]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/bio.c
Merge branch 'linus' into perf/urgent, to pick up dependent commits
[mirror_ubuntu-bionic-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33 #include "blk.h"
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 /*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51
52 /*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58
59 /*
60 * Our slab pool management
61 */
62 struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
105 goto out_unlock;
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
119
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123 out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126 }
127
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 return bvec_slabs[idx].nr_vecs;
160 }
161
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
169
170 if (idx == BVEC_POOL_MAX) {
171 mempool_free(bv, pool);
172 } else {
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177 }
178
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
181 {
182 struct bio_vec *bvl;
183
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
214 if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 bvl = mempool_alloc(pool, gfp_mask);
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220
221 /*
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
225 */
226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227
228 /*
229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 * is set, retry with the 1-entry mempool
231 */
232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 *idx = BVEC_POOL_MAX;
235 goto fallback;
236 }
237 }
238
239 (*idx)++;
240 return bvl;
241 }
242
243 void bio_uninit(struct bio *bio)
244 {
245 bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248
249 static void bio_free(struct bio *bio)
250 {
251 struct bio_set *bs = bio->bi_pool;
252 void *p;
253
254 bio_uninit(bio);
255
256 if (bs) {
257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
263 p -= bs->front_pad;
264
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
270 }
271
272 /*
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
276 */
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 unsigned short max_vecs)
279 {
280 memset(bio, 0, sizeof(*bio));
281 atomic_set(&bio->__bi_remaining, 1);
282 atomic_set(&bio->__bi_cnt, 1);
283
284 bio->bi_io_vec = table;
285 bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288
289 /**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 *
293 * Description:
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
298 */
299 void bio_reset(struct bio *bio)
300 {
301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302
303 bio_uninit(bio);
304
305 memset(bio, 0, BIO_RESET_BYTES);
306 bio->bi_flags = flags;
307 atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 struct bio *parent = bio->bi_private;
314
315 if (!parent->bi_status)
316 parent->bi_status = bio->bi_status;
317 bio_put(bio);
318 return parent;
319 }
320
321 static void bio_chain_endio(struct bio *bio)
322 {
323 bio_endio(__bio_chain_endio(bio));
324 }
325
326 /**
327 * bio_chain - chain bio completions
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
343 bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
351
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
356
357 if (!bio)
358 break;
359
360 generic_make_request(bio);
361 }
362 }
363
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 struct bio_list punt, nopunt;
367 struct bio *bio;
368
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
371 /*
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
377 *
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
380 */
381
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
384
385 while ((bio = bio_list_pop(&current->bio_list[0])))
386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 current->bio_list[0] = nopunt;
388
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(&current->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
393
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
397
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400
401 /**
402 * bio_alloc_bioset - allocate a bio for I/O
403 * @gfp_mask: the GFP_ mask given to the slab allocator
404 * @nr_iovecs: number of iovecs to pre-allocate
405 * @bs: the bio_set to allocate from.
406 *
407 * Description:
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
410 *
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
417 *
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
421 * stack overflows.
422 *
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
426 * thread.
427 *
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
432 *
433 * RETURNS:
434 * Pointer to new bio on success, NULL on failure.
435 */
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 struct bio_set *bs)
438 {
439 gfp_t saved_gfp = gfp_mask;
440 unsigned front_pad;
441 unsigned inline_vecs;
442 struct bio_vec *bvl = NULL;
443 struct bio *bio;
444 void *p;
445
446 if (!bs) {
447 if (nr_iovecs > UIO_MAXIOV)
448 return NULL;
449
450 p = kmalloc(sizeof(struct bio) +
451 nr_iovecs * sizeof(struct bio_vec),
452 gfp_mask);
453 front_pad = 0;
454 inline_vecs = nr_iovecs;
455 } else {
456 /* should not use nobvec bioset for nr_iovecs > 0 */
457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 return NULL;
459 /*
460 * generic_make_request() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath generic_make_request(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
478 */
479
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485
486 p = mempool_alloc(bs->bio_pool, gfp_mask);
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(bs->bio_pool, gfp_mask);
491 }
492
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
497 if (unlikely(!p))
498 return NULL;
499
500 bio = p + front_pad;
501 bio_init(bio, NULL, 0);
502
503 if (nr_iovecs > inline_vecs) {
504 unsigned long idx = 0;
505
506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 }
512
513 if (unlikely(!bvl))
514 goto err_free;
515
516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
519 }
520
521 bio->bi_pool = bs;
522 bio->bi_max_vecs = nr_iovecs;
523 bio->bi_io_vec = bvl;
524 return bio;
525
526 err_free:
527 mempool_free(p, bs->bio_pool);
528 return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531
532 void zero_fill_bio(struct bio *bio)
533 {
534 unsigned long flags;
535 struct bio_vec bv;
536 struct bvec_iter iter;
537
538 bio_for_each_segment(bv, bio, iter) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
542 bvec_kunmap_irq(data, &flags);
543 }
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546
547 /**
548 * bio_put - release a reference to a bio
549 * @bio: bio to release reference to
550 *
551 * Description:
552 * Put a reference to a &struct bio, either one you have gotten with
553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
554 **/
555 void bio_put(struct bio *bio)
556 {
557 if (!bio_flagged(bio, BIO_REFFED))
558 bio_free(bio);
559 else {
560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561
562 /*
563 * last put frees it
564 */
565 if (atomic_dec_and_test(&bio->__bi_cnt))
566 bio_free(bio);
567 }
568 }
569 EXPORT_SYMBOL(bio_put);
570
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 blk_recount_segments(q, bio);
575
576 return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579
580 /**
581 * __bio_clone_fast - clone a bio that shares the original bio's biovec
582 * @bio: destination bio
583 * @bio_src: bio to clone
584 *
585 * Clone a &bio. Caller will own the returned bio, but not
586 * the actual data it points to. Reference count of returned
587 * bio will be one.
588 *
589 * Caller must ensure that @bio_src is not freed before @bio.
