bio_slab_lock);
58 static struct bio_slab *bio_slabs;
59 static unsigned int bio_slab_nr, bio_slab_max;
60
61 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
62 {
63 unsigned int sz = sizeof(struct bio) + extra_size;
64 struct kmem_cache *slab = NULL;
65 struct bio_slab *bslab, *new_bio_slabs;
66 unsigned int new_bio_slab_max;
67 unsigned int i, entry = -1;
68
69 mutex_lock(&bio_slab_lock);
70
71 i = 0;
72 while (i < bio_slab_nr) {
73 bslab = &bio_slabs[i];
74
75 if (!bslab->slab && entry == -1)
76 entry = i;
77 else if (bslab->slab_size == sz) {
78 slab = bslab->slab;
79 bslab->slab_ref++;
80 break;
81 }
82 i++;
83 }
84
85 if (slab)
86 goto out_unlock;
87
88 if (bio_slab_nr == bio_slab_max && entry == -1) {
89 new_bio_slab_max = bio_slab_max << 1;
90 new_bio_slabs = krealloc(bio_slabs,
91 new_bio_slab_max * sizeof(struct bio_slab),
92 GFP_KERNEL);
93 if (!new_bio_slabs)
94 goto out_unlock;
95 bio_slab_max = new_bio_slab_max;
96 bio_slabs = new_bio_slabs;
97 }
98 if (entry == -1)
99 entry = bio_slab_nr++;
100
101 bslab = &bio_slabs[entry];
102
103 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
104 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
105 SLAB_HWCACHE_ALIGN, NULL);
106 if (!slab)
107 goto out_unlock;
108
109 bslab->slab = slab;
110 bslab->slab_ref = 1;
111 bslab->slab_size = sz;
112 out_unlock:
113 mutex_unlock(&bio_slab_lock);
114 return slab;
115 }
116
117 static void bio_put_slab(struct bio_set *bs)
118 {
119 struct bio_slab *bslab = NULL;
120 unsigned int i;
121
122 mutex_lock(&bio_slab_lock);
123
124 for (i = 0; i < bio_slab_nr; i++) {
125 if (bs->bio_slab == bio_slabs[i].slab) {
126 bslab = &bio_slabs[i];
127 break;
128 }
129 }
130
131 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
132 goto out;
133
134 WARN_ON(!bslab->slab_ref);
135
136 if (--bslab->slab_ref)
137 goto out;
138
139 kmem_cache_destroy(bslab->slab);
140 bslab->slab = NULL;
141
142 out:
143 mutex_unlock(&bio_slab_lock);
144 }
145
146 unsigned int bvec_nr_vecs(unsigned short idx)
147 {
148 return bvec_slabs[--idx].nr_vecs;
149 }
150
151 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
152 {
153 if (!idx)
154 return;
155 idx--;
156
157 BIO_BUG_ON(idx >= BVEC_POOL_NR);
158
159 if (idx == BVEC_POOL_MAX) {
160 mempool_free(bv, pool);
161 } else {
162 struct biovec_slab *bvs = bvec_slabs + idx;
163
164 kmem_cache_free(bvs->slab, bv);
165 }
166 }
167
168 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
169 mempool_t *pool)
170 {
171 struct bio_vec *bvl;
172
173 /*
174 * see comment near bvec_array define!
175 */
176 switch (nr) {
177 case 1:
178 *idx = 0;
179 break;
180 case 2 ... 4:
181 *idx = 1;
182 break;
183 case 5 ... 16:
184 *idx = 2;
185 break;
186 case 17 ... 64:
187 *idx = 3;
188 break;
189 case 65 ... 128:
190 *idx = 4;
191 break;
192 case 129 ... BIO_MAX_PAGES:
193 *idx = 5;
194 break;
195 default:
196 return NULL;
197 }
198
199 /*
200 * idx now points to the pool we want to allocate from. only the
201 * 1-vec entry pool is mempool backed.
202 */
203 if (*idx == BVEC_POOL_MAX) {
204 fallback:
205 bvl = mempool_alloc(pool, gfp_mask);
206 } else {
207 struct biovec_slab *bvs = bvec_slabs + *idx;
208 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
209
210 /*
211 * Make this allocation restricted and don't dump info on
212 * allocation failures, since we'll fallback to the mempool
213 * in case of failure.
214 */
215 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
216
217 /*
218 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
219 * is set, retry with the 1-entry mempool
220 */
221 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
222 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
223 *idx = BVEC_POOL_MAX;
224 goto fallback;
225 }
226 }
227
228 (*idx)++;
229 return bvl;
230 }
231
232 void bio_uninit(struct bio *bio)
233 {
234 bio_disassociate_blkg(bio);
235 }
236 EXPORT_SYMBOL(bio_uninit);
237
238 static void bio_free(struct bio *bio)
239 {
240 struct bio_set *bs = bio->bi_pool;
241 void *p;
242
243 bio_uninit(bio);
244
245 if (bs) {
246 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
247
248 /*
249 * If we have front padding, adjust the bio pointer before freeing
250 */
251 p = bio;
252 p -= bs->front_pad;
253
254 mempool_free(p, &bs->bio_pool);
255 } else {
256 /* Bio was allocated by bio_kmalloc() */
257 kfree(bio);
258 }
259 }
260
261 /*
262 * Users of this function have their own bio allocation. Subsequently,
263 * they must remember to pair any call to bio_init() with bio_uninit()
264 * when IO has completed, or when the bio is released.
265 */
266 void bio_init(struct bio *bio, struct bio_vec *table,
267 unsigned short max_vecs)
268 {
269 memset(bio, 0, sizeof(*bio));
270 atomic_set(&bio->__bi_remaining, 1);
271 atomic_set(&bio->__bi_cnt, 1);
272
273 bio->bi_io_vec = table;
274 bio->bi_max_vecs = max_vecs;
275 }
276 EXPORT_SYMBOL(bio_init);
277
278 /**
279 * bio_reset - reinitialize a bio
280 * @bio: bio to reset
281 *
282 * Description:
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
287 */
288 void bio_reset(struct bio *bio)
289 {
290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291
292 bio_uninit(bio);
293
294 memset(bio, 0, BIO_RESET_BYTES);
295 bio->bi_flags = flags;
296 atomic_set(&bio->__bi_remaining, 1);
297 }
298 EXPORT_SYMBOL(bio_reset);
299
300 static struct bio *__bio_chain_endio(struct bio *bio)
301 {
302 struct bio *parent = bio->bi_private;
303
304 if (!parent->bi_status)
305 parent->bi_status = bio->bi_status;
306 bio_put(bio);
307 return parent;
308 }
309
310 static void bio_chain_endio(struct bio *bio)
311 {
312 bio_endio(__bio_chain_endio(bio));
313 }
314
315 /**
316 * bio_chain - chain bio completions
317 * @bio: the target bio
318 * @parent: the @bio's parent bio
319 *
320 * The caller won't have a bi_end_io called when @bio completes - instead,
321 * @parent's bi_end_io won't be called until both @parent and @bio have
322 * completed; the chained bio will also be freed when it completes.
323 *
324 * The caller must not set bi_private or bi_end_io in @bio.
325 */
326 void bio_chain(struct bio *bio, struct bio *parent)
327 {
328 BUG_ON(bio->bi_private || bio->bi_end_io);
329
330 bio->bi_private = parent;
331 bio->bi_end_io = bio_chain_endio;
332 bio_inc_remaining(parent);
333 }
334 EXPORT_SYMBOL(bio_chain);
335
336 static void bio_alloc_rescue(struct work_struct *work)
337 {
338 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
339 struct bio *bio;
340
341 while (1) {
342 spin_lock(&bs->rescue_lock);
343 bio = bio_list_pop(&bs->rescue_list);
344 spin_unlock(&bs->rescue_lock);
345
346 if (!bio)
347 break;
348
349 generic_make_request(bio);
350 }
351 }
352
353 static void punt_bios_to_rescuer(struct bio_set *bs)
354 {
355 struct bio_list punt, nopunt;
356 struct bio *bio;
357
358 if (WARN_ON_ONCE(!bs->rescue_workqueue))
359 return;
360 /*
361 * In order to guarantee forward progress we must punt only bios that
362 * were allocated from this bio_set; otherwise, if there was a bio on
363 * there for a stacking driver higher up in the stack, processing it
364 * could require allocating bios from this bio_set, and doing that from
365 * our own rescuer would be bad.
