]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/bio.c
Merge branches 'acpi-soc', 'acpi-bus', 'acpi-pmic' and 'acpi-power'
[mirror_ubuntu-bionic-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33 #include "blk.h"
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 /*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51
52 /*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58
59 /*
60 * Our slab pool management
61 */
62 struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
105 goto out_unlock;
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
119
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123 out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126 }
127
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 return bvec_slabs[idx].nr_vecs;
160 }
161
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
169
170 if (idx == BVEC_POOL_MAX) {
171 mempool_free(bv, pool);
172 } else {
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177 }
178
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
181 {
182 struct bio_vec *bvl;
183
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
214 if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 bvl = mempool_alloc(pool, gfp_mask);
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220
221 /*
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
225 */
226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227
228 /*
229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 * is set, retry with the 1-entry mempool
231 */
232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 *idx = BVEC_POOL_MAX;
235 goto fallback;
236 }
237 }
238
239 (*idx)++;
240 return bvl;
241 }
242
243 static void __bio_free(struct bio *bio)
244 {
245 bio_disassociate_task(bio);
246
247 if (bio_integrity(bio))
248 bio_integrity_free(bio);
249 }
250
251 static void bio_free(struct bio *bio)
252 {
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
256 __bio_free(bio);
257
258 if (bs) {
259 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
265 p -= bs->front_pad;
266
267 mempool_free(p, bs->bio_pool);
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
272 }
273
274 void bio_init(struct bio *bio, struct bio_vec *table,
275 unsigned short max_vecs)
276 {
277 memset(bio, 0, sizeof(*bio));
278 atomic_set(&bio->__bi_remaining, 1);
279 atomic_set(&bio->__bi_cnt, 1);
280
281 bio->bi_io_vec = table;
282 bio->bi_max_vecs = max_vecs;
283 }
284 EXPORT_SYMBOL(bio_init);
285
286 /**
287 * bio_reset - reinitialize a bio
288 * @bio: bio to reset
289 *
290 * Description:
291 * After calling bio_reset(), @bio will be in the same state as a freshly
292 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
293 * preserved are the ones that are initialized by bio_alloc_bioset(). See
294 * comment in struct bio.
295 */
296 void bio_reset(struct bio *bio)
297 {
298 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
299
300 __bio_free(bio);
301
302 memset(bio, 0, BIO_RESET_BYTES);
303 bio->bi_flags = flags;
304 atomic_set(&bio->__bi_remaining, 1);
305 }
306 EXPORT_SYMBOL(bio_reset);
307
308 static struct bio *__bio_chain_endio(struct bio *bio)
309 {
310 struct bio *parent = bio->bi_private;
311
312 if (!parent->bi_error)
313 parent->bi_error = bio->bi_error;
314 bio_put(bio);
315 return parent;
316 }
317
318 static void bio_chain_endio(struct bio *bio)
319 {
320 bio_endio(__bio_chain_endio(bio));
321 }
322
323 /**
324 * bio_chain - chain bio completions
325 * @bio: the target bio
326 * @parent: the @bio's parent bio
327 *
328 * The caller won't have a bi_end_io called when @bio completes - instead,
329 * @parent's bi_end_io won't be called until both @parent and @bio have
330 * completed; the chained bio will also be freed when it completes.
331 *
332 * The caller must not set bi_private or bi_end_io in @bio.
333 */
334 void bio_chain(struct bio *bio, struct bio *parent)
335 {
336 BUG_ON(bio->bi_private || bio->bi_end_io);
337
338 bio->bi_private = parent;
339 bio->bi_end_io = bio_chain_endio;
340 bio_inc_remaining(parent);
341 }
342 EXPORT_SYMBOL(bio_chain);
343
344 static void bio_alloc_rescue(struct work_struct *work)
345 {
346 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
347 struct bio *bio;
348
349 while (1) {
350 spin_lock(&bs->rescue_lock);
351 bio = bio_list_pop(&bs->rescue_list);
352 spin_unlock(&bs->rescue_lock);
353
354 if (!bio)
355 break;
356
357 generic_make_request(bio);
358 }
359 }
360
361 static void punt_bios_to_rescuer(struct bio_set *bs)
362 {
363 struct bio_list punt, nopunt;
364 struct bio *bio;
365
366 /*
367 * In order to guarantee forward progress we must punt only bios that
368 * were allocated from this bio_set; otherwise, if there was a bio on
369 * there for a stacking driver higher up in the stack, processing it
370 * could require allocating bios from this bio_set, and doing that from
371 * our own rescuer would be bad.
372 *
373 * Since bio lists are singly linked, pop them all instead of trying to
374 * remove from the middle of the list:
375 */
376
377 bio_list_init(&punt);
378 bio_list_init(&nopunt);
379
380 while ((bio = bio_list_pop(&current->bio_list[0])))
381 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
382 current->bio_list[0] = nopunt;
383
384 bio_list_init(&nopunt);
385 while ((bio = bio_list_pop(&current->bio_list[1])))
386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 current->bio_list[1] = nopunt;
388
389 spin_lock(&bs->rescue_lock);
390 bio_list_merge(&bs->rescue_list, &punt);
391 spin_unlock(&bs->rescue_lock);
392
393 queue_work(bs->rescue_workqueue, &bs->rescue_work);
394 }
395
396 /**
397 * bio_alloc_bioset - allocate a bio for I/O
398 * @gfp_mask: the GFP_ mask given to the slab allocator
399 * @nr_iovecs: number of iovecs to pre-allocate
400 * @bs: the bio_set to allocate from.
401 *
402 * Description:
403 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
404 * backed by the @bs's mempool.
405 *
406 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
407 * always be able to allocate a bio. This is due to the mempool guarantees.
408 * To make this work, callers must never allocate more than 1 bio at a time
409 * from this pool. Callers that need to allocate more than 1 bio must always
410 * submit the previously allocated bio for IO before attempting to allocate
411 * a new one. Failure to do so can cause deadlocks under memory pressure.
412 *
413 * Note that when running under generic_make_request() (i.e. any block
414 * driver), bios are not submitted until after you return - see the code in
415 * generic_make_request() that converts recursion into iteration, to prevent
416 * stack overflows.
417 *
418 * This would normally mean allocating multiple bios under
419 * generic_make_request() would be susceptible to deadlocks, but we have
420 * deadlock avoidance code that resubmits any blocked bios from a rescuer
421 * thread.
422 *
423 * However, we do not guarantee forward progress for allocations from other
424 * mempools. Doing multiple allocations from the same mempool under
425 * generic_make_request() should be avoided - instead, use bio_set's front_pad
426 * for per bio allocations.
427 *
428 * RETURNS:
429 * Pointer to new bio on success, NULL on failure.
430 */
431 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
432 struct bio_set *bs)
433 {
434 gfp_t saved_gfp = gfp_mask;
435 unsigned front_pad;
436 unsigned inline_vecs;
437 struct bio_vec *bvl = NULL;
438 struct bio *bio;
439 void *p;
440
441 if (!bs) {
442 if (nr_iovecs > UIO_MAXIOV)
443 return NULL;
444
445 p = kmalloc(sizeof(struct bio) +
446 nr_iovecs * sizeof(struct bio_vec),
447 gfp_mask);
448 front_pad = 0;
449 inline_vecs = nr_iovecs;
450 } else {
451 /* should not use nobvec bioset for nr_iovecs > 0 */
452 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
453 return NULL;
454 /*
455 * generic_make_request() converts recursion to iteration; this
456 * means if we're running beneath it, any bios we allocate and
457 * submit will not be submitted (and thus freed) until after we
458 * return.