590 */
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594
595 /*
596 * most users will be overriding ->bi_disk with a new target,
597 * so we don't set nor calculate new physical/hw segment counts here
598 */
599 bio->bi_disk = bio_src->bi_disk;
600 bio_set_flag(bio, BIO_CLONED);
601 bio->bi_opf = bio_src->bi_opf;
602 bio->bi_write_hint = bio_src->bi_write_hint;
603 bio->bi_iter = bio_src->bi_iter;
604 bio->bi_io_vec = bio_src->bi_io_vec;
605
606 bio_clone_blkcg_association(bio, bio_src);
607 }
608 EXPORT_SYMBOL(__bio_clone_fast);
609
610 /**
611 * bio_clone_fast - clone a bio that shares the original bio's biovec
612 * @bio: bio to clone
613 * @gfp_mask: allocation priority
614 * @bs: bio_set to allocate from
615 *
616 * Like __bio_clone_fast, only also allocates the returned bio
617 */
618 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
619 {
620 struct bio *b;
621
622 b = bio_alloc_bioset(gfp_mask, 0, bs);
623 if (!b)
624 return NULL;
625
626 __bio_clone_fast(b, bio);
627
628 if (bio_integrity(bio)) {
629 int ret;
630
631 ret = bio_integrity_clone(b, bio, gfp_mask);
632
633 if (ret < 0) {
634 bio_put(b);
635 return NULL;
636 }
637 }
638
639 return b;
640 }
641 EXPORT_SYMBOL(bio_clone_fast);
642
643 /**
644 * bio_clone_bioset - clone a bio
645 * @bio_src: bio to clone
646 * @gfp_mask: allocation priority
647 * @bs: bio_set to allocate from
648 *
649 * Clone bio. Caller will own the returned bio, but not the actual data it
650 * points to. Reference count of returned bio will be one.
651 */
652 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
653 struct bio_set *bs)
654 {
655 struct bvec_iter iter;
656 struct bio_vec bv;
657 struct bio *bio;
658
659 /*
660 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
661 * bio_src->bi_io_vec to bio->bi_io_vec.
662 *
663 * We can't do that anymore, because:
664 *
665 * - The point of cloning the biovec is to produce a bio with a biovec
666 * the caller can modify: bi_idx and bi_bvec_done should be 0.
667 *
668 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
669 * we tried to clone the whole thing bio_alloc_bioset() would fail.
670 * But the clone should succeed as long as the number of biovecs we
671 * actually need to allocate is fewer than BIO_MAX_PAGES.
672 *
673 * - Lastly, bi_vcnt should not be looked at or relied upon by code
674 * that does not own the bio - reason being drivers don't use it for
675 * iterating over the biovec anymore, so expecting it to be kept up
676 * to date (i.e. for clones that share the parent biovec) is just
677 * asking for trouble and would force extra work on
678 * __bio_clone_fast() anyways.
679 */
680
681 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
682 if (!bio)
683 return NULL;
684 bio->bi_disk = bio_src->bi_disk;
685 bio->bi_opf = bio_src->bi_opf;
686 bio->bi_write_hint = bio_src->bi_write_hint;
687 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
688 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
689
690 switch (bio_op(bio)) {
691 case REQ_OP_DISCARD:
692 case REQ_OP_SECURE_ERASE:
693 case REQ_OP_WRITE_ZEROES:
694 break;
695 case REQ_OP_WRITE_SAME:
696 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
697 break;
698 default:
699 bio_for_each_segment(bv, bio_src, iter)
700 bio->bi_io_vec[bio->bi_vcnt++] = bv;
701 break;
702 }
703
704 if (bio_integrity(bio_src)) {
705 int ret;
706
707 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
708 if (ret < 0) {
709 bio_put(bio);
710 return NULL;
711 }
712 }
713
714 bio_clone_blkcg_association(bio, bio_src);
715
716 return bio;
717 }
718 EXPORT_SYMBOL(bio_clone_bioset);
719
720 /**
721 * bio_add_pc_page - attempt to add page to bio
722 * @q: the target queue
723 * @bio: destination bio
724 * @page: page to add
725 * @len: vec entry length
726 * @offset: vec entry offset
727 *
728 * Attempt to add a page to the bio_vec maplist. This can fail for a
729 * number of reasons, such as the bio being full or target block device
730 * limitations. The target block device must allow bio's up to PAGE_SIZE,
731 * so it is always possible to add a single page to an empty bio.
732 *
733 * This should only be used by REQ_PC bios.
734 */
735 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
736 *page, unsigned int len, unsigned int offset)
737 {
738 int retried_segments = 0;
739 struct bio_vec *bvec;
740
741 /*
742 * cloned bio must not modify vec list
743 */
744 if (unlikely(bio_flagged(bio, BIO_CLONED)))
745 return 0;
746
747 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
748 return 0;
749
750 /*
751 * For filesystems with a blocksize smaller than the pagesize
752 * we will often be called with the same page as last time and
753 * a consecutive offset. Optimize this special case.
754 */
755 if (bio->bi_vcnt > 0) {
756 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
757
758 if (page == prev->bv_page &&
759 offset == prev->bv_offset + prev->bv_len) {
760 prev->bv_len += len;
761 bio->bi_iter.bi_size += len;
762 goto done;
763 }
764
765 /*
766 * If the queue doesn't support SG gaps and adding this
767 * offset would create a gap, disallow it.
768 */
769 if (bvec_gap_to_prev(q, prev, offset))
770 return 0;
771 }
772
773 if (bio->bi_vcnt >= bio->bi_max_vecs)
774 return 0;
775
776 /*
777 * setup the new entry, we might clear it again later if we
778 * cannot add the page
779 */
780 bvec = &bio->bi_io_vec[bio->bi_vcnt];
781 bvec->bv_page = page;
782 bvec->bv_len = len;
783 bvec->bv_offset = offset;
784 bio->bi_vcnt++;
785 bio->bi_phys_segments++;
786 bio->bi_iter.bi_size += len;
787
788 /*
789 * Perform a recount if the number of segments is greater
790 * than queue_max_segments(q).
791 */
792
793 while (bio->bi_phys_segments > queue_max_segments(q)) {
794
795 if (retried_segments)
796 goto failed;
797
798 retried_segments = 1;
799 blk_recount_segments(q, bio);
800 }
801
802 /* If we may be able to merge these biovecs, force a recount */
803 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
804 bio_clear_flag(bio, BIO_SEG_VALID);
805
806 done:
807 return len;
808
809 failed:
810 bvec->bv_page = NULL;
811 bvec->bv_len = 0;
812 bvec->bv_offset = 0;
813 bio->bi_vcnt--;
814 bio->bi_iter.bi_size -= len;
815 blk_recount_segments(q, bio);
816 return 0;
817 }
818 EXPORT_SYMBOL(bio_add_pc_page);
819
820 /**
821 * bio_add_page - attempt to add page to bio
822 * @bio: destination bio
823 * @page: page to add
824 * @len: vec entry length
825 * @offset: vec entry offset
826 *
827 * Attempt to add a page to the bio_vec maplist. This will only fail
828 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
829 */
830 int bio_add_page(struct bio *bio, struct page *page,
831 unsigned int len, unsigned int offset)
832 {
833 struct bio_vec *bv;
834
835 /*
836 * cloned bio must not modify vec list
837 */
838 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
839 return 0;
840
841 /*
842 * For filesystems with a blocksize smaller than the pagesize
843 * we will often be called with the same page as last time and
844 * a consecutive offset. Optimize this special case.
