]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/bio.c
block: replace trylock with mutex_lock in blkdev_reread_part()
[mirror_ubuntu-zesty-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 /*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50
51 /*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125 }
126
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152 out:
153 mutex_unlock(&bio_slab_lock);
154 }
155
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 return bvec_slabs[idx].nr_vecs;
159 }
160
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172 }
173
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
176 {
177 struct bio_vec *bvl;
178
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 bvl = mempool_alloc(pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
215
216 /*
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
220 */
221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222
223 /*
224 * Try a slab allocation. If this fails and __GFP_WAIT
225 * is set, retry with the 1-entry mempool
226 */
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
234 return bvl;
235 }
236
237 static void __bio_free(struct bio *bio)
238 {
239 bio_disassociate_task(bio);
240
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
243 }
244
245 static void bio_free(struct bio *bio)
246 {
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
253 if (bio_flagged(bio, BIO_OWNS_VEC))
254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
260 p -= bs->front_pad;
261
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
267 }
268
269 void bio_init(struct bio *bio)
270 {
271 memset(bio, 0, sizeof(*bio));
272 bio->bi_flags = 1 << BIO_UPTODATE;
273 atomic_set(&bio->__bi_remaining, 1);
274 atomic_set(&bio->__bi_cnt, 1);
275 }
276 EXPORT_SYMBOL(bio_init);
277
278 /**
279 * bio_reset - reinitialize a bio
280 * @bio: bio to reset
281 *
282 * Description:
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
287 */
288 void bio_reset(struct bio *bio)
289 {
290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291
292 __bio_free(bio);
293
294 memset(bio, 0, BIO_RESET_BYTES);
295 bio->bi_flags = flags | (1 << BIO_UPTODATE);
296 atomic_set(&bio->__bi_remaining, 1);
297 }
298 EXPORT_SYMBOL(bio_reset);
299
300 static void bio_chain_endio(struct bio *bio, int error)
301 {
302 bio_endio(bio->bi_private, error);
303 bio_put(bio);
304 }
305
306 /**
307 * bio_chain - chain bio completions
308 * @bio: the target bio
309 * @parent: the @bio's parent bio
310 *
311 * The caller won't have a bi_end_io called when @bio completes - instead,
312 * @parent's bi_end_io won't be called until both @parent and @bio have
313 * completed; the chained bio will also be freed when it completes.
314 *
315 * The caller must not set bi_private or bi_end_io in @bio.
316 */
317 void bio_chain(struct bio *bio, struct bio *parent)
318 {
319 BUG_ON(bio->bi_private || bio->bi_end_io);
320
321 bio->bi_private = parent;
322 bio->bi_end_io = bio_chain_endio;
323 bio_inc_remaining(parent);
324 }
325 EXPORT_SYMBOL(bio_chain);
326
327 static void bio_alloc_rescue(struct work_struct *work)
328 {
329 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
330 struct bio *bio;
331
332 while (1) {
333 spin_lock(&bs->rescue_lock);
334 bio = bio_list_pop(&bs->rescue_list);
335 spin_unlock(&bs->rescue_lock);
336
337 if (!bio)
338 break;
339
340 generic_make_request(bio);
341 }
342 }
343
344 static void punt_bios_to_rescuer(struct bio_set *bs)
345 {
346 struct bio_list punt, nopunt;
347 struct bio *bio;
348
349 /*
350 * In order to guarantee forward progress we must punt only bios that
351 * were allocated from this bio_set; otherwise, if there was a bio on
352 * there for a stacking driver higher up in the stack, processing it
353 * could require allocating bios from this bio_set, and doing that from
354 * our own rescuer would be bad.
355 *
356 * Since bio lists are singly linked, pop them all instead of trying to
357 * remove from the middle of the list:
358 */
359
360 bio_list_init(&punt);
361 bio_list_init(&nopunt);
362
363 while ((bio = bio_list_pop(current->bio_list)))
364 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
365
366 *current->bio_list = nopunt;
367
368 spin_lock(&bs->rescue_lock);
369 bio_list_merge(&bs->rescue_list, &punt);
370 spin_unlock(&bs->rescue_lock);
371
372 queue_work(bs->rescue_workqueue, &bs->rescue_work);
373 }
374
375 /**
376 * bio_alloc_bioset - allocate a bio for I/O
377 * @gfp_mask: the GFP_ mask given to the slab allocator
378 * @nr_iovecs: number of iovecs to pre-allocate
379 * @bs: the bio_set to allocate from.