459 *
460 * This exposes us to a potential deadlock if we allocate
461 * multiple bios from the same bio_set() while running
462 * underneath generic_make_request(). If we were to allocate
463 * multiple bios (say a stacking block driver that was splitting
464 * bios), we would deadlock if we exhausted the mempool's
465 * reserve.
466 *
467 * We solve this, and guarantee forward progress, with a rescuer
468 * workqueue per bio_set. If we go to allocate and there are
469 * bios on current->bio_list, we first try the allocation
470 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
471 * bios we would be blocking to the rescuer workqueue before
472 * we retry with the original gfp_flags.
473 */
474
475 if (current->bio_list &&
476 (!bio_list_empty(&current->bio_list[0]) ||
477 !bio_list_empty(&current->bio_list[1])))
478 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
479
480 p = mempool_alloc(bs->bio_pool, gfp_mask);
481 if (!p && gfp_mask != saved_gfp) {
482 punt_bios_to_rescuer(bs);
483 gfp_mask = saved_gfp;
484 p = mempool_alloc(bs->bio_pool, gfp_mask);
485 }
486
487 front_pad = bs->front_pad;
488 inline_vecs = BIO_INLINE_VECS;
489 }
490
491 if (unlikely(!p))
492 return NULL;
493
494 bio = p + front_pad;
495 bio_init(bio, NULL, 0);
496
497 if (nr_iovecs > inline_vecs) {
498 unsigned long idx = 0;
499
500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
501 if (!bvl && gfp_mask != saved_gfp) {
502 punt_bios_to_rescuer(bs);
503 gfp_mask = saved_gfp;
504 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
505 }
506
507 if (unlikely(!bvl))
508 goto err_free;
509
510 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
511 } else if (nr_iovecs) {
512 bvl = bio->bi_inline_vecs;
513 }
514
515 bio->bi_pool = bs;
516 bio->bi_max_vecs = nr_iovecs;
517 bio->bi_io_vec = bvl;
518 return bio;
519
520 err_free:
521 mempool_free(p, bs->bio_pool);
522 return NULL;
523 }
524 EXPORT_SYMBOL(bio_alloc_bioset);
525
526 void zero_fill_bio(struct bio *bio)
527 {
528 unsigned long flags;
529 struct bio_vec bv;
530 struct bvec_iter iter;
531
532 bio_for_each_segment(bv, bio, iter) {
533 char *data = bvec_kmap_irq(&bv, &flags);
534 memset(data, 0, bv.bv_len);
535 flush_dcache_page(bv.bv_page);
536 bvec_kunmap_irq(data, &flags);
537 }
538 }
539 EXPORT_SYMBOL(zero_fill_bio);
540
541 /**
542 * bio_put - release a reference to a bio
543 * @bio: bio to release reference to
544 *
545 * Description:
546 * Put a reference to a &struct bio, either one you have gotten with
547 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
548 **/
549 void bio_put(struct bio *bio)
550 {
551 if (!bio_flagged(bio, BIO_REFFED))
552 bio_free(bio);
553 else {
554 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
555
556 /*
557 * last put frees it
558 */
559 if (atomic_dec_and_test(&bio->__bi_cnt))
560 bio_free(bio);
561 }
562 }
563 EXPORT_SYMBOL(bio_put);
564
565 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
566 {
567 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
568 blk_recount_segments(q, bio);
569
570 return bio->bi_phys_segments;
571 }
572 EXPORT_SYMBOL(bio_phys_segments);
573
574 /**
575 * __bio_clone_fast - clone a bio that shares the original bio's biovec
576 * @bio: destination bio
577 * @bio_src: bio to clone
578 *
579 * Clone a &bio. Caller will own the returned bio, but not
580 * the actual data it points to. Reference count of returned
581 * bio will be one.
582 *
583 * Caller must ensure that @bio_src is not freed before @bio.
584 */
585 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
586 {
587 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
588
589 /*
590 * most users will be overriding ->bi_bdev with a new target,
591 * so we don't set nor calculate new physical/hw segment counts here
592 */
593 bio->bi_bdev = bio_src->bi_bdev;
594 bio_set_flag(bio, BIO_CLONED);
595 bio->bi_opf = bio_src->bi_opf;
596 bio->bi_iter = bio_src->bi_iter;
597 bio->bi_io_vec = bio_src->bi_io_vec;
598
599 bio_clone_blkcg_association(bio, bio_src);
600 }
601 EXPORT_SYMBOL(__bio_clone_fast);
602
603 /**
604 * bio_clone_fast - clone a bio that shares the original bio's biovec
605 * @bio: bio to clone
606 * @gfp_mask: allocation priority
607 * @bs: bio_set to allocate from
608 *
609 * Like __bio_clone_fast, only also allocates the returned bio
610 */
611 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
612 {
613 struct bio *b;
614
615 b = bio_alloc_bioset(gfp_mask, 0, bs);
616 if (!b)
617 return NULL;
618
619 __bio_clone_fast(b, bio);
620
621 if (bio_integrity(bio)) {
622 int ret;
623
624 ret = bio_integrity_clone(b, bio, gfp_mask);
625
626 if (ret < 0) {
627 bio_put(b);
628 return NULL;
629 }
630 }
631
632 return b;
633 }
634 EXPORT_SYMBOL(bio_clone_fast);
635
636 static struct bio *__bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
637 struct bio_set *bs, int offset,
638 int size)
639 {
640 struct bvec_iter iter;
641 struct bio_vec bv;
642 struct bio *bio;
643 struct bvec_iter iter_src = bio_src->bi_iter;
644
645 /* for supporting partial clone */
646 if (offset || size != bio_src->bi_iter.bi_size) {
647 bio_advance_iter(bio_src, &iter_src, offset);
648 iter_src.bi_size = size;
649 }
650
651 /*
652 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
653 * bio_src->bi_io_vec to bio->bi_io_vec.
654 *
655 * We can't do that anymore, because:
656 *
657 * - The point of cloning the biovec is to produce a bio with a biovec
658 * the caller can modify: bi_idx and bi_bvec_done should be 0.
659 *
660 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
661 * we tried to clone the whole thing bio_alloc_bioset() would fail.
662 * But the clone should succeed as long as the number of biovecs we
663 * actually need to allocate is fewer than BIO_MAX_PAGES.
664 *
665 * - Lastly, bi_vcnt should not be looked at or relied upon by code
666 * that does not own the bio - reason being drivers don't use it for
667 * iterating over the biovec anymore, so expecting it to be kept up
668 * to date (i.e. for clones that share the parent biovec) is just
669 * asking for trouble and would force extra work on
670 * __bio_clone_fast() anyways.