845 */
846 if (bio->bi_vcnt > 0) {
847 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
848
849 if (page == bv->bv_page &&
850 offset == bv->bv_offset + bv->bv_len) {
851 bv->bv_len += len;
852 goto done;
853 }
854 }
855
856 if (bio->bi_vcnt >= bio->bi_max_vecs)
857 return 0;
858
859 bv = &bio->bi_io_vec[bio->bi_vcnt];
860 bv->bv_page = page;
861 bv->bv_len = len;
862 bv->bv_offset = offset;
863
864 bio->bi_vcnt++;
865 done:
866 bio->bi_iter.bi_size += len;
867 return len;
868 }
869 EXPORT_SYMBOL(bio_add_page);
870
871 /**
872 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
873 * @bio: bio to add pages to
874 * @iter: iov iterator describing the region to be mapped
875 *
876 * Pins as many pages from *iter and appends them to @bio's bvec array. The
877 * pages will have to be released using put_page() when done.
878 */
879 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
880 {
881 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
882 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
883 struct page **pages = (struct page **)bv;
884 size_t offset, diff;
885 ssize_t size;
886
887 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
888 if (unlikely(size <= 0))
889 return size ? size : -EFAULT;
890 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
891
892 /*
893 * Deep magic below: We need to walk the pinned pages backwards
894 * because we are abusing the space allocated for the bio_vecs
895 * for the page array. Because the bio_vecs are larger than the
896 * page pointers by definition this will always work. But it also
897 * means we can't use bio_add_page, so any changes to it's semantics
898 * need to be reflected here as well.
899 */
900 bio->bi_iter.bi_size += size;
901 bio->bi_vcnt += nr_pages;
902
903 diff = (nr_pages * PAGE_SIZE - offset) - size;
904 while (nr_pages--) {
905 bv[nr_pages].bv_page = pages[nr_pages];
906 bv[nr_pages].bv_len = PAGE_SIZE;
907 bv[nr_pages].bv_offset = 0;
908 }
909
910 bv[0].bv_offset += offset;
911 bv[0].bv_len -= offset;
912 if (diff)
913 bv[bio->bi_vcnt - 1].bv_len -= diff;
914
915 iov_iter_advance(iter, size);
916 return 0;
917 }
918 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
919
920 static void submit_bio_wait_endio(struct bio *bio)
921 {
922 complete(bio->bi_private);
923 }
924
925 /**
926 * submit_bio_wait - submit a bio, and wait until it completes
927 * @bio: The &struct bio which describes the I/O
928 *
929 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
930 * bio_endio() on failure.
931 *
932 * WARNING: Unlike to how submit_bio() is usually used, this function does not
933 * result in bio reference to be consumed. The caller must drop the reference
934 * on his own.
935 */
936 int submit_bio_wait(struct bio *bio)
937 {
938 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
939
940 bio->bi_private = &done;
941 bio->bi_end_io = submit_bio_wait_endio;
942 bio->bi_opf |= REQ_SYNC;
943 submit_bio(bio);
944 wait_for_completion_io(&done);
945
946 return blk_status_to_errno(bio->bi_status);
947 }
948 EXPORT_SYMBOL(submit_bio_wait);
949
950 /**
951 * bio_advance - increment/complete a bio by some number of bytes
952 * @bio: bio to advance
953 * @bytes: number of bytes to complete
954 *
955 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
956 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
957 * be updated on the last bvec as well.
958 *
959 * @bio will then represent the remaining, uncompleted portion of the io.
960 */
961 void bio_advance(struct bio *bio, unsigned bytes)
962 {
963 if (bio_integrity(bio))
964 bio_integrity_advance(bio, bytes);
965
966 bio_advance_iter(bio, &bio->bi_iter, bytes);
967 }
968 EXPORT_SYMBOL(bio_advance);
969
970 /**
971 * bio_alloc_pages - allocates a single page for each bvec in a bio
972 * @bio: bio to allocate pages for
973 * @gfp_mask: flags for allocation
974 *
975 * Allocates pages up to @bio->bi_vcnt.
976 *
977 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
978 * freed.
979 */
980 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
981 {
982 int i;
983 struct bio_vec *bv;
984
985 bio_for_each_segment_all(bv, bio, i) {
986 bv->bv_page = alloc_page(gfp_mask);
987 if (!bv->bv_page) {
988 while (--bv >= bio->bi_io_vec)
989 __free_page(bv->bv_page);
990 return -ENOMEM;
991 }
992 }
993
994 return 0;
995 }
996 EXPORT_SYMBOL(bio_alloc_pages);
997
998 /**
999 * bio_copy_data - copy contents of data buffers from one chain of bios to
1000 * another
1001 * @src: source bio list
1002 * @dst: destination bio list
1003 *
1004 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1005 * @src and @dst as linked lists of bios.
1006 *
1007 * Stops when it reaches the end of either @src or @dst - that is, copies
1008 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1009 */
1010 void bio_copy_data(struct bio *dst, struct bio *src)
1011 {
1012 struct bvec_iter src_iter, dst_iter;
1013 struct bio_vec src_bv, dst_bv;
1014 void *src_p, *dst_p;
1015 unsigned bytes;
1016
1017 src_iter = src->bi_iter;
1018 dst_iter = dst->bi_iter;
1019
1020 while (1) {
1021 if (!src_iter.bi_size) {
1022 src = src->bi_next;
1023 if (!src)
1024 break;
1025
1026 src_iter = src->bi_iter;
1027 }
1028
1029 if (!dst_iter.bi_size) {
1030 dst = dst->bi_next;
1031 if (!dst)
1032 break;
1033
1034 dst_iter = dst->bi_iter;
1035 }
1036
1037 src_bv = bio_iter_iovec(src, src_iter);
1038 dst_bv = bio_iter_iovec(dst, dst_iter);
1039
1040 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1041
1042 src_p = kmap_atomic(src_bv.bv_page);
1043 dst_p = kmap_atomic(dst_bv.bv_page);
1044
1045 memcpy(dst_p + dst_bv.bv_offset,
1046 src_p + src_bv.bv_offset,
1047 bytes);
1048
1049 kunmap_atomic(dst_p);
1050 kunmap_atomic(src_p);
1051
1052 bio_advance_iter(src, &src_iter, bytes);
1053 bio_advance_iter(dst, &dst_iter, bytes);
1054 }
1055 }
1056 EXPORT_SYMBOL(bio_copy_data);
1057
1058 struct bio_map_data {
1059 int is_our_pages;
1060 struct iov_iter iter;
1061 struct iovec iov[];
1062 };
1063
1064 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1065 gfp_t gfp_mask)
1066 {
1067 if (iov_count > UIO_MAXIOV)
1068 return NULL;
1069
1070 return kmalloc(sizeof(struct bio_map_data) +
1071 sizeof(struct iovec) * iov_count, gfp_mask);
1072 }
1073
1074 /**
1075 * bio_copy_from_iter - copy all pages from iov_iter to bio
1076 * @bio: The &struct bio which describes the I/O as destination
1077 * @iter: iov_iter as source
1078 *
1079 * Copy all pages from iov_iter to bio.