380 *
381 * Description:
382 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
383 * backed by the @bs's mempool.
384 *
385 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
386 * able to allocate a bio. This is due to the mempool guarantees. To make this
387 * work, callers must never allocate more than 1 bio at a time from this pool.
388 * Callers that need to allocate more than 1 bio must always submit the
389 * previously allocated bio for IO before attempting to allocate a new one.
390 * Failure to do so can cause deadlocks under memory pressure.
391 *
392 * Note that when running under generic_make_request() (i.e. any block
393 * driver), bios are not submitted until after you return - see the code in
394 * generic_make_request() that converts recursion into iteration, to prevent
395 * stack overflows.
396 *
397 * This would normally mean allocating multiple bios under
398 * generic_make_request() would be susceptible to deadlocks, but we have
399 * deadlock avoidance code that resubmits any blocked bios from a rescuer
400 * thread.
401 *
402 * However, we do not guarantee forward progress for allocations from other
403 * mempools. Doing multiple allocations from the same mempool under
404 * generic_make_request() should be avoided - instead, use bio_set's front_pad
405 * for per bio allocations.
406 *
407 * RETURNS:
408 * Pointer to new bio on success, NULL on failure.
409 */
410 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
411 {
412 gfp_t saved_gfp = gfp_mask;
413 unsigned front_pad;
414 unsigned inline_vecs;
415 unsigned long idx = BIO_POOL_NONE;
416 struct bio_vec *bvl = NULL;
417 struct bio *bio;
418 void *p;
419
420 if (!bs) {
421 if (nr_iovecs > UIO_MAXIOV)
422 return NULL;
423
424 p = kmalloc(sizeof(struct bio) +
425 nr_iovecs * sizeof(struct bio_vec),
426 gfp_mask);
427 front_pad = 0;
428 inline_vecs = nr_iovecs;
429 } else {
430 /* should not use nobvec bioset for nr_iovecs > 0 */
431 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
432 return NULL;
433 /*
434 * generic_make_request() converts recursion to iteration; this
435 * means if we're running beneath it, any bios we allocate and
436 * submit will not be submitted (and thus freed) until after we
437 * return.
438 *
439 * This exposes us to a potential deadlock if we allocate
440 * multiple bios from the same bio_set() while running
441 * underneath generic_make_request(). If we were to allocate
442 * multiple bios (say a stacking block driver that was splitting
443 * bios), we would deadlock if we exhausted the mempool's
444 * reserve.
445 *
446 * We solve this, and guarantee forward progress, with a rescuer
447 * workqueue per bio_set. If we go to allocate and there are
448 * bios on current->bio_list, we first try the allocation
449 * without __GFP_WAIT; if that fails, we punt those bios we
450 * would be blocking to the rescuer workqueue before we retry
451 * with the original gfp_flags.