671 */
672
673 bio = bio_alloc_bioset(gfp_mask, __bio_segments(bio_src,
674 &iter_src), bs);
675 if (!bio)
676 return NULL;
677 bio->bi_bdev = bio_src->bi_bdev;
678 bio->bi_opf = bio_src->bi_opf;
679 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
680 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
681
682 switch (bio_op(bio)) {
683 case REQ_OP_DISCARD:
684 case REQ_OP_SECURE_ERASE:
685 case REQ_OP_WRITE_ZEROES:
686 break;
687 case REQ_OP_WRITE_SAME:
688 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
689 break;
690 default:
691 __bio_for_each_segment(bv, bio_src, iter, iter_src)
692 bio->bi_io_vec[bio->bi_vcnt++] = bv;
693 break;
694 }
695
696 if (bio_integrity(bio_src)) {
697 int ret;
698
699 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
700 if (ret < 0) {
701 bio_put(bio);
702 return NULL;
703 }
704 }
705
706 bio_clone_blkcg_association(bio, bio_src);
707
708 return bio;
709 }
710
711 /**
712 * bio_clone_bioset - clone a bio
713 * @bio_src: bio to clone
714 * @gfp_mask: allocation priority
715 * @bs: bio_set to allocate from
716 *
717 * Clone bio. Caller will own the returned bio, but not the actual data it
718 * points to. Reference count of returned bio will be one.
719 */
720 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
721 struct bio_set *bs)
722 {
723 return __bio_clone_bioset(bio_src, gfp_mask, bs, 0,
724 bio_src->bi_iter.bi_size);
725 }
726 EXPORT_SYMBOL(bio_clone_bioset);
727
728 /**
729 * bio_clone_bioset_partial - clone a partial bio
730 * @bio_src: bio to clone
731 * @gfp_mask: allocation priority
732 * @bs: bio_set to allocate from
733 * @offset: cloned starting from the offset
734 * @size: size for the cloned bio
735 *
736 * Clone bio. Caller will own the returned bio, but not the actual data it
737 * points to. Reference count of returned bio will be one.
738 */
739 struct bio *bio_clone_bioset_partial(struct bio *bio_src, gfp_t gfp_mask,
740 struct bio_set *bs, int offset,
741 int size)
742 {
743 return __bio_clone_bioset(bio_src, gfp_mask, bs, offset, size);
744 }
745 EXPORT_SYMBOL(bio_clone_bioset_partial);
746
747 /**
748 * bio_add_pc_page - attempt to add page to bio
749 * @q: the target queue
750 * @bio: destination bio
751 * @page: page to add
752 * @len: vec entry length
753 * @offset: vec entry offset
754 *
755 * Attempt to add a page to the bio_vec maplist. This can fail for a
756 * number of reasons, such as the bio being full or target block device
757 * limitations. The target block device must allow bio's up to PAGE_SIZE,
758 * so it is always possible to add a single page to an empty bio.
759 *
760 * This should only be used by REQ_PC bios.
761 */
762 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
763 *page, unsigned int len, unsigned int offset)
764 {
765 int retried_segments = 0;
766 struct bio_vec *bvec;
767
768 /*
769 * cloned bio must not modify vec list
770 */
771 if (unlikely(bio_flagged(bio, BIO_CLONED)))
772 return 0;
773
774 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
775 return 0;
776
777 /*
778 * For filesystems with a blocksize smaller than the pagesize
779 * we will often be called with the same page as last time and
780 * a consecutive offset. Optimize this special case.
781 */
782 if (bio->bi_vcnt > 0) {
783 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
784
785 if (page == prev->bv_page &&
786 offset == prev->bv_offset + prev->bv_len) {
787 prev->bv_len += len;
788 bio->bi_iter.bi_size += len;
789 goto done;
790 }
791
792 /*
793 * If the queue doesn't support SG gaps and adding this
794 * offset would create a gap, disallow it.
795 */
796 if (bvec_gap_to_prev(q, prev, offset))
797 return 0;
798 }
799
800 if (bio->bi_vcnt >= bio->bi_max_vecs)
801 return 0;
802
803 /*
804 * setup the new entry, we might clear it again later if we
805 * cannot add the page
806 */
807 bvec = &bio->bi_io_vec[bio->bi_vcnt];
808 bvec->bv_page = page;
809 bvec->bv_len = len;
810 bvec->bv_offset = offset;
811 bio->bi_vcnt++;
812 bio->bi_phys_segments++;
813 bio->bi_iter.bi_size += len;
814
815 /*
816 * Perform a recount if the number of segments is greater
817 * than queue_max_segments(q).
818 */
819
820 while (bio->bi_phys_segments > queue_max_segments(q)) {
821
822 if (retried_segments)
823 goto failed;
824
825 retried_segments = 1;
826 blk_recount_segments(q, bio);
827 }
828
829 /* If we may be able to merge these biovecs, force a recount */
830 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
831 bio_clear_flag(bio, BIO_SEG_VALID);
832
833 done:
834 return len;
835
836 failed:
837 bvec->bv_page = NULL;
838 bvec->bv_len = 0;
839 bvec->bv_offset = 0;
840 bio->bi_vcnt--;
841 bio->bi_iter.bi_size -= len;
842 blk_recount_segments(q, bio);
843 return 0;
844 }
845 EXPORT_SYMBOL(bio_add_pc_page);
846
847 /**
848 * bio_add_page - attempt to add page to bio
849 * @bio: destination bio
850 * @page: page to add
851 * @len: vec entry length
852 * @offset: vec entry offset
853 *
854 * Attempt to add a page to the bio_vec maplist. This will only fail
855 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
856 */
857 int bio_add_page(struct bio *bio, struct page *page,
858 unsigned int len, unsigned int offset)
859 {
860 struct bio_vec *bv;
861
862 /*
863 * cloned bio must not modify vec list
864 */
865 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
866 return 0;
867
868 /*
869 * For filesystems with a blocksize smaller than the pagesize
870 * we will often be called with the same page as last time and
871 * a consecutive offset. Optimize this special case.
872 */
873 if (bio->bi_vcnt > 0) {
874 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
875
876 if (page == bv->bv_page &&
877 offset == bv->bv_offset + bv->bv_len) {
878 bv->bv_len += len;
879 goto done;
880 }
881 }
882
883 if (bio->bi_vcnt >= bio->bi_max_vecs)
884 return 0;
885
886 bv = &bio->bi_io_vec[bio->bi_vcnt];
887 bv->bv_page = page;
888 bv->bv_len = len;
889 bv->bv_offset = offset;
890
891 bio->bi_vcnt++;
892 done:
893 bio->bi_iter.bi_size += len;
894 return len;
895 }
896 EXPORT_SYMBOL(bio_add_page);
897
898 /**
899 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
900 * @bio: bio to add pages to
901 * @iter: iov iterator describing the region to be mapped
902 *
903 * Pins as many pages from *iter and appends them to @bio's bvec array. The
904 * pages will have to be released using put_page() when done.
905 */
906 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
907 {
908 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
909 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
910 struct page **pages = (struct page **)bv;
911 size_t offset, diff;
912 ssize_t size;
913
914 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
915 if (unlikely(size <= 0))
916 return size ? size : -EFAULT;
917 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
918
919 /*
920 * Deep magic below: We need to walk the pinned pages backwards
921 * because we are abusing the space allocated for the bio_vecs
922 * for the page array. Because the bio_vecs are larger than the
923 * page pointers by definition this will always work. But it also
924 * means we can't use bio_add_page, so any changes to it's semantics
925 * need to be reflected here as well.