1080 * Returns 0 on success, or error on failure.
1081 */
1082 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1083 {
1084 int i;
1085 struct bio_vec *bvec;
1086
1087 bio_for_each_segment_all(bvec, bio, i) {
1088 ssize_t ret;
1089
1090 ret = copy_page_from_iter(bvec->bv_page,
1091 bvec->bv_offset,
1092 bvec->bv_len,
1093 &iter);
1094
1095 if (!iov_iter_count(&iter))
1096 break;
1097
1098 if (ret < bvec->bv_len)
1099 return -EFAULT;
1100 }
1101
1102 return 0;
1103 }
1104
1105 /**
1106 * bio_copy_to_iter - copy all pages from bio to iov_iter
1107 * @bio: The &struct bio which describes the I/O as source
1108 * @iter: iov_iter as destination
1109 *
1110 * Copy all pages from bio to iov_iter.
1111 * Returns 0 on success, or error on failure.
1112 */
1113 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1114 {
1115 int i;
1116 struct bio_vec *bvec;
1117
1118 bio_for_each_segment_all(bvec, bio, i) {
1119 ssize_t ret;
1120
1121 ret = copy_page_to_iter(bvec->bv_page,
1122 bvec->bv_offset,
1123 bvec->bv_len,
1124 &iter);
1125
1126 if (!iov_iter_count(&iter))
1127 break;
1128
1129 if (ret < bvec->bv_len)
1130 return -EFAULT;
1131 }
1132
1133 return 0;
1134 }
1135
1136 void bio_free_pages(struct bio *bio)
1137 {
1138 struct bio_vec *bvec;
1139 int i;
1140
1141 bio_for_each_segment_all(bvec, bio, i)
1142 __free_page(bvec->bv_page);
1143 }
1144 EXPORT_SYMBOL(bio_free_pages);
1145
1146 /**
1147 * bio_uncopy_user - finish previously mapped bio
1148 * @bio: bio being terminated
1149 *
1150 * Free pages allocated from bio_copy_user_iov() and write back data
1151 * to user space in case of a read.
1152 */
1153 int bio_uncopy_user(struct bio *bio)
1154 {
1155 struct bio_map_data *bmd = bio->bi_private;
1156 int ret = 0;
1157
1158 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1159 /*
1160 * if we're in a workqueue, the request is orphaned, so
1161 * don't copy into a random user address space, just free
1162 * and return -EINTR so user space doesn't expect any data.
1163 */
1164 if (!current->mm)
1165 ret = -EINTR;
1166 else if (bio_data_dir(bio) == READ)
1167 ret = bio_copy_to_iter(bio, bmd->iter);
1168 if (bmd->is_our_pages)
1169 bio_free_pages(bio);
1170 }
1171 kfree(bmd);
1172 bio_put(bio);
1173 return ret;
1174 }
1175
1176 /**
1177 * bio_copy_user_iov - copy user data to bio
1178 * @q: destination block queue
1179 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1180 * @iter: iovec iterator
1181 * @gfp_mask: memory allocation flags
1182 *
1183 * Prepares and returns a bio for indirect user io, bouncing data
1184 * to/from kernel pages as necessary. Must be paired with
1185 * call bio_uncopy_user() on io completion.
1186 */
1187 struct bio *bio_copy_user_iov(struct request_queue *q,
1188 struct rq_map_data *map_data,
1189 const struct iov_iter *iter,
1190 gfp_t gfp_mask)
1191 {
1192 struct bio_map_data *bmd;
1193 struct page *page;
1194 struct bio *bio;
1195 int i, ret;
1196 int nr_pages = 0;
1197 unsigned int len = iter->count;
1198 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1199
1200 for (i = 0; i < iter->nr_segs; i++) {
1201 unsigned long uaddr;
1202 unsigned long end;
1203 unsigned long start;
1204
1205 uaddr = (unsigned long) iter->iov[i].iov_base;
1206 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1207 >> PAGE_SHIFT;
1208 start = uaddr >> PAGE_SHIFT;
1209
1210 /*
1211 * Overflow, abort
1212 */
1213 if (end < start)
1214 return ERR_PTR(-EINVAL);
1215
1216 nr_pages += end - start;
1217 }
1218
1219 if (offset)
1220 nr_pages++;
1221
1222 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1223 if (!bmd)
1224 return ERR_PTR(-ENOMEM);
1225
1226 /*
1227 * We need to do a deep copy of the iov_iter including the iovecs.
1228 * The caller provided iov might point to an on-stack or otherwise
1229 * shortlived one.