366 *
367 * Since bio lists are singly linked, pop them all instead of trying to
368 * remove from the middle of the list:
369 */
370
371 bio_list_init(&punt);
372 bio_list_init(&nopunt);
373
374 while ((bio = bio_list_pop(&current->bio_list[0])))
375 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
376 current->bio_list[0] = nopunt;
377
378 bio_list_init(&nopunt);
379 while ((bio = bio_list_pop(&current->bio_list[1])))
380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 current->bio_list[1] = nopunt;
382
383 spin_lock(&bs->rescue_lock);
384 bio_list_merge(&bs->rescue_list, &punt);
385 spin_unlock(&bs->rescue_lock);
386
387 queue_work(bs->rescue_workqueue, &bs->rescue_work);
388 }
389
390 /**
391 * bio_alloc_bioset - allocate a bio for I/O
392 * @gfp_mask: the GFP_* mask given to the slab allocator
393 * @nr_iovecs: number of iovecs to pre-allocate
394 * @bs: the bio_set to allocate from.
395 *
396 * Description:
397 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
398 * backed by the @bs's mempool.
399 *
400 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
401 * always be able to allocate a bio. This is due to the mempool guarantees.
402 * To make this work, callers must never allocate more than 1 bio at a time
403 * from this pool. Callers that need to allocate more than 1 bio must always
404 * submit the previously allocated bio for IO before attempting to allocate
405 * a new one. Failure to do so can cause deadlocks under memory pressure.
406 *
407 * Note that when running under generic_make_request() (i.e. any block
408 * driver), bios are not submitted until after you return - see the code in
409 * generic_make_request() that converts recursion into iteration, to prevent
410 * stack overflows.
411 *
412 * This would normally mean allocating multiple bios under
413 * generic_make_request() would be susceptible to deadlocks, but we have
414 * deadlock avoidance code that resubmits any blocked bios from a rescuer
415 * thread.
416 *
417 * However, we do not guarantee forward progress for allocations from other
418 * mempools. Doing multiple allocations from the same mempool under
419 * generic_make_request() should be avoided - instead, use bio_set's front_pad
420 * for per bio allocations.
421 *
422 * RETURNS:
423 * Pointer to new bio on success, NULL on failure.
424 */
425 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
426 struct bio_set *bs)
427 {
428 gfp_t saved_gfp = gfp_mask;
429 unsigned front_pad;
430 unsigned inline_vecs;
431 struct bio_vec *bvl = NULL;
432 struct bio *bio;
433 void *p;
434
435 if (!bs) {
436 if (nr_iovecs > UIO_MAXIOV)
437 return NULL;
438
439 p = kmalloc(sizeof(struct bio) +
440 nr_iovecs * sizeof(struct bio_vec),
441 gfp_mask);
442 front_pad = 0;
443 inline_vecs = nr_iovecs;
444 } else {
445 /* should not use nobvec bioset for nr_iovecs > 0 */
446 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
447 nr_iovecs > 0))
448 return NULL;
449 /*
450 * generic_make_request() converts recursion to iteration; this
451 * means if we're running beneath it, any bios we allocate and
452 * submit will not be submitted (and thus freed) until after we
453 * return.
454 *
455 * This exposes us to a potential deadlock if we allocate
456 * multiple bios from the same bio_set() while running
457 * underneath generic_make_request(). If we were to allocate
458 * multiple bios (say a stacking block driver that was splitting
459 * bios), we would deadlock if we exhausted the mempool's
460 * reserve.
461 *
462 * We solve this, and guarantee forward progress, with a rescuer
463 * workqueue per bio_set. If we go to allocate and there are
464 * bios on current->bio_list, we first try the allocation
465 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
466 * bios we would be blocking to the rescuer workqueue before
467 * we retry with the original gfp_flags.
468 */
469
470 if (current->bio_list &&
471 (!bio_list_empty(&current->bio_list[0]) ||
472 !bio_list_empty(&current->bio_list[1])) &&
473 bs->rescue_workqueue)
474 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
475
476 p = mempool_alloc(&bs->bio_pool, gfp_mask);
477 if (!p && gfp_mask != saved_gfp) {
478 punt_bios_to_rescuer(bs);
479 gfp_mask = saved_gfp;
480 p = mempool_alloc(&bs->bio_pool, gfp_mask);
481 }
482
483 front_pad = bs->front_pad;
484 inline_vecs = BIO_INLINE_VECS;
485 }
486
487 if (unlikely(!p))
488 return NULL;
489
490 bio = p + front_pad;
491 bio_init(bio, NULL, 0);
492
493 if (nr_iovecs > inline_vecs) {
494 unsigned long idx = 0;
495
496 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
497 if (!bvl && gfp_mask != saved_gfp) {
498 punt_bios_to_rescuer(bs);
499 gfp_mask = saved_gfp;
500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
501 }
502
503 if (unlikely(!bvl))
504 goto err_free;
505
506 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
507 } else if (nr_iovecs) {
508 bvl = bio->bi_inline_vecs;
509 }
510
511 bio->bi_pool = bs;
512 bio->bi_max_vecs = nr_iovecs;
513 bio->bi_io_vec = bvl;
514 return bio;
515
516 err_free:
517 mempool_free(p, &bs->bio_pool);
518 return NULL;
519 }
520 EXPORT_SYMBOL(bio_alloc_bioset);
521
522 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
523 {
524 unsigned long flags;
525 struct bio_vec bv;
526 struct bvec_iter iter;
527
528 __bio_for_each_segment(bv, bio, iter, start) {
529 char *data = bvec_kmap_irq(&bv, &flags);
530 memset(data, 0, bv.bv_len);
531 flush_dcache_page(bv.bv_page);
532 bvec_kunmap_irq(data, &flags);
533 }
534 }
535 EXPORT_SYMBOL(zero_fill_bio_iter);
536
537 /**
538 * bio_put - release a reference to a bio
539 * @bio: bio to release reference to
540 *
541 * Description:
542 * Put a reference to a &struct bio, either one you have gotten with
543 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
544 **/
545 void bio_put(struct bio *bio)
546 {
547 if (!bio_flagged(bio, BIO_REFFED))
548 bio_free(bio);
549 else {
550 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
551
552 /*
553 * last put frees it
554 */
555 if (atomic_dec_and_test(&bio->__bi_cnt))
556 bio_free(bio);
557 }
558 }
559 EXPORT_SYMBOL(bio_put);
560
561 /**
562 * __bio_clone_fast - clone a bio that shares the original bio's biovec
563 * @bio: destination bio
564 * @bio_src: bio to clone
565 *
566 * Clone a &bio. Caller will own the returned bio, but not
567 * the actual data it points to. Reference count of returned
568 * bio will be one.
569 *
570 * Caller must ensure that @bio_src is not freed before @bio.