926 */
927 bio->bi_iter.bi_size += size;
928 bio->bi_vcnt += nr_pages;
929
930 diff = (nr_pages * PAGE_SIZE - offset) - size;
931 while (nr_pages--) {
932 bv[nr_pages].bv_page = pages[nr_pages];
933 bv[nr_pages].bv_len = PAGE_SIZE;
934 bv[nr_pages].bv_offset = 0;
935 }
936
937 bv[0].bv_offset += offset;
938 bv[0].bv_len -= offset;
939 if (diff)
940 bv[bio->bi_vcnt - 1].bv_len -= diff;
941
942 iov_iter_advance(iter, size);
943 return 0;
944 }
945 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
946
947 struct submit_bio_ret {
948 struct completion event;
949 int error;
950 };
951
952 static void submit_bio_wait_endio(struct bio *bio)
953 {
954 struct submit_bio_ret *ret = bio->bi_private;
955
956 ret->error = bio->bi_error;
957 complete(&ret->event);
958 }
959
960 /**
961 * submit_bio_wait - submit a bio, and wait until it completes
962 * @bio: The &struct bio which describes the I/O
963 *
964 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
965 * bio_endio() on failure.
966 */
967 int submit_bio_wait(struct bio *bio)
968 {
969 struct submit_bio_ret ret;
970
971 init_completion(&ret.event);
972 bio->bi_private = &ret;
973 bio->bi_end_io = submit_bio_wait_endio;
974 bio->bi_opf |= REQ_SYNC;
975 submit_bio(bio);
976 wait_for_completion_io(&ret.event);
977
978 return ret.error;
979 }
980 EXPORT_SYMBOL(submit_bio_wait);
981
982 /**
983 * bio_advance - increment/complete a bio by some number of bytes
984 * @bio: bio to advance
985 * @bytes: number of bytes to complete
986 *
987 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
988 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
989 * be updated on the last bvec as well.
990 *
991 * @bio will then represent the remaining, uncompleted portion of the io.
992 */
993 void bio_advance(struct bio *bio, unsigned bytes)
994 {
995 if (bio_integrity(bio))
996 bio_integrity_advance(bio, bytes);
997
998 bio_advance_iter(bio, &bio->bi_iter, bytes);
999 }
1000 EXPORT_SYMBOL(bio_advance);
1001
1002 /**
1003 * bio_alloc_pages - allocates a single page for each bvec in a bio
1004 * @bio: bio to allocate pages for
1005 * @gfp_mask: flags for allocation
1006 *
1007 * Allocates pages up to @bio->bi_vcnt.
1008 *
1009 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
1010 * freed.
1011 */
1012 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
1013 {
1014 int i;
1015 struct bio_vec *bv;
1016
1017 bio_for_each_segment_all(bv, bio, i) {
1018 bv->bv_page = alloc_page(gfp_mask);
1019 if (!bv->bv_page) {
1020 while (--bv >= bio->bi_io_vec)
1021 __free_page(bv->bv_page);
1022 return -ENOMEM;
1023 }
1024 }
1025
1026 return 0;
1027 }
1028 EXPORT_SYMBOL(bio_alloc_pages);
1029
1030 /**
1031 * bio_copy_data - copy contents of data buffers from one chain of bios to
1032 * another
1033 * @src: source bio list
1034 * @dst: destination bio list
1035 *
1036 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1037 * @src and @dst as linked lists of bios.
1038 *
1039 * Stops when it reaches the end of either @src or @dst - that is, copies
1040 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1041 */
1042 void bio_copy_data(struct bio *dst, struct bio *src)
1043 {
1044 struct bvec_iter src_iter, dst_iter;
1045 struct bio_vec src_bv, dst_bv;
1046 void *src_p, *dst_p;
1047 unsigned bytes;
1048
1049 src_iter = src->bi_iter;
1050 dst_iter = dst->bi_iter;
1051
1052 while (1) {
1053 if (!src_iter.bi_size) {
1054 src = src->bi_next;
1055 if (!src)
1056 break;
1057
1058 src_iter = src->bi_iter;
1059 }
1060
1061 if (!dst_iter.bi_size) {
1062 dst = dst->bi_next;
1063 if (!dst)
1064 break;
1065
1066 dst_iter = dst->bi_iter;
1067 }
1068
1069 src_bv = bio_iter_iovec(src, src_iter);
1070 dst_bv = bio_iter_iovec(dst, dst_iter);
1071
1072 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1073
1074 src_p = kmap_atomic(src_bv.bv_page);
1075 dst_p = kmap_atomic(dst_bv.bv_page);
1076
1077 memcpy(dst_p + dst_bv.bv_offset,
1078 src_p + src_bv.bv_offset,
1079 bytes);
1080
1081 kunmap_atomic(dst_p);
1082 kunmap_atomic(src_p);
1083
1084 bio_advance_iter(src, &src_iter, bytes);
1085 bio_advance_iter(dst, &dst_iter, bytes);
1086 }
1087 }
1088 EXPORT_SYMBOL(bio_copy_data);
1089
1090 struct bio_map_data {
1091 int is_our_pages;
1092 struct iov_iter iter;
1093 struct iovec iov[];
1094 };
1095
1096 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1097 gfp_t gfp_mask)
1098 {
1099 if (iov_count > UIO_MAXIOV)
1100 return NULL;
1101
1102 return kmalloc(sizeof(struct bio_map_data) +
1103 sizeof(struct iovec) * iov_count, gfp_mask);
1104 }
1105
1106 /**
1107 * bio_copy_from_iter - copy all pages from iov_iter to bio
1108 * @bio: The &struct bio which describes the I/O as destination
1109 * @iter: iov_iter as source
1110 *
1111 * Copy all pages from iov_iter to bio.
1112 * Returns 0 on success, or error on failure.
1113 */
1114 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1115 {
1116 int i;
1117 struct bio_vec *bvec;
1118
1119 bio_for_each_segment_all(bvec, bio, i) {
1120 ssize_t ret;
1121
1122 ret = copy_page_from_iter(bvec->bv_page,
1123 bvec->bv_offset,
1124 bvec->bv_len,
1125 &iter);
1126
1127 if (!iov_iter_count(&iter))
1128 break;
1129
1130 if (ret < bvec->bv_len)
1131 return -EFAULT;
1132 }
1133
1134 return 0;
1135 }
1136
1137 /**
1138 * bio_copy_to_iter - copy all pages from bio to iov_iter
1139 * @bio: The &struct bio which describes the I/O as source
1140 * @iter: iov_iter as destination
1141 *
1142 * Copy all pages from bio to iov_iter.
1143 * Returns 0 on success, or error on failure.
1144 */
1145 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1146 {
1147 int i;
1148 struct bio_vec *bvec;
1149
1150 bio_for_each_segment_all(bvec, bio, i) {
1151 ssize_t ret;
1152
1153 ret = copy_page_to_iter(bvec->bv_page,
1154 bvec->bv_offset,
1155 bvec->bv_len,
1156 &iter);
1157
1158 if (!iov_iter_count(&iter))
1159 break;
1160
1161 if (ret < bvec->bv_len)
1162 return -EFAULT;
1163 }
1164
1165 return 0;
1166 }
1167
1168 void bio_free_pages(struct bio *bio)
1169 {
1170 struct bio_vec *bvec;
1171 int i;
1172
1173 bio_for_each_segment_all(bvec, bio, i)
1174 __free_page(bvec->bv_page);
1175 }
1176 EXPORT_SYMBOL(bio_free_pages);
1177
1178 /**
1179 * bio_uncopy_user - finish previously mapped bio
1180 * @bio: bio being terminated
1181 *
1182 * Free pages allocated from bio_copy_user_iov() and write back data
1183 * to user space in case of a read.
