]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/bio.c
Merge tag 'hwlock-v5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/andersson...
[mirror_ubuntu-jammy-kernel.git] / block / bio.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20
21 #include <trace/events/block.h>
22 #include "blk.h"
23 #include "blk-rq-qos.h"
24
25 /*
26 * Test patch to inline a certain number of bi_io_vec's inside the bio
27 * itself, to shrink a bio data allocation from two mempool calls to one
28 */
29 #define BIO_INLINE_VECS 4
30
31 /*
32 * if you change this list, also change bvec_alloc or things will
33 * break badly! cannot be bigger than what you can fit into an
34 * unsigned short
35 */
36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
37 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
38 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
39 };
40 #undef BV
41
42 /*
43 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
44 * IO code that does not need private memory pools.
45 */
46 struct bio_set fs_bio_set;
47 EXPORT_SYMBOL(fs_bio_set);
48
49 /*
50 * Our slab pool management
51 */
52 struct bio_slab {
53 struct kmem_cache *slab;
54 unsigned int slab_ref;
55 unsigned int slab_size;
56 char name[8];
57 };
58 static DEFINE_MUTEX(bio_slab_lock);
59 static struct bio_slab *bio_slabs;
60 static unsigned int bio_slab_nr, bio_slab_max;
61
62 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
63 {
64 unsigned int sz = sizeof(struct bio) + extra_size;
65 struct kmem_cache *slab = NULL;
66 struct bio_slab *bslab, *new_bio_slabs;
67 unsigned int new_bio_slab_max;
68 unsigned int i, entry = -1;
69
70 mutex_lock(&bio_slab_lock);
71
72 i = 0;
73 while (i < bio_slab_nr) {
74 bslab = &bio_slabs[i];
75
76 if (!bslab->slab && entry == -1)
77 entry = i;
78 else if (bslab->slab_size == sz) {
79 slab = bslab->slab;
80 bslab->slab_ref++;
81 break;
82 }
83 i++;
84 }
85
86 if (slab)
87 goto out_unlock;
88
89 if (bio_slab_nr == bio_slab_max && entry == -1) {
90 new_bio_slab_max = bio_slab_max << 1;
91 new_bio_slabs = krealloc(bio_slabs,
92 new_bio_slab_max * sizeof(struct bio_slab),
93 GFP_KERNEL);
94 if (!new_bio_slabs)
95 goto out_unlock;
96 bio_slab_max = new_bio_slab_max;
97 bio_slabs = new_bio_slabs;
98 }
99 if (entry == -1)
100 entry = bio_slab_nr++;
101
102 bslab = &bio_slabs[entry];
103
104 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
105 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
106 SLAB_HWCACHE_ALIGN, NULL);
107 if (!slab)
108 goto out_unlock;
109
110 bslab->slab = slab;
111 bslab->slab_ref = 1;
112 bslab->slab_size = sz;
113 out_unlock:
114 mutex_unlock(&bio_slab_lock);
115 return slab;
116 }
117
118 static void bio_put_slab(struct bio_set *bs)
119 {
120 struct bio_slab *bslab = NULL;
121 unsigned int i;
122
123 mutex_lock(&bio_slab_lock);
124
125 for (i = 0; i < bio_slab_nr; i++) {
126 if (bs->bio_slab == bio_slabs[i].slab) {
127 bslab = &bio_slabs[i];
128 break;
129 }
130 }
131
132 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
133 goto out;
134
135 WARN_ON(!bslab->slab_ref);
136
137 if (--bslab->slab_ref)
138 goto out;
139
140 kmem_cache_destroy(bslab->slab);
141 bslab->slab = NULL;
142
143 out:
144 mutex_unlock(&bio_slab_lock);
145 }
146
147 unsigned int bvec_nr_vecs(unsigned short idx)
148 {
149 return bvec_slabs[--idx].nr_vecs;
150 }
151
152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
153 {
154 if (!idx)
155 return;
156 idx--;
157
158 BIO_BUG_ON(idx >= BVEC_POOL_NR);
159
160 if (idx == BVEC_POOL_MAX) {
161 mempool_free(bv, pool);
162 } else {
163 struct biovec_slab *bvs = bvec_slabs + idx;
164
165 kmem_cache_free(bvs->slab, bv);
166 }
167 }
168
169 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
170 mempool_t *pool)
171 {
172 struct bio_vec *bvl;
173
174 /*
175 * see comment near bvec_array define!
176 */
177 switch (nr) {
178 case 1:
179 *idx = 0;
180 break;
181 case 2 ... 4:
182 *idx = 1;
183 break;
184 case 5 ... 16:
185 *idx = 2;
186 break;
187 case 17 ... 64:
188 *idx = 3;
189 break;
190 case 65 ... 128:
191 *idx = 4;
192 break;
193 case 129 ... BIO_MAX_PAGES:
194 *idx = 5;
195 break;
196 default:
197 return NULL;
198 }
199
200 /*
201 * idx now points to the pool we want to allocate from. only the
202 * 1-vec entry pool is mempool backed.
203 */
204 if (*idx == BVEC_POOL_MAX) {
205 fallback:
206 bvl = mempool_alloc(pool, gfp_mask);
207 } else {
208 struct biovec_slab *bvs = bvec_slabs + *idx;
209 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
210
211 /*
212 * Make this allocation restricted and don't dump info on
213 * allocation failures, since we'll fallback to the mempool
214 * in case of failure.
215 */
216 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
217
218 /*
219 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
220 * is set, retry with the 1-entry mempool
221 */
222 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
223 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
224 *idx = BVEC_POOL_MAX;
225 goto fallback;
226 }
227 }
228
229 (*idx)++;
230 return bvl;
231 }
232
233 void bio_uninit(struct bio *bio)
234 {
235 bio_disassociate_blkg(bio);
236
237 if (bio_integrity(bio))
238 bio_integrity_free(bio);
239 }
240 EXPORT_SYMBOL(bio_uninit);
241
242 static void bio_free(struct bio *bio)
243 {
244 struct bio_set *bs = bio->bi_pool;
245 void *p;
246
247 bio_uninit(bio);
248
249 if (bs) {
250 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
251
252 /*
253 * If we have front padding, adjust the bio pointer before freeing
254 */
255 p = bio;
256 p -= bs->front_pad;
257
258 mempool_free(p, &bs->bio_pool);
259 } else {
260 /* Bio was allocated by bio_kmalloc() */
261 kfree(bio);
262 }
263 }
264
265 /*
266 * Users of this function have their own bio allocation. Subsequently,
267 * they must remember to pair any call to bio_init() with bio_uninit()
268 * when IO has completed, or when the bio is released.
269 */
270 void bio_init(struct bio *bio, struct bio_vec *table,
271 unsigned short max_vecs)
272 {
273 memset(bio, 0, sizeof(*bio));
274 atomic_set(&bio->__bi_remaining, 1);
275 atomic_set(&bio->__bi_cnt, 1);
276
277 bio->bi_io_vec = table;
278 bio->bi_max_vecs = max_vecs;
279 }
280 EXPORT_SYMBOL(bio_init);
281
282 /**
283 * bio_reset - reinitialize a bio
284 * @bio: bio to reset
285 *
286 * Description:
287 * After calling bio_reset(), @bio will be in the same state as a freshly
288 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
289 * preserved are the ones that are initialized by bio_alloc_bioset(). See
290 * comment in struct bio.
291 */
292 void bio_reset(struct bio *bio)
293 {
294 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
295
296 bio_uninit(bio);
297
298 memset(bio, 0, BIO_RESET_BYTES);
299 bio->bi_flags = flags;
300 atomic_set(&bio->__bi_remaining, 1);
301 }
302 EXPORT_SYMBOL(bio_reset);
303
304 static struct bio *__bio_chain_endio(struct bio *bio)
305 {
306 struct bio *parent = bio->bi_private;
307
308 if (!parent->bi_status)
309 parent->bi_status = bio->bi_status;
310 bio_put(bio);
311 return parent;
312 }
313
314 static void bio_chain_endio(struct bio *bio)
315 {
316 bio_endio(__bio_chain_endio(bio));
317 }
318
319 /**
320 * bio_chain - chain bio completions
321 * @bio: the target bio
322 * @parent: the @bio's parent bio
323 *
324 * The caller won't have a bi_end_io called when @bio completes - instead,
325 * @parent's bi_end_io won't be called until both @parent and @bio have
326 * completed; the chained bio will also be freed when it completes.