452 */
453
454 if (current->bio_list && !bio_list_empty(current->bio_list))
455 gfp_mask &= ~__GFP_WAIT;
456
457 p = mempool_alloc(bs->bio_pool, gfp_mask);
458 if (!p && gfp_mask != saved_gfp) {
459 punt_bios_to_rescuer(bs);
460 gfp_mask = saved_gfp;
461 p = mempool_alloc(bs->bio_pool, gfp_mask);
462 }
463
464 front_pad = bs->front_pad;
465 inline_vecs = BIO_INLINE_VECS;
466 }
467
468 if (unlikely(!p))
469 return NULL;
470
471 bio = p + front_pad;
472 bio_init(bio);
473
474 if (nr_iovecs > inline_vecs) {
475 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
476 if (!bvl && gfp_mask != saved_gfp) {
477 punt_bios_to_rescuer(bs);
478 gfp_mask = saved_gfp;
479 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
480 }
481
482 if (unlikely(!bvl))
483 goto err_free;
484
485 bio->bi_flags |= 1 << BIO_OWNS_VEC;
486 } else if (nr_iovecs) {
487 bvl = bio->bi_inline_vecs;
488 }
489
490 bio->bi_pool = bs;
491 bio->bi_flags |= idx << BIO_POOL_OFFSET;
492 bio->bi_max_vecs = nr_iovecs;
493 bio->bi_io_vec = bvl;
494 return bio;
495
496 err_free:
497 mempool_free(p, bs->bio_pool);
498 return NULL;
499 }
500 EXPORT_SYMBOL(bio_alloc_bioset);
501
502 void zero_fill_bio(struct bio *bio)
503 {
504 unsigned long flags;
505 struct bio_vec bv;
506 struct bvec_iter iter;
507
508 bio_for_each_segment(bv, bio, iter) {
509 char *data = bvec_kmap_irq(&bv, &flags);
510 memset(data, 0, bv.bv_len);
511 flush_dcache_page(bv.bv_page);
512 bvec_kunmap_irq(data, &flags);
513 }
514 }
515 EXPORT_SYMBOL(zero_fill_bio);
516
517 /**
518 * bio_put - release a reference to a bio
519 * @bio: bio to release reference to
520 *
521 * Description:
522 * Put a reference to a &struct bio, either one you have gotten with
523 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
524 **/
525 void bio_put(struct bio *bio)
526 {
527 if (!bio_flagged(bio, BIO_REFFED))
528 bio_free(bio);
529 else {
530 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
531
532 /*
533 * last put frees it
534 */
535 if (atomic_dec_and_test(&bio->__bi_cnt))
536 bio_free(bio);
537 }
538 }
539 EXPORT_SYMBOL(bio_put);
540
541 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
542 {
543 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
544 blk_recount_segments(q, bio);
545
546 return bio->bi_phys_segments;
547 }
548 EXPORT_SYMBOL(bio_phys_segments);
549
550 /**
551 * __bio_clone_fast - clone a bio that shares the original bio's biovec
552 * @bio: destination bio
553 * @bio_src: bio to clone
554 *
555 * Clone a &bio. Caller will own the returned bio, but not
556 * the actual data it points to. Reference count of returned
557 * bio will be one.
558 *
559 * Caller must ensure that @bio_src is not freed before @bio.
560 */
561 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
562 {
563 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
564
565 /*
566 * most users will be overriding ->bi_bdev with a new target,
567 * so we don't set nor calculate new physical/hw segment counts here
568 */
569 bio->bi_bdev = bio_src->bi_bdev;
570 bio->bi_flags |= 1 << BIO_CLONED;
571 bio->bi_rw = bio_src->bi_rw;
572 bio->bi_iter = bio_src->bi_iter;
573 bio->bi_io_vec = bio_src->bi_io_vec;
574 }
575 EXPORT_SYMBOL(__bio_clone_fast);
576
577 /**
578 * bio_clone_fast - clone a bio that shares the original bio's biovec
579 * @bio: bio to clone
580 * @gfp_mask: allocation priority
581 * @bs: bio_set to allocate from
582 *
583 * Like __bio_clone_fast, only also allocates the returned bio
584 */
585 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
586 {
587 struct bio *b;
588
589 b = bio_alloc_bioset(gfp_mask, 0, bs);
590 if (!b)
591 return NULL;
592
593 __bio_clone_fast(b, bio);
594
595 if (bio_integrity(bio)) {
596 int ret;
597
598 ret = bio_integrity_clone(b, bio, gfp_mask);
599
600 if (ret < 0) {
601 bio_put(b);
602 return NULL;
603 }
604 }
605
606 return b;
607 }
608 EXPORT_SYMBOL(bio_clone_fast);
609
610 /**
611 * bio_clone_bioset - clone a bio
612 * @bio_src: bio to clone
613 * @gfp_mask: allocation priority
614 * @bs: bio_set to allocate from
615 *
616 * Clone bio. Caller will own the returned bio, but not the actual data it
617 * points to. Reference count of returned bio will be one.
618 */
619 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
620 struct bio_set *bs)
621 {
622 struct bvec_iter iter;
623 struct bio_vec bv;
624 struct bio *bio;
625
626 /*
627 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
628 * bio_src->bi_io_vec to bio->bi_io_vec.
629 *
630 * We can't do that anymore, because:
631 *
632 * - The point of cloning the biovec is to produce a bio with a biovec
633 * the caller can modify: bi_idx and bi_bvec_done should be 0.
