]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/bio.c
Merge tag 'pinctrl-v4.12-4' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-bionic-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33 #include "blk.h"
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 /*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51
52 /*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58
59 /*
60 * Our slab pool management
61 */
62 struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
105 goto out_unlock;
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
119
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123 out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126 }
127
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 return bvec_slabs[idx].nr_vecs;
160 }
161
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
169
170 if (idx == BVEC_POOL_MAX) {
171 mempool_free(bv, pool);
172 } else {
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177 }
178
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
181 {
182 struct bio_vec *bvl;
183
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
214 if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 bvl = mempool_alloc(pool, gfp_mask);
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220
221 /*
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
225 */
226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227
228 /*
229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 * is set, retry with the 1-entry mempool
231 */
232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 *idx = BVEC_POOL_MAX;
235 goto fallback;
236 }
237 }
238
239 (*idx)++;
240 return bvl;
241 }
242
243 void bio_uninit(struct bio *bio)
244 {
245 bio_disassociate_task(bio);
246
247 if (bio_integrity(bio))
248 bio_integrity_free(bio);
249 }
250 EXPORT_SYMBOL(bio_uninit);
251
252 static void bio_free(struct bio *bio)
253 {
254 struct bio_set *bs = bio->bi_pool;
255 void *p;
256
257 bio_uninit(bio);
258
259 if (bs) {
260 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
261
262 /*
263 * If we have front padding, adjust the bio pointer before freeing
264 */
265 p = bio;
266 p -= bs->front_pad;
267
268 mempool_free(p, bs->bio_pool);
269 } else {
270 /* Bio was allocated by bio_kmalloc() */
271 kfree(bio);
272 }
273 }
274
275 /*
276 * Users of this function have their own bio allocation. Subsequently,
277 * they must remember to pair any call to bio_init() with bio_uninit()
278 * when IO has completed, or when the bio is released.
279 */
280 void bio_init(struct bio *bio, struct bio_vec *table,
281 unsigned short max_vecs)
282 {
283 memset(bio, 0, sizeof(*bio));
284 atomic_set(&bio->__bi_remaining, 1);
285 atomic_set(&bio->__bi_cnt, 1);
286
287 bio->bi_io_vec = table;
288 bio->bi_max_vecs = max_vecs;
289 }
290 EXPORT_SYMBOL(bio_init);
291
292 /**
293 * bio_reset - reinitialize a bio
294 * @bio: bio to reset
295 *
296 * Description:
297 * After calling bio_reset(), @bio will be in the same state as a freshly
298 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
299 * preserved are the ones that are initialized by bio_alloc_bioset(). See
300 * comment in struct bio.
301 */
302 void bio_reset(struct bio *bio)
303 {
304 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
305
306 bio_uninit(bio);
307
308 memset(bio, 0, BIO_RESET_BYTES);
309 bio->bi_flags = flags;
310 atomic_set(&bio->__bi_remaining, 1);
311 }
312 EXPORT_SYMBOL(bio_reset);
313
314 static struct bio *__bio_chain_endio(struct bio *bio)
315 {
316 struct bio *parent = bio->bi_private;
317
318 if (!parent->bi_error)
319 parent->bi_error = bio->bi_error;
320 bio_put(bio);
321 return parent;
322 }
323
324 static void bio_chain_endio(struct bio *bio)
325 {
326 bio_endio(__bio_chain_endio(bio));
327 }
328
329 /**
330 * bio_chain - chain bio completions
331 * @bio: the target bio
332 * @parent: the @bio's parent bio
333 *
334 * The caller won't have a bi_end_io called when @bio completes - instead,
335 * @parent's bi_end_io won't be called until both @parent and @bio have
336 * completed; the chained bio will also be freed when it completes.
337 *
338 * The caller must not set bi_private or bi_end_io in @bio.
339 */
340 void bio_chain(struct bio *bio, struct bio *parent)
341 {
342 BUG_ON(bio->bi_private || bio->bi_end_io);
343
344 bio->bi_private = parent;
345 bio->bi_end_io = bio_chain_endio;
346 bio_inc_remaining(parent);
347 }
348 EXPORT_SYMBOL(bio_chain);
349
350 static void bio_alloc_rescue(struct work_struct *work)
351 {
352 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
353 struct bio *bio;
354
355 while (1) {
356 spin_lock(&bs->rescue_lock);
357 bio = bio_list_pop(&bs->rescue_list);
358 spin_unlock(&bs->rescue_lock);
359
360 if (!bio)
361 break;
362
363 generic_make_request(bio);
364 }
365 }
366
367 static void punt_bios_to_rescuer(struct bio_set *bs)
368 {
369 struct bio_list punt, nopunt;
370 struct bio *bio;
371
372 /*
373 * In order to guarantee forward progress we must punt only bios that
374 * were allocated from this bio_set; otherwise, if there was a bio on
375 * there for a stacking driver higher up in the stack, processing it
376 * could require allocating bios from this bio_set, and doing that from
377 * our own rescuer would be bad.
378 *
379 * Since bio lists are singly linked, pop them all instead of trying to
380 * remove from the middle of the list:
381 */
382
383 bio_list_init(&punt);
384 bio_list_init(&nopunt);
385
386 while ((bio = bio_list_pop(&current->bio_list[0])))
387 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
388 current->bio_list[0] = nopunt;
389
390 bio_list_init(&nopunt);
391 while ((bio = bio_list_pop(&current->bio_list[1])))
392 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
393 current->bio_list[1] = nopunt;
394
395 spin_lock(&bs->rescue_lock);
396 bio_list_merge(&bs->rescue_list, &punt);
397 spin_unlock(&bs->rescue_lock);
398
399 queue_work(bs->rescue_workqueue, &bs->rescue_work);
400 }
401
402 /**
403 * bio_alloc_bioset - allocate a bio for I/O
404 * @gfp_mask: the GFP_ mask given to the slab allocator
405 * @nr_iovecs: number of iovecs to pre-allocate
406 * @bs: the bio_set to allocate from.
407 *
408 * Description:
409 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
410 * backed by the @bs's mempool.
411 *
412 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
413 * always be able to allocate a bio. This is due to the mempool guarantees.
414 * To make this work, callers must never allocate more than 1 bio at a time
415 * from this pool. Callers that need to allocate more than 1 bio must always
416 * submit the previously allocated bio for IO before attempting to allocate
417 * a new one. Failure to do so can cause deadlocks under memory pressure.
418 *
419 * Note that when running under generic_make_request() (i.e. any block
420 * driver), bios are not submitted until after you return - see the code in
421 * generic_make_request() that converts recursion into iteration, to prevent
422 * stack overflows.
423 *
424 * This would normally mean allocating multiple bios under
425 * generic_make_request() would be susceptible to deadlocks, but we have
426 * deadlock avoidance code that resubmits any blocked bios from a rescuer
427 * thread.
428 *
429 * However, we do not guarantee forward progress for allocations from other
430 * mempools. Doing multiple allocations from the same mempool under
431 * generic_make_request() should be avoided - instead, use bio_set's front_pad
432 * for per bio allocations.