327 *
328 * The caller must not set bi_private or bi_end_io in @bio.
329 */
330 void bio_chain(struct bio *bio, struct bio *parent)
331 {
332 BUG_ON(bio->bi_private || bio->bi_end_io);
333
334 bio->bi_private = parent;
335 bio->bi_end_io = bio_chain_endio;
336 bio_inc_remaining(parent);
337 }
338 EXPORT_SYMBOL(bio_chain);
339
340 static void bio_alloc_rescue(struct work_struct *work)
341 {
342 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
343 struct bio *bio;
344
345 while (1) {
346 spin_lock(&bs->rescue_lock);
347 bio = bio_list_pop(&bs->rescue_list);
348 spin_unlock(&bs->rescue_lock);
349
350 if (!bio)
351 break;
352
353 generic_make_request(bio);
354 }
355 }
356
357 static void punt_bios_to_rescuer(struct bio_set *bs)
358 {
359 struct bio_list punt, nopunt;
360 struct bio *bio;
361
362 if (WARN_ON_ONCE(!bs->rescue_workqueue))
363 return;
364 /*
365 * In order to guarantee forward progress we must punt only bios that
366 * were allocated from this bio_set; otherwise, if there was a bio on
367 * there for a stacking driver higher up in the stack, processing it
368 * could require allocating bios from this bio_set, and doing that from
369 * our own rescuer would be bad.
370 *
371 * Since bio lists are singly linked, pop them all instead of trying to
372 * remove from the middle of the list:
373 */
374
375 bio_list_init(&punt);
376 bio_list_init(&nopunt);
377
378 while ((bio = bio_list_pop(&current->bio_list[0])))
379 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
380 current->bio_list[0] = nopunt;
381
382 bio_list_init(&nopunt);
383 while ((bio = bio_list_pop(&current->bio_list[1])))
384 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
385 current->bio_list[1] = nopunt;
386
387 spin_lock(&bs->rescue_lock);
388 bio_list_merge(&bs->rescue_list, &punt);
389 spin_unlock(&bs->rescue_lock);
390
391 queue_work(bs->rescue_workqueue, &bs->rescue_work);
392 }
393
394 /**
395 * bio_alloc_bioset - allocate a bio for I/O
396 * @gfp_mask: the GFP_* mask given to the slab allocator
397 * @nr_iovecs: number of iovecs to pre-allocate
398 * @bs: the bio_set to allocate from.
399 *
400 * Description:
401 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
402 * backed by the @bs's mempool.
403 *
404 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
405 * always be able to allocate a bio. This is due to the mempool guarantees.
406 * To make this work, callers must never allocate more than 1 bio at a time
407 * from this pool. Callers that need to allocate more than 1 bio must always
408 * submit the previously allocated bio for IO before attempting to allocate
409 * a new one. Failure to do so can cause deadlocks under memory pressure.
410 *
411 * Note that when running under generic_make_request() (i.e. any block
412 * driver), bios are not submitted until after you return - see the code in
413 * generic_make_request() that converts recursion into iteration, to prevent
414 * stack overflows.
415 *
416 * This would normally mean allocating multiple bios under
417 * generic_make_request() would be susceptible to deadlocks, but we have
418 * deadlock avoidance code that resubmits any blocked bios from a rescuer
419 * thread.
420 *
421 * However, we do not guarantee forward progress for allocations from other
422 * mempools. Doing multiple allocations from the same mempool under
423 * generic_make_request() should be avoided - instead, use bio_set's front_pad
424 * for per bio allocations.
425 *
426 * RETURNS:
427 * Pointer to new bio on success, NULL on failure.
428 */
429 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
430 struct bio_set *bs)
431 {
432 gfp_t saved_gfp = gfp_mask;
433 unsigned front_pad;
434 unsigned inline_vecs;
435 struct bio_vec *bvl = NULL;
436 struct bio *bio;
437 void *p;
438
439 if (!bs) {
440 if (nr_iovecs > UIO_MAXIOV)
441 return NULL;
442
443 p = kmalloc(sizeof(struct bio) +
444 nr_iovecs * sizeof(struct bio_vec),
445 gfp_mask);
446 front_pad = 0;
447 inline_vecs = nr_iovecs;
448 } else {
449 /* should not use nobvec bioset for nr_iovecs > 0 */
450 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
451 nr_iovecs > 0))
452 return NULL;
453 /*
454 * generic_make_request() converts recursion to iteration; this
455 * means if we're running beneath it, any bios we allocate and
456 * submit will not be submitted (and thus freed) until after we
457 * return.
458 *
459 * This exposes us to a potential deadlock if we allocate
460 * multiple bios from the same bio_set() while running
461 * underneath generic_make_request(). If we were to allocate
462 * multiple bios (say a stacking block driver that was splitting
463 * bios), we would deadlock if we exhausted the mempool's
464 * reserve.
465 *
466 * We solve this, and guarantee forward progress, with a rescuer
467 * workqueue per bio_set. If we go to allocate and there are
468 * bios on current->bio_list, we first try the allocation
469 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
470 * bios we would be blocking to the rescuer workqueue before
471 * we retry with the original gfp_flags.
472 */
473
474 if (current->bio_list &&
475 (!bio_list_empty(&current->bio_list[0]) ||
476 !bio_list_empty(&current->bio_list[1])) &&
477 bs->rescue_workqueue)
478 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
479
480 p = mempool_alloc(&bs->bio_pool, gfp_mask);
481 if (!p && gfp_mask != saved_gfp) {
482 punt_bios_to_rescuer(bs);
483 gfp_mask = saved_gfp;
484 p = mempool_alloc(&bs->bio_pool, gfp_mask);
485 }
486
487 front_pad = bs->front_pad;
488 inline_vecs = BIO_INLINE_VECS;
489 }
490
491 if (unlikely(!p))
492 return NULL;
493
494 bio = p + front_pad;
495 bio_init(bio, NULL, 0);
496
497 if (nr_iovecs > inline_vecs) {
498 unsigned long idx = 0;
499
500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
501 if (!bvl && gfp_mask != saved_gfp) {
502 punt_bios_to_rescuer(bs);
503 gfp_mask = saved_gfp;
504 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
505 }
506
507 if (unlikely(!bvl))
508 goto err_free;
509
510 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
511 } else if (nr_iovecs) {
512 bvl = bio->bi_inline_vecs;
513 }
514
515 bio->bi_pool = bs;
516 bio->bi_max_vecs = nr_iovecs;
517 bio->bi_io_vec = bvl;
518 return bio;
519
520 err_free:
521 mempool_free(p, &bs->bio_pool);
522 return NULL;
523 }
524 EXPORT_SYMBOL(bio_alloc_bioset);
525
526 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
527 {
528 unsigned long flags;
529 struct bio_vec bv;
530 struct bvec_iter iter;
531
532 __bio_for_each_segment(bv, bio, iter, start) {
533 char *data = bvec_kmap_irq(&bv, &flags);
534 memset(data, 0, bv.bv_len);
535 flush_dcache_page(bv.bv_page);
536 bvec_kunmap_irq(data, &flags);
537 }
538 }
539 EXPORT_SYMBOL(zero_fill_bio_iter);
540
541 /**
542 * bio_truncate - truncate the bio to small size of @new_size
543 * @bio: the bio to be truncated
544 * @new_size: new size for truncating the bio
545 *
546 * Description:
547 * Truncate the bio to new size of @new_size. If bio_op(bio) is
548 * REQ_OP_READ, zero the truncated part. This function should only
549 * be used for handling corner cases, such as bio eod.
550 */
551 void bio_truncate(struct bio *bio, unsigned new_size)
552 {
553 struct bio_vec bv;
554 struct bvec_iter iter;
555 unsigned int done = 0;
556 bool truncated = false;
557
558 if (new_size >= bio->bi_iter.bi_size)
559 return;
560
561 if (bio_op(bio) != REQ_OP_READ)
562 goto exit;
563
564 bio_for_each_segment(bv, bio, iter) {
565 if (done + bv.bv_len > new_size) {
566 unsigned offset;
567
568 if (!truncated)
569 offset = new_size - done;
570 else
571 offset = 0;
572 zero_user(bv.bv_page, offset, bv.bv_len - offset);
573 truncated = true;
574 }
575 done += bv.bv_len;
576 }
577
578 exit:
579 /*
580 * Don't touch bvec table here and make it really immutable, since
581 * fs bio user has to retrieve all pages via bio_for_each_segment_all
582 * in its .end_bio() callback.