1230 */
1231 bmd->is_our_pages = map_data ? 0 : 1;
1232 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1233 bmd->iter = *iter;
1234 bmd->iter.iov = bmd->iov;
1235
1236 ret = -ENOMEM;
1237 bio = bio_kmalloc(gfp_mask, nr_pages);
1238 if (!bio)
1239 goto out_bmd;
1240
1241 ret = 0;
1242
1243 if (map_data) {
1244 nr_pages = 1 << map_data->page_order;
1245 i = map_data->offset / PAGE_SIZE;
1246 }
1247 while (len) {
1248 unsigned int bytes = PAGE_SIZE;
1249
1250 bytes -= offset;
1251
1252 if (bytes > len)
1253 bytes = len;
1254
1255 if (map_data) {
1256 if (i == map_data->nr_entries * nr_pages) {
1257 ret = -ENOMEM;
1258 break;
1259 }
1260
1261 page = map_data->pages[i / nr_pages];
1262 page += (i % nr_pages);
1263
1264 i++;
1265 } else {
1266 page = alloc_page(q->bounce_gfp | gfp_mask);
1267 if (!page) {
1268 ret = -ENOMEM;
1269 break;
1270 }
1271 }
1272
1273 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1274 break;
1275
1276 len -= bytes;
1277 offset = 0;
1278 }
1279
1280 if (ret)
1281 goto cleanup;
1282
1283 /*
1284 * success
1285 */
1286 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1287 (map_data && map_data->from_user)) {
1288 ret = bio_copy_from_iter(bio, *iter);
1289 if (ret)
1290 goto cleanup;
1291 }
1292
1293 bio->bi_private = bmd;
1294 return bio;
1295 cleanup:
1296 if (!map_data)
1297 bio_free_pages(bio);
1298 bio_put(bio);
1299 out_bmd:
1300 kfree(bmd);
1301 return ERR_PTR(ret);
1302 }
1303
1304 /**
1305 * bio_map_user_iov - map user iovec into bio
1306 * @q: the struct request_queue for the bio
1307 * @iter: iovec iterator
1308 * @gfp_mask: memory allocation flags
1309 *
1310 * Map the user space address into a bio suitable for io to a block
1311 * device. Returns an error pointer in case of error.
1312 */
1313 struct bio *bio_map_user_iov(struct request_queue *q,
1314 const struct iov_iter *iter,
1315 gfp_t gfp_mask)
1316 {
1317 int j;
1318 int nr_pages = 0;
1319 struct page **pages;
1320 struct bio *bio;
1321 int cur_page = 0;
1322 int ret, offset;
1323 struct iov_iter i;
1324 struct iovec iov;
1325 struct bio_vec *bvec;
1326
1327 iov_for_each(iov, i, *iter) {
1328 unsigned long uaddr = (unsigned long) iov.iov_base;
1329 unsigned long len = iov.iov_len;
1330 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1331 unsigned long start = uaddr >> PAGE_SHIFT;
1332
1333 /*
1334 * Overflow, abort
1335 */
1336 if (end < start)
1337 return ERR_PTR(-EINVAL);
1338
1339 nr_pages += end - start;
1340 /*
1341 * buffer must be aligned to at least logical block size for now
1342 */
1343 if (uaddr & queue_dma_alignment(q))
1344 return ERR_PTR(-EINVAL);
1345 }
1346
1347 if (!nr_pages)
1348 return ERR_PTR(-EINVAL);
1349
1350 bio = bio_kmalloc(gfp_mask, nr_pages);
1351 if (!bio)
1352 return ERR_PTR(-ENOMEM);
1353
1354 ret = -ENOMEM;
1355 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1356 if (!pages)
1357 goto out;
1358
1359 iov_for_each(iov, i, *iter) {
1360 unsigned long uaddr = (unsigned long) iov.iov_base;
1361 unsigned long len = iov.iov_len;
1362 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1363 unsigned long start = uaddr >> PAGE_SHIFT;
1364 const int local_nr_pages = end - start;
1365 const int page_limit = cur_page + local_nr_pages;
1366
1367 ret = get_user_pages_fast(uaddr, local_nr_pages,
1368 (iter->type & WRITE) != WRITE,
1369 &pages[cur_page]);
1370 if (unlikely(ret < local_nr_pages)) {
1371 for (j = cur_page; j < page_limit; j++) {
1372 if (!pages[j])
1373 break;
1374 put_page(pages[j]);
1375 }
1376 ret = -EFAULT;
1377 goto out_unmap;
1378 }
1379
1380 offset = offset_in_page(uaddr);
1381 for (j = cur_page; j < page_limit; j++) {
1382 unsigned int bytes = PAGE_SIZE - offset;
1383 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1384
1385 if (len <= 0)
1386 break;
1387
1388 if (bytes > len)
1389 bytes = len;
1390
1391 /*
1392 * sorry...
1393 */
1394 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1395 bytes)
1396 break;
1397
1398 /*
1399 * check if vector was merged with previous
1400 * drop page reference if needed
1401 */
1402 if (bio->bi_vcnt == prev_bi_vcnt)
1403 put_page(pages[j]);
1404
1405 len -= bytes;
1406 offset = 0;
1407 }
1408
1409 cur_page = j;
1410 /*
1411 * release the pages we didn't map into the bio, if any
1412 */
1413 while (j < page_limit)
1414 put_page(pages[j++]);
1415 }
1416
1417 kfree(pages);
1418
1419 bio_set_flag(bio, BIO_USER_MAPPED);
1420
1421 /*
1422 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1423 * it would normally disappear when its bi_end_io is run.
1424 * however, we need it for the unmap, so grab an extra
1425 * reference to it
1426 */
1427 bio_get(bio);
1428 return bio;
1429
1430 out_unmap:
1431 bio_for_each_segment_all(bvec, bio, j) {
1432 put_page(bvec->bv_page);
1433 }
1434 out:
1435 kfree(pages);
1436 bio_put(bio);
1437 return ERR_PTR(ret);
1438 }
1439
1440 static void __bio_unmap_user(struct bio *bio)
1441 {
1442 struct bio_vec *bvec;
1443 int i;
1444
1445 /*
1446 * make sure we dirty pages we wrote to
1447 */
1448 bio_for_each_segment_all(bvec, bio, i) {
1449 if (bio_data_dir(bio) == READ)
1450 set_page_dirty_lock(bvec->bv_page);
1451
1452 put_page(bvec->bv_page);
1453 }
1454
1455 bio_put(bio);
1456 }
1457
1458 /**
1459 * bio_unmap_user - unmap a bio
1460 * @bio: the bio being unmapped
1461 *
1462 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1463 * process context.
1464 *
1465 * bio_unmap_user() may sleep.
1466 */
1467 void bio_unmap_user(struct bio *bio)
1468 {
1469 __bio_unmap_user(bio);
1470 bio_put(bio);
1471 }
1472
1473 static void bio_map_kern_endio(struct bio *bio)
1474 {
1475 bio_put(bio);
1476 }
1477
1478 /**
1479 * bio_map_kern - map kernel address into bio
1480 * @q: the struct request_queue for the bio
1481 * @data: pointer to buffer to map
1482 * @len: length in bytes
1483 * @gfp_mask: allocation flags for bio allocation
1484 *
1485 * Map the kernel address into a bio suitable for io to a block
1486 * device. Returns an error pointer in case of error.