433 *
434 * RETURNS:
435 * Pointer to new bio on success, NULL on failure.
436 */
437 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
438 struct bio_set *bs)
439 {
440 gfp_t saved_gfp = gfp_mask;
441 unsigned front_pad;
442 unsigned inline_vecs;
443 struct bio_vec *bvl = NULL;
444 struct bio *bio;
445 void *p;
446
447 if (!bs) {
448 if (nr_iovecs > UIO_MAXIOV)
449 return NULL;
450
451 p = kmalloc(sizeof(struct bio) +
452 nr_iovecs * sizeof(struct bio_vec),
453 gfp_mask);
454 front_pad = 0;
455 inline_vecs = nr_iovecs;
456 } else {
457 /* should not use nobvec bioset for nr_iovecs > 0 */
458 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
459 return NULL;
460 /*
461 * generic_make_request() converts recursion to iteration; this
462 * means if we're running beneath it, any bios we allocate and
463 * submit will not be submitted (and thus freed) until after we
464 * return.
465 *
466 * This exposes us to a potential deadlock if we allocate
467 * multiple bios from the same bio_set() while running
468 * underneath generic_make_request(). If we were to allocate
469 * multiple bios (say a stacking block driver that was splitting
470 * bios), we would deadlock if we exhausted the mempool's
471 * reserve.
472 *
473 * We solve this, and guarantee forward progress, with a rescuer
474 * workqueue per bio_set. If we go to allocate and there are
475 * bios on current->bio_list, we first try the allocation
476 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
477 * bios we would be blocking to the rescuer workqueue before
478 * we retry with the original gfp_flags.
479 */
480
481 if (current->bio_list &&
482 (!bio_list_empty(&current->bio_list[0]) ||
483 !bio_list_empty(&current->bio_list[1])))
484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485
486 p = mempool_alloc(bs->bio_pool, gfp_mask);
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(bs->bio_pool, gfp_mask);
491 }
492
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
497 if (unlikely(!p))
498 return NULL;
499
500 bio = p + front_pad;
501 bio_init(bio, NULL, 0);
502
503 if (nr_iovecs > inline_vecs) {
504 unsigned long idx = 0;
505
506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 }
512
513 if (unlikely(!bvl))
514 goto err_free;
515
516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
519 }
520
521 bio->bi_pool = bs;
522 bio->bi_max_vecs = nr_iovecs;
523 bio->bi_io_vec = bvl;
524 return bio;
525
526 err_free:
527 mempool_free(p, bs->bio_pool);
528 return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531
532 void zero_fill_bio(struct bio *bio)
533 {
534 unsigned long flags;
535 struct bio_vec bv;
536 struct bvec_iter iter;
537
538 bio_for_each_segment(bv, bio, iter) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
542 bvec_kunmap_irq(data, &flags);
543 }
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546
547 /**
548 * bio_put - release a reference to a bio
549 * @bio: bio to release reference to
550 *
551 * Description:
552 * Put a reference to a &struct bio, either one you have gotten with
553 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
554 **/
555 void bio_put(struct bio *bio)
556 {
557 if (!bio_flagged(bio, BIO_REFFED))
558 bio_free(bio);
559 else {
560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561
562 /*
563 * last put frees it
564 */
565 if (atomic_dec_and_test(&bio->__bi_cnt))
566 bio_free(bio);
567 }
568 }
569 EXPORT_SYMBOL(bio_put);
570
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 blk_recount_segments(q, bio);
575
576 return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579
580 /**
581 * __bio_clone_fast - clone a bio that shares the original bio's biovec
582 * @bio: destination bio
583 * @bio_src: bio to clone
584 *
585 * Clone a &bio. Caller will own the returned bio, but not
586 * the actual data it points to. Reference count of returned
587 * bio will be one.
588 *
589 * Caller must ensure that @bio_src is not freed before @bio.
590 */
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594
595 /*
596 * most users will be overriding ->bi_bdev with a new target,
597 * so we don't set nor calculate new physical/hw segment counts here
598 */
599 bio->bi_bdev = bio_src->bi_bdev;
600 bio_set_flag(bio, BIO_CLONED);
601 bio->bi_opf = bio_src->bi_opf;
602 bio->bi_iter = bio_src->bi_iter;
603 bio->bi_io_vec = bio_src->bi_io_vec;
604
605 bio_clone_blkcg_association(bio, bio_src);
606 }
607 EXPORT_SYMBOL(__bio_clone_fast);
608
609 /**
610 * bio_clone_fast - clone a bio that shares the original bio's biovec
611 * @bio: bio to clone
612 * @gfp_mask: allocation priority
613 * @bs: bio_set to allocate from
614 *
615 * Like __bio_clone_fast, only also allocates the returned bio
616 */
617 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
618 {
619 struct bio *b;
620
621 b = bio_alloc_bioset(gfp_mask, 0, bs);
622 if (!b)
623 return NULL;
624
625 __bio_clone_fast(b, bio);
626
627 if (bio_integrity(bio)) {
628 int ret;
629
630 ret = bio_integrity_clone(b, bio, gfp_mask);
631
632 if (ret < 0) {
633 bio_put(b);
634 return NULL;
635 }
636 }
637
638 return b;
639 }
640 EXPORT_SYMBOL(bio_clone_fast);
641
642 /**
643 * bio_clone_bioset - clone a bio
644 * @bio_src: bio to clone
645 * @gfp_mask: allocation priority
646 * @bs: bio_set to allocate from
647 *
648 * Clone bio. Caller will own the returned bio, but not the actual data it
649 * points to. Reference count of returned bio will be one.
650 */
651 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
652 struct bio_set *bs)
653 {
654 struct bvec_iter iter;
655 struct bio_vec bv;
656 struct bio *bio;
657
658 /*
659 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
660 * bio_src->bi_io_vec to bio->bi_io_vec.
661 *
662 * We can't do that anymore, because:
663 *
664 * - The point of cloning the biovec is to produce a bio with a biovec
665 * the caller can modify: bi_idx and bi_bvec_done should be 0.
666 *
667 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
668 * we tried to clone the whole thing bio_alloc_bioset() would fail.
669 * But the clone should succeed as long as the number of biovecs we
670 * actually need to allocate is fewer than BIO_MAX_PAGES.
671 *
672 * - Lastly, bi_vcnt should not be looked at or relied upon by code
673 * that does not own the bio - reason being drivers don't use it for
674 * iterating over the biovec anymore, so expecting it to be kept up
675 * to date (i.e. for clones that share the parent biovec) is just
676 * asking for trouble and would force extra work on
677 * __bio_clone_fast() anyways.