583 *
584 * It is enough to truncate bio by updating .bi_size since we can make
585 * correct bvec with the updated .bi_size for drivers.
586 */
587 bio->bi_iter.bi_size = new_size;
588 }
589
590 /**
591 * bio_put - release a reference to a bio
592 * @bio: bio to release reference to
593 *
594 * Description:
595 * Put a reference to a &struct bio, either one you have gotten with
596 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
597 **/
598 void bio_put(struct bio *bio)
599 {
600 if (!bio_flagged(bio, BIO_REFFED))
601 bio_free(bio);
602 else {
603 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
604
605 /*
606 * last put frees it
607 */
608 if (atomic_dec_and_test(&bio->__bi_cnt))
609 bio_free(bio);
610 }
611 }
612 EXPORT_SYMBOL(bio_put);
613
614 /**
615 * __bio_clone_fast - clone a bio that shares the original bio's biovec
616 * @bio: destination bio
617 * @bio_src: bio to clone
618 *
619 * Clone a &bio. Caller will own the returned bio, but not
620 * the actual data it points to. Reference count of returned
621 * bio will be one.
622 *
623 * Caller must ensure that @bio_src is not freed before @bio.
624 */
625 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
626 {
627 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
628
629 /*
630 * most users will be overriding ->bi_disk with a new target,
631 * so we don't set nor calculate new physical/hw segment counts here
632 */
633 bio->bi_disk = bio_src->bi_disk;
634 bio->bi_partno = bio_src->bi_partno;
635 bio_set_flag(bio, BIO_CLONED);
636 if (bio_flagged(bio_src, BIO_THROTTLED))
637 bio_set_flag(bio, BIO_THROTTLED);
638 bio->bi_opf = bio_src->bi_opf;
639 bio->bi_ioprio = bio_src->bi_ioprio;
640 bio->bi_write_hint = bio_src->bi_write_hint;
641 bio->bi_iter = bio_src->bi_iter;
642 bio->bi_io_vec = bio_src->bi_io_vec;
643
644 bio_clone_blkg_association(bio, bio_src);
645 blkcg_bio_issue_init(bio);
646 }
647 EXPORT_SYMBOL(__bio_clone_fast);
648
649 /**
650 * bio_clone_fast - clone a bio that shares the original bio's biovec
651 * @bio: bio to clone
652 * @gfp_mask: allocation priority
653 * @bs: bio_set to allocate from
654 *
655 * Like __bio_clone_fast, only also allocates the returned bio
656 */
657 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
658 {
659 struct bio *b;
660
661 b = bio_alloc_bioset(gfp_mask, 0, bs);
662 if (!b)
663 return NULL;
664
665 __bio_clone_fast(b, bio);
666
667 if (bio_integrity(bio)) {
668 int ret;
669
670 ret = bio_integrity_clone(b, bio, gfp_mask);
671
672 if (ret < 0) {
673 bio_put(b);
674 return NULL;
675 }
676 }
677
678 return b;
679 }
680 EXPORT_SYMBOL(bio_clone_fast);
681
682 static inline bool page_is_mergeable(const struct bio_vec *bv,
683 struct page *page, unsigned int len, unsigned int off,
684 bool *same_page)
685 {
686 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
687 bv->bv_offset + bv->bv_len - 1;
688 phys_addr_t page_addr = page_to_phys(page);
689
690 if (vec_end_addr + 1 != page_addr + off)
691 return false;
692 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
693 return false;
694
695 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
696 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
697 return false;
698 return true;
699 }
700
701 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
702 struct page *page, unsigned len, unsigned offset,
703 bool *same_page)
704 {
705 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
706 unsigned long mask = queue_segment_boundary(q);
707 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
708 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
709
710 if ((addr1 | mask) != (addr2 | mask))
711 return false;
712 if (bv->bv_len + len > queue_max_segment_size(q))
713 return false;
714 return __bio_try_merge_page(bio, page, len, offset, same_page);
715 }
716
717 /**
718 * __bio_add_pc_page - attempt to add page to passthrough bio
719 * @q: the target queue
720 * @bio: destination bio
721 * @page: page to add
722 * @len: vec entry length
723 * @offset: vec entry offset
724 * @same_page: return if the merge happen inside the same page
725 *
726 * Attempt to add a page to the bio_vec maplist. This can fail for a
727 * number of reasons, such as the bio being full or target block device
728 * limitations. The target block device must allow bio's up to PAGE_SIZE,
729 * so it is always possible to add a single page to an empty bio.
730 *
731 * This should only be used by passthrough bios.
732 */
733 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
734 struct page *page, unsigned int len, unsigned int offset,
735 bool *same_page)
736 {
737 struct bio_vec *bvec;
738
739 /*
740 * cloned bio must not modify vec list
741 */
742 if (unlikely(bio_flagged(bio, BIO_CLONED)))
743 return 0;
744
745 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
746 return 0;
747
748 if (bio->bi_vcnt > 0) {
749 if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
750 return len;
751
752 /*
753 * If the queue doesn't support SG gaps and adding this segment
754 * would create a gap, disallow it.
755 */
756 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
757 if (bvec_gap_to_prev(q, bvec, offset))
758 return 0;
759 }
760
761 if (bio_full(bio, len))
762 return 0;
763
764 if (bio->bi_vcnt >= queue_max_segments(q))
765 return 0;
766
767 bvec = &bio->bi_io_vec[bio->bi_vcnt];
768 bvec->bv_page = page;
769 bvec->bv_len = len;
770 bvec->bv_offset = offset;
771 bio->bi_vcnt++;
772 bio->bi_iter.bi_size += len;
773 return len;
774 }
775
776 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
777 struct page *page, unsigned int len, unsigned int offset)
778 {
779 bool same_page = false;
780 return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
781 }
782 EXPORT_SYMBOL(bio_add_pc_page);
783
784 /**
785 * __bio_try_merge_page - try appending data to an existing bvec.
786 * @bio: destination bio
787 * @page: start page to add
788 * @len: length of the data to add
789 * @off: offset of the data relative to @page
790 * @same_page: return if the segment has been merged inside the same page
791 *
792 * Try to add the data at @page + @off to the last bvec of @bio. This is a
793 * a useful optimisation for file systems with a block size smaller than the
794 * page size.
795 *
796 * Warn if (@len, @off) crosses pages in case that @same_page is true.
797 *
798 * Return %true on success or %false on failure.
799 */
800 bool __bio_try_merge_page(struct bio *bio, struct page *page,
801 unsigned int len, unsigned int off, bool *same_page)
802 {
803 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
804 return false;
805
806 if (bio->bi_vcnt > 0) {
807 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
808
809 if (page_is_mergeable(bv, page, len, off, same_page)) {
810 if (bio->bi_iter.bi_size > UINT_MAX - len)
811 return false;
812 bv->bv_len += len;
813 bio->bi_iter.bi_size += len;
814 return true;
815 }
816 }
817 return false;
818 }
819 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
820
821 /**
822 * __bio_add_page - add page(s) to a bio in a new segment
823 * @bio: destination bio
824 * @page: start page to add
825 * @len: length of the data to add, may cross pages
826 * @off: offset of the data relative to @page, may cross pages
827 *
828 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
829 * that @bio has space for another bvec.