1184 */
1185 int bio_uncopy_user(struct bio *bio)
1186 {
1187 struct bio_map_data *bmd = bio->bi_private;
1188 int ret = 0;
1189
1190 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1191 /*
1192 * if we're in a workqueue, the request is orphaned, so
1193 * don't copy into a random user address space, just free
1194 * and return -EINTR so user space doesn't expect any data.
1195 */
1196 if (!current->mm)
1197 ret = -EINTR;
1198 else if (bio_data_dir(bio) == READ)
1199 ret = bio_copy_to_iter(bio, bmd->iter);
1200 if (bmd->is_our_pages)
1201 bio_free_pages(bio);
1202 }
1203 kfree(bmd);
1204 bio_put(bio);
1205 return ret;
1206 }
1207
1208 /**
1209 * bio_copy_user_iov - copy user data to bio
1210 * @q: destination block queue
1211 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1212 * @iter: iovec iterator
1213 * @gfp_mask: memory allocation flags
1214 *
1215 * Prepares and returns a bio for indirect user io, bouncing data
1216 * to/from kernel pages as necessary. Must be paired with
1217 * call bio_uncopy_user() on io completion.
1218 */
1219 struct bio *bio_copy_user_iov(struct request_queue *q,
1220 struct rq_map_data *map_data,
1221 const struct iov_iter *iter,
1222 gfp_t gfp_mask)
1223 {
1224 struct bio_map_data *bmd;
1225 struct page *page;
1226 struct bio *bio;
1227 int i, ret;
1228 int nr_pages = 0;
1229 unsigned int len = iter->count;
1230 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1231
1232 for (i = 0; i < iter->nr_segs; i++) {
1233 unsigned long uaddr;
1234 unsigned long end;
1235 unsigned long start;
1236
1237 uaddr = (unsigned long) iter->iov[i].iov_base;
1238 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1239 >> PAGE_SHIFT;
1240 start = uaddr >> PAGE_SHIFT;
1241
1242 /*
1243 * Overflow, abort
1244 */
1245 if (end < start)
1246 return ERR_PTR(-EINVAL);
1247
1248 nr_pages += end - start;
1249 }
1250
1251 if (offset)
1252 nr_pages++;
1253
1254 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1255 if (!bmd)
1256 return ERR_PTR(-ENOMEM);
1257
1258 /*
1259 * We need to do a deep copy of the iov_iter including the iovecs.
1260 * The caller provided iov might point to an on-stack or otherwise
1261 * shortlived one.
1262 */
1263 bmd->is_our_pages = map_data ? 0 : 1;
1264 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1265 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1266 iter->nr_segs, iter->count);
1267
1268 ret = -ENOMEM;
1269 bio = bio_kmalloc(gfp_mask, nr_pages);
1270 if (!bio)
1271 goto out_bmd;
1272
1273 ret = 0;
1274
1275 if (map_data) {
1276 nr_pages = 1 << map_data->page_order;
1277 i = map_data->offset / PAGE_SIZE;
1278 }
1279 while (len) {
1280 unsigned int bytes = PAGE_SIZE;
1281
1282 bytes -= offset;
1283
1284 if (bytes > len)
1285 bytes = len;
1286
1287 if (map_data) {
1288 if (i == map_data->nr_entries * nr_pages) {
1289 ret = -ENOMEM;
1290 break;
1291 }
1292
1293 page = map_data->pages[i / nr_pages];
1294 page += (i % nr_pages);
1295
1296 i++;
1297 } else {
1298 page = alloc_page(q->bounce_gfp | gfp_mask);
1299 if (!page) {
1300 ret = -ENOMEM;
1301 break;
1302 }
1303 }
1304
1305 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1306 break;
1307
1308 len -= bytes;
1309 offset = 0;
1310 }
1311
1312 if (ret)
1313 goto cleanup;
1314
1315 /*
1316 * success
1317 */
1318 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1319 (map_data && map_data->from_user)) {
1320 ret = bio_copy_from_iter(bio, *iter);
1321 if (ret)
1322 goto cleanup;
1323 }
1324
1325 bio->bi_private = bmd;
1326 return bio;
1327 cleanup:
1328 if (!map_data)
1329 bio_free_pages(bio);
1330 bio_put(bio);
1331 out_bmd:
1332 kfree(bmd);
1333 return ERR_PTR(ret);
1334 }
1335
1336 /**
1337 * bio_map_user_iov - map user iovec into bio
1338 * @q: the struct request_queue for the bio
1339 * @iter: iovec iterator
1340 * @gfp_mask: memory allocation flags
1341 *
1342 * Map the user space address into a bio suitable for io to a block
1343 * device. Returns an error pointer in case of error.
1344 */
1345 struct bio *bio_map_user_iov(struct request_queue *q,
1346 const struct iov_iter *iter,
1347 gfp_t gfp_mask)
1348 {
1349 int j;
1350 int nr_pages = 0;
1351 struct page **pages;
1352 struct bio *bio;
1353 int cur_page = 0;
1354 int ret, offset;
1355 struct iov_iter i;
1356 struct iovec iov;
1357
1358 iov_for_each(iov, i, *iter) {
1359 unsigned long uaddr = (unsigned long) iov.iov_base;
1360 unsigned long len = iov.iov_len;
1361 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1362 unsigned long start = uaddr >> PAGE_SHIFT;
1363
1364 /*
1365 * Overflow, abort
1366 */
1367 if (end < start)
1368 return ERR_PTR(-EINVAL);
1369
1370 nr_pages += end - start;
1371 /*
1372 * buffer must be aligned to at least logical block size for now
1373 */
1374 if (uaddr & queue_dma_alignment(q))
1375 return ERR_PTR(-EINVAL);
1376 }
1377
1378 if (!nr_pages)
1379 return ERR_PTR(-EINVAL);
1380
1381 bio = bio_kmalloc(gfp_mask, nr_pages);
1382 if (!bio)
1383 return ERR_PTR(-ENOMEM);
1384
1385 ret = -ENOMEM;
1386 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1387 if (!pages)
1388 goto out;
1389
1390 iov_for_each(iov, i, *iter) {
1391 unsigned long uaddr = (unsigned long) iov.iov_base;
1392 unsigned long len = iov.iov_len;
1393 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1394 unsigned long start = uaddr >> PAGE_SHIFT;
1395 const int local_nr_pages = end - start;
1396 const int page_limit = cur_page + local_nr_pages;
1397
1398 ret = get_user_pages_fast(uaddr, local_nr_pages,
1399 (iter->type & WRITE) != WRITE,
1400 &pages[cur_page]);
1401 if (ret < local_nr_pages) {
1402 ret = -EFAULT;
1403 goto out_unmap;
1404 }
1405
1406 offset = offset_in_page(uaddr);
1407 for (j = cur_page; j < page_limit; j++) {
1408 unsigned int bytes = PAGE_SIZE - offset;
1409
1410 if (len <= 0)
1411 break;
1412
1413 if (bytes > len)
1414 bytes = len;
1415
1416 /*
1417 * sorry...