571 */
572 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
573 {
574 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
575
576 /*
577 * most users will be overriding ->bi_disk with a new target,
578 * so we don't set nor calculate new physical/hw segment counts here
579 */
580 bio->bi_disk = bio_src->bi_disk;
581 bio->bi_partno = bio_src->bi_partno;
582 bio_set_flag(bio, BIO_CLONED);
583 if (bio_flagged(bio_src, BIO_THROTTLED))
584 bio_set_flag(bio, BIO_THROTTLED);
585 bio->bi_opf = bio_src->bi_opf;
586 bio->bi_ioprio = bio_src->bi_ioprio;
587 bio->bi_write_hint = bio_src->bi_write_hint;
588 bio->bi_iter = bio_src->bi_iter;
589 bio->bi_io_vec = bio_src->bi_io_vec;
590
591 bio_clone_blkg_association(bio, bio_src);
592 blkcg_bio_issue_init(bio);
593 }
594 EXPORT_SYMBOL(__bio_clone_fast);
595
596 /**
597 * bio_clone_fast - clone a bio that shares the original bio's biovec
598 * @bio: bio to clone
599 * @gfp_mask: allocation priority
600 * @bs: bio_set to allocate from
601 *
602 * Like __bio_clone_fast, only also allocates the returned bio
603 */
604 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
605 {
606 struct bio *b;
607
608 b = bio_alloc_bioset(gfp_mask, 0, bs);
609 if (!b)
610 return NULL;
611
612 __bio_clone_fast(b, bio);
613
614 if (bio_integrity(bio)) {
615 int ret;
616
617 ret = bio_integrity_clone(b, bio, gfp_mask);
618
619 if (ret < 0) {
620 bio_put(b);
621 return NULL;
622 }
623 }
624
625 return b;
626 }
627 EXPORT_SYMBOL(bio_clone_fast);
628
629 static inline bool page_is_mergeable(const struct bio_vec *bv,
630 struct page *page, unsigned int len, unsigned int off,
631 bool *same_page)
632 {
633 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
634 bv->bv_offset + bv->bv_len - 1;
635 phys_addr_t page_addr = page_to_phys(page);
636
637 if (vec_end_addr + 1 != page_addr + off)
638 return false;
639 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
640 return false;
641
642 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
643 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
644 return false;
645 return true;
646 }
647
648 /*
649 * Check if the @page can be added to the current segment(@bv), and make
650 * sure to call it only if page_is_mergeable(@bv, @page) is true
651 */
652 static bool can_add_page_to_seg(struct request_queue *q,
653 struct bio_vec *bv, struct page *page, unsigned len,
654 unsigned offset)
655 {
656 unsigned long mask = queue_segment_boundary(q);
657 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
658 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
659
660 if ((addr1 | mask) != (addr2 | mask))
661 return false;
662
663 if (bv->bv_len + len > queue_max_segment_size(q))
664 return false;
665
666 return true;
667 }
668
669 /**
670 * __bio_add_pc_page - attempt to add page to passthrough bio
671 * @q: the target queue
672 * @bio: destination bio
673 * @page: page to add
674 * @len: vec entry length
675 * @offset: vec entry offset
676 * @put_same_page: put the page if it is same with last added page
677 *
678 * Attempt to add a page to the bio_vec maplist. This can fail for a
679 * number of reasons, such as the bio being full or target block device
680 * limitations. The target block device must allow bio's up to PAGE_SIZE,
681 * so it is always possible to add a single page to an empty bio.
682 *
683 * This should only be used by passthrough bios.
684 */
685 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
686 struct page *page, unsigned int len, unsigned int offset,
687 bool put_same_page)
688 {
689 struct bio_vec *bvec;
690 bool same_page = false;
691
692 /*
693 * cloned bio must not modify vec list
694 */
695 if (unlikely(bio_flagged(bio, BIO_CLONED)))
696 return 0;
697
698 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
699 return 0;
700
701 if (bio->bi_vcnt > 0) {
702 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
703
704 if (page == bvec->bv_page &&
705 offset == bvec->bv_offset + bvec->bv_len) {
706 if (put_same_page)
707 put_page(page);
708 bvec->bv_len += len;
709 goto done;
710 }
711
712 /*
713 * If the queue doesn't support SG gaps and adding this
714 * offset would create a gap, disallow it.
715 */
716 if (bvec_gap_to_prev(q, bvec, offset))
717 return 0;
718
719 if (page_is_mergeable(bvec, page, len, offset, &same_page) &&
720 can_add_page_to_seg(q, bvec, page, len, offset)) {
721 bvec->bv_len += len;
722 goto done;
723 }
724 }
725
726 if (bio_full(bio, len))
727 return 0;
728
729 if (bio->bi_vcnt >= queue_max_segments(q))
730 return 0;
731
732 bvec = &bio->bi_io_vec[bio->bi_vcnt];
733 bvec->bv_page = page;
734 bvec->bv_len = len;
735 bvec->bv_offset = offset;
736 bio->bi_vcnt++;
737 done:
738 bio->bi_iter.bi_size += len;
739 return len;
740 }
741
742 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
743 struct page *page, unsigned int len, unsigned int offset)
744 {
745 return __bio_add_pc_page(q, bio, page, len, offset, false);
746 }
747 EXPORT_SYMBOL(bio_add_pc_page);
748
749 /**
750 * __bio_try_merge_page - try appending data to an existing bvec.
751 * @bio: destination bio
752 * @page: start page to add
753 * @len: length of the data to add
754 * @off: offset of the data relative to @page
755 * @same_page: return if the segment has been merged inside the same page
756 *
757 * Try to add the data at @page + @off to the last bvec of @bio. This is a
758 * a useful optimisation for file systems with a block size smaller than the
759 * page size.
760 *
761 * Warn if (@len, @off) crosses pages in case that @same_page is true.
762 *
763 * Return %true on success or %false on failure.
764 */
765 bool __bio_try_merge_page(struct bio *bio, struct page *page,
766 unsigned int len, unsigned int off, bool *same_page)
767 {
768 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
769 return false;
770
771 if (bio->bi_vcnt > 0) {
772 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
773
774 if (page_is_mergeable(bv, page, len, off, same_page)) {
775 bv->bv_len += len;
776 bio->bi_iter.bi_size += len;
777 return true;
778 }
779 }
780 return false;
781 }
782 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
783
784 /**
785 * __bio_add_page - add page(s) to a bio in a new segment
786 * @bio: destination bio
787 * @page: start page to add
788 * @len: length of the data to add, may cross pages
789 * @off: offset of the data relative to @page, may cross pages
790 *
791 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
792 * that @bio has space for another bvec.
793 */
794 void __bio_add_page(struct bio *bio, struct page *page,
795 unsigned int len, unsigned int off)
796 {
797 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
798
799 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
800 WARN_ON_ONCE(bio_full(bio, len));
801
802 bv->bv_page = page;
803 bv->bv_offset = off;
804 bv->bv_len = len;
805
806 bio->bi_iter.bi_size += len;
807 bio->bi_vcnt++;
808 }
809 EXPORT_SYMBOL_GPL(__bio_add_page);
810
811 /**
812 * bio_add_page - attempt to add page(s) to bio
813 * @bio: destination bio
814 * @page: start page to add
815 * @len: vec entry length, may cross pages
816 * @offset: vec entry offset relative to @page, may cross pages
817 *
818 * Attempt to add page(s) to the bio_vec maplist. This will only fail
819 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
820 */
821 int bio_add_page(struct bio *bio, struct page *page,
822 unsigned int len, unsigned int offset)
823 {
824 bool same_page = false;
825
826 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
827 if (bio_full(bio, len))
828 return 0;
829 __bio_add_page(bio, page, len, offset);
830 }
831 return len;
832 }
833 EXPORT_SYMBOL(bio_add_page);
834
835 void bio_release_pages(struct bio *bio, bool mark_dirty)
836 {
837 struct bvec_iter_all iter_all;
838 struct bio_vec *bvec;
839
840 if (bio_flagged(bio, BIO_NO_PAGE_REF))
841 return;
842
843 bio_for_each_segment_all(bvec, bio, iter_all) {
844 if (mark_dirty && !PageCompound(bvec->bv_page))
845 set_page_dirty_lock(bvec->bv_page);
846 put_page(bvec->bv_page);
847 }
848 }
849
850 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
851 {
852 const struct bio_vec *bv = iter->bvec;
853 unsigned int len;
854 size_t size;
855
856 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
857 return -EINVAL;
858
859 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
860 size = bio_add_page(bio, bv->bv_page, len,
861 bv->bv_offset + iter->iov_offset);
862 if (unlikely(size != len))
863 return -EINVAL;
864 iov_iter_advance(iter, size);
865 return 0;
866 }
867
868 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
869
870 /**
871 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
872 * @bio: bio to add pages to
873 * @iter: iov iterator describing the region to be mapped
874 *
875 * Pins pages from *iter and appends them to @bio's bvec array. The
876 * pages will have to be released using put_page() when done.