830 */
831 void __bio_add_page(struct bio *bio, struct page *page,
832 unsigned int len, unsigned int off)
833 {
834 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
835
836 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
837 WARN_ON_ONCE(bio_full(bio, len));
838
839 bv->bv_page = page;
840 bv->bv_offset = off;
841 bv->bv_len = len;
842
843 bio->bi_iter.bi_size += len;
844 bio->bi_vcnt++;
845
846 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
847 bio_set_flag(bio, BIO_WORKINGSET);
848 }
849 EXPORT_SYMBOL_GPL(__bio_add_page);
850
851 /**
852 * bio_add_page - attempt to add page(s) to bio
853 * @bio: destination bio
854 * @page: start page to add
855 * @len: vec entry length, may cross pages
856 * @offset: vec entry offset relative to @page, may cross pages
857 *
858 * Attempt to add page(s) to the bio_vec maplist. This will only fail
859 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
860 */
861 int bio_add_page(struct bio *bio, struct page *page,
862 unsigned int len, unsigned int offset)
863 {
864 bool same_page = false;
865
866 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
867 if (bio_full(bio, len))
868 return 0;
869 __bio_add_page(bio, page, len, offset);
870 }
871 return len;
872 }
873 EXPORT_SYMBOL(bio_add_page);
874
875 void bio_release_pages(struct bio *bio, bool mark_dirty)
876 {
877 struct bvec_iter_all iter_all;
878 struct bio_vec *bvec;
879
880 if (bio_flagged(bio, BIO_NO_PAGE_REF))
881 return;
882
883 bio_for_each_segment_all(bvec, bio, iter_all) {
884 if (mark_dirty && !PageCompound(bvec->bv_page))
885 set_page_dirty_lock(bvec->bv_page);
886 put_page(bvec->bv_page);
887 }
888 }
889
890 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
891 {
892 const struct bio_vec *bv = iter->bvec;
893 unsigned int len;
894 size_t size;
895
896 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
897 return -EINVAL;
898
899 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
900 size = bio_add_page(bio, bv->bv_page, len,
901 bv->bv_offset + iter->iov_offset);
902 if (unlikely(size != len))
903 return -EINVAL;
904 iov_iter_advance(iter, size);
905 return 0;
906 }
907
908 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
909
910 /**
911 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
912 * @bio: bio to add pages to
913 * @iter: iov iterator describing the region to be mapped
914 *
915 * Pins pages from *iter and appends them to @bio's bvec array. The
916 * pages will have to be released using put_page() when done.
917 * For multi-segment *iter, this function only adds pages from the
918 * the next non-empty segment of the iov iterator.
919 */
920 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
921 {
922 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
923 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
924 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
925 struct page **pages = (struct page **)bv;
926 bool same_page = false;
927 ssize_t size, left;
928 unsigned len, i;
929 size_t offset;
930
931 /*
932 * Move page array up in the allocated memory for the bio vecs as far as
933 * possible so that we can start filling biovecs from the beginning
934 * without overwriting the temporary page array.
935 */
936 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
937 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
938
939 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
940 if (unlikely(size <= 0))
941 return size ? size : -EFAULT;
942
943 for (left = size, i = 0; left > 0; left -= len, i++) {
944 struct page *page = pages[i];
945
946 len = min_t(size_t, PAGE_SIZE - offset, left);
947
948 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
949 if (same_page)
950 put_page(page);
951 } else {
952 if (WARN_ON_ONCE(bio_full(bio, len)))
953 return -EINVAL;
954 __bio_add_page(bio, page, len, offset);
955 }
956 offset = 0;
957 }
958
959 iov_iter_advance(iter, size);
960 return 0;
961 }
962
963 /**
964 * bio_iov_iter_get_pages - add user or kernel pages to a bio
965 * @bio: bio to add pages to
966 * @iter: iov iterator describing the region to be added
967 *
968 * This takes either an iterator pointing to user memory, or one pointing to
969 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
970 * map them into the kernel. On IO completion, the caller should put those
971 * pages. If we're adding kernel pages, and the caller told us it's safe to
972 * do so, we just have to add the pages to the bio directly. We don't grab an
973 * extra reference to those pages (the user should already have that), and we
974 * don't put the page on IO completion. The caller needs to check if the bio is
975 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
976 * released.
977 *
978 * The function tries, but does not guarantee, to pin as many pages as
979 * fit into the bio, or are requested in *iter, whatever is smaller. If
980 * MM encounters an error pinning the requested pages, it stops. Error
981 * is returned only if 0 pages could be pinned.
982 */
983 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
984 {
985 const bool is_bvec = iov_iter_is_bvec(iter);
986 int ret;
987
988 if (WARN_ON_ONCE(bio->bi_vcnt))
989 return -EINVAL;
990
991 do {
992 if (is_bvec)
993 ret = __bio_iov_bvec_add_pages(bio, iter);
994 else
995 ret = __bio_iov_iter_get_pages(bio, iter);
996 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
997
998 if (is_bvec)
999 bio_set_flag(bio, BIO_NO_PAGE_REF);
1000 return bio->bi_vcnt ? 0 : ret;
1001 }
1002
1003 static void submit_bio_wait_endio(struct bio *bio)
1004 {
1005 complete(bio->bi_private);
1006 }
1007
1008 /**
1009 * submit_bio_wait - submit a bio, and wait until it completes
1010 * @bio: The &struct bio which describes the I/O
1011 *
1012 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1013 * bio_endio() on failure.
1014 *
1015 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1016 * result in bio reference to be consumed. The caller must drop the reference
1017 * on his own.
1018 */
1019 int submit_bio_wait(struct bio *bio)
1020 {
1021 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1022
1023 bio->bi_private = &done;
1024 bio->bi_end_io = submit_bio_wait_endio;
1025 bio->bi_opf |= REQ_SYNC;
1026 submit_bio(bio);
1027 wait_for_completion_io(&done);
1028
1029 return blk_status_to_errno(bio->bi_status);
1030 }
1031 EXPORT_SYMBOL(submit_bio_wait);
1032
1033 /**
1034 * bio_advance - increment/complete a bio by some number of bytes
1035 * @bio: bio to advance
1036 * @bytes: number of bytes to complete
1037 *
1038 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1039 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1040 * be updated on the last bvec as well.
1041 *
1042 * @bio will then represent the remaining, uncompleted portion of the io.
1043 */
1044 void bio_advance(struct bio *bio, unsigned bytes)
1045 {
1046 if (bio_integrity(bio))
1047 bio_integrity_advance(bio, bytes);
1048
1049 bio_advance_iter(bio, &bio->bi_iter, bytes);
1050 }
1051 EXPORT_SYMBOL(bio_advance);
1052
1053 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1054 struct bio *src, struct bvec_iter *src_iter)
1055 {
1056 struct bio_vec src_bv, dst_bv;
1057 void *src_p, *dst_p;
1058 unsigned bytes;
1059
1060 while (src_iter->bi_size && dst_iter->bi_size) {
1061 src_bv = bio_iter_iovec(src, *src_iter);
1062 dst_bv = bio_iter_iovec(dst, *dst_iter);
1063
1064 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1065
1066 src_p = kmap_atomic(src_bv.bv_page);
1067 dst_p = kmap_atomic(dst_bv.bv_page);
1068
1069 memcpy(dst_p + dst_bv.bv_offset,
1070 src_p + src_bv.bv_offset,
1071 bytes);
1072
1073 kunmap_atomic(dst_p);
1074 kunmap_atomic(src_p);
1075
1076 flush_dcache_page(dst_bv.bv_page);
1077
1078 bio_advance_iter(src, src_iter, bytes);
1079 bio_advance_iter(dst, dst_iter, bytes);
1080 }
1081 }
1082 EXPORT_SYMBOL(bio_copy_data_iter);
1083
1084 /**
1085 * bio_copy_data - copy contents of data buffers from one bio to another
1086 * @src: source bio
1087 * @dst: destination bio
1088 *
1089 * Stops when it reaches the end of either @src or @dst - that is, copies
1090 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1091 */
1092 void bio_copy_data(struct bio *dst, struct bio *src)
1093 {
1094 struct bvec_iter src_iter = src->bi_iter;
1095 struct bvec_iter dst_iter = dst->bi_iter;
1096
1097 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1098 }
1099 EXPORT_SYMBOL(bio_copy_data);
1100
1101 /**
1102 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1103 * another
1104 * @src: source bio list
1105 * @dst: destination bio list
1106 *
1107 * Stops when it reaches the end of either the @src list or @dst list - that is,
1108 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1109 * bios).