678 */
679
680 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
681 if (!bio)
682 return NULL;
683 bio->bi_bdev = bio_src->bi_bdev;
684 bio->bi_opf = bio_src->bi_opf;
685 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
686 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
687
688 switch (bio_op(bio)) {
689 case REQ_OP_DISCARD:
690 case REQ_OP_SECURE_ERASE:
691 case REQ_OP_WRITE_ZEROES:
692 break;
693 case REQ_OP_WRITE_SAME:
694 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
695 break;
696 default:
697 bio_for_each_segment(bv, bio_src, iter)
698 bio->bi_io_vec[bio->bi_vcnt++] = bv;
699 break;
700 }
701
702 if (bio_integrity(bio_src)) {
703 int ret;
704
705 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
706 if (ret < 0) {
707 bio_put(bio);
708 return NULL;
709 }
710 }
711
712 bio_clone_blkcg_association(bio, bio_src);
713
714 return bio;
715 }
716 EXPORT_SYMBOL(bio_clone_bioset);
717
718 /**
719 * bio_add_pc_page - attempt to add page to bio
720 * @q: the target queue
721 * @bio: destination bio
722 * @page: page to add
723 * @len: vec entry length
724 * @offset: vec entry offset
725 *
726 * Attempt to add a page to the bio_vec maplist. This can fail for a
727 * number of reasons, such as the bio being full or target block device
728 * limitations. The target block device must allow bio's up to PAGE_SIZE,
729 * so it is always possible to add a single page to an empty bio.
730 *
731 * This should only be used by REQ_PC bios.
732 */
733 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
734 *page, unsigned int len, unsigned int offset)
735 {
736 int retried_segments = 0;
737 struct bio_vec *bvec;
738
739 /*
740 * cloned bio must not modify vec list
741 */
742 if (unlikely(bio_flagged(bio, BIO_CLONED)))
743 return 0;
744
745 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
746 return 0;
747
748 /*
749 * For filesystems with a blocksize smaller than the pagesize
750 * we will often be called with the same page as last time and
751 * a consecutive offset. Optimize this special case.
752 */
753 if (bio->bi_vcnt > 0) {
754 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
755
756 if (page == prev->bv_page &&
757 offset == prev->bv_offset + prev->bv_len) {
758 prev->bv_len += len;
759 bio->bi_iter.bi_size += len;
760 goto done;
761 }
762
763 /*
764 * If the queue doesn't support SG gaps and adding this
765 * offset would create a gap, disallow it.
766 */
767 if (bvec_gap_to_prev(q, prev, offset))
768 return 0;
769 }
770
771 if (bio->bi_vcnt >= bio->bi_max_vecs)
772 return 0;
773
774 /*
775 * setup the new entry, we might clear it again later if we
776 * cannot add the page
777 */
778 bvec = &bio->bi_io_vec[bio->bi_vcnt];
779 bvec->bv_page = page;
780 bvec->bv_len = len;
781 bvec->bv_offset = offset;
782 bio->bi_vcnt++;
783 bio->bi_phys_segments++;
784 bio->bi_iter.bi_size += len;
785
786 /*
787 * Perform a recount if the number of segments is greater
788 * than queue_max_segments(q).
789 */
790
791 while (bio->bi_phys_segments > queue_max_segments(q)) {
792
793 if (retried_segments)
794 goto failed;
795
796 retried_segments = 1;
797 blk_recount_segments(q, bio);
798 }
799
800 /* If we may be able to merge these biovecs, force a recount */
801 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
802 bio_clear_flag(bio, BIO_SEG_VALID);
803
804 done:
805 return len;
806
807 failed:
808 bvec->bv_page = NULL;
809 bvec->bv_len = 0;
810 bvec->bv_offset = 0;
811 bio->bi_vcnt--;
812 bio->bi_iter.bi_size -= len;
813 blk_recount_segments(q, bio);
814 return 0;
815 }
816 EXPORT_SYMBOL(bio_add_pc_page);
817
818 /**
819 * bio_add_page - attempt to add page to bio
820 * @bio: destination bio
821 * @page: page to add
822 * @len: vec entry length
823 * @offset: vec entry offset
824 *
825 * Attempt to add a page to the bio_vec maplist. This will only fail
826 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
827 */
828 int bio_add_page(struct bio *bio, struct page *page,
829 unsigned int len, unsigned int offset)
830 {
831 struct bio_vec *bv;
832
833 /*
834 * cloned bio must not modify vec list
835 */
836 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
837 return 0;
838
839 /*
840 * For filesystems with a blocksize smaller than the pagesize
841 * we will often be called with the same page as last time and
842 * a consecutive offset. Optimize this special case.
843 */
844 if (bio->bi_vcnt > 0) {
845 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
846
847 if (page == bv->bv_page &&
848 offset == bv->bv_offset + bv->bv_len) {
849 bv->bv_len += len;
850 goto done;
851 }
852 }
853
854 if (bio->bi_vcnt >= bio->bi_max_vecs)
855 return 0;
856
857 bv = &bio->bi_io_vec[bio->bi_vcnt];
858 bv->bv_page = page;
859 bv->bv_len = len;
860 bv->bv_offset = offset;
861
862 bio->bi_vcnt++;
863 done:
864 bio->bi_iter.bi_size += len;
865 return len;
866 }
867 EXPORT_SYMBOL(bio_add_page);
868
869 /**
870 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
871 * @bio: bio to add pages to
872 * @iter: iov iterator describing the region to be mapped
873 *
874 * Pins as many pages from *iter and appends them to @bio's bvec array. The
875 * pages will have to be released using put_page() when done.
876 */
877 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
878 {
879 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
880 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
881 struct page **pages = (struct page **)bv;
882 size_t offset, diff;
883 ssize_t size;
884
885 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
886 if (unlikely(size <= 0))
887 return size ? size : -EFAULT;
888 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
889
890 /*
891 * Deep magic below: We need to walk the pinned pages backwards
892 * because we are abusing the space allocated for the bio_vecs
893 * for the page array. Because the bio_vecs are larger than the
894 * page pointers by definition this will always work. But it also
895 * means we can't use bio_add_page, so any changes to it's semantics
896 * need to be reflected here as well.
897 */
898 bio->bi_iter.bi_size += size;
899 bio->bi_vcnt += nr_pages;
900
901 diff = (nr_pages * PAGE_SIZE - offset) - size;
902 while (nr_pages--) {
903 bv[nr_pages].bv_page = pages[nr_pages];
904 bv[nr_pages].bv_len = PAGE_SIZE;
905 bv[nr_pages].bv_offset = 0;
906 }
907
908 bv[0].bv_offset += offset;
909 bv[0].bv_len -= offset;
910 if (diff)
911 bv[bio->bi_vcnt - 1].bv_len -= diff;
912
913 iov_iter_advance(iter, size);
914 return 0;
915 }
916 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
917
918 struct submit_bio_ret {
919 struct completion event;
920 int error;
921 };
922
923 static void submit_bio_wait_endio(struct bio *bio)
924 {
925 struct submit_bio_ret *ret = bio->bi_private;
926
927 ret->error = bio->bi_error;
928 complete(&ret->event);
929 }
930
931 /**
932 * submit_bio_wait - submit a bio, and wait until it completes
933 * @bio: The &struct bio which describes the I/O
934 *
935 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
936 * bio_endio() on failure.