877 * For multi-segment *iter, this function only adds pages from the
878 * the next non-empty segment of the iov iterator.
879 */
880 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
881 {
882 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
883 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
884 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
885 struct page **pages = (struct page **)bv;
886 bool same_page = false;
887 ssize_t size, left;
888 unsigned len, i;
889 size_t offset;
890
891 /*
892 * Move page array up in the allocated memory for the bio vecs as far as
893 * possible so that we can start filling biovecs from the beginning
894 * without overwriting the temporary page array.
895 */
896 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
897 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
898
899 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
900 if (unlikely(size <= 0))
901 return size ? size : -EFAULT;
902
903 for (left = size, i = 0; left > 0; left -= len, i++) {
904 struct page *page = pages[i];
905
906 len = min_t(size_t, PAGE_SIZE - offset, left);
907
908 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
909 if (same_page)
910 put_page(page);
911 } else {
912 if (WARN_ON_ONCE(bio_full(bio, len)))
913 return -EINVAL;
914 __bio_add_page(bio, page, len, offset);
915 }
916 offset = 0;
917 }
918
919 iov_iter_advance(iter, size);
920 return 0;
921 }
922
923 /**
924 * bio_iov_iter_get_pages - add user or kernel pages to a bio
925 * @bio: bio to add pages to
926 * @iter: iov iterator describing the region to be added
927 *
928 * This takes either an iterator pointing to user memory, or one pointing to
929 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
930 * map them into the kernel. On IO completion, the caller should put those
931 * pages. If we're adding kernel pages, and the caller told us it's safe to
932 * do so, we just have to add the pages to the bio directly. We don't grab an
933 * extra reference to those pages (the user should already have that), and we
934 * don't put the page on IO completion. The caller needs to check if the bio is
935 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
936 * released.
937 *
938 * The function tries, but does not guarantee, to pin as many pages as
939 * fit into the bio, or are requested in *iter, whatever is smaller. If
940 * MM encounters an error pinning the requested pages, it stops. Error
941 * is returned only if 0 pages could be pinned.
942 */
943 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
944 {
945 const bool is_bvec = iov_iter_is_bvec(iter);
946 int ret;
947
948 if (WARN_ON_ONCE(bio->bi_vcnt))
949 return -EINVAL;
950
951 do {
952 if (is_bvec)
953 ret = __bio_iov_bvec_add_pages(bio, iter);
954 else
955 ret = __bio_iov_iter_get_pages(bio, iter);
956 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
957
958 if (is_bvec)
959 bio_set_flag(bio, BIO_NO_PAGE_REF);
960 return bio->bi_vcnt ? 0 : ret;
961 }
962
963 static void submit_bio_wait_endio(struct bio *bio)
964 {
965 complete(bio->bi_private);
966 }
967
968 /**
969 * submit_bio_wait - submit a bio, and wait until it completes
970 * @bio: The &struct bio which describes the I/O
971 *
972 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
973 * bio_endio() on failure.
974 *
975 * WARNING: Unlike to how submit_bio() is usually used, this function does not
976 * result in bio reference to be consumed. The caller must drop the reference
977 * on his own.
978 */
979 int submit_bio_wait(struct bio *bio)
980 {
981 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
982
983 bio->bi_private = &done;
984 bio->bi_end_io = submit_bio_wait_endio;
985 bio->bi_opf |= REQ_SYNC;
986 submit_bio(bio);
987 wait_for_completion_io(&done);
988
989 return blk_status_to_errno(bio->bi_status);
990 }
991 EXPORT_SYMBOL(submit_bio_wait);
992
993 /**
994 * bio_advance - increment/complete a bio by some number of bytes
995 * @bio: bio to advance
996 * @bytes: number of bytes to complete
997 *
998 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
999 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1000 * be updated on the last bvec as well.
1001 *
1002 * @bio will then represent the remaining, uncompleted portion of the io.
1003 */
1004 void bio_advance(struct bio *bio, unsigned bytes)
1005 {
1006 if (bio_integrity(bio))
1007 bio_integrity_advance(bio, bytes);
1008
1009 bio_advance_iter(bio, &bio->bi_iter, bytes);
1010 }
1011 EXPORT_SYMBOL(bio_advance);
1012
1013 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1014 struct bio *src, struct bvec_iter *src_iter)
1015 {
1016 struct bio_vec src_bv, dst_bv;
1017 void *src_p, *dst_p;
1018 unsigned bytes;
1019
1020 while (src_iter->bi_size && dst_iter->bi_size) {
1021 src_bv = bio_iter_iovec(src, *src_iter);
1022 dst_bv = bio_iter_iovec(dst, *dst_iter);
1023
1024 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1025
1026 src_p = kmap_atomic(src_bv.bv_page);
1027 dst_p = kmap_atomic(dst_bv.bv_page);
1028
1029 memcpy(dst_p + dst_bv.bv_offset,
1030 src_p + src_bv.bv_offset,
1031 bytes);
1032
1033 kunmap_atomic(dst_p);
1034 kunmap_atomic(src_p);
1035
1036 flush_dcache_page(dst_bv.bv_page);
1037
1038 bio_advance_iter(src, src_iter, bytes);
1039 bio_advance_iter(dst, dst_iter, bytes);
1040 }
1041 }
1042 EXPORT_SYMBOL(bio_copy_data_iter);
1043
1044 /**
1045 * bio_copy_data - copy contents of data buffers from one bio to another
1046 * @src: source bio
1047 * @dst: destination bio
1048 *
1049 * Stops when it reaches the end of either @src or @dst - that is, copies
1050 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1051 */
1052 void bio_copy_data(struct bio *dst, struct bio *src)
1053 {
1054 struct bvec_iter src_iter = src->bi_iter;
1055 struct bvec_iter dst_iter = dst->bi_iter;
1056
1057 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1058 }
1059 EXPORT_SYMBOL(bio_copy_data);
1060
1061 /**
1062 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1063 * another
1064 * @src: source bio list
1065 * @dst: destination bio list
1066 *
1067 * Stops when it reaches the end of either the @src list or @dst list - that is,
1068 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1069 * bios).
1070 */
1071 void bio_list_copy_data(struct bio *dst, struct bio *src)
1072 {
1073 struct bvec_iter src_iter = src->bi_iter;
1074 struct bvec_iter dst_iter = dst->bi_iter;
1075
1076 while (1) {
1077 if (!src_iter.bi_size) {
1078 src = src->bi_next;
1079 if (!src)
1080 break;
1081
1082 src_iter = src->bi_iter;
1083 }
1084
1085 if (!dst_iter.bi_size) {
1086 dst = dst->bi_next;
1087 if (!dst)
1088 break;
1089
1090 dst_iter = dst->bi_iter;
1091 }
1092
1093 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1094 }
1095 }
1096 EXPORT_SYMBOL(bio_list_copy_data);
1097
1098 struct bio_map_data {
1099 int is_our_pages;
1100 struct iov_iter iter;
1101 struct iovec iov[];
1102 };
1103
1104 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1105 gfp_t gfp_mask)
1106 {
1107 struct bio_map_data *bmd;
1108 if (data->nr_segs > UIO_MAXIOV)
1109 return NULL;
1110
1111 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1112 if (!bmd)
1113 return NULL;
1114 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1115 bmd->iter = *data;
1116 bmd->iter.iov = bmd->iov;
1117 return bmd;
1118 }
1119
1120 /**
1121 * bio_copy_from_iter - copy all pages from iov_iter to bio
1122 * @bio: The &struct bio which describes the I/O as destination
1123 * @iter: iov_iter as source
1124 *
1125 * Copy all pages from iov_iter to bio.