1110 */
1111 void bio_list_copy_data(struct bio *dst, struct bio *src)
1112 {
1113 struct bvec_iter src_iter = src->bi_iter;
1114 struct bvec_iter dst_iter = dst->bi_iter;
1115
1116 while (1) {
1117 if (!src_iter.bi_size) {
1118 src = src->bi_next;
1119 if (!src)
1120 break;
1121
1122 src_iter = src->bi_iter;
1123 }
1124
1125 if (!dst_iter.bi_size) {
1126 dst = dst->bi_next;
1127 if (!dst)
1128 break;
1129
1130 dst_iter = dst->bi_iter;
1131 }
1132
1133 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1134 }
1135 }
1136 EXPORT_SYMBOL(bio_list_copy_data);
1137
1138 struct bio_map_data {
1139 int is_our_pages;
1140 struct iov_iter iter;
1141 struct iovec iov[];
1142 };
1143
1144 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1145 gfp_t gfp_mask)
1146 {
1147 struct bio_map_data *bmd;
1148 if (data->nr_segs > UIO_MAXIOV)
1149 return NULL;
1150
1151 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1152 if (!bmd)
1153 return NULL;
1154 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1155 bmd->iter = *data;
1156 bmd->iter.iov = bmd->iov;
1157 return bmd;
1158 }
1159
1160 /**
1161 * bio_copy_from_iter - copy all pages from iov_iter to bio
1162 * @bio: The &struct bio which describes the I/O as destination
1163 * @iter: iov_iter as source
1164 *
1165 * Copy all pages from iov_iter to bio.
1166 * Returns 0 on success, or error on failure.
1167 */
1168 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1169 {
1170 struct bio_vec *bvec;
1171 struct bvec_iter_all iter_all;
1172
1173 bio_for_each_segment_all(bvec, bio, iter_all) {
1174 ssize_t ret;
1175
1176 ret = copy_page_from_iter(bvec->bv_page,
1177 bvec->bv_offset,
1178 bvec->bv_len,
1179 iter);
1180
1181 if (!iov_iter_count(iter))
1182 break;
1183
1184 if (ret < bvec->bv_len)
1185 return -EFAULT;
1186 }
1187
1188 return 0;
1189 }
1190
1191 /**
1192 * bio_copy_to_iter - copy all pages from bio to iov_iter
1193 * @bio: The &struct bio which describes the I/O as source
1194 * @iter: iov_iter as destination
1195 *
1196 * Copy all pages from bio to iov_iter.
1197 * Returns 0 on success, or error on failure.
1198 */
1199 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1200 {
1201 struct bio_vec *bvec;
1202 struct bvec_iter_all iter_all;
1203
1204 bio_for_each_segment_all(bvec, bio, iter_all) {
1205 ssize_t ret;
1206
1207 ret = copy_page_to_iter(bvec->bv_page,
1208 bvec->bv_offset,
1209 bvec->bv_len,
1210 &iter);
1211
1212 if (!iov_iter_count(&iter))
1213 break;
1214
1215 if (ret < bvec->bv_len)
1216 return -EFAULT;
1217 }
1218
1219 return 0;
1220 }
1221
1222 void bio_free_pages(struct bio *bio)
1223 {
1224 struct bio_vec *bvec;
1225 struct bvec_iter_all iter_all;
1226
1227 bio_for_each_segment_all(bvec, bio, iter_all)
1228 __free_page(bvec->bv_page);
1229 }
1230 EXPORT_SYMBOL(bio_free_pages);
1231
1232 /**
1233 * bio_uncopy_user - finish previously mapped bio
1234 * @bio: bio being terminated
1235 *
1236 * Free pages allocated from bio_copy_user_iov() and write back data
1237 * to user space in case of a read.
1238 */
1239 int bio_uncopy_user(struct bio *bio)
1240 {
1241 struct bio_map_data *bmd = bio->bi_private;
1242 int ret = 0;
1243
1244 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1245 /*
1246 * if we're in a workqueue, the request is orphaned, so
1247 * don't copy into a random user address space, just free
1248 * and return -EINTR so user space doesn't expect any data.
1249 */
1250 if (!current->mm)
1251 ret = -EINTR;
1252 else if (bio_data_dir(bio) == READ)
1253 ret = bio_copy_to_iter(bio, bmd->iter);
1254 if (bmd->is_our_pages)
1255 bio_free_pages(bio);
1256 }
1257 kfree(bmd);
1258 bio_put(bio);
1259 return ret;
1260 }
1261
1262 /**
1263 * bio_copy_user_iov - copy user data to bio
1264 * @q: destination block queue
1265 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1266 * @iter: iovec iterator
1267 * @gfp_mask: memory allocation flags
1268 *
1269 * Prepares and returns a bio for indirect user io, bouncing data
1270 * to/from kernel pages as necessary. Must be paired with
1271 * call bio_uncopy_user() on io completion.
1272 */
1273 struct bio *bio_copy_user_iov(struct request_queue *q,
1274 struct rq_map_data *map_data,
1275 struct iov_iter *iter,
1276 gfp_t gfp_mask)
1277 {
1278 struct bio_map_data *bmd;
1279 struct page *page;
1280 struct bio *bio;
1281 int i = 0, ret;
1282 int nr_pages;
1283 unsigned int len = iter->count;
1284 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1285
1286 bmd = bio_alloc_map_data(iter, gfp_mask);
1287 if (!bmd)
1288 return ERR_PTR(-ENOMEM);
1289
1290 /*
1291 * We need to do a deep copy of the iov_iter including the iovecs.
1292 * The caller provided iov might point to an on-stack or otherwise
1293 * shortlived one.
1294 */
1295 bmd->is_our_pages = map_data ? 0 : 1;
1296
1297 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1298 if (nr_pages > BIO_MAX_PAGES)
1299 nr_pages = BIO_MAX_PAGES;
1300
1301 ret = -ENOMEM;
1302 bio = bio_kmalloc(gfp_mask, nr_pages);
1303 if (!bio)
1304 goto out_bmd;
1305
1306 ret = 0;
1307
1308 if (map_data) {
1309 nr_pages = 1 << map_data->page_order;
1310 i = map_data->offset / PAGE_SIZE;
1311 }
1312 while (len) {
1313 unsigned int bytes = PAGE_SIZE;
1314
1315 bytes -= offset;
1316
1317 if (bytes > len)
1318 bytes = len;
1319
1320 if (map_data) {
1321 if (i == map_data->nr_entries * nr_pages) {
1322 ret = -ENOMEM;
1323 break;
1324 }
1325
1326 page = map_data->pages[i / nr_pages];
1327 page += (i % nr_pages);
1328
1329 i++;
1330 } else {
1331 page = alloc_page(q->bounce_gfp | gfp_mask);
1332 if (!page) {
1333 ret = -ENOMEM;
1334 break;
1335 }
1336 }
1337
1338 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1339 if (!map_data)
1340 __free_page(page);
1341 break;
1342 }
1343
1344 len -= bytes;
1345 offset = 0;
1346 }
1347
1348 if (ret)
1349 goto cleanup;
1350
1351 if (map_data)
1352 map_data->offset += bio->bi_iter.bi_size;
1353
1354 /*
1355 * success
1356 */
1357 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1358 (map_data && map_data->from_user)) {
1359 ret = bio_copy_from_iter(bio, iter);
1360 if (ret)
1361 goto cleanup;
1362 } else {
1363 if (bmd->is_our_pages)
1364 zero_fill_bio(bio);
1365 iov_iter_advance(iter, bio->bi_iter.bi_size);
1366 }
1367
1368 bio->bi_private = bmd;
1369 if (map_data && map_data->null_mapped)
1370 bio_set_flag(bio, BIO_NULL_MAPPED);
1371 return bio;
1372 cleanup:
1373 if (!map_data)
1374 bio_free_pages(bio);
1375 bio_put(bio);
1376 out_bmd:
1377 kfree(bmd);
1378 return ERR_PTR(ret);
1379 }
1380
1381 /**
1382 * bio_map_user_iov - map user iovec into bio
1383 * @q: the struct request_queue for the bio
1384 * @iter: iovec iterator
1385 * @gfp_mask: memory allocation flags
1386 *
1387 * Map the user space address into a bio suitable for io to a block
1388 * device. Returns an error pointer in case of error.