937 */
938 int submit_bio_wait(struct bio *bio)
939 {
940 struct submit_bio_ret ret;
941
942 init_completion(&ret.event);
943 bio->bi_private = &ret;
944 bio->bi_end_io = submit_bio_wait_endio;
945 bio->bi_opf |= REQ_SYNC;
946 submit_bio(bio);
947 wait_for_completion_io(&ret.event);
948
949 return ret.error;
950 }
951 EXPORT_SYMBOL(submit_bio_wait);
952
953 /**
954 * bio_advance - increment/complete a bio by some number of bytes
955 * @bio: bio to advance
956 * @bytes: number of bytes to complete
957 *
958 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
959 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
960 * be updated on the last bvec as well.
961 *
962 * @bio will then represent the remaining, uncompleted portion of the io.
963 */
964 void bio_advance(struct bio *bio, unsigned bytes)
965 {
966 if (bio_integrity(bio))
967 bio_integrity_advance(bio, bytes);
968
969 bio_advance_iter(bio, &bio->bi_iter, bytes);
970 }
971 EXPORT_SYMBOL(bio_advance);
972
973 /**
974 * bio_alloc_pages - allocates a single page for each bvec in a bio
975 * @bio: bio to allocate pages for
976 * @gfp_mask: flags for allocation
977 *
978 * Allocates pages up to @bio->bi_vcnt.
979 *
980 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
981 * freed.
982 */
983 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
984 {
985 int i;
986 struct bio_vec *bv;
987
988 bio_for_each_segment_all(bv, bio, i) {
989 bv->bv_page = alloc_page(gfp_mask);
990 if (!bv->bv_page) {
991 while (--bv >= bio->bi_io_vec)
992 __free_page(bv->bv_page);
993 return -ENOMEM;
994 }
995 }
996
997 return 0;
998 }
999 EXPORT_SYMBOL(bio_alloc_pages);
1000
1001 /**
1002 * bio_copy_data - copy contents of data buffers from one chain of bios to
1003 * another
1004 * @src: source bio list
1005 * @dst: destination bio list
1006 *
1007 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1008 * @src and @dst as linked lists of bios.
1009 *
1010 * Stops when it reaches the end of either @src or @dst - that is, copies
1011 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1012 */
1013 void bio_copy_data(struct bio *dst, struct bio *src)
1014 {
1015 struct bvec_iter src_iter, dst_iter;
1016 struct bio_vec src_bv, dst_bv;
1017 void *src_p, *dst_p;
1018 unsigned bytes;
1019
1020 src_iter = src->bi_iter;
1021 dst_iter = dst->bi_iter;
1022
1023 while (1) {
1024 if (!src_iter.bi_size) {
1025 src = src->bi_next;
1026 if (!src)
1027 break;
1028
1029 src_iter = src->bi_iter;
1030 }
1031
1032 if (!dst_iter.bi_size) {
1033 dst = dst->bi_next;
1034 if (!dst)
1035 break;
1036
1037 dst_iter = dst->bi_iter;
1038 }
1039
1040 src_bv = bio_iter_iovec(src, src_iter);
1041 dst_bv = bio_iter_iovec(dst, dst_iter);
1042
1043 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1044
1045 src_p = kmap_atomic(src_bv.bv_page);
1046 dst_p = kmap_atomic(dst_bv.bv_page);
1047
1048 memcpy(dst_p + dst_bv.bv_offset,
1049 src_p + src_bv.bv_offset,
1050 bytes);
1051
1052 kunmap_atomic(dst_p);
1053 kunmap_atomic(src_p);
1054
1055 bio_advance_iter(src, &src_iter, bytes);
1056 bio_advance_iter(dst, &dst_iter, bytes);
1057 }
1058 }
1059 EXPORT_SYMBOL(bio_copy_data);
1060
1061 struct bio_map_data {
1062 int is_our_pages;
1063 struct iov_iter iter;
1064 struct iovec iov[];
1065 };
1066
1067 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1068 gfp_t gfp_mask)
1069 {
1070 if (iov_count > UIO_MAXIOV)
1071 return NULL;
1072
1073 return kmalloc(sizeof(struct bio_map_data) +
1074 sizeof(struct iovec) * iov_count, gfp_mask);
1075 }
1076
1077 /**
1078 * bio_copy_from_iter - copy all pages from iov_iter to bio
1079 * @bio: The &struct bio which describes the I/O as destination
1080 * @iter: iov_iter as source
1081 *
1082 * Copy all pages from iov_iter to bio.
1083 * Returns 0 on success, or error on failure.
1084 */
1085 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1086 {
1087 int i;
1088 struct bio_vec *bvec;
1089
1090 bio_for_each_segment_all(bvec, bio, i) {
1091 ssize_t ret;
1092
1093 ret = copy_page_from_iter(bvec->bv_page,
1094 bvec->bv_offset,
1095 bvec->bv_len,
1096 &iter);
1097
1098 if (!iov_iter_count(&iter))
1099 break;
1100
1101 if (ret < bvec->bv_len)
1102 return -EFAULT;
1103 }
1104
1105 return 0;
1106 }
1107
1108 /**
1109 * bio_copy_to_iter - copy all pages from bio to iov_iter
1110 * @bio: The &struct bio which describes the I/O as source
1111 * @iter: iov_iter as destination
1112 *
1113 * Copy all pages from bio to iov_iter.
1114 * Returns 0 on success, or error on failure.
1115 */
1116 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1117 {
1118 int i;
1119 struct bio_vec *bvec;
1120
1121 bio_for_each_segment_all(bvec, bio, i) {
1122 ssize_t ret;
1123
1124 ret = copy_page_to_iter(bvec->bv_page,
1125 bvec->bv_offset,
1126 bvec->bv_len,
1127 &iter);
1128
1129 if (!iov_iter_count(&iter))
1130 break;
1131
1132 if (ret < bvec->bv_len)
1133 return -EFAULT;
1134 }
1135
1136 return 0;
1137 }
1138
1139 void bio_free_pages(struct bio *bio)
1140 {
1141 struct bio_vec *bvec;
1142 int i;
1143
1144 bio_for_each_segment_all(bvec, bio, i)
1145 __free_page(bvec->bv_page);
1146 }
1147 EXPORT_SYMBOL(bio_free_pages);
1148
1149 /**
1150 * bio_uncopy_user - finish previously mapped bio
1151 * @bio: bio being terminated
1152 *
1153 * Free pages allocated from bio_copy_user_iov() and write back data
1154 * to user space in case of a read.
1155 */
1156 int bio_uncopy_user(struct bio *bio)
1157 {
1158 struct bio_map_data *bmd = bio->bi_private;
1159 int ret = 0;
1160
1161 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1162 /*
1163 * if we're in a workqueue, the request is orphaned, so
1164 * don't copy into a random user address space, just free
1165 * and return -EINTR so user space doesn't expect any data.