1126 * Returns 0 on success, or error on failure.
1127 */
1128 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1129 {
1130 struct bio_vec *bvec;
1131 struct bvec_iter_all iter_all;
1132
1133 bio_for_each_segment_all(bvec, bio, iter_all) {
1134 ssize_t ret;
1135
1136 ret = copy_page_from_iter(bvec->bv_page,
1137 bvec->bv_offset,
1138 bvec->bv_len,
1139 iter);
1140
1141 if (!iov_iter_count(iter))
1142 break;
1143
1144 if (ret < bvec->bv_len)
1145 return -EFAULT;
1146 }
1147
1148 return 0;
1149 }
1150
1151 /**
1152 * bio_copy_to_iter - copy all pages from bio to iov_iter
1153 * @bio: The &struct bio which describes the I/O as source
1154 * @iter: iov_iter as destination
1155 *
1156 * Copy all pages from bio to iov_iter.
1157 * Returns 0 on success, or error on failure.
1158 */
1159 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1160 {
1161 struct bio_vec *bvec;
1162 struct bvec_iter_all iter_all;
1163
1164 bio_for_each_segment_all(bvec, bio, iter_all) {
1165 ssize_t ret;
1166
1167 ret = copy_page_to_iter(bvec->bv_page,
1168 bvec->bv_offset,
1169 bvec->bv_len,
1170 &iter);
1171
1172 if (!iov_iter_count(&iter))
1173 break;
1174
1175 if (ret < bvec->bv_len)
1176 return -EFAULT;
1177 }
1178
1179 return 0;
1180 }
1181
1182 void bio_free_pages(struct bio *bio)
1183 {
1184 struct bio_vec *bvec;
1185 struct bvec_iter_all iter_all;
1186
1187 bio_for_each_segment_all(bvec, bio, iter_all)
1188 __free_page(bvec->bv_page);
1189 }
1190 EXPORT_SYMBOL(bio_free_pages);
1191
1192 /**
1193 * bio_uncopy_user - finish previously mapped bio
1194 * @bio: bio being terminated
1195 *
1196 * Free pages allocated from bio_copy_user_iov() and write back data
1197 * to user space in case of a read.
1198 */
1199 int bio_uncopy_user(struct bio *bio)
1200 {
1201 struct bio_map_data *bmd = bio->bi_private;
1202 int ret = 0;
1203
1204 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1205 /*
1206 * if we're in a workqueue, the request is orphaned, so
1207 * don't copy into a random user address space, just free
1208 * and return -EINTR so user space doesn't expect any data.
1209 */
1210 if (!current->mm)
1211 ret = -EINTR;
1212 else if (bio_data_dir(bio) == READ)
1213 ret = bio_copy_to_iter(bio, bmd->iter);
1214 if (bmd->is_our_pages)
1215 bio_free_pages(bio);
1216 }
1217 kfree(bmd);
1218 bio_put(bio);
1219 return ret;
1220 }
1221
1222 /**
1223 * bio_copy_user_iov - copy user data to bio
1224 * @q: destination block queue
1225 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1226 * @iter: iovec iterator
1227 * @gfp_mask: memory allocation flags
1228 *
1229 * Prepares and returns a bio for indirect user io, bouncing data
1230 * to/from kernel pages as necessary. Must be paired with
1231 * call bio_uncopy_user() on io completion.
1232 */
1233 struct bio *bio_copy_user_iov(struct request_queue *q,
1234 struct rq_map_data *map_data,
1235 struct iov_iter *iter,
1236 gfp_t gfp_mask)
1237 {
1238 struct bio_map_data *bmd;
1239 struct page *page;
1240 struct bio *bio;
1241 int i = 0, ret;
1242 int nr_pages;
1243 unsigned int len = iter->count;
1244 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1245
1246 bmd = bio_alloc_map_data(iter, gfp_mask);
1247 if (!bmd)
1248 return ERR_PTR(-ENOMEM);
1249
1250 /*
1251 * We need to do a deep copy of the iov_iter including the iovecs.
1252 * The caller provided iov might point to an on-stack or otherwise
1253 * shortlived one.
1254 */
1255 bmd->is_our_pages = map_data ? 0 : 1;
1256
1257 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1258 if (nr_pages > BIO_MAX_PAGES)
1259 nr_pages = BIO_MAX_PAGES;
1260
1261 ret = -ENOMEM;
1262 bio = bio_kmalloc(gfp_mask, nr_pages);
1263 if (!bio)
1264 goto out_bmd;
1265
1266 ret = 0;
1267
1268 if (map_data) {
1269 nr_pages = 1 << map_data->page_order;
1270 i = map_data->offset / PAGE_SIZE;
1271 }
1272 while (len) {
1273 unsigned int bytes = PAGE_SIZE;
1274
1275 bytes -= offset;
1276
1277 if (bytes > len)
1278 bytes = len;
1279
1280 if (map_data) {
1281 if (i == map_data->nr_entries * nr_pages) {
1282 ret = -ENOMEM;
1283 break;
1284 }
1285
1286 page = map_data->pages[i / nr_pages];
1287 page += (i % nr_pages);
1288
1289 i++;
1290 } else {
1291 page = alloc_page(q->bounce_gfp | gfp_mask);
1292 if (!page) {
1293 ret = -ENOMEM;
1294 break;
1295 }
1296 }
1297
1298 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1299 if (!map_data)
1300 __free_page(page);
1301 break;
1302 }
1303
1304 len -= bytes;
1305 offset = 0;
1306 }
1307
1308 if (ret)
1309 goto cleanup;
1310
1311 if (map_data)
1312 map_data->offset += bio->bi_iter.bi_size;
1313
1314 /*
1315 * success
1316 */
1317 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1318 (map_data && map_data->from_user)) {
1319 ret = bio_copy_from_iter(bio, iter);
1320 if (ret)
1321 goto cleanup;
1322 } else {
1323 if (bmd->is_our_pages)
1324 zero_fill_bio(bio);
1325 iov_iter_advance(iter, bio->bi_iter.bi_size);
1326 }
1327
1328 bio->bi_private = bmd;
1329 if (map_data && map_data->null_mapped)
1330 bio_set_flag(bio, BIO_NULL_MAPPED);
1331 return bio;
1332 cleanup:
1333 if (!map_data)
1334 bio_free_pages(bio);
1335 bio_put(bio);
1336 out_bmd:
1337 kfree(bmd);
1338 return ERR_PTR(ret);
1339 }
1340
1341 /**
1342 * bio_map_user_iov - map user iovec into bio
1343 * @q: the struct request_queue for the bio
1344 * @iter: iovec iterator
1345 * @gfp_mask: memory allocation flags
1346 *
1347 * Map the user space address into a bio suitable for io to a block
1348 * device. Returns an error pointer in case of error.