1418 */
1419 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1420 bytes)
1421 break;
1422
1423 len -= bytes;
1424 offset = 0;
1425 }
1426
1427 cur_page = j;
1428 /*
1429 * release the pages we didn't map into the bio, if any
1430 */
1431 while (j < page_limit)
1432 put_page(pages[j++]);
1433 }
1434
1435 kfree(pages);
1436
1437 bio_set_flag(bio, BIO_USER_MAPPED);
1438
1439 /*
1440 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1441 * it would normally disappear when its bi_end_io is run.
1442 * however, we need it for the unmap, so grab an extra
1443 * reference to it
1444 */
1445 bio_get(bio);
1446 return bio;
1447
1448 out_unmap:
1449 for (j = 0; j < nr_pages; j++) {
1450 if (!pages[j])
1451 break;
1452 put_page(pages[j]);
1453 }
1454 out:
1455 kfree(pages);
1456 bio_put(bio);
1457 return ERR_PTR(ret);
1458 }
1459
1460 static void __bio_unmap_user(struct bio *bio)
1461 {
1462 struct bio_vec *bvec;
1463 int i;
1464
1465 /*
1466 * make sure we dirty pages we wrote to
1467 */
1468 bio_for_each_segment_all(bvec, bio, i) {
1469 if (bio_data_dir(bio) == READ)
1470 set_page_dirty_lock(bvec->bv_page);
1471
1472 put_page(bvec->bv_page);
1473 }
1474
1475 bio_put(bio);
1476 }
1477
1478 /**
1479 * bio_unmap_user - unmap a bio
1480 * @bio: the bio being unmapped
1481 *
1482 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1483 * process context.
1484 *
1485 * bio_unmap_user() may sleep.
1486 */
1487 void bio_unmap_user(struct bio *bio)
1488 {
1489 __bio_unmap_user(bio);
1490 bio_put(bio);
1491 }
1492
1493 static void bio_map_kern_endio(struct bio *bio)
1494 {
1495 bio_put(bio);
1496 }
1497
1498 /**
1499 * bio_map_kern - map kernel address into bio
1500 * @q: the struct request_queue for the bio
1501 * @data: pointer to buffer to map
1502 * @len: length in bytes
1503 * @gfp_mask: allocation flags for bio allocation
1504 *
1505 * Map the kernel address into a bio suitable for io to a block
1506 * device. Returns an error pointer in case of error.
1507 */
1508 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1509 gfp_t gfp_mask)
1510 {
1511 unsigned long kaddr = (unsigned long)data;
1512 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1513 unsigned long start = kaddr >> PAGE_SHIFT;
1514 const int nr_pages = end - start;
1515 int offset, i;
1516 struct bio *bio;
1517
1518 bio = bio_kmalloc(gfp_mask, nr_pages);
1519 if (!bio)
1520 return ERR_PTR(-ENOMEM);
1521
1522 offset = offset_in_page(kaddr);
1523 for (i = 0; i < nr_pages; i++) {
1524 unsigned int bytes = PAGE_SIZE - offset;
1525
1526 if (len <= 0)
1527 break;
1528
1529 if (bytes > len)
1530 bytes = len;
1531
1532 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1533 offset) < bytes) {
1534 /* we don't support partial mappings */
1535 bio_put(bio);
1536 return ERR_PTR(-EINVAL);
1537 }
1538
1539 data += bytes;
1540 len -= bytes;
1541 offset = 0;
1542 }
1543
1544 bio->bi_end_io = bio_map_kern_endio;
1545 return bio;
1546 }
1547 EXPORT_SYMBOL(bio_map_kern);
1548
1549 static void bio_copy_kern_endio(struct bio *bio)
1550 {
1551 bio_free_pages(bio);
1552 bio_put(bio);
1553 }
1554
1555 static void bio_copy_kern_endio_read(struct bio *bio)
1556 {
1557 char *p = bio->bi_private;
1558 struct bio_vec *bvec;
1559 int i;
1560
1561 bio_for_each_segment_all(bvec, bio, i) {
1562 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1563 p += bvec->bv_len;
1564 }
1565
1566 bio_copy_kern_endio(bio);
1567 }
1568
1569 /**
1570 * bio_copy_kern - copy kernel address into bio
1571 * @q: the struct request_queue for the bio
1572 * @data: pointer to buffer to copy
1573 * @len: length in bytes
1574 * @gfp_mask: allocation flags for bio and page allocation
1575 * @reading: data direction is READ
1576 *
1577 * copy the kernel address into a bio suitable for io to a block
1578 * device. Returns an error pointer in case of error.
1579 */
1580 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1581 gfp_t gfp_mask, int reading)
1582 {
1583 unsigned long kaddr = (unsigned long)data;
1584 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1585 unsigned long start = kaddr >> PAGE_SHIFT;
1586 struct bio *bio;
1587 void *p = data;
1588 int nr_pages = 0;
1589
1590 /*
1591 * Overflow, abort
1592 */
1593 if (end < start)
1594 return ERR_PTR(-EINVAL);
1595
1596 nr_pages = end - start;
1597 bio = bio_kmalloc(gfp_mask, nr_pages);
1598 if (!bio)
1599 return ERR_PTR(-ENOMEM);
1600
1601 while (len) {
1602 struct page *page;
1603 unsigned int bytes = PAGE_SIZE;
1604
1605 if (bytes > len)
1606 bytes = len;
1607
1608 page = alloc_page(q->bounce_gfp | gfp_mask);
1609 if (!page)
1610 goto cleanup;
1611
1612 if (!reading)
1613 memcpy(page_address(page), p, bytes);
1614
1615 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1616 break;
1617
1618 len -= bytes;
1619 p += bytes;
1620 }
1621
1622 if (reading) {
1623 bio->bi_end_io = bio_copy_kern_endio_read;
1624 bio->bi_private = data;
1625 } else {
1626 bio->bi_end_io = bio_copy_kern_endio;
1627 }
1628
1629 return bio;
1630
1631 cleanup:
1632 bio_free_pages(bio);
1633 bio_put(bio);
1634 return ERR_PTR(-ENOMEM);
1635 }
1636
1637 /*
1638 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1639 * for performing direct-IO in BIOs.
1640 *
1641 * The problem is that we cannot run set_page_dirty() from interrupt context
1642 * because the required locks are not interrupt-safe. So what we can do is to
1643 * mark the pages dirty _before_ performing IO. And in interrupt context,
1644 * check that the pages are still dirty. If so, fine. If not, redirty them
1645 * in process context.
1646 *
1647 * We special-case compound pages here: normally this means reads into hugetlb
1648 * pages. The logic in here doesn't really work right for compound pages
1649 * because the VM does not uniformly chase down the head page in all cases.
1650 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1651 * handle them at all. So we skip compound pages here at an early stage.
1652 *
1653 * Note that this code is very hard to test under normal circumstances because
1654 * direct-io pins the pages with get_user_pages(). This makes
1655 * is_page_cache_freeable return false, and the VM will not clean the pages.
1656 * But other code (eg, flusher threads) could clean the pages if they are mapped
1657 * pagecache.
1658 *
1659 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1660 * deferred bio dirtying paths.