1487 */
1488 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1489 gfp_t gfp_mask)
1490 {
1491 unsigned long kaddr = (unsigned long)data;
1492 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1493 unsigned long start = kaddr >> PAGE_SHIFT;
1494 const int nr_pages = end - start;
1495 int offset, i;
1496 struct bio *bio;
1497
1498 bio = bio_kmalloc(gfp_mask, nr_pages);
1499 if (!bio)
1500 return ERR_PTR(-ENOMEM);
1501
1502 offset = offset_in_page(kaddr);
1503 for (i = 0; i < nr_pages; i++) {
1504 unsigned int bytes = PAGE_SIZE - offset;
1505
1506 if (len <= 0)
1507 break;
1508
1509 if (bytes > len)
1510 bytes = len;
1511
1512 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1513 offset) < bytes) {
1514 /* we don't support partial mappings */
1515 bio_put(bio);
1516 return ERR_PTR(-EINVAL);
1517 }
1518
1519 data += bytes;
1520 len -= bytes;
1521 offset = 0;
1522 }
1523
1524 bio->bi_end_io = bio_map_kern_endio;
1525 return bio;
1526 }
1527 EXPORT_SYMBOL(bio_map_kern);
1528
1529 static void bio_copy_kern_endio(struct bio *bio)
1530 {
1531 bio_free_pages(bio);
1532 bio_put(bio);
1533 }
1534
1535 static void bio_copy_kern_endio_read(struct bio *bio)
1536 {
1537 char *p = bio->bi_private;
1538 struct bio_vec *bvec;
1539 int i;
1540
1541 bio_for_each_segment_all(bvec, bio, i) {
1542 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1543 p += bvec->bv_len;
1544 }
1545
1546 bio_copy_kern_endio(bio);
1547 }
1548
1549 /**
1550 * bio_copy_kern - copy kernel address into bio
1551 * @q: the struct request_queue for the bio
1552 * @data: pointer to buffer to copy
1553 * @len: length in bytes
1554 * @gfp_mask: allocation flags for bio and page allocation
1555 * @reading: data direction is READ
1556 *
1557 * copy the kernel address into a bio suitable for io to a block
1558 * device. Returns an error pointer in case of error.
1559 */
1560 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1561 gfp_t gfp_mask, int reading)
1562 {
1563 unsigned long kaddr = (unsigned long)data;
1564 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1565 unsigned long start = kaddr >> PAGE_SHIFT;
1566 struct bio *bio;
1567 void *p = data;
1568 int nr_pages = 0;
1569
1570 /*
1571 * Overflow, abort
1572 */
1573 if (end < start)
1574 return ERR_PTR(-EINVAL);
1575
1576 nr_pages = end - start;
1577 bio = bio_kmalloc(gfp_mask, nr_pages);
1578 if (!bio)
1579 return ERR_PTR(-ENOMEM);
1580
1581 while (len) {
1582 struct page *page;
1583 unsigned int bytes = PAGE_SIZE;
1584
1585 if (bytes > len)
1586 bytes = len;
1587
1588 page = alloc_page(q->bounce_gfp | gfp_mask);
1589 if (!page)
1590 goto cleanup;
1591
1592 if (!reading)
1593 memcpy(page_address(page), p, bytes);
1594
1595 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1596 break;
1597
1598 len -= bytes;
1599 p += bytes;
1600 }
1601
1602 if (reading) {
1603 bio->bi_end_io = bio_copy_kern_endio_read;
1604 bio->bi_private = data;
1605 } else {
1606 bio->bi_end_io = bio_copy_kern_endio;
1607 }
1608
1609 return bio;
1610
1611 cleanup:
1612 bio_free_pages(bio);
1613 bio_put(bio);
1614 return ERR_PTR(-ENOMEM);
1615 }
1616
1617 /*
1618 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1619 * for performing direct-IO in BIOs.
1620 *
1621 * The problem is that we cannot run set_page_dirty() from interrupt context
1622 * because the required locks are not interrupt-safe. So what we can do is to
1623 * mark the pages dirty _before_ performing IO. And in interrupt context,
1624 * check that the pages are still dirty. If so, fine. If not, redirty them
1625 * in process context.
1626 *
1627 * We special-case compound pages here: normally this means reads into hugetlb
1628 * pages. The logic in here doesn't really work right for compound pages
1629 * because the VM does not uniformly chase down the head page in all cases.
1630 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1631 * handle them at all. So we skip compound pages here at an early stage.
1632 *
1633 * Note that this code is very hard to test under normal circumstances because
1634 * direct-io pins the pages with get_user_pages(). This makes
1635 * is_page_cache_freeable return false, and the VM will not clean the pages.
1636 * But other code (eg, flusher threads) could clean the pages if they are mapped
1637 * pagecache.
1638 *
1639 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1640 * deferred bio dirtying paths.
1641 */
1642
1643 /*
1644 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1645 */
1646 void bio_set_pages_dirty(struct bio *bio)
1647 {
1648 struct bio_vec *bvec;
1649 int i;
1650
1651 bio_for_each_segment_all(bvec, bio, i) {
1652 struct page *page = bvec->bv_page;
1653
1654 if (page && !PageCompound(page))
1655 set_page_dirty_lock(page);
1656 }
1657 }
1658
1659 static void bio_release_pages(struct bio *bio)
1660 {
1661 struct bio_vec *bvec;
1662 int i;
1663
1664 bio_for_each_segment_all(bvec, bio, i) {
1665 struct page *page = bvec->bv_page;
1666
1667 if (page)
1668 put_page(page);
1669 }
1670 }
1671
1672 /*
1673 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1674 * If they are, then fine. If, however, some pages are clean then they must
1675 * have been written out during the direct-IO read. So we take another ref on
1676 * the BIO and the offending pages and re-dirty the pages in process context.
1677 *
1678 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1679 * here on. It will run one put_page() against each page and will run one
1680 * bio_put() against the BIO.