1349 */
1350 struct bio *bio_map_user_iov(struct request_queue *q,
1351 struct iov_iter *iter,
1352 gfp_t gfp_mask)
1353 {
1354 int j;
1355 struct bio *bio;
1356 int ret;
1357
1358 if (!iov_iter_count(iter))
1359 return ERR_PTR(-EINVAL);
1360
1361 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1362 if (!bio)
1363 return ERR_PTR(-ENOMEM);
1364
1365 while (iov_iter_count(iter)) {
1366 struct page **pages;
1367 ssize_t bytes;
1368 size_t offs, added = 0;
1369 int npages;
1370
1371 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1372 if (unlikely(bytes <= 0)) {
1373 ret = bytes ? bytes : -EFAULT;
1374 goto out_unmap;
1375 }
1376
1377 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1378
1379 if (unlikely(offs & queue_dma_alignment(q))) {
1380 ret = -EINVAL;
1381 j = 0;
1382 } else {
1383 for (j = 0; j < npages; j++) {
1384 struct page *page = pages[j];
1385 unsigned int n = PAGE_SIZE - offs;
1386
1387 if (n > bytes)
1388 n = bytes;
1389
1390 if (!__bio_add_pc_page(q, bio, page, n, offs,
1391 true))
1392 break;
1393
1394 added += n;
1395 bytes -= n;
1396 offs = 0;
1397 }
1398 iov_iter_advance(iter, added);
1399 }
1400 /*
1401 * release the pages we didn't map into the bio, if any
1402 */
1403 while (j < npages)
1404 put_page(pages[j++]);
1405 kvfree(pages);
1406 /* couldn't stuff something into bio? */
1407 if (bytes)
1408 break;
1409 }
1410
1411 bio_set_flag(bio, BIO_USER_MAPPED);
1412
1413 /*
1414 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1415 * it would normally disappear when its bi_end_io is run.
1416 * however, we need it for the unmap, so grab an extra
1417 * reference to it
1418 */
1419 bio_get(bio);
1420 return bio;
1421
1422 out_unmap:
1423 bio_release_pages(bio, false);
1424 bio_put(bio);
1425 return ERR_PTR(ret);
1426 }
1427
1428 /**
1429 * bio_unmap_user - unmap a bio
1430 * @bio: the bio being unmapped
1431 *
1432 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1433 * process context.
1434 *
1435 * bio_unmap_user() may sleep.
1436 */
1437 void bio_unmap_user(struct bio *bio)
1438 {
1439 bio_release_pages(bio, bio_data_dir(bio) == READ);
1440 bio_put(bio);
1441 bio_put(bio);
1442 }
1443
1444 static void bio_map_kern_endio(struct bio *bio)
1445 {
1446 bio_put(bio);
1447 }
1448
1449 /**
1450 * bio_map_kern - map kernel address into bio
1451 * @q: the struct request_queue for the bio
1452 * @data: pointer to buffer to map
1453 * @len: length in bytes
1454 * @gfp_mask: allocation flags for bio allocation
1455 *
1456 * Map the kernel address into a bio suitable for io to a block
1457 * device. Returns an error pointer in case of error.
1458 */
1459 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1460 gfp_t gfp_mask)
1461 {
1462 unsigned long kaddr = (unsigned long)data;
1463 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1464 unsigned long start = kaddr >> PAGE_SHIFT;
1465 const int nr_pages = end - start;
1466 int offset, i;
1467 struct bio *bio;
1468
1469 bio = bio_kmalloc(gfp_mask, nr_pages);
1470 if (!bio)
1471 return ERR_PTR(-ENOMEM);
1472
1473 offset = offset_in_page(kaddr);
1474 for (i = 0; i < nr_pages; i++) {
1475 unsigned int bytes = PAGE_SIZE - offset;
1476
1477 if (len <= 0)
1478 break;
1479
1480 if (bytes > len)
1481 bytes = len;
1482
1483 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1484 offset) < bytes) {
1485 /* we don't support partial mappings */
1486 bio_put(bio);
1487 return ERR_PTR(-EINVAL);
1488 }
1489
1490 data += bytes;
1491 len -= bytes;
1492 offset = 0;
1493 }
1494
1495 bio->bi_end_io = bio_map_kern_endio;
1496 return bio;
1497 }
1498 EXPORT_SYMBOL(bio_map_kern);
1499
1500 static void bio_copy_kern_endio(struct bio *bio)
1501 {
1502 bio_free_pages(bio);
1503 bio_put(bio);
1504 }
1505
1506 static void bio_copy_kern_endio_read(struct bio *bio)
1507 {
1508 char *p = bio->bi_private;
1509 struct bio_vec *bvec;
1510 struct bvec_iter_all iter_all;
1511
1512 bio_for_each_segment_all(bvec, bio, iter_all) {
1513 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1514 p += bvec->bv_len;
1515 }
1516
1517 bio_copy_kern_endio(bio);
1518 }
1519
1520 /**
1521 * bio_copy_kern - copy kernel address into bio
1522 * @q: the struct request_queue for the bio
1523 * @data: pointer to buffer to copy
1524 * @len: length in bytes
1525 * @gfp_mask: allocation flags for bio and page allocation
1526 * @reading: data direction is READ
1527 *
1528 * copy the kernel address into a bio suitable for io to a block
1529 * device. Returns an error pointer in case of error.
1530 */
1531 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1532 gfp_t gfp_mask, int reading)
1533 {
1534 unsigned long kaddr = (unsigned long)data;
1535 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1536 unsigned long start = kaddr >> PAGE_SHIFT;
1537 struct bio *bio;
1538 void *p = data;
1539 int nr_pages = 0;
1540
1541 /*
1542 * Overflow, abort
1543 */
1544 if (end < start)
1545 return ERR_PTR(-EINVAL);
1546
1547 nr_pages = end - start;
1548 bio = bio_kmalloc(gfp_mask, nr_pages);
1549 if (!bio)
1550 return ERR_PTR(-ENOMEM);
1551
1552 while (len) {
1553 struct page *page;
1554 unsigned int bytes = PAGE_SIZE;
1555
1556 if (bytes > len)
1557 bytes = len;
1558
1559 page = alloc_page(q->bounce_gfp | gfp_mask);
1560 if (!page)
1561 goto cleanup;
1562
1563 if (!reading)
1564 memcpy(page_address(page), p, bytes);
1565
1566 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1567 break;
1568
1569 len -= bytes;
1570 p += bytes;
1571 }
1572
1573 if (reading) {
1574 bio->bi_end_io = bio_copy_kern_endio_read;
1575 bio->bi_private = data;
1576 } else {
1577 bio->bi_end_io = bio_copy_kern_endio;
1578 }
1579
1580 return bio;
1581
1582 cleanup:
1583 bio_free_pages(bio);
1584 bio_put(bio);
1585 return ERR_PTR(-ENOMEM);
1586 }
1587
1588 /*
1589 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1590 * for performing direct-IO in BIOs.
1591 *
1592 * The problem is that we cannot run set_page_dirty() from interrupt context
1593 * because the required locks are not interrupt-safe. So what we can do is to
1594 * mark the pages dirty _before_ performing IO. And in interrupt context,
1595 * check that the pages are still dirty. If so, fine. If not, redirty them
1596 * in process context.
1597 *
1598 * We special-case compound pages here: normally this means reads into hugetlb
1599 * pages. The logic in here doesn't really work right for compound pages
1600 * because the VM does not uniformly chase down the head page in all cases.
1601 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1602 * handle them at all. So we skip compound pages here at an early stage.
1603 *
1604 * Note that this code is very hard to test under normal circumstances because
1605 * direct-io pins the pages with get_user_pages(). This makes
1606 * is_page_cache_freeable return false, and the VM will not clean the pages.
1607 * But other code (eg, flusher threads) could clean the pages if they are mapped
1608 * pagecache.
1609 *
1610 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1611 * deferred bio dirtying paths.
1612 */
1613
1614 /*
1615 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1616 */
1617 void bio_set_pages_dirty(struct bio *bio)
1618 {
1619 struct bio_vec *bvec;
1620 struct bvec_iter_all iter_all;
1621
1622 bio_for_each_segment_all(bvec, bio, iter_all) {
1623 if (!PageCompound(bvec->bv_page))
1624 set_page_dirty_lock(bvec->bv_page);
1625 }
1626 }
1627
1628 /*
1629 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1630 * If they are, then fine. If, however, some pages are clean then they must
1631 * have been written out during the direct-IO read. So we take another ref on
1632 * the BIO and re-dirty the pages in process context.