1166 */
1167 if (!current->mm)
1168 ret = -EINTR;
1169 else if (bio_data_dir(bio) == READ)
1170 ret = bio_copy_to_iter(bio, bmd->iter);
1171 if (bmd->is_our_pages)
1172 bio_free_pages(bio);
1173 }
1174 kfree(bmd);
1175 bio_put(bio);
1176 return ret;
1177 }
1178
1179 /**
1180 * bio_copy_user_iov - copy user data to bio
1181 * @q: destination block queue
1182 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1183 * @iter: iovec iterator
1184 * @gfp_mask: memory allocation flags
1185 *
1186 * Prepares and returns a bio for indirect user io, bouncing data
1187 * to/from kernel pages as necessary. Must be paired with
1188 * call bio_uncopy_user() on io completion.
1189 */
1190 struct bio *bio_copy_user_iov(struct request_queue *q,
1191 struct rq_map_data *map_data,
1192 const struct iov_iter *iter,
1193 gfp_t gfp_mask)
1194 {
1195 struct bio_map_data *bmd;
1196 struct page *page;
1197 struct bio *bio;
1198 int i, ret;
1199 int nr_pages = 0;
1200 unsigned int len = iter->count;
1201 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1202
1203 for (i = 0; i < iter->nr_segs; i++) {
1204 unsigned long uaddr;
1205 unsigned long end;
1206 unsigned long start;
1207
1208 uaddr = (unsigned long) iter->iov[i].iov_base;
1209 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1210 >> PAGE_SHIFT;
1211 start = uaddr >> PAGE_SHIFT;
1212
1213 /*
1214 * Overflow, abort
1215 */
1216 if (end < start)
1217 return ERR_PTR(-EINVAL);
1218
1219 nr_pages += end - start;
1220 }
1221
1222 if (offset)
1223 nr_pages++;
1224
1225 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1226 if (!bmd)
1227 return ERR_PTR(-ENOMEM);
1228
1229 /*
1230 * We need to do a deep copy of the iov_iter including the iovecs.
1231 * The caller provided iov might point to an on-stack or otherwise
1232 * shortlived one.
1233 */
1234 bmd->is_our_pages = map_data ? 0 : 1;
1235 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1236 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1237 iter->nr_segs, iter->count);
1238
1239 ret = -ENOMEM;
1240 bio = bio_kmalloc(gfp_mask, nr_pages);
1241 if (!bio)
1242 goto out_bmd;
1243
1244 ret = 0;
1245
1246 if (map_data) {
1247 nr_pages = 1 << map_data->page_order;
1248 i = map_data->offset / PAGE_SIZE;
1249 }
1250 while (len) {
1251 unsigned int bytes = PAGE_SIZE;
1252
1253 bytes -= offset;
1254
1255 if (bytes > len)
1256 bytes = len;
1257
1258 if (map_data) {
1259 if (i == map_data->nr_entries * nr_pages) {
1260 ret = -ENOMEM;
1261 break;
1262 }
1263
1264 page = map_data->pages[i / nr_pages];
1265 page += (i % nr_pages);
1266
1267 i++;
1268 } else {
1269 page = alloc_page(q->bounce_gfp | gfp_mask);
1270 if (!page) {
1271 ret = -ENOMEM;
1272 break;
1273 }
1274 }
1275
1276 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1277 break;
1278
1279 len -= bytes;
1280 offset = 0;
1281 }
1282
1283 if (ret)
1284 goto cleanup;
1285
1286 /*
1287 * success
1288 */
1289 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1290 (map_data && map_data->from_user)) {
1291 ret = bio_copy_from_iter(bio, *iter);
1292 if (ret)
1293 goto cleanup;
1294 }
1295
1296 bio->bi_private = bmd;
1297 return bio;
1298 cleanup:
1299 if (!map_data)
1300 bio_free_pages(bio);
1301 bio_put(bio);
1302 out_bmd:
1303 kfree(bmd);
1304 return ERR_PTR(ret);
1305 }
1306
1307 /**
1308 * bio_map_user_iov - map user iovec into bio
1309 * @q: the struct request_queue for the bio
1310 * @iter: iovec iterator
1311 * @gfp_mask: memory allocation flags
1312 *
1313 * Map the user space address into a bio suitable for io to a block
1314 * device. Returns an error pointer in case of error.
1315 */
1316 struct bio *bio_map_user_iov(struct request_queue *q,
1317 const struct iov_iter *iter,
1318 gfp_t gfp_mask)
1319 {
1320 int j;
1321 int nr_pages = 0;
1322 struct page **pages;
1323 struct bio *bio;
1324 int cur_page = 0;
1325 int ret, offset;
1326 struct iov_iter i;
1327 struct iovec iov;
1328
1329 iov_for_each(iov, i, *iter) {
1330 unsigned long uaddr = (unsigned long) iov.iov_base;
1331 unsigned long len = iov.iov_len;
1332 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1333 unsigned long start = uaddr >> PAGE_SHIFT;
1334
1335 /*
1336 * Overflow, abort
1337 */
1338 if (end < start)
1339 return ERR_PTR(-EINVAL);
1340
1341 nr_pages += end - start;
1342 /*
1343 * buffer must be aligned to at least logical block size for now
1344 */
1345 if (uaddr & queue_dma_alignment(q))
1346 return ERR_PTR(-EINVAL);
1347 }
1348
1349 if (!nr_pages)
1350 return ERR_PTR(-EINVAL);
1351
1352 bio = bio_kmalloc(gfp_mask, nr_pages);
1353 if (!bio)
1354 return ERR_PTR(-ENOMEM);
1355
1356 ret = -ENOMEM;
1357 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1358 if (!pages)
1359 goto out;
1360
1361 iov_for_each(iov, i, *iter) {
1362 unsigned long uaddr = (unsigned long) iov.iov_base;
1363 unsigned long len = iov.iov_len;
1364 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1365 unsigned long start = uaddr >> PAGE_SHIFT;
1366 const int local_nr_pages = end - start;
1367 const int page_limit = cur_page + local_nr_pages;
1368
1369 ret = get_user_pages_fast(uaddr, local_nr_pages,
1370 (iter->type & WRITE) != WRITE,
1371 &pages[cur_page]);
1372 if (ret < local_nr_pages) {
1373 ret = -EFAULT;
1374 goto out_unmap;
1375 }
1376
1377 offset = offset_in_page(uaddr);
1378 for (j = cur_page; j < page_limit; j++) {
1379 unsigned int bytes = PAGE_SIZE - offset;
1380
1381 if (len <= 0)
1382 break;
1383
1384 if (bytes > len)
1385 bytes = len;
1386
1387 /*
1388 * sorry...
1389 */
1390 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1391 bytes)
1392 break;
1393
1394 len -= bytes;
1395 offset = 0;
1396 }
1397
1398 cur_page = j;
1399 /*
1400 * release the pages we didn't map into the bio, if any
1401 */
1402 while (j < page_limit)
1403 put_page(pages[j++]);
1404 }
1405
1406 kfree(pages);
1407
1408 bio_set_flag(bio, BIO_USER_MAPPED);
1409
1410 /*
1411 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1412 * it would normally disappear when its bi_end_io is run.