634 *
635 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
636 * we tried to clone the whole thing bio_alloc_bioset() would fail.
637 * But the clone should succeed as long as the number of biovecs we
638 * actually need to allocate is fewer than BIO_MAX_PAGES.
639 *
640 * - Lastly, bi_vcnt should not be looked at or relied upon by code
641 * that does not own the bio - reason being drivers don't use it for
642 * iterating over the biovec anymore, so expecting it to be kept up
643 * to date (i.e. for clones that share the parent biovec) is just
644 * asking for trouble and would force extra work on
645 * __bio_clone_fast() anyways.
646 */
647
648 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
649 if (!bio)
650 return NULL;
651
652 bio->bi_bdev = bio_src->bi_bdev;
653 bio->bi_rw = bio_src->bi_rw;
654 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
655 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
656
657 if (bio->bi_rw & REQ_DISCARD)
658 goto integrity_clone;
659
660 if (bio->bi_rw & REQ_WRITE_SAME) {
661 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
662 goto integrity_clone;
663 }
664
665 bio_for_each_segment(bv, bio_src, iter)
666 bio->bi_io_vec[bio->bi_vcnt++] = bv;
667
668 integrity_clone:
669 if (bio_integrity(bio_src)) {
670 int ret;
671
672 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
673 if (ret < 0) {
674 bio_put(bio);
675 return NULL;
676 }
677 }
678
679 return bio;
680 }
681 EXPORT_SYMBOL(bio_clone_bioset);
682
683 /**
684 * bio_get_nr_vecs - return approx number of vecs
685 * @bdev: I/O target
686 *
687 * Return the approximate number of pages we can send to this target.
688 * There's no guarantee that you will be able to fit this number of pages
689 * into a bio, it does not account for dynamic restrictions that vary
690 * on offset.
691 */
692 int bio_get_nr_vecs(struct block_device *bdev)
693 {
694 struct request_queue *q = bdev_get_queue(bdev);
695 int nr_pages;
696
697 nr_pages = min_t(unsigned,
698 queue_max_segments(q),
699 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
700
701 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
702
703 }
704 EXPORT_SYMBOL(bio_get_nr_vecs);
705
706 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
707 *page, unsigned int len, unsigned int offset,
708 unsigned int max_sectors)
709 {
710 int retried_segments = 0;
711 struct bio_vec *bvec;
712
713 /*
714 * cloned bio must not modify vec list
715 */
716 if (unlikely(bio_flagged(bio, BIO_CLONED)))
717 return 0;
718
719 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
720 return 0;
721
722 /*
723 * For filesystems with a blocksize smaller than the pagesize
724 * we will often be called with the same page as last time and
725 * a consecutive offset. Optimize this special case.
726 */
727 if (bio->bi_vcnt > 0) {
728 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
729
730 if (page == prev->bv_page &&
731 offset == prev->bv_offset + prev->bv_len) {
732 unsigned int prev_bv_len = prev->bv_len;
733 prev->bv_len += len;
734
735 if (q->merge_bvec_fn) {
736 struct bvec_merge_data bvm = {
737 /* prev_bvec is already charged in
738 bi_size, discharge it in order to
739 simulate merging updated prev_bvec
740 as new bvec. */
741 .bi_bdev = bio->bi_bdev,
742 .bi_sector = bio->bi_iter.bi_sector,
743 .bi_size = bio->bi_iter.bi_size -
744 prev_bv_len,
745 .bi_rw = bio->bi_rw,
746 };
747
748 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
749 prev->bv_len -= len;
750 return 0;
751 }
752 }
753
754 bio->bi_iter.bi_size += len;
755 goto done;
756 }
757
758 /*
759 * If the queue doesn't support SG gaps and adding this
760 * offset would create a gap, disallow it.
761 */
762 if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
763 bvec_gap_to_prev(prev, offset))
764 return 0;
765 }
766
767 if (bio->bi_vcnt >= bio->bi_max_vecs)
768 return 0;
769
770 /*
771 * setup the new entry, we might clear it again later if we
772 * cannot add the page
773 */
774 bvec = &bio->bi_io_vec[bio->bi_vcnt];
775 bvec->bv_page = page;
776 bvec->bv_len = len;
777 bvec->bv_offset = offset;
778 bio->bi_vcnt++;
779 bio->bi_phys_segments++;
780 bio->bi_iter.bi_size += len;
781
782 /*
783 * Perform a recount if the number of segments is greater
784 * than queue_max_segments(q).