1633 *
1634 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1635 * here on. It will run one put_page() against each page and will run one
1636 * bio_put() against the BIO.
1637 */
1638
1639 static void bio_dirty_fn(struct work_struct *work);
1640
1641 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1642 static DEFINE_SPINLOCK(bio_dirty_lock);
1643 static struct bio *bio_dirty_list;
1644
1645 /*
1646 * This runs in process context
1647 */
1648 static void bio_dirty_fn(struct work_struct *work)
1649 {
1650 struct bio *bio, *next;
1651
1652 spin_lock_irq(&bio_dirty_lock);
1653 next = bio_dirty_list;
1654 bio_dirty_list = NULL;
1655 spin_unlock_irq(&bio_dirty_lock);
1656
1657 while ((bio = next) != NULL) {
1658 next = bio->bi_private;
1659
1660 bio_release_pages(bio, true);
1661 bio_put(bio);
1662 }
1663 }
1664
1665 void bio_check_pages_dirty(struct bio *bio)
1666 {
1667 struct bio_vec *bvec;
1668 unsigned long flags;
1669 struct bvec_iter_all iter_all;
1670
1671 bio_for_each_segment_all(bvec, bio, iter_all) {
1672 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1673 goto defer;
1674 }
1675
1676 bio_release_pages(bio, false);
1677 bio_put(bio);
1678 return;
1679 defer:
1680 spin_lock_irqsave(&bio_dirty_lock, flags);
1681 bio->bi_private = bio_dirty_list;
1682 bio_dirty_list = bio;
1683 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1684 schedule_work(&bio_dirty_work);
1685 }
1686
1687 void update_io_ticks(struct hd_struct *part, unsigned long now)
1688 {
1689 unsigned long stamp;
1690 again:
1691 stamp = READ_ONCE(part->stamp);
1692 if (unlikely(stamp != now)) {
1693 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1694 __part_stat_add(part, io_ticks, 1);
1695 }
1696 }
1697 if (part->partno) {
1698 part = &part_to_disk(part)->part0;
1699 goto again;
1700 }
1701 }
1702
1703 void generic_start_io_acct(struct request_queue *q, int op,
1704 unsigned long sectors, struct hd_struct *part)
1705 {
1706 const int sgrp = op_stat_group(op);
1707
1708 part_stat_lock();
1709
1710 update_io_ticks(part, jiffies);
1711 part_stat_inc(part, ios[sgrp]);
1712 part_stat_add(part, sectors[sgrp], sectors);
1713 part_inc_in_flight(q, part, op_is_write(op));
1714
1715 part_stat_unlock();
1716 }
1717 EXPORT_SYMBOL(generic_start_io_acct);
1718
1719 void generic_end_io_acct(struct request_queue *q, int req_op,
1720 struct hd_struct *part, unsigned long start_time)
1721 {
1722 unsigned long now = jiffies;
1723 unsigned long duration = now - start_time;
1724 const int sgrp = op_stat_group(req_op);
1725
1726 part_stat_lock();
1727
1728 update_io_ticks(part, now);
1729 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1730 part_stat_add(part, time_in_queue, duration);
1731 part_dec_in_flight(q, part, op_is_write(req_op));
1732
1733 part_stat_unlock();
1734 }
1735 EXPORT_SYMBOL(generic_end_io_acct);
1736
1737 static inline bool bio_remaining_done(struct bio *bio)
1738 {
1739 /*
1740 * If we're not chaining, then ->__bi_remaining is always 1 and
1741 * we always end io on the first invocation.
1742 */
1743 if (!bio_flagged(bio, BIO_CHAIN))
1744 return true;
1745
1746 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1747
1748 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1749 bio_clear_flag(bio, BIO_CHAIN);
1750 return true;
1751 }
1752
1753 return false;
1754 }
1755
1756 /**
1757 * bio_endio - end I/O on a bio
1758 * @bio: bio
1759 *
1760 * Description:
1761 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1762 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1763 * bio unless they own it and thus know that it has an end_io function.
1764 *
1765 * bio_endio() can be called several times on a bio that has been chained
1766 * using bio_chain(). The ->bi_end_io() function will only be called the
1767 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1768 * generated if BIO_TRACE_COMPLETION is set.
1769 **/
1770 void bio_endio(struct bio *bio)
1771 {
1772 again:
1773 if (!bio_remaining_done(bio))
1774 return;
1775 if (!bio_integrity_endio(bio))
1776 return;
1777
1778 if (bio->bi_disk)
1779 rq_qos_done_bio(bio->bi_disk->queue, bio);
1780
1781 /*
1782 * Need to have a real endio function for chained bios, otherwise
1783 * various corner cases will break (like stacking block devices that
1784 * save/restore bi_end_io) - however, we want to avoid unbounded
1785 * recursion and blowing the stack. Tail call optimization would
1786 * handle this, but compiling with frame pointers also disables
1787 * gcc's sibling call optimization.
1788 */
1789 if (bio->bi_end_io == bio_chain_endio) {
1790 bio = __bio_chain_endio(bio);
1791 goto again;
1792 }
1793
1794 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1795 trace_block_bio_complete(bio->bi_disk->queue, bio,
1796 blk_status_to_errno(bio->bi_status));
1797 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1798 }
1799
1800 blk_throtl_bio_endio(bio);
1801 /* release cgroup info */
1802 bio_uninit(bio);
1803 if (bio->bi_end_io)
1804 bio->bi_end_io(bio);
1805 }
1806 EXPORT_SYMBOL(bio_endio);
1807
1808 /**
1809 * bio_split - split a bio
1810 * @bio: bio to split
1811 * @sectors: number of sectors to split from the front of @bio
1812 * @gfp: gfp mask
1813 * @bs: bio set to allocate from
1814 *
1815 * Allocates and returns a new bio which represents @sectors from the start of
1816 * @bio, and updates @bio to represent the remaining sectors.
1817 *
1818 * Unless this is a discard request the newly allocated bio will point
1819 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1820 * @bio is not freed before the split.
1821 */
1822 struct bio *bio_split(struct bio *bio, int sectors,
1823 gfp_t gfp, struct bio_set *bs)
1824 {
1825 struct bio *split;
1826
1827 BUG_ON(sectors <= 0);
1828 BUG_ON(sectors >= bio_sectors(bio));
1829
1830 split = bio_clone_fast(bio, gfp, bs);
1831 if (!split)
1832 return NULL;
1833
1834 split->bi_iter.bi_size = sectors << 9;
1835
1836 if (bio_integrity(split))
1837 bio_integrity_trim(split);
1838
1839 bio_advance(bio, split->bi_iter.bi_size);
1840
1841 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1842 bio_set_flag(split, BIO_TRACE_COMPLETION);
1843
1844 return split;
1845 }
1846 EXPORT_SYMBOL(bio_split);
1847
1848 /**
1849 * bio_trim - trim a bio
1850 * @bio: bio to trim
1851 * @offset: number of sectors to trim from the front of @bio
1852 * @size: size we want to trim @bio to, in sectors
1853 */
1854 void bio_trim(struct bio *bio, int offset, int size)
1855 {
1856 /* 'bio' is a cloned bio which we need to trim to match
1857 * the given offset and size.
1858 */
1859
1860 size <<= 9;
1861 if (offset == 0 && size == bio->bi_iter.bi_size)
1862 return;
1863
1864 bio_advance(bio, offset << 9);
1865 bio->bi_iter.bi_size = size;
1866
1867 if (bio_integrity(bio))
1868 bio_integrity_trim(bio);
1869
1870 }
1871 EXPORT_SYMBOL_GPL(bio_trim);
1872
1873 /*
1874 * create memory pools for biovec's in a bio_set.
1875 * use the global biovec slabs created for general use.
1876 */
1877 int biovec_init_pool(mempool_t *pool, int pool_entries)
1878 {
1879 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1880
1881 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1882 }
1883
1884 /*
1885 * bioset_exit - exit a bioset initialized with bioset_init()
1886 *
1887 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1888 * kzalloc()).