1389 */
1390 struct bio *bio_map_user_iov(struct request_queue *q,
1391 struct iov_iter *iter,
1392 gfp_t gfp_mask)
1393 {
1394 int j;
1395 struct bio *bio;
1396 int ret;
1397
1398 if (!iov_iter_count(iter))
1399 return ERR_PTR(-EINVAL);
1400
1401 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1402 if (!bio)
1403 return ERR_PTR(-ENOMEM);
1404
1405 while (iov_iter_count(iter)) {
1406 struct page **pages;
1407 ssize_t bytes;
1408 size_t offs, added = 0;
1409 int npages;
1410
1411 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1412 if (unlikely(bytes <= 0)) {
1413 ret = bytes ? bytes : -EFAULT;
1414 goto out_unmap;
1415 }
1416
1417 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1418
1419 if (unlikely(offs & queue_dma_alignment(q))) {
1420 ret = -EINVAL;
1421 j = 0;
1422 } else {
1423 for (j = 0; j < npages; j++) {
1424 struct page *page = pages[j];
1425 unsigned int n = PAGE_SIZE - offs;
1426 bool same_page = false;
1427
1428 if (n > bytes)
1429 n = bytes;
1430
1431 if (!__bio_add_pc_page(q, bio, page, n, offs,
1432 &same_page)) {
1433 if (same_page)
1434 put_page(page);
1435 break;
1436 }
1437
1438 added += n;
1439 bytes -= n;
1440 offs = 0;
1441 }
1442 iov_iter_advance(iter, added);
1443 }
1444 /*
1445 * release the pages we didn't map into the bio, if any
1446 */
1447 while (j < npages)
1448 put_page(pages[j++]);
1449 kvfree(pages);
1450 /* couldn't stuff something into bio? */
1451 if (bytes)
1452 break;
1453 }
1454
1455 bio_set_flag(bio, BIO_USER_MAPPED);
1456
1457 /*
1458 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1459 * it would normally disappear when its bi_end_io is run.
1460 * however, we need it for the unmap, so grab an extra
1461 * reference to it
1462 */
1463 bio_get(bio);
1464 return bio;
1465
1466 out_unmap:
1467 bio_release_pages(bio, false);
1468 bio_put(bio);
1469 return ERR_PTR(ret);
1470 }
1471
1472 /**
1473 * bio_unmap_user - unmap a bio
1474 * @bio: the bio being unmapped
1475 *
1476 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1477 * process context.
1478 *
1479 * bio_unmap_user() may sleep.
1480 */
1481 void bio_unmap_user(struct bio *bio)
1482 {
1483 bio_release_pages(bio, bio_data_dir(bio) == READ);
1484 bio_put(bio);
1485 bio_put(bio);
1486 }
1487
1488 static void bio_invalidate_vmalloc_pages(struct bio *bio)
1489 {
1490 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1491 if (bio->bi_private && !op_is_write(bio_op(bio))) {
1492 unsigned long i, len = 0;
1493
1494 for (i = 0; i < bio->bi_vcnt; i++)
1495 len += bio->bi_io_vec[i].bv_len;
1496 invalidate_kernel_vmap_range(bio->bi_private, len);
1497 }
1498 #endif
1499 }
1500
1501 static void bio_map_kern_endio(struct bio *bio)
1502 {
1503 bio_invalidate_vmalloc_pages(bio);
1504 bio_put(bio);
1505 }
1506
1507 /**
1508 * bio_map_kern - map kernel address into bio
1509 * @q: the struct request_queue for the bio
1510 * @data: pointer to buffer to map
1511 * @len: length in bytes
1512 * @gfp_mask: allocation flags for bio allocation
1513 *
1514 * Map the kernel address into a bio suitable for io to a block
1515 * device. Returns an error pointer in case of error.
1516 */
1517 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1518 gfp_t gfp_mask)
1519 {
1520 unsigned long kaddr = (unsigned long)data;
1521 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1522 unsigned long start = kaddr >> PAGE_SHIFT;
1523 const int nr_pages = end - start;
1524 bool is_vmalloc = is_vmalloc_addr(data);
1525 struct page *page;
1526 int offset, i;
1527 struct bio *bio;
1528
1529 bio = bio_kmalloc(gfp_mask, nr_pages);
1530 if (!bio)
1531 return ERR_PTR(-ENOMEM);
1532
1533 if (is_vmalloc) {
1534 flush_kernel_vmap_range(data, len);
1535 bio->bi_private = data;
1536 }
1537
1538 offset = offset_in_page(kaddr);
1539 for (i = 0; i < nr_pages; i++) {
1540 unsigned int bytes = PAGE_SIZE - offset;
1541
1542 if (len <= 0)
1543 break;
1544
1545 if (bytes > len)
1546 bytes = len;
1547
1548 if (!is_vmalloc)
1549 page = virt_to_page(data);
1550 else
1551 page = vmalloc_to_page(data);
1552 if (bio_add_pc_page(q, bio, page, bytes,
1553 offset) < bytes) {
1554 /* we don't support partial mappings */
1555 bio_put(bio);
1556 return ERR_PTR(-EINVAL);
1557 }
1558
1559 data += bytes;
1560 len -= bytes;
1561 offset = 0;
1562 }
1563
1564 bio->bi_end_io = bio_map_kern_endio;
1565 return bio;
1566 }
1567
1568 static void bio_copy_kern_endio(struct bio *bio)
1569 {
1570 bio_free_pages(bio);
1571 bio_put(bio);
1572 }
1573
1574 static void bio_copy_kern_endio_read(struct bio *bio)
1575 {
1576 char *p = bio->bi_private;
1577 struct bio_vec *bvec;
1578 struct bvec_iter_all iter_all;
1579
1580 bio_for_each_segment_all(bvec, bio, iter_all) {
1581 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1582 p += bvec->bv_len;
1583 }
1584
1585 bio_copy_kern_endio(bio);
1586 }
1587
1588 /**
1589 * bio_copy_kern - copy kernel address into bio
1590 * @q: the struct request_queue for the bio
1591 * @data: pointer to buffer to copy
1592 * @len: length in bytes
1593 * @gfp_mask: allocation flags for bio and page allocation
1594 * @reading: data direction is READ
1595 *
1596 * copy the kernel address into a bio suitable for io to a block
1597 * device. Returns an error pointer in case of error.
1598 */
1599 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1600 gfp_t gfp_mask, int reading)
1601 {
1602 unsigned long kaddr = (unsigned long)data;
1603 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1604 unsigned long start = kaddr >> PAGE_SHIFT;
1605 struct bio *bio;
1606 void *p = data;
1607 int nr_pages = 0;
1608
1609 /*
1610 * Overflow, abort
1611 */
1612 if (end < start)
1613 return ERR_PTR(-EINVAL);
1614
1615 nr_pages = end - start;
1616 bio = bio_kmalloc(gfp_mask, nr_pages);
1617 if (!bio)
1618 return ERR_PTR(-ENOMEM);
1619
1620 while (len) {
1621 struct page *page;
1622 unsigned int bytes = PAGE_SIZE;
1623
1624 if (bytes > len)
1625 bytes = len;
1626
1627 page = alloc_page(q->bounce_gfp | gfp_mask);
1628 if (!page)
1629 goto cleanup;
1630
1631 if (!reading)
1632 memcpy(page_address(page), p, bytes);
1633
1634 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1635 break;
1636
1637 len -= bytes;
1638 p += bytes;
1639 }
1640
1641 if (reading) {
1642 bio->bi_end_io = bio_copy_kern_endio_read;
1643 bio->bi_private = data;
1644 } else {
1645 bio->bi_end_io = bio_copy_kern_endio;
1646 }
1647
1648 return bio;
1649
1650 cleanup:
1651 bio_free_pages(bio);
1652 bio_put(bio);
1653 return ERR_PTR(-ENOMEM);
1654 }
1655
1656 /*
1657 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1658 * for performing direct-IO in BIOs.
1659 *
1660 * The problem is that we cannot run set_page_dirty() from interrupt context
1661 * because the required locks are not interrupt-safe. So what we can do is to
1662 * mark the pages dirty _before_ performing IO. And in interrupt context,
1663 * check that the pages are still dirty. If so, fine. If not, redirty them
1664 * in process context.
1665 *
1666 * We special-case compound pages here: normally this means reads into hugetlb
1667 * pages. The logic in here doesn't really work right for compound pages
1668 * because the VM does not uniformly chase down the head page in all cases.
1669 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1670 * handle them at all. So we skip compound pages here at an early stage.
1671 *
1672 * Note that this code is very hard to test under normal circumstances because
1673 * direct-io pins the pages with get_user_pages(). This makes
1674 * is_page_cache_freeable return false, and the VM will not clean the pages.