785 */
786
787 while (bio->bi_phys_segments > queue_max_segments(q)) {
788
789 if (retried_segments)
790 goto failed;
791
792 retried_segments = 1;
793 blk_recount_segments(q, bio);
794 }
795
796 /*
797 * if queue has other restrictions (eg varying max sector size
798 * depending on offset), it can specify a merge_bvec_fn in the
799 * queue to get further control
800 */
801 if (q->merge_bvec_fn) {
802 struct bvec_merge_data bvm = {
803 .bi_bdev = bio->bi_bdev,
804 .bi_sector = bio->bi_iter.bi_sector,
805 .bi_size = bio->bi_iter.bi_size - len,
806 .bi_rw = bio->bi_rw,
807 };
808
809 /*
810 * merge_bvec_fn() returns number of bytes it can accept
811 * at this offset
812 */
813 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len)
814 goto failed;
815 }
816
817 /* If we may be able to merge these biovecs, force a recount */
818 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
819 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
820
821 done:
822 return len;
823
824 failed:
825 bvec->bv_page = NULL;
826 bvec->bv_len = 0;
827 bvec->bv_offset = 0;
828 bio->bi_vcnt--;
829 bio->bi_iter.bi_size -= len;
830 blk_recount_segments(q, bio);
831 return 0;
832 }
833
834 /**
835 * bio_add_pc_page - attempt to add page to bio
836 * @q: the target queue
837 * @bio: destination bio
838 * @page: page to add
839 * @len: vec entry length
840 * @offset: vec entry offset
841 *
842 * Attempt to add a page to the bio_vec maplist. This can fail for a
843 * number of reasons, such as the bio being full or target block device
844 * limitations. The target block device must allow bio's up to PAGE_SIZE,
845 * so it is always possible to add a single page to an empty bio.
846 *
847 * This should only be used by REQ_PC bios.
848 */
849 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
850 unsigned int len, unsigned int offset)
851 {
852 return __bio_add_page(q, bio, page, len, offset,
853 queue_max_hw_sectors(q));
854 }
855 EXPORT_SYMBOL(bio_add_pc_page);
856
857 /**
858 * bio_add_page - attempt to add page to bio
859 * @bio: destination bio
860 * @page: page to add
861 * @len: vec entry length
862 * @offset: vec entry offset
863 *
864 * Attempt to add a page to the bio_vec maplist. This can fail for a
865 * number of reasons, such as the bio being full or target block device
866 * limitations. The target block device must allow bio's up to PAGE_SIZE,
867 * so it is always possible to add a single page to an empty bio.
868 */
869 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
870 unsigned int offset)
871 {
872 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
873 unsigned int max_sectors;
874
875 max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
876 if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
877 max_sectors = len >> 9;
878
879 return __bio_add_page(q, bio, page, len, offset, max_sectors);
880 }
881 EXPORT_SYMBOL(bio_add_page);
882
883 struct submit_bio_ret {
884 struct completion event;
885 int error;
886 };
887
888 static void submit_bio_wait_endio(struct bio *bio, int error)
889 {
890 struct submit_bio_ret *ret = bio->bi_private;
891
892 ret->error = error;
893 complete(&ret->event);
894 }
895
896 /**
897 * submit_bio_wait - submit a bio, and wait until it completes
898 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
899 * @bio: The &struct bio which describes the I/O
900 *
901 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
902 * bio_endio() on failure.
903 */
904 int submit_bio_wait(int rw, struct bio *bio)
905 {
906 struct submit_bio_ret ret;
907
908 rw |= REQ_SYNC;
909 init_completion(&ret.event);
910 bio->bi_private = &ret;
911 bio->bi_end_io = submit_bio_wait_endio;
912 submit_bio(rw, bio);
913 wait_for_completion(&ret.event);
914
915 return ret.error;
916 }
917 EXPORT_SYMBOL(submit_bio_wait);
918
919 /**
920 * bio_advance - increment/complete a bio by some number of bytes
921 * @bio: bio to advance
922 * @bytes: number of bytes to complete
923 *
924 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
925 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
926 * be updated on the last bvec as well.