1413 * however, we need it for the unmap, so grab an extra
1414 * reference to it
1415 */
1416 bio_get(bio);
1417 return bio;
1418
1419 out_unmap:
1420 for (j = 0; j < nr_pages; j++) {
1421 if (!pages[j])
1422 break;
1423 put_page(pages[j]);
1424 }
1425 out:
1426 kfree(pages);
1427 bio_put(bio);
1428 return ERR_PTR(ret);
1429 }
1430
1431 static void __bio_unmap_user(struct bio *bio)
1432 {
1433 struct bio_vec *bvec;
1434 int i;
1435
1436 /*
1437 * make sure we dirty pages we wrote to
1438 */
1439 bio_for_each_segment_all(bvec, bio, i) {
1440 if (bio_data_dir(bio) == READ)
1441 set_page_dirty_lock(bvec->bv_page);
1442
1443 put_page(bvec->bv_page);
1444 }
1445
1446 bio_put(bio);
1447 }
1448
1449 /**
1450 * bio_unmap_user - unmap a bio
1451 * @bio: the bio being unmapped
1452 *
1453 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1454 * process context.
1455 *
1456 * bio_unmap_user() may sleep.
1457 */
1458 void bio_unmap_user(struct bio *bio)
1459 {
1460 __bio_unmap_user(bio);
1461 bio_put(bio);
1462 }
1463
1464 static void bio_map_kern_endio(struct bio *bio)
1465 {
1466 bio_put(bio);
1467 }
1468
1469 /**
1470 * bio_map_kern - map kernel address into bio
1471 * @q: the struct request_queue for the bio
1472 * @data: pointer to buffer to map
1473 * @len: length in bytes
1474 * @gfp_mask: allocation flags for bio allocation
1475 *
1476 * Map the kernel address into a bio suitable for io to a block
1477 * device. Returns an error pointer in case of error.
1478 */
1479 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1480 gfp_t gfp_mask)
1481 {
1482 unsigned long kaddr = (unsigned long)data;
1483 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1484 unsigned long start = kaddr >> PAGE_SHIFT;
1485 const int nr_pages = end - start;
1486 int offset, i;
1487 struct bio *bio;
1488
1489 bio = bio_kmalloc(gfp_mask, nr_pages);
1490 if (!bio)
1491 return ERR_PTR(-ENOMEM);
1492
1493 offset = offset_in_page(kaddr);
1494 for (i = 0; i < nr_pages; i++) {
1495 unsigned int bytes = PAGE_SIZE - offset;
1496
1497 if (len <= 0)
1498 break;
1499
1500 if (bytes > len)
1501 bytes = len;
1502
1503 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1504 offset) < bytes) {
1505 /* we don't support partial mappings */
1506 bio_put(bio);
1507 return ERR_PTR(-EINVAL);
1508 }
1509
1510 data += bytes;
1511 len -= bytes;
1512 offset = 0;
1513 }
1514
1515 bio->bi_end_io = bio_map_kern_endio;
1516 return bio;
1517 }
1518 EXPORT_SYMBOL(bio_map_kern);
1519
1520 static void bio_copy_kern_endio(struct bio *bio)
1521 {
1522 bio_free_pages(bio);
1523 bio_put(bio);
1524 }
1525
1526 static void bio_copy_kern_endio_read(struct bio *bio)
1527 {
1528 char *p = bio->bi_private;
1529 struct bio_vec *bvec;
1530 int i;
1531
1532 bio_for_each_segment_all(bvec, bio, i) {
1533 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1534 p += bvec->bv_len;
1535 }
1536
1537 bio_copy_kern_endio(bio);
1538 }
1539
1540 /**
1541 * bio_copy_kern - copy kernel address into bio
1542 * @q: the struct request_queue for the bio
1543 * @data: pointer to buffer to copy
1544 * @len: length in bytes
1545 * @gfp_mask: allocation flags for bio and page allocation
1546 * @reading: data direction is READ
1547 *
1548 * copy the kernel address into a bio suitable for io to a block
1549 * device. Returns an error pointer in case of error.
1550 */
1551 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1552 gfp_t gfp_mask, int reading)
1553 {
1554 unsigned long kaddr = (unsigned long)data;
1555 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1556 unsigned long start = kaddr >> PAGE_SHIFT;
1557 struct bio *bio;
1558 void *p = data;
1559 int nr_pages = 0;
1560
1561 /*
1562 * Overflow, abort
1563 */
1564 if (end < start)
1565 return ERR_PTR(-EINVAL);
1566
1567 nr_pages = end - start;
1568 bio = bio_kmalloc(gfp_mask, nr_pages);
1569 if (!bio)
1570 return ERR_PTR(-ENOMEM);
1571
1572 while (len) {
1573 struct page *page;
1574 unsigned int bytes = PAGE_SIZE;
1575
1576 if (bytes > len)
1577 bytes = len;
1578
1579 page = alloc_page(q->bounce_gfp | gfp_mask);
1580 if (!page)
1581 goto cleanup;
1582
1583 if (!reading)
1584 memcpy(page_address(page), p, bytes);
1585
1586 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1587 break;
1588
1589 len -= bytes;
1590 p += bytes;
1591 }
1592
1593 if (reading) {
1594 bio->bi_end_io = bio_copy_kern_endio_read;
1595 bio->bi_private = data;
1596 } else {
1597 bio->bi_end_io = bio_copy_kern_endio;
1598 }
1599
1600 return bio;
1601
1602 cleanup:
1603 bio_free_pages(bio);
1604 bio_put(bio);
1605 return ERR_PTR(-ENOMEM);
1606 }
1607
1608 /*
1609 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1610 * for performing direct-IO in BIOs.
1611 *
1612 * The problem is that we cannot run set_page_dirty() from interrupt context
1613 * because the required locks are not interrupt-safe. So what we can do is to
1614 * mark the pages dirty _before_ performing IO. And in interrupt context,
1615 * check that the pages are still dirty. If so, fine. If not, redirty them
1616 * in process context.
1617 *
1618 * We special-case compound pages here: normally this means reads into hugetlb
1619 * pages. The logic in here doesn't really work right for compound pages
1620 * because the VM does not uniformly chase down the head page in all cases.
1621 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1622 * handle them at all. So we skip compound pages here at an early stage.
1623 *
1624 * Note that this code is very hard to test under normal circumstances because
1625 * direct-io pins the pages with get_user_pages(). This makes
1626 * is_page_cache_freeable return false, and the VM will not clean the pages.
1627 * But other code (eg, flusher threads) could clean the pages if they are mapped
1628 * pagecache.
1629 *
1630 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1631 * deferred bio dirtying paths.
1632 */
1633
1634 /*
1635 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1636 */
1637 void bio_set_pages_dirty(struct bio *bio)
1638 {
1639 struct bio_vec *bvec;
1640 int i;
1641
1642 bio_for_each_segment_all(bvec, bio, i) {
1643 struct page *page = bvec->bv_page;
1644
1645 if (page && !PageCompound(page))
1646 set_page_dirty_lock(page);
1647 }
1648 }
1649
1650 static void bio_release_pages(struct bio *bio)
1651 {
1652 struct bio_vec *bvec;
1653 int i;
1654
1655 bio_for_each_segment_all(bvec, bio, i) {
1656 struct page *page = bvec->bv_page;
1657
1658 if (page)
1659 put_page(page);
1660 }
1661 }
1662
1663 /*
1664 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1665 * If they are, then fine. If, however, some pages are clean then they must
1666 * have been written out during the direct-IO read. So we take another ref on
1667 * the BIO and the offending pages and re-dirty the pages in process context.