1675 * But other code (eg, flusher threads) could clean the pages if they are mapped
1676 * pagecache.
1677 *
1678 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1679 * deferred bio dirtying paths.
1680 */
1681
1682 /*
1683 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1684 */
1685 void bio_set_pages_dirty(struct bio *bio)
1686 {
1687 struct bio_vec *bvec;
1688 struct bvec_iter_all iter_all;
1689
1690 bio_for_each_segment_all(bvec, bio, iter_all) {
1691 if (!PageCompound(bvec->bv_page))
1692 set_page_dirty_lock(bvec->bv_page);
1693 }
1694 }
1695
1696 /*
1697 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1698 * If they are, then fine. If, however, some pages are clean then they must
1699 * have been written out during the direct-IO read. So we take another ref on
1700 * the BIO and re-dirty the pages in process context.
1701 *
1702 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1703 * here on. It will run one put_page() against each page and will run one
1704 * bio_put() against the BIO.
1705 */
1706
1707 static void bio_dirty_fn(struct work_struct *work);
1708
1709 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1710 static DEFINE_SPINLOCK(bio_dirty_lock);
1711 static struct bio *bio_dirty_list;
1712
1713 /*
1714 * This runs in process context
1715 */
1716 static void bio_dirty_fn(struct work_struct *work)
1717 {
1718 struct bio *bio, *next;
1719
1720 spin_lock_irq(&bio_dirty_lock);
1721 next = bio_dirty_list;
1722 bio_dirty_list = NULL;
1723 spin_unlock_irq(&bio_dirty_lock);
1724
1725 while ((bio = next) != NULL) {
1726 next = bio->bi_private;
1727
1728 bio_release_pages(bio, true);
1729 bio_put(bio);
1730 }
1731 }
1732
1733 void bio_check_pages_dirty(struct bio *bio)
1734 {
1735 struct bio_vec *bvec;
1736 unsigned long flags;
1737 struct bvec_iter_all iter_all;
1738
1739 bio_for_each_segment_all(bvec, bio, iter_all) {
1740 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1741 goto defer;
1742 }
1743
1744 bio_release_pages(bio, false);
1745 bio_put(bio);
1746 return;
1747 defer:
1748 spin_lock_irqsave(&bio_dirty_lock, flags);
1749 bio->bi_private = bio_dirty_list;
1750 bio_dirty_list = bio;
1751 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1752 schedule_work(&bio_dirty_work);
1753 }
1754
1755 void update_io_ticks(struct hd_struct *part, unsigned long now)
1756 {
1757 unsigned long stamp;
1758 again:
1759 stamp = READ_ONCE(part->stamp);
1760 if (unlikely(stamp != now)) {
1761 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1762 __part_stat_add(part, io_ticks, 1);
1763 }
1764 }
1765 if (part->partno) {
1766 part = &part_to_disk(part)->part0;
1767 goto again;
1768 }
1769 }
1770
1771 void generic_start_io_acct(struct request_queue *q, int op,
1772 unsigned long sectors, struct hd_struct *part)
1773 {
1774 const int sgrp = op_stat_group(op);
1775
1776 part_stat_lock();
1777
1778 update_io_ticks(part, jiffies);
1779 part_stat_inc(part, ios[sgrp]);
1780 part_stat_add(part, sectors[sgrp], sectors);
1781 part_inc_in_flight(q, part, op_is_write(op));
1782
1783 part_stat_unlock();
1784 }
1785 EXPORT_SYMBOL(generic_start_io_acct);
1786
1787 void generic_end_io_acct(struct request_queue *q, int req_op,
1788 struct hd_struct *part, unsigned long start_time)
1789 {
1790 unsigned long now = jiffies;
1791 unsigned long duration = now - start_time;
1792 const int sgrp = op_stat_group(req_op);
1793
1794 part_stat_lock();
1795
1796 update_io_ticks(part, now);
1797 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1798 part_stat_add(part, time_in_queue, duration);
1799 part_dec_in_flight(q, part, op_is_write(req_op));
1800
1801 part_stat_unlock();
1802 }
1803 EXPORT_SYMBOL(generic_end_io_acct);
1804
1805 static inline bool bio_remaining_done(struct bio *bio)
1806 {
1807 /*
1808 * If we're not chaining, then ->__bi_remaining is always 1 and
1809 * we always end io on the first invocation.
1810 */
1811 if (!bio_flagged(bio, BIO_CHAIN))
1812 return true;
1813
1814 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1815
1816 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1817 bio_clear_flag(bio, BIO_CHAIN);
1818 return true;
1819 }
1820
1821 return false;
1822 }
1823
1824 /**
1825 * bio_endio - end I/O on a bio
1826 * @bio: bio
1827 *
1828 * Description:
1829 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1830 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1831 * bio unless they own it and thus know that it has an end_io function.
1832 *
1833 * bio_endio() can be called several times on a bio that has been chained
1834 * using bio_chain(). The ->bi_end_io() function will only be called the
1835 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1836 * generated if BIO_TRACE_COMPLETION is set.
1837 **/
1838 void bio_endio(struct bio *bio)
1839 {
1840 again:
1841 if (!bio_remaining_done(bio))
1842 return;
1843 if (!bio_integrity_endio(bio))
1844 return;
1845
1846 if (bio->bi_disk)
1847 rq_qos_done_bio(bio->bi_disk->queue, bio);
1848
1849 /*
1850 * Need to have a real endio function for chained bios, otherwise
1851 * various corner cases will break (like stacking block devices that
1852 * save/restore bi_end_io) - however, we want to avoid unbounded
1853 * recursion and blowing the stack. Tail call optimization would
1854 * handle this, but compiling with frame pointers also disables
1855 * gcc's sibling call optimization.
1856 */
1857 if (bio->bi_end_io == bio_chain_endio) {
1858 bio = __bio_chain_endio(bio);
1859 goto again;
1860 }
1861
1862 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1863 trace_block_bio_complete(bio->bi_disk->queue, bio,
1864 blk_status_to_errno(bio->bi_status));
1865 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1866 }
1867
1868 blk_throtl_bio_endio(bio);
1869 /* release cgroup info */
1870 bio_uninit(bio);
1871 if (bio->bi_end_io)
1872 bio->bi_end_io(bio);
1873 }
1874 EXPORT_SYMBOL(bio_endio);
1875
1876 /**
1877 * bio_split - split a bio
1878 * @bio: bio to split
1879 * @sectors: number of sectors to split from the front of @bio
1880 * @gfp: gfp mask
1881 * @bs: bio set to allocate from
1882 *
1883 * Allocates and returns a new bio which represents @sectors from the start of
1884 * @bio, and updates @bio to represent the remaining sectors.
1885 *
1886 * Unless this is a discard request the newly allocated bio will point
1887 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1888 * neither @bio nor @bs are freed before the split bio.
1889 */
1890 struct bio *bio_split(struct bio *bio, int sectors,
1891 gfp_t gfp, struct bio_set *bs)
1892 {
1893 struct bio *split;
1894
1895 BUG_ON(sectors <= 0);
1896 BUG_ON(sectors >= bio_sectors(bio));
1897
1898 split = bio_clone_fast(bio, gfp, bs);
1899 if (!split)
1900 return NULL;
1901
1902 split->bi_iter.bi_size = sectors << 9;
1903
1904 if (bio_integrity(split))
1905 bio_integrity_trim(split);
1906
1907 bio_advance(bio, split->bi_iter.bi_size);
1908
1909 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1910 bio_set_flag(split, BIO_TRACE_COMPLETION);
1911
1912 return split;
1913 }
1914 EXPORT_SYMBOL(bio_split);
1915
1916 /**
1917 * bio_trim - trim a bio
1918 * @bio: bio to trim
1919 * @offset: number of sectors to trim from the front of @bio
1920 * @size: size we want to trim @bio to, in sectors
1921 */
1922 void bio_trim(struct bio *bio, int offset, int size)
1923 {
1924 /* 'bio' is a cloned bio which we need to trim to match
1925 * the given offset and size.
1926 */
1927
1928 size <<= 9;
1929 if (offset == 0 && size == bio->bi_iter.bi_size)
1930 return;
1931
1932 bio_advance(bio, offset << 9);
1933 bio->bi_iter.bi_size = size;
1934
1935 if (bio_integrity(bio))
1936 bio_integrity_trim(bio);
1937
1938 }
1939 EXPORT_SYMBOL_GPL(bio_trim);
1940
1941 /*
1942 * create memory pools for biovec's in a bio_set.