927 *
928 * @bio will then represent the remaining, uncompleted portion of the io.
929 */
930 void bio_advance(struct bio *bio, unsigned bytes)
931 {
932 if (bio_integrity(bio))
933 bio_integrity_advance(bio, bytes);
934
935 bio_advance_iter(bio, &bio->bi_iter, bytes);
936 }
937 EXPORT_SYMBOL(bio_advance);
938
939 /**
940 * bio_alloc_pages - allocates a single page for each bvec in a bio
941 * @bio: bio to allocate pages for
942 * @gfp_mask: flags for allocation
943 *
944 * Allocates pages up to @bio->bi_vcnt.
945 *
946 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
947 * freed.
948 */
949 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
950 {
951 int i;
952 struct bio_vec *bv;
953
954 bio_for_each_segment_all(bv, bio, i) {
955 bv->bv_page = alloc_page(gfp_mask);
956 if (!bv->bv_page) {
957 while (--bv >= bio->bi_io_vec)
958 __free_page(bv->bv_page);
959 return -ENOMEM;
960 }
961 }
962
963 return 0;
964 }
965 EXPORT_SYMBOL(bio_alloc_pages);
966
967 /**
968 * bio_copy_data - copy contents of data buffers from one chain of bios to
969 * another
970 * @src: source bio list
971 * @dst: destination bio list
972 *
973 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
974 * @src and @dst as linked lists of bios.
975 *
976 * Stops when it reaches the end of either @src or @dst - that is, copies
977 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
978 */
979 void bio_copy_data(struct bio *dst, struct bio *src)
980 {
981 struct bvec_iter src_iter, dst_iter;
982 struct bio_vec src_bv, dst_bv;
983 void *src_p, *dst_p;
984 unsigned bytes;
985
986 src_iter = src->bi_iter;
987 dst_iter = dst->bi_iter;
988
989 while (1) {
990 if (!src_iter.bi_size) {
991 src = src->bi_next;
992 if (!src)
993 break;
994
995 src_iter = src->bi_iter;
996 }
997
998 if (!dst_iter.bi_size) {
999 dst = dst->bi_next;
1000 if (!dst)
1001 break;
1002
1003 dst_iter = dst->bi_iter;
1004 }
1005
1006 src_bv = bio_iter_iovec(src, src_iter);
1007 dst_bv = bio_iter_iovec(dst, dst_iter);
1008
1009 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1010
1011 src_p = kmap_atomic(src_bv.bv_page);
1012 dst_p = kmap_atomic(dst_bv.bv_page);
1013
1014 memcpy(dst_p + dst_bv.bv_offset,
1015 src_p + src_bv.bv_offset,
1016 bytes);
1017
1018 kunmap_atomic(dst_p);
1019 kunmap_atomic(src_p);
1020
1021 bio_advance_iter(src, &src_iter, bytes);
1022 bio_advance_iter(dst, &dst_iter, bytes);
1023 }
1024 }
1025 EXPORT_SYMBOL(bio_copy_data);
1026
1027 struct bio_map_data {
1028 int is_our_pages;
1029 struct iov_iter iter;
1030 struct iovec iov[];
1031 };
1032
1033 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1034 gfp_t gfp_mask)
1035 {
1036 if (iov_count > UIO_MAXIOV)
1037 return NULL;
1038
1039 return kmalloc(sizeof(struct bio_map_data) +
1040 sizeof(struct iovec) * iov_count, gfp_mask);
1041 }
1042
1043 /**
1044 * bio_copy_from_iter - copy all pages from iov_iter to bio
1045 * @bio: The &struct bio which describes the I/O as destination
1046 * @iter: iov_iter as source
1047 *
1048 * Copy all pages from iov_iter to bio.
1049 * Returns 0 on success, or error on failure.
1050 */
1051 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1052 {
1053 int i;
1054 struct bio_vec *bvec;
1055
1056 bio_for_each_segment_all(bvec, bio, i) {
1057 ssize_t ret;
1058
1059 ret = copy_page_from_iter(bvec->bv_page,
1060 bvec->bv_offset,
1061 bvec->bv_len,
1062 &iter);
1063
1064 if (!iov_iter_count(&iter))
1065 break;
1066
1067 if (ret < bvec->bv_len)
1068 return -EFAULT;
1069 }
1070
1071 return 0;
1072 }
1073
1074 /**
1075 * bio_copy_to_iter - copy all pages from bio to iov_iter
1076 * @bio: The &struct bio which describes the I/O as source
1077 * @iter: iov_iter as destination
1078 *
1079 * Copy all pages from bio to iov_iter.