1661 */
1662
1663 /*
1664 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1665 */
1666 void bio_set_pages_dirty(struct bio *bio)
1667 {
1668 struct bio_vec *bvec;
1669 int i;
1670
1671 bio_for_each_segment_all(bvec, bio, i) {
1672 struct page *page = bvec->bv_page;
1673
1674 if (page && !PageCompound(page))
1675 set_page_dirty_lock(page);
1676 }
1677 }
1678
1679 static void bio_release_pages(struct bio *bio)
1680 {
1681 struct bio_vec *bvec;
1682 int i;
1683
1684 bio_for_each_segment_all(bvec, bio, i) {
1685 struct page *page = bvec->bv_page;
1686
1687 if (page)
1688 put_page(page);
1689 }
1690 }
1691
1692 /*
1693 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1694 * If they are, then fine. If, however, some pages are clean then they must
1695 * have been written out during the direct-IO read. So we take another ref on
1696 * the BIO and the offending pages and re-dirty the pages in process context.
1697 *
1698 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1699 * here on. It will run one put_page() against each page and will run one
1700 * bio_put() against the BIO.
1701 */
1702
1703 static void bio_dirty_fn(struct work_struct *work);
1704
1705 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1706 static DEFINE_SPINLOCK(bio_dirty_lock);
1707 static struct bio *bio_dirty_list;
1708
1709 /*
1710 * This runs in process context
1711 */
1712 static void bio_dirty_fn(struct work_struct *work)
1713 {
1714 unsigned long flags;
1715 struct bio *bio;
1716
1717 spin_lock_irqsave(&bio_dirty_lock, flags);
1718 bio = bio_dirty_list;
1719 bio_dirty_list = NULL;
1720 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1721
1722 while (bio) {
1723 struct bio *next = bio->bi_private;
1724
1725 bio_set_pages_dirty(bio);
1726 bio_release_pages(bio);
1727 bio_put(bio);
1728 bio = next;
1729 }
1730 }
1731
1732 void bio_check_pages_dirty(struct bio *bio)
1733 {
1734 struct bio_vec *bvec;
1735 int nr_clean_pages = 0;
1736 int i;
1737
1738 bio_for_each_segment_all(bvec, bio, i) {
1739 struct page *page = bvec->bv_page;
1740
1741 if (PageDirty(page) || PageCompound(page)) {
1742 put_page(page);
1743 bvec->bv_page = NULL;
1744 } else {
1745 nr_clean_pages++;
1746 }
1747 }
1748
1749 if (nr_clean_pages) {
1750 unsigned long flags;
1751
1752 spin_lock_irqsave(&bio_dirty_lock, flags);
1753 bio->bi_private = bio_dirty_list;
1754 bio_dirty_list = bio;
1755 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1756 schedule_work(&bio_dirty_work);
1757 } else {
1758 bio_put(bio);
1759 }
1760 }
1761
1762 void generic_start_io_acct(int rw, unsigned long sectors,
1763 struct hd_struct *part)
1764 {
1765 int cpu = part_stat_lock();
1766
1767 part_round_stats(cpu, part);
1768 part_stat_inc(cpu, part, ios[rw]);
1769 part_stat_add(cpu, part, sectors[rw], sectors);
1770 part_inc_in_flight(part, rw);
1771
1772 part_stat_unlock();
1773 }
1774 EXPORT_SYMBOL(generic_start_io_acct);
1775
1776 void generic_end_io_acct(int rw, struct hd_struct *part,
1777 unsigned long start_time)
1778 {
1779 unsigned long duration = jiffies - start_time;
1780 int cpu = part_stat_lock();
1781
1782 part_stat_add(cpu, part, ticks[rw], duration);
1783 part_round_stats(cpu, part);
1784 part_dec_in_flight(part, rw);
1785
1786 part_stat_unlock();
1787 }
1788 EXPORT_SYMBOL(generic_end_io_acct);
1789
1790 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1791 void bio_flush_dcache_pages(struct bio *bi)
1792 {
1793 struct bio_vec bvec;
1794 struct bvec_iter iter;
1795
1796 bio_for_each_segment(bvec, bi, iter)
1797 flush_dcache_page(bvec.bv_page);
1798 }
1799 EXPORT_SYMBOL(bio_flush_dcache_pages);
1800 #endif
1801
1802 static inline bool bio_remaining_done(struct bio *bio)
1803 {
1804 /*
1805 * If we're not chaining, then ->__bi_remaining is always 1 and
1806 * we always end io on the first invocation.
1807 */
1808 if (!bio_flagged(bio, BIO_CHAIN))
1809 return true;
1810
1811 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1812
1813 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1814 bio_clear_flag(bio, BIO_CHAIN);
1815 return true;
1816 }
1817
1818 return false;
1819 }
1820
1821 /**
1822 * bio_endio - end I/O on a bio
1823 * @bio: bio
1824 *
1825 * Description:
1826 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1827 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1828 * bio unless they own it and thus know that it has an end_io function.
1829 *
1830 * bio_endio() can be called several times on a bio that has been chained
1831 * using bio_chain(). The ->bi_end_io() function will only be called the
1832 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1833 * generated if BIO_TRACE_COMPLETION is set.
1834 **/
1835 void bio_endio(struct bio *bio)
1836 {
1837 again:
1838 if (!bio_remaining_done(bio))
1839 return;
1840
1841 /*
1842 * Need to have a real endio function for chained bios, otherwise
1843 * various corner cases will break (like stacking block devices that
1844 * save/restore bi_end_io) - however, we want to avoid unbounded
1845 * recursion and blowing the stack. Tail call optimization would
1846 * handle this, but compiling with frame pointers also disables
1847 * gcc's sibling call optimization.
1848 */
1849 if (bio->bi_end_io == bio_chain_endio) {
1850 bio = __bio_chain_endio(bio);
1851 goto again;
1852 }
1853
1854 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1855 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev),
1856 bio, bio->bi_error);
1857 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1858 }
1859
1860 blk_throtl_bio_endio(bio);
1861 if (bio->bi_end_io)
1862 bio->bi_end_io(bio);
1863 }
1864 EXPORT_SYMBOL(bio_endio);
1865
1866 /**
1867 * bio_split - split a bio
1868 * @bio: bio to split
1869 * @sectors: number of sectors to split from the front of @bio
1870 * @gfp: gfp mask
1871 * @bs: bio set to allocate from
1872 *
1873 * Allocates and returns a new bio which represents @sectors from the start of
1874 * @bio, and updates @bio to represent the remaining sectors.
1875 *
1876 * Unless this is a discard request the newly allocated bio will point
1877 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1878 * @bio is not freed before the split.
1879 */
1880 struct bio *bio_split(struct bio *bio, int sectors,
1881 gfp_t gfp, struct bio_set *bs)
1882 {
1883 struct bio *split = NULL;
1884
1885 BUG_ON(sectors <= 0);
1886 BUG_ON(sectors >= bio_sectors(bio));
1887
1888 split = bio_clone_fast(bio, gfp, bs);
1889 if (!split)
1890 return NULL;
1891
1892 split->bi_iter.bi_size = sectors << 9;
1893
1894 if (bio_integrity(split))
1895 bio_integrity_trim(split, 0, sectors);
1896
1897 bio_advance(bio, split->bi_iter.bi_size);
1898
1899 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1900 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1901
1902 return split;
1903 }
1904 EXPORT_SYMBOL(bio_split);
1905
1906 /**
1907 * bio_trim - trim a bio
1908 * @bio: bio to trim
1909 * @offset: number of sectors to trim from the front of @bio
1910 * @size: size we want to trim @bio to, in sectors
1911 */
1912 void bio_trim(struct bio *bio, int offset, int size)
1913 {
1914 /* 'bio' is a cloned bio which we need to trim to match
1915 * the given offset and size.