1681 */
1682
1683 static void bio_dirty_fn(struct work_struct *work);
1684
1685 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1686 static DEFINE_SPINLOCK(bio_dirty_lock);
1687 static struct bio *bio_dirty_list;
1688
1689 /*
1690 * This runs in process context
1691 */
1692 static void bio_dirty_fn(struct work_struct *work)
1693 {
1694 unsigned long flags;
1695 struct bio *bio;
1696
1697 spin_lock_irqsave(&bio_dirty_lock, flags);
1698 bio = bio_dirty_list;
1699 bio_dirty_list = NULL;
1700 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1701
1702 while (bio) {
1703 struct bio *next = bio->bi_private;
1704
1705 bio_set_pages_dirty(bio);
1706 bio_release_pages(bio);
1707 bio_put(bio);
1708 bio = next;
1709 }
1710 }
1711
1712 void bio_check_pages_dirty(struct bio *bio)
1713 {
1714 struct bio_vec *bvec;
1715 int nr_clean_pages = 0;
1716 int i;
1717
1718 bio_for_each_segment_all(bvec, bio, i) {
1719 struct page *page = bvec->bv_page;
1720
1721 if (PageDirty(page) || PageCompound(page)) {
1722 put_page(page);
1723 bvec->bv_page = NULL;
1724 } else {
1725 nr_clean_pages++;
1726 }
1727 }
1728
1729 if (nr_clean_pages) {
1730 unsigned long flags;
1731
1732 spin_lock_irqsave(&bio_dirty_lock, flags);
1733 bio->bi_private = bio_dirty_list;
1734 bio_dirty_list = bio;
1735 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1736 schedule_work(&bio_dirty_work);
1737 } else {
1738 bio_put(bio);
1739 }
1740 }
1741
1742 void generic_start_io_acct(struct request_queue *q, int rw,
1743 unsigned long sectors, struct hd_struct *part)
1744 {
1745 int cpu = part_stat_lock();
1746
1747 part_round_stats(q, cpu, part);
1748 part_stat_inc(cpu, part, ios[rw]);
1749 part_stat_add(cpu, part, sectors[rw], sectors);
1750 part_inc_in_flight(q, part, rw);
1751
1752 part_stat_unlock();
1753 }
1754 EXPORT_SYMBOL(generic_start_io_acct);
1755
1756 void generic_end_io_acct(struct request_queue *q, int rw,
1757 struct hd_struct *part, unsigned long start_time)
1758 {
1759 unsigned long duration = jiffies - start_time;
1760 int cpu = part_stat_lock();
1761
1762 part_stat_add(cpu, part, ticks[rw], duration);
1763 part_round_stats(q, cpu, part);
1764 part_dec_in_flight(q, part, rw);
1765
1766 part_stat_unlock();
1767 }
1768 EXPORT_SYMBOL(generic_end_io_acct);
1769
1770 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1771 void bio_flush_dcache_pages(struct bio *bi)
1772 {
1773 struct bio_vec bvec;
1774 struct bvec_iter iter;
1775
1776 bio_for_each_segment(bvec, bi, iter)
1777 flush_dcache_page(bvec.bv_page);
1778 }
1779 EXPORT_SYMBOL(bio_flush_dcache_pages);
1780 #endif
1781
1782 static inline bool bio_remaining_done(struct bio *bio)
1783 {
1784 /*
1785 * If we're not chaining, then ->__bi_remaining is always 1 and
1786 * we always end io on the first invocation.
1787 */
1788 if (!bio_flagged(bio, BIO_CHAIN))
1789 return true;
1790
1791 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1792
1793 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1794 bio_clear_flag(bio, BIO_CHAIN);
1795 return true;
1796 }
1797
1798 return false;
1799 }
1800
1801 /**
1802 * bio_endio - end I/O on a bio
1803 * @bio: bio
1804 *
1805 * Description:
1806 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1807 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1808 * bio unless they own it and thus know that it has an end_io function.
1809 *
1810 * bio_endio() can be called several times on a bio that has been chained
1811 * using bio_chain(). The ->bi_end_io() function will only be called the
1812 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1813 * generated if BIO_TRACE_COMPLETION is set.
1814 **/
1815 void bio_endio(struct bio *bio)
1816 {
1817 again:
1818 if (!bio_remaining_done(bio))
1819 return;
1820 if (!bio_integrity_endio(bio))
1821 return;
1822
1823 /*
1824 * Need to have a real endio function for chained bios, otherwise
1825 * various corner cases will break (like stacking block devices that
1826 * save/restore bi_end_io) - however, we want to avoid unbounded
1827 * recursion and blowing the stack. Tail call optimization would
1828 * handle this, but compiling with frame pointers also disables
1829 * gcc's sibling call optimization.
1830 */
1831 if (bio->bi_end_io == bio_chain_endio) {
1832 bio = __bio_chain_endio(bio);
1833 goto again;
1834 }
1835
1836 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1837 trace_block_bio_complete(bio->bi_disk->queue, bio,
1838 blk_status_to_errno(bio->bi_status));
1839 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1840 }
1841
1842 blk_throtl_bio_endio(bio);
1843 /* release cgroup info */
1844 bio_uninit(bio);
1845 if (bio->bi_end_io)
1846 bio->bi_end_io(bio);
1847 }
1848 EXPORT_SYMBOL(bio_endio);
1849
1850 /**
1851 * bio_split - split a bio
1852 * @bio: bio to split
1853 * @sectors: number of sectors to split from the front of @bio
1854 * @gfp: gfp mask
1855 * @bs: bio set to allocate from
1856 *
1857 * Allocates and returns a new bio which represents @sectors from the start of
1858 * @bio, and updates @bio to represent the remaining sectors.
1859 *
1860 * Unless this is a discard request the newly allocated bio will point
1861 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1862 * @bio is not freed before the split.
1863 */
1864 struct bio *bio_split(struct bio *bio, int sectors,
1865 gfp_t gfp, struct bio_set *bs)
1866 {
1867 struct bio *split = NULL;
1868
1869 BUG_ON(sectors <= 0);
1870 BUG_ON(sectors >= bio_sectors(bio));
1871
1872 split = bio_clone_fast(bio, gfp, bs);
1873 if (!split)
1874 return NULL;
1875
1876 split->bi_iter.bi_size = sectors << 9;
1877
1878 if (bio_integrity(split))
1879 bio_integrity_trim(split);
1880
1881 bio_advance(bio, split->bi_iter.bi_size);
1882
1883 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1884 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1885
1886 return split;
1887 }
1888 EXPORT_SYMBOL(bio_split);
1889
1890 /**
1891 * bio_trim - trim a bio
1892 * @bio: bio to trim
1893 * @offset: number of sectors to trim from the front of @bio
1894 * @size: size we want to trim @bio to, in sectors
1895 */
1896 void bio_trim(struct bio *bio, int offset, int size)
1897 {
1898 /* 'bio' is a cloned bio which we need to trim to match
1899 * the given offset and size.
1900 */
1901
1902 size <<= 9;
1903 if (offset == 0 && size == bio->bi_iter.bi_size)
1904 return;
1905
1906 bio_clear_flag(bio, BIO_SEG_VALID);
1907
1908 bio_advance(bio, offset << 9);
1909
1910 bio->bi_iter.bi_size = size;
1911
1912 if (bio_integrity(bio))
1913 bio_integrity_trim(bio);
1914
1915 }
1916 EXPORT_SYMBOL_GPL(bio_trim);
1917
1918 /*
1919 * create memory pools for biovec's in a bio_set.