1943 * use the global biovec slabs created for general use.
1944 */
1945 int biovec_init_pool(mempool_t *pool, int pool_entries)
1946 {
1947 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1948
1949 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1950 }
1951
1952 /*
1953 * bioset_exit - exit a bioset initialized with bioset_init()
1954 *
1955 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1956 * kzalloc()).
1957 */
1958 void bioset_exit(struct bio_set *bs)
1959 {
1960 if (bs->rescue_workqueue)
1961 destroy_workqueue(bs->rescue_workqueue);
1962 bs->rescue_workqueue = NULL;
1963
1964 mempool_exit(&bs->bio_pool);
1965 mempool_exit(&bs->bvec_pool);
1966
1967 bioset_integrity_free(bs);
1968 if (bs->bio_slab)
1969 bio_put_slab(bs);
1970 bs->bio_slab = NULL;
1971 }
1972 EXPORT_SYMBOL(bioset_exit);
1973
1974 /**
1975 * bioset_init - Initialize a bio_set
1976 * @bs: pool to initialize
1977 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1978 * @front_pad: Number of bytes to allocate in front of the returned bio
1979 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1980 * and %BIOSET_NEED_RESCUER
1981 *
1982 * Description:
1983 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1984 * to ask for a number of bytes to be allocated in front of the bio.
1985 * Front pad allocation is useful for embedding the bio inside
1986 * another structure, to avoid allocating extra data to go with the bio.
1987 * Note that the bio must be embedded at the END of that structure always,
1988 * or things will break badly.
1989 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1990 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1991 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1992 * dispatch queued requests when the mempool runs out of space.
1993 *
1994 */
1995 int bioset_init(struct bio_set *bs,
1996 unsigned int pool_size,
1997 unsigned int front_pad,
1998 int flags)
1999 {
2000 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2001
2002 bs->front_pad = front_pad;
2003
2004 spin_lock_init(&bs->rescue_lock);
2005 bio_list_init(&bs->rescue_list);
2006 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2007
2008 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2009 if (!bs->bio_slab)
2010 return -ENOMEM;
2011
2012 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2013 goto bad;
2014
2015 if ((flags & BIOSET_NEED_BVECS) &&
2016 biovec_init_pool(&bs->bvec_pool, pool_size))
2017 goto bad;
2018
2019 if (!(flags & BIOSET_NEED_RESCUER))
2020 return 0;
2021
2022 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2023 if (!bs->rescue_workqueue)
2024 goto bad;
2025
2026 return 0;
2027 bad:
2028 bioset_exit(bs);
2029 return -ENOMEM;
2030 }
2031 EXPORT_SYMBOL(bioset_init);
2032
2033 /*
2034 * Initialize and setup a new bio_set, based on the settings from
2035 * another bio_set.
2036 */
2037 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2038 {
2039 int flags;
2040
2041 flags = 0;
2042 if (src->bvec_pool.min_nr)
2043 flags |= BIOSET_NEED_BVECS;
2044 if (src->rescue_workqueue)
2045 flags |= BIOSET_NEED_RESCUER;
2046
2047 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2048 }
2049 EXPORT_SYMBOL(bioset_init_from_src);
2050
2051 #ifdef CONFIG_BLK_CGROUP
2052
2053 /**
2054 * bio_disassociate_blkg - puts back the blkg reference if associated
2055 * @bio: target bio
2056 *
2057 * Helper to disassociate the blkg from @bio if a blkg is associated.
2058 */
2059 void bio_disassociate_blkg(struct bio *bio)
2060 {
2061 if (bio->bi_blkg) {
2062 blkg_put(bio->bi_blkg);
2063 bio->bi_blkg = NULL;
2064 }
2065 }
2066 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2067
2068 /**
2069 * __bio_associate_blkg - associate a bio with the a blkg
2070 * @bio: target bio
2071 * @blkg: the blkg to associate
2072 *
2073 * This tries to associate @bio with the specified @blkg. Association failure
2074 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2075 * be anything between @blkg and the root_blkg. This situation only happens
2076 * when a cgroup is dying and then the remaining bios will spill to the closest
2077 * alive blkg.
2078 *
2079 * A reference will be taken on the @blkg and will be released when @bio is
2080 * freed.
2081 */
2082 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2083 {
2084 bio_disassociate_blkg(bio);
2085
2086 bio->bi_blkg = blkg_tryget_closest(blkg);
2087 }
2088
2089 /**
2090 * bio_associate_blkg_from_css - associate a bio with a specified css
2091 * @bio: target bio
2092 * @css: target css
2093 *
2094 * Associate @bio with the blkg found by combining the css's blkg and the
2095 * request_queue of the @bio. This falls back to the queue's root_blkg if
2096 * the association fails with the css.
2097 */
2098 void bio_associate_blkg_from_css(struct bio *bio,
2099 struct cgroup_subsys_state *css)
2100 {
2101 struct request_queue *q = bio->bi_disk->queue;
2102 struct blkcg_gq *blkg;
2103
2104 rcu_read_lock();
2105
2106 if (!css || !css->parent)
2107 blkg = q->root_blkg;
2108 else
2109 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2110
2111 __bio_associate_blkg(bio, blkg);
2112
2113 rcu_read_unlock();
2114 }
2115 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2116
2117 #ifdef CONFIG_MEMCG
2118 /**
2119 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2120 * @bio: target bio
2121 * @page: the page to lookup the blkcg from
2122 *
2123 * Associate @bio with the blkg from @page's owning memcg and the respective
2124 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2125 * root_blkg.
2126 */
2127 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2128 {
2129 struct cgroup_subsys_state *css;
2130
2131 if (!page->mem_cgroup)
2132 return;
2133
2134 rcu_read_lock();
2135
2136 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2137 bio_associate_blkg_from_css(bio, css);
2138
2139 rcu_read_unlock();
2140 }
2141 #endif /* CONFIG_MEMCG */
2142
2143 /**
2144 * bio_associate_blkg - associate a bio with a blkg
2145 * @bio: target bio
2146 *
2147 * Associate @bio with the blkg found from the bio's css and request_queue.
2148 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2149 * already associated, the css is reused and association redone as the
2150 * request_queue may have changed.
2151 */
2152 void bio_associate_blkg(struct bio *bio)
2153 {
2154 struct cgroup_subsys_state *css;
2155
2156 rcu_read_lock();
2157
2158 if (bio->bi_blkg)
2159 css = &bio_blkcg(bio)->css;
2160 else
2161 css = blkcg_css();
2162
2163 bio_associate_blkg_from_css(bio, css);
2164
2165 rcu_read_unlock();
2166 }
2167 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2168
2169 /**
2170 * bio_clone_blkg_association - clone blkg association from src to dst bio
2171 * @dst: destination bio
2172 * @src: source bio
2173 */
2174 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2175 {
2176 rcu_read_lock();
2177
2178 if (src->bi_blkg)
2179 __bio_associate_blkg(dst, src->bi_blkg);
2180
2181 rcu_read_unlock();
2182 }
2183 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2184 #endif /* CONFIG_BLK_CGROUP */
2185
2186 static void __init biovec_init_slabs(void)
2187 {
2188 int i;
2189
2190 for (i = 0; i < BVEC_POOL_NR; i++) {
2191 int size;
2192 struct biovec_slab *bvs = bvec_slabs + i;
2193
2194 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2195 bvs->slab = NULL;
2196 continue;
2197 }
2198
2199 size = bvs->nr_vecs * sizeof(struct bio_vec);
2200 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2201 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2202 }
2203 }
2204
2205 static int __init init_bio(void)
2206 {
2207 bio_slab_max = 2;
2208 bio_slab_nr = 0;
2209 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2210 GFP_KERNEL);
2211
2212 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2213
2214 if (!bio_slabs)
2215 panic("bio: can't allocate bios\n");
2216
2217 bio_integrity_init();
2218 biovec_init_slabs();
2219
2220 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2221 panic("bio: can't allocate bios\n");
2222
2223 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2224 panic("bio: can't create integrity pool\n");
2225
2226 return 0;
2227 }
2228 subsys_initcall(init_bio);