1916 */
1917
1918 size <<= 9;
1919 if (offset == 0 && size == bio->bi_iter.bi_size)
1920 return;
1921
1922 bio_clear_flag(bio, BIO_SEG_VALID);
1923
1924 bio_advance(bio, offset << 9);
1925
1926 bio->bi_iter.bi_size = size;
1927 }
1928 EXPORT_SYMBOL_GPL(bio_trim);
1929
1930 /*
1931 * create memory pools for biovec's in a bio_set.
1932 * use the global biovec slabs created for general use.
1933 */
1934 mempool_t *biovec_create_pool(int pool_entries)
1935 {
1936 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1937
1938 return mempool_create_slab_pool(pool_entries, bp->slab);
1939 }
1940
1941 void bioset_free(struct bio_set *bs)
1942 {
1943 if (bs->rescue_workqueue)
1944 destroy_workqueue(bs->rescue_workqueue);
1945
1946 if (bs->bio_pool)
1947 mempool_destroy(bs->bio_pool);
1948
1949 if (bs->bvec_pool)
1950 mempool_destroy(bs->bvec_pool);
1951
1952 bioset_integrity_free(bs);
1953 bio_put_slab(bs);
1954
1955 kfree(bs);
1956 }
1957 EXPORT_SYMBOL(bioset_free);
1958
1959 static struct bio_set *__bioset_create(unsigned int pool_size,
1960 unsigned int front_pad,
1961 bool create_bvec_pool)
1962 {
1963 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1964 struct bio_set *bs;
1965
1966 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1967 if (!bs)
1968 return NULL;
1969
1970 bs->front_pad = front_pad;
1971
1972 spin_lock_init(&bs->rescue_lock);
1973 bio_list_init(&bs->rescue_list);
1974 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1975
1976 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1977 if (!bs->bio_slab) {
1978 kfree(bs);
1979 return NULL;
1980 }
1981
1982 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1983 if (!bs->bio_pool)
1984 goto bad;
1985
1986 if (create_bvec_pool) {
1987 bs->bvec_pool = biovec_create_pool(pool_size);
1988 if (!bs->bvec_pool)
1989 goto bad;
1990 }
1991
1992 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1993 if (!bs->rescue_workqueue)
1994 goto bad;
1995
1996 return bs;
1997 bad:
1998 bioset_free(bs);
1999 return NULL;
2000 }
2001
2002 /**
2003 * bioset_create - Create a bio_set
2004 * @pool_size: Number of bio and bio_vecs to cache in the mempool
2005 * @front_pad: Number of bytes to allocate in front of the returned bio
2006 *
2007 * Description:
2008 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
2009 * to ask for a number of bytes to be allocated in front of the bio.
2010 * Front pad allocation is useful for embedding the bio inside
2011 * another structure, to avoid allocating extra data to go with the bio.
2012 * Note that the bio must be embedded at the END of that structure always,
2013 * or things will break badly.
2014 */
2015 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
2016 {
2017 return __bioset_create(pool_size, front_pad, true);
2018 }
2019 EXPORT_SYMBOL(bioset_create);
2020
2021 /**
2022 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
2023 * @pool_size: Number of bio to cache in the mempool
2024 * @front_pad: Number of bytes to allocate in front of the returned bio
2025 *
2026 * Description:
2027 * Same functionality as bioset_create() except that mempool is not
2028 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
2029 */
2030 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
2031 {
2032 return __bioset_create(pool_size, front_pad, false);
2033 }
2034 EXPORT_SYMBOL(bioset_create_nobvec);
2035
2036 #ifdef CONFIG_BLK_CGROUP
2037
2038 /**
2039 * bio_associate_blkcg - associate a bio with the specified blkcg
2040 * @bio: target bio
2041 * @blkcg_css: css of the blkcg to associate
2042 *
2043 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2044 * treat @bio as if it were issued by a task which belongs to the blkcg.
2045 *
2046 * This function takes an extra reference of @blkcg_css which will be put
2047 * when @bio is released. The caller must own @bio and is responsible for
2048 * synchronizing calls to this function.
2049 */
2050 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2051 {
2052 if (unlikely(bio->bi_css))
2053 return -EBUSY;
2054 css_get(blkcg_css);
2055 bio->bi_css = blkcg_css;
2056 return 0;
2057 }
2058 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2059
2060 /**
2061 * bio_associate_current - associate a bio with %current
2062 * @bio: target bio
2063 *
2064 * Associate @bio with %current if it hasn't been associated yet. Block
2065 * layer will treat @bio as if it were issued by %current no matter which
2066 * task actually issues it.
2067 *
2068 * This function takes an extra reference of @task's io_context and blkcg
2069 * which will be put when @bio is released. The caller must own @bio,
2070 * ensure %current->io_context exists, and is responsible for synchronizing
2071 * calls to this function.
2072 */
2073 int bio_associate_current(struct bio *bio)
2074 {
2075 struct io_context *ioc;
2076
2077 if (bio->bi_css)
2078 return -EBUSY;
2079
2080 ioc = current->io_context;
2081 if (!ioc)
2082 return -ENOENT;
2083
2084 get_io_context_active(ioc);
2085 bio->bi_ioc = ioc;
2086 bio->bi_css = task_get_css(current, io_cgrp_id);
2087 return 0;
2088 }
2089 EXPORT_SYMBOL_GPL(bio_associate_current);
2090
2091 /**
2092 * bio_disassociate_task - undo bio_associate_current()
2093 * @bio: target bio
2094 */
2095 void bio_disassociate_task(struct bio *bio)
2096 {
2097 if (bio->bi_ioc) {
2098 put_io_context(bio->bi_ioc);
2099 bio->bi_ioc = NULL;
2100 }
2101 if (bio->bi_css) {
2102 css_put(bio->bi_css);
2103 bio->bi_css = NULL;
2104 }
2105 }
2106
2107 /**
2108 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2109 * @dst: destination bio
2110 * @src: source bio
2111 */
2112 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2113 {
2114 if (src->bi_css)
2115 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2116 }
2117
2118 #endif /* CONFIG_BLK_CGROUP */
2119
2120 static void __init biovec_init_slabs(void)
2121 {
2122 int i;
2123
2124 for (i = 0; i < BVEC_POOL_NR; i++) {
2125 int size;
2126 struct biovec_slab *bvs = bvec_slabs + i;
2127
2128 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2129 bvs->slab = NULL;
2130 continue;
2131 }
2132
2133 size = bvs->nr_vecs * sizeof(struct bio_vec);
2134 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2135 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2136 }
2137 }
2138
2139 static int __init init_bio(void)
2140 {
2141 bio_slab_max = 2;
2142 bio_slab_nr = 0;
2143 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2144 if (!bio_slabs)
2145 panic("bio: can't allocate bios\n");
2146
2147 bio_integrity_init();
2148 biovec_init_slabs();
2149
2150 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2151 if (!fs_bio_set)
2152 panic("bio: can't allocate bios\n");
2153
2154 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2155 panic("bio: can't create integrity pool\n");
2156
2157 return 0;
2158 }
2159 subsys_initcall(init_bio);