1920 * use the global biovec slabs created for general use.
1921 */
1922 mempool_t *biovec_create_pool(int pool_entries)
1923 {
1924 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1925
1926 return mempool_create_slab_pool(pool_entries, bp->slab);
1927 }
1928
1929 void bioset_free(struct bio_set *bs)
1930 {
1931 if (bs->rescue_workqueue)
1932 destroy_workqueue(bs->rescue_workqueue);
1933
1934 if (bs->bio_pool)
1935 mempool_destroy(bs->bio_pool);
1936
1937 if (bs->bvec_pool)
1938 mempool_destroy(bs->bvec_pool);
1939
1940 bioset_integrity_free(bs);
1941 bio_put_slab(bs);
1942
1943 kfree(bs);
1944 }
1945 EXPORT_SYMBOL(bioset_free);
1946
1947 /**
1948 * bioset_create - Create a bio_set
1949 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1950 * @front_pad: Number of bytes to allocate in front of the returned bio
1951 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1952 * and %BIOSET_NEED_RESCUER
1953 *
1954 * Description:
1955 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1956 * to ask for a number of bytes to be allocated in front of the bio.
1957 * Front pad allocation is useful for embedding the bio inside
1958 * another structure, to avoid allocating extra data to go with the bio.
1959 * Note that the bio must be embedded at the END of that structure always,
1960 * or things will break badly.
1961 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1962 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1963 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1964 * dispatch queued requests when the mempool runs out of space.
1965 *
1966 */
1967 struct bio_set *bioset_create(unsigned int pool_size,
1968 unsigned int front_pad,
1969 int flags)
1970 {
1971 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1972 struct bio_set *bs;
1973
1974 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1975 if (!bs)
1976 return NULL;
1977
1978 bs->front_pad = front_pad;
1979
1980 spin_lock_init(&bs->rescue_lock);
1981 bio_list_init(&bs->rescue_list);
1982 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1983
1984 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1985 if (!bs->bio_slab) {
1986 kfree(bs);
1987 return NULL;
1988 }
1989
1990 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1991 if (!bs->bio_pool)
1992 goto bad;
1993
1994 if (flags & BIOSET_NEED_BVECS) {
1995 bs->bvec_pool = biovec_create_pool(pool_size);
1996 if (!bs->bvec_pool)
1997 goto bad;
1998 }
1999
2000 if (!(flags & BIOSET_NEED_RESCUER))
2001 return bs;
2002
2003 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2004 if (!bs->rescue_workqueue)
2005 goto bad;
2006
2007 return bs;
2008 bad:
2009 bioset_free(bs);
2010 return NULL;
2011 }
2012 EXPORT_SYMBOL(bioset_create);
2013
2014 #ifdef CONFIG_BLK_CGROUP
2015
2016 /**
2017 * bio_associate_blkcg - associate a bio with the specified blkcg
2018 * @bio: target bio
2019 * @blkcg_css: css of the blkcg to associate
2020 *
2021 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2022 * treat @bio as if it were issued by a task which belongs to the blkcg.
2023 *
2024 * This function takes an extra reference of @blkcg_css which will be put
2025 * when @bio is released. The caller must own @bio and is responsible for
2026 * synchronizing calls to this function.
2027 */
2028 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2029 {
2030 if (unlikely(bio->bi_css))
2031 return -EBUSY;
2032 css_get(blkcg_css);
2033 bio->bi_css = blkcg_css;
2034 return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2037
2038 /**
2039 * bio_associate_current - associate a bio with %current
2040 * @bio: target bio
2041 *
2042 * Associate @bio with %current if it hasn't been associated yet. Block
2043 * layer will treat @bio as if it were issued by %current no matter which
2044 * task actually issues it.
2045 *
2046 * This function takes an extra reference of @task's io_context and blkcg
2047 * which will be put when @bio is released. The caller must own @bio,
2048 * ensure %current->io_context exists, and is responsible for synchronizing
2049 * calls to this function.
2050 */
2051 int bio_associate_current(struct bio *bio)
2052 {
2053 struct io_context *ioc;
2054
2055 if (bio->bi_css)
2056 return -EBUSY;
2057
2058 ioc = current->io_context;
2059 if (!ioc)
2060 return -ENOENT;
2061
2062 get_io_context_active(ioc);
2063 bio->bi_ioc = ioc;
2064 bio->bi_css = task_get_css(current, io_cgrp_id);
2065 return 0;
2066 }
2067 EXPORT_SYMBOL_GPL(bio_associate_current);
2068
2069 /**
2070 * bio_disassociate_task - undo bio_associate_current()
2071 * @bio: target bio
2072 */
2073 void bio_disassociate_task(struct bio *bio)
2074 {
2075 if (bio->bi_ioc) {
2076 put_io_context(bio->bi_ioc);
2077 bio->bi_ioc = NULL;
2078 }
2079 if (bio->bi_css) {
2080 css_put(bio->bi_css);
2081 bio->bi_css = NULL;
2082 }
2083 }
2084
2085 /**
2086 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2087 * @dst: destination bio
2088 * @src: source bio
2089 */
2090 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2091 {
2092 if (src->bi_css)
2093 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2094 }
2095 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2096 #endif /* CONFIG_BLK_CGROUP */
2097
2098 static void __init biovec_init_slabs(void)
2099 {
2100 int i;
2101
2102 for (i = 0; i < BVEC_POOL_NR; i++) {
2103 int size;
2104 struct biovec_slab *bvs = bvec_slabs + i;
2105
2106 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2107 bvs->slab = NULL;
2108 continue;
2109 }
2110
2111 size = bvs->nr_vecs * sizeof(struct bio_vec);
2112 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2113 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2114 }
2115 }
2116
2117 static int __init init_bio(void)
2118 {
2119 bio_slab_max = 2;
2120 bio_slab_nr = 0;
2121 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2122 if (!bio_slabs)
2123 panic("bio: can't allocate bios\n");
2124
2125 bio_integrity_init();
2126 biovec_init_slabs();
2127
2128 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2129 if (!fs_bio_set)
2130 panic("bio: can't allocate bios\n");
2131
2132 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2133 panic("bio: can't create integrity pool\n");
2134
2135 return 0;
2136 }
2137 subsys_initcall(init_bio);