1668 *
1669 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1670 * here on. It will run one put_page() against each page and will run one
1671 * bio_put() against the BIO.
1672 */
1673
1674 static void bio_dirty_fn(struct work_struct *work);
1675
1676 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1677 static DEFINE_SPINLOCK(bio_dirty_lock);
1678 static struct bio *bio_dirty_list;
1679
1680 /*
1681 * This runs in process context
1682 */
1683 static void bio_dirty_fn(struct work_struct *work)
1684 {
1685 unsigned long flags;
1686 struct bio *bio;
1687
1688 spin_lock_irqsave(&bio_dirty_lock, flags);
1689 bio = bio_dirty_list;
1690 bio_dirty_list = NULL;
1691 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1692
1693 while (bio) {
1694 struct bio *next = bio->bi_private;
1695
1696 bio_set_pages_dirty(bio);
1697 bio_release_pages(bio);
1698 bio_put(bio);
1699 bio = next;
1700 }
1701 }
1702
1703 void bio_check_pages_dirty(struct bio *bio)
1704 {
1705 struct bio_vec *bvec;
1706 int nr_clean_pages = 0;
1707 int i;
1708
1709 bio_for_each_segment_all(bvec, bio, i) {
1710 struct page *page = bvec->bv_page;
1711
1712 if (PageDirty(page) || PageCompound(page)) {
1713 put_page(page);
1714 bvec->bv_page = NULL;
1715 } else {
1716 nr_clean_pages++;
1717 }
1718 }
1719
1720 if (nr_clean_pages) {
1721 unsigned long flags;
1722
1723 spin_lock_irqsave(&bio_dirty_lock, flags);
1724 bio->bi_private = bio_dirty_list;
1725 bio_dirty_list = bio;
1726 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1727 schedule_work(&bio_dirty_work);
1728 } else {
1729 bio_put(bio);
1730 }
1731 }
1732
1733 void generic_start_io_acct(int rw, unsigned long sectors,
1734 struct hd_struct *part)
1735 {
1736 int cpu = part_stat_lock();
1737
1738 part_round_stats(cpu, part);
1739 part_stat_inc(cpu, part, ios[rw]);
1740 part_stat_add(cpu, part, sectors[rw], sectors);
1741 part_inc_in_flight(part, rw);
1742
1743 part_stat_unlock();
1744 }
1745 EXPORT_SYMBOL(generic_start_io_acct);
1746
1747 void generic_end_io_acct(int rw, struct hd_struct *part,
1748 unsigned long start_time)
1749 {
1750 unsigned long duration = jiffies - start_time;
1751 int cpu = part_stat_lock();
1752
1753 part_stat_add(cpu, part, ticks[rw], duration);
1754 part_round_stats(cpu, part);
1755 part_dec_in_flight(part, rw);
1756
1757 part_stat_unlock();
1758 }
1759 EXPORT_SYMBOL(generic_end_io_acct);
1760
1761 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1762 void bio_flush_dcache_pages(struct bio *bi)
1763 {
1764 struct bio_vec bvec;
1765 struct bvec_iter iter;
1766
1767 bio_for_each_segment(bvec, bi, iter)
1768 flush_dcache_page(bvec.bv_page);
1769 }
1770 EXPORT_SYMBOL(bio_flush_dcache_pages);
1771 #endif
1772
1773 static inline bool bio_remaining_done(struct bio *bio)
1774 {
1775 /*
1776 * If we're not chaining, then ->__bi_remaining is always 1 and
1777 * we always end io on the first invocation.
1778 */
1779 if (!bio_flagged(bio, BIO_CHAIN))
1780 return true;
1781
1782 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1783
1784 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1785 bio_clear_flag(bio, BIO_CHAIN);
1786 return true;
1787 }
1788
1789 return false;
1790 }
1791
1792 /**
1793 * bio_endio - end I/O on a bio
1794 * @bio: bio
1795 *
1796 * Description:
1797 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1798 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1799 * bio unless they own it and thus know that it has an end_io function.
1800 *
1801 * bio_endio() can be called several times on a bio that has been chained
1802 * using bio_chain(). The ->bi_end_io() function will only be called the
1803 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1804 * generated if BIO_TRACE_COMPLETION is set.
1805 **/
1806 void bio_endio(struct bio *bio)
1807 {
1808 again:
1809 if (!bio_remaining_done(bio))
1810 return;
1811
1812 /*
1813 * Need to have a real endio function for chained bios, otherwise
1814 * various corner cases will break (like stacking block devices that
1815 * save/restore bi_end_io) - however, we want to avoid unbounded
1816 * recursion and blowing the stack. Tail call optimization would
1817 * handle this, but compiling with frame pointers also disables
1818 * gcc's sibling call optimization.
1819 */
1820 if (bio->bi_end_io == bio_chain_endio) {
1821 bio = __bio_chain_endio(bio);
1822 goto again;
1823 }
1824
1825 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1826 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev),
1827 bio, bio->bi_error);
1828 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1829 }
1830
1831 blk_throtl_bio_endio(bio);
1832 if (bio->bi_end_io)
1833 bio->bi_end_io(bio);
1834 }
1835 EXPORT_SYMBOL(bio_endio);
1836
1837 /**
1838 * bio_split - split a bio
1839 * @bio: bio to split
1840 * @sectors: number of sectors to split from the front of @bio
1841 * @gfp: gfp mask
1842 * @bs: bio set to allocate from
1843 *
1844 * Allocates and returns a new bio which represents @sectors from the start of
1845 * @bio, and updates @bio to represent the remaining sectors.
1846 *
1847 * Unless this is a discard request the newly allocated bio will point
1848 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1849 * @bio is not freed before the split.
1850 */
1851 struct bio *bio_split(struct bio *bio, int sectors,
1852 gfp_t gfp, struct bio_set *bs)
1853 {
1854 struct bio *split = NULL;
1855
1856 BUG_ON(sectors <= 0);
1857 BUG_ON(sectors >= bio_sectors(bio));
1858
1859 split = bio_clone_fast(bio, gfp, bs);
1860 if (!split)
1861 return NULL;
1862
1863 split->bi_iter.bi_size = sectors << 9;
1864
1865 if (bio_integrity(split))
1866 bio_integrity_trim(split, 0, sectors);
1867
1868 bio_advance(bio, split->bi_iter.bi_size);
1869
1870 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1871 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1872
1873 return split;
1874 }
1875 EXPORT_SYMBOL(bio_split);
1876
1877 /**
1878 * bio_trim - trim a bio
1879 * @bio: bio to trim
1880 * @offset: number of sectors to trim from the front of @bio
1881 * @size: size we want to trim @bio to, in sectors
1882 */
1883 void bio_trim(struct bio *bio, int offset, int size)
1884 {
1885 /* 'bio' is a cloned bio which we need to trim to match
1886 * the given offset and size.