1889 */
1890 void bioset_exit(struct bio_set *bs)
1891 {
1892 if (bs->rescue_workqueue)
1893 destroy_workqueue(bs->rescue_workqueue);
1894 bs->rescue_workqueue = NULL;
1895
1896 mempool_exit(&bs->bio_pool);
1897 mempool_exit(&bs->bvec_pool);
1898
1899 bioset_integrity_free(bs);
1900 if (bs->bio_slab)
1901 bio_put_slab(bs);
1902 bs->bio_slab = NULL;
1903 }
1904 EXPORT_SYMBOL(bioset_exit);
1905
1906 /**
1907 * bioset_init - Initialize a bio_set
1908 * @bs: pool to initialize
1909 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1910 * @front_pad: Number of bytes to allocate in front of the returned bio
1911 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1912 * and %BIOSET_NEED_RESCUER
1913 *
1914 * Description:
1915 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1916 * to ask for a number of bytes to be allocated in front of the bio.
1917 * Front pad allocation is useful for embedding the bio inside
1918 * another structure, to avoid allocating extra data to go with the bio.
1919 * Note that the bio must be embedded at the END of that structure always,
1920 * or things will break badly.
1921 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1922 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1923 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1924 * dispatch queued requests when the mempool runs out of space.
1925 *
1926 */
1927 int bioset_init(struct bio_set *bs,
1928 unsigned int pool_size,
1929 unsigned int front_pad,
1930 int flags)
1931 {
1932 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1933
1934 bs->front_pad = front_pad;
1935
1936 spin_lock_init(&bs->rescue_lock);
1937 bio_list_init(&bs->rescue_list);
1938 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1939
1940 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1941 if (!bs->bio_slab)
1942 return -ENOMEM;
1943
1944 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1945 goto bad;
1946
1947 if ((flags & BIOSET_NEED_BVECS) &&
1948 biovec_init_pool(&bs->bvec_pool, pool_size))
1949 goto bad;
1950
1951 if (!(flags & BIOSET_NEED_RESCUER))
1952 return 0;
1953
1954 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1955 if (!bs->rescue_workqueue)
1956 goto bad;
1957
1958 return 0;
1959 bad:
1960 bioset_exit(bs);
1961 return -ENOMEM;
1962 }
1963 EXPORT_SYMBOL(bioset_init);
1964
1965 /*
1966 * Initialize and setup a new bio_set, based on the settings from
1967 * another bio_set.
1968 */
1969 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1970 {
1971 int flags;
1972
1973 flags = 0;
1974 if (src->bvec_pool.min_nr)
1975 flags |= BIOSET_NEED_BVECS;
1976 if (src->rescue_workqueue)
1977 flags |= BIOSET_NEED_RESCUER;
1978
1979 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1980 }
1981 EXPORT_SYMBOL(bioset_init_from_src);
1982
1983 #ifdef CONFIG_BLK_CGROUP
1984
1985 /**
1986 * bio_disassociate_blkg - puts back the blkg reference if associated
1987 * @bio: target bio
1988 *
1989 * Helper to disassociate the blkg from @bio if a blkg is associated.
1990 */
1991 void bio_disassociate_blkg(struct bio *bio)
1992 {
1993 if (bio->bi_blkg) {
1994 blkg_put(bio->bi_blkg);
1995 bio->bi_blkg = NULL;
1996 }
1997 }
1998 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
1999
2000 /**
2001 * __bio_associate_blkg - associate a bio with the a blkg
2002 * @bio: target bio
2003 * @blkg: the blkg to associate
2004 *
2005 * This tries to associate @bio with the specified @blkg. Association failure
2006 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2007 * be anything between @blkg and the root_blkg. This situation only happens
2008 * when a cgroup is dying and then the remaining bios will spill to the closest
2009 * alive blkg.
2010 *
2011 * A reference will be taken on the @blkg and will be released when @bio is
2012 * freed.
2013 */
2014 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2015 {
2016 bio_disassociate_blkg(bio);
2017
2018 bio->bi_blkg = blkg_tryget_closest(blkg);
2019 }
2020
2021 /**
2022 * bio_associate_blkg_from_css - associate a bio with a specified css
2023 * @bio: target bio
2024 * @css: target css
2025 *
2026 * Associate @bio with the blkg found by combining the css's blkg and the
2027 * request_queue of the @bio. This falls back to the queue's root_blkg if
2028 * the association fails with the css.
2029 */
2030 void bio_associate_blkg_from_css(struct bio *bio,
2031 struct cgroup_subsys_state *css)
2032 {
2033 struct request_queue *q = bio->bi_disk->queue;
2034 struct blkcg_gq *blkg;
2035
2036 rcu_read_lock();
2037
2038 if (!css || !css->parent)
2039 blkg = q->root_blkg;
2040 else
2041 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2042
2043 __bio_associate_blkg(bio, blkg);
2044
2045 rcu_read_unlock();
2046 }
2047 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2048
2049 #ifdef CONFIG_MEMCG
2050 /**
2051 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2052 * @bio: target bio
2053 * @page: the page to lookup the blkcg from
2054 *
2055 * Associate @bio with the blkg from @page's owning memcg and the respective
2056 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2057 * root_blkg.
2058 */
2059 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2060 {
2061 struct cgroup_subsys_state *css;
2062
2063 if (!page->mem_cgroup)
2064 return;
2065
2066 rcu_read_lock();
2067
2068 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2069 bio_associate_blkg_from_css(bio, css);
2070
2071 rcu_read_unlock();
2072 }
2073 #endif /* CONFIG_MEMCG */
2074
2075 /**
2076 * bio_associate_blkg - associate a bio with a blkg
2077 * @bio: target bio
2078 *
2079 * Associate @bio with the blkg found from the bio's css and request_queue.
2080 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2081 * already associated, the css is reused and association redone as the
2082 * request_queue may have changed.
2083 */
2084 void bio_associate_blkg(struct bio *bio)
2085 {
2086 struct cgroup_subsys_state *css;
2087
2088 rcu_read_lock();
2089
2090 if (bio->bi_blkg)
2091 css = &bio_blkcg(bio)->css;
2092 else
2093 css = blkcg_css();
2094
2095 bio_associate_blkg_from_css(bio, css);
2096
2097 rcu_read_unlock();
2098 }
2099 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2100
2101 /**
2102 * bio_clone_blkg_association - clone blkg association from src to dst bio
2103 * @dst: destination bio
2104 * @src: source bio
2105 */
2106 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2107 {
2108 rcu_read_lock();
2109
2110 if (src->bi_blkg)
2111 __bio_associate_blkg(dst, src->bi_blkg);
2112
2113 rcu_read_unlock();
2114 }
2115 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2116 #endif /* CONFIG_BLK_CGROUP */
2117
2118 static void __init biovec_init_slabs(void)
2119 {
2120 int i;
2121
2122 for (i = 0; i < BVEC_POOL_NR; i++) {
2123 int size;
2124 struct biovec_slab *bvs = bvec_slabs + i;
2125
2126 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2127 bvs->slab = NULL;
2128 continue;
2129 }
2130
2131 size = bvs->nr_vecs * sizeof(struct bio_vec);
2132 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2133 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2134 }
2135 }
2136
2137 static int __init init_bio(void)
2138 {
2139 bio_slab_max = 2;
2140 bio_slab_nr = 0;
2141 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2142 GFP_KERNEL);
2143
2144 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2145
2146 if (!bio_slabs)
2147 panic("bio: can't allocate bios\n");
2148
2149 bio_integrity_init();
2150 biovec_init_slabs();
2151
2152 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2153 panic("bio: can't allocate bios\n");
2154
2155 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2156 panic("bio: can't create integrity pool\n");
2157
2158 return 0;
2159 }
2160 subsys_initcall(init_bio);