1887 */
1888
1889 size <<= 9;
1890 if (offset == 0 && size == bio->bi_iter.bi_size)
1891 return;
1892
1893 bio_clear_flag(bio, BIO_SEG_VALID);
1894
1895 bio_advance(bio, offset << 9);
1896
1897 bio->bi_iter.bi_size = size;
1898 }
1899 EXPORT_SYMBOL_GPL(bio_trim);
1900
1901 /*
1902 * create memory pools for biovec's in a bio_set.
1903 * use the global biovec slabs created for general use.
1904 */
1905 mempool_t *biovec_create_pool(int pool_entries)
1906 {
1907 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1908
1909 return mempool_create_slab_pool(pool_entries, bp->slab);
1910 }
1911
1912 void bioset_free(struct bio_set *bs)
1913 {
1914 if (bs->rescue_workqueue)
1915 destroy_workqueue(bs->rescue_workqueue);
1916
1917 if (bs->bio_pool)
1918 mempool_destroy(bs->bio_pool);
1919
1920 if (bs->bvec_pool)
1921 mempool_destroy(bs->bvec_pool);
1922
1923 bioset_integrity_free(bs);
1924 bio_put_slab(bs);
1925
1926 kfree(bs);
1927 }
1928 EXPORT_SYMBOL(bioset_free);
1929
1930 static struct bio_set *__bioset_create(unsigned int pool_size,
1931 unsigned int front_pad,
1932 bool create_bvec_pool)
1933 {
1934 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1935 struct bio_set *bs;
1936
1937 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1938 if (!bs)
1939 return NULL;
1940
1941 bs->front_pad = front_pad;
1942
1943 spin_lock_init(&bs->rescue_lock);
1944 bio_list_init(&bs->rescue_list);
1945 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1946
1947 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1948 if (!bs->bio_slab) {
1949 kfree(bs);
1950 return NULL;
1951 }
1952
1953 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1954 if (!bs->bio_pool)
1955 goto bad;
1956
1957 if (create_bvec_pool) {
1958 bs->bvec_pool = biovec_create_pool(pool_size);
1959 if (!bs->bvec_pool)
1960 goto bad;
1961 }
1962
1963 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1964 if (!bs->rescue_workqueue)
1965 goto bad;
1966
1967 return bs;
1968 bad:
1969 bioset_free(bs);
1970 return NULL;
1971 }
1972
1973 /**
1974 * bioset_create - Create a bio_set
1975 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1976 * @front_pad: Number of bytes to allocate in front of the returned bio
1977 *
1978 * Description:
1979 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1980 * to ask for a number of bytes to be allocated in front of the bio.
1981 * Front pad allocation is useful for embedding the bio inside
1982 * another structure, to avoid allocating extra data to go with the bio.
1983 * Note that the bio must be embedded at the END of that structure always,
1984 * or things will break badly.
1985 */
1986 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1987 {
1988 return __bioset_create(pool_size, front_pad, true);
1989 }
1990 EXPORT_SYMBOL(bioset_create);
1991
1992 /**
1993 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1994 * @pool_size: Number of bio to cache in the mempool
1995 * @front_pad: Number of bytes to allocate in front of the returned bio
1996 *
1997 * Description:
1998 * Same functionality as bioset_create() except that mempool is not
1999 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
2000 */
2001 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
2002 {
2003 return __bioset_create(pool_size, front_pad, false);
2004 }
2005 EXPORT_SYMBOL(bioset_create_nobvec);
2006
2007 #ifdef CONFIG_BLK_CGROUP
2008
2009 /**
2010 * bio_associate_blkcg - associate a bio with the specified blkcg
2011 * @bio: target bio
2012 * @blkcg_css: css of the blkcg to associate
2013 *
2014 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2015 * treat @bio as if it were issued by a task which belongs to the blkcg.
2016 *
2017 * This function takes an extra reference of @blkcg_css which will be put
2018 * when @bio is released. The caller must own @bio and is responsible for
2019 * synchronizing calls to this function.
2020 */
2021 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2022 {
2023 if (unlikely(bio->bi_css))
2024 return -EBUSY;
2025 css_get(blkcg_css);
2026 bio->bi_css = blkcg_css;
2027 return 0;
2028 }
2029 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2030
2031 /**
2032 * bio_associate_current - associate a bio with %current
2033 * @bio: target bio
2034 *
2035 * Associate @bio with %current if it hasn't been associated yet. Block
2036 * layer will treat @bio as if it were issued by %current no matter which
2037 * task actually issues it.
2038 *
2039 * This function takes an extra reference of @task's io_context and blkcg
2040 * which will be put when @bio is released. The caller must own @bio,
2041 * ensure %current->io_context exists, and is responsible for synchronizing
2042 * calls to this function.
2043 */
2044 int bio_associate_current(struct bio *bio)
2045 {
2046 struct io_context *ioc;
2047
2048 if (bio->bi_css)
2049 return -EBUSY;
2050
2051 ioc = current->io_context;
2052 if (!ioc)
2053 return -ENOENT;
2054
2055 get_io_context_active(ioc);
2056 bio->bi_ioc = ioc;
2057 bio->bi_css = task_get_css(current, io_cgrp_id);
2058 return 0;
2059 }
2060 EXPORT_SYMBOL_GPL(bio_associate_current);
2061
2062 /**
2063 * bio_disassociate_task - undo bio_associate_current()
2064 * @bio: target bio
2065 */
2066 void bio_disassociate_task(struct bio *bio)
2067 {
2068 if (bio->bi_ioc) {
2069 put_io_context(bio->bi_ioc);
2070 bio->bi_ioc = NULL;
2071 }
2072 if (bio->bi_css) {
2073 css_put(bio->bi_css);
2074 bio->bi_css = NULL;
2075 }
2076 }
2077
2078 /**
2079 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2080 * @dst: destination bio
2081 * @src: source bio
2082 */
2083 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2084 {
2085 if (src->bi_css)
2086 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2087 }
2088
2089 #endif /* CONFIG_BLK_CGROUP */
2090
2091 static void __init biovec_init_slabs(void)
2092 {
2093 int i;
2094
2095 for (i = 0; i < BVEC_POOL_NR; i++) {
2096 int size;
2097 struct biovec_slab *bvs = bvec_slabs + i;
2098
2099 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2100 bvs->slab = NULL;
2101 continue;
2102 }
2103
2104 size = bvs->nr_vecs * sizeof(struct bio_vec);
2105 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2106 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2107 }
2108 }
2109
2110 static int __init init_bio(void)
2111 {
2112 bio_slab_max = 2;
2113 bio_slab_nr = 0;
2114 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2115 if (!bio_slabs)
2116 panic("bio: can't allocate bios\n");
2117
2118 bio_integrity_init();
2119 biovec_init_slabs();
2120
2121 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2122 if (!fs_bio_set)
2123 panic("bio: can't allocate bios\n");
2124
2125 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2126 panic("bio: can't create integrity pool\n");
2127
2128 return 0;
2129 }
2130 subsys_initcall(init_bio);