1080 * Returns 0 on success, or error on failure.
1081 */
1082 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1083 {
1084 int i;
1085 struct bio_vec *bvec;
1086
1087 bio_for_each_segment_all(bvec, bio, i) {
1088 ssize_t ret;
1089
1090 ret = copy_page_to_iter(bvec->bv_page,
1091 bvec->bv_offset,
1092 bvec->bv_len,
1093 &iter);
1094
1095 if (!iov_iter_count(&iter))
1096 break;
1097
1098 if (ret < bvec->bv_len)
1099 return -EFAULT;
1100 }
1101
1102 return 0;
1103 }
1104
1105 static void bio_free_pages(struct bio *bio)
1106 {
1107 struct bio_vec *bvec;
1108 int i;
1109
1110 bio_for_each_segment_all(bvec, bio, i)
1111 __free_page(bvec->bv_page);
1112 }
1113
1114 /**
1115 * bio_uncopy_user - finish previously mapped bio
1116 * @bio: bio being terminated
1117 *
1118 * Free pages allocated from bio_copy_user_iov() and write back data
1119 * to user space in case of a read.
1120 */
1121 int bio_uncopy_user(struct bio *bio)
1122 {
1123 struct bio_map_data *bmd = bio->bi_private;
1124 int ret = 0;
1125
1126 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1127 /*
1128 * if we're in a workqueue, the request is orphaned, so
1129 * don't copy into a random user address space, just free.
1130 */
1131 if (current->mm && bio_data_dir(bio) == READ)
1132 ret = bio_copy_to_iter(bio, bmd->iter);
1133 if (bmd->is_our_pages)
1134 bio_free_pages(bio);
1135 }
1136 kfree(bmd);
1137 bio_put(bio);
1138 return ret;
1139 }
1140 EXPORT_SYMBOL(bio_uncopy_user);
1141
1142 /**
1143 * bio_copy_user_iov - copy user data to bio
1144 * @q: destination block queue
1145 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1146 * @iter: iovec iterator
1147 * @gfp_mask: memory allocation flags
1148 *
1149 * Prepares and returns a bio for indirect user io, bouncing data
1150 * to/from kernel pages as necessary. Must be paired with
1151 * call bio_uncopy_user() on io completion.
1152 */
1153 struct bio *bio_copy_user_iov(struct request_queue *q,
1154 struct rq_map_data *map_data,
1155 const struct iov_iter *iter,
1156 gfp_t gfp_mask)
1157 {
1158 struct bio_map_data *bmd;
1159 struct page *page;
1160 struct bio *bio;
1161 int i, ret;
1162 int nr_pages = 0;
1163 unsigned int len = iter->count;
1164 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1165
1166 for (i = 0; i < iter->nr_segs; i++) {
1167 unsigned long uaddr;
1168 unsigned long end;
1169 unsigned long start;
1170
1171 uaddr = (unsigned long) iter->iov[i].iov_base;
1172 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1173 >> PAGE_SHIFT;
1174 start = uaddr >> PAGE_SHIFT;
1175
1176 /*
1177 * Overflow, abort
1178 */
1179 if (end < start)
1180 return ERR_PTR(-EINVAL);
1181
1182 nr_pages += end - start;
1183 }
1184
1185 if (offset)
1186 nr_pages++;
1187
1188 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1189 if (!bmd)
1190 return ERR_PTR(-ENOMEM);
1191
1192 /*
1193 * We need to do a deep copy of the iov_iter including the iovecs.
1194 * The caller provided iov might point to an on-stack or otherwise
1195 * shortlived one.
1196 */
1197 bmd->is_our_pages = map_data ? 0 : 1;
1198 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1199 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1200 iter->nr_segs, iter->count);
1201
1202 ret = -ENOMEM;
1203 bio = bio_kmalloc(gfp_mask, nr_pages);
1204 if (!bio)
1205 goto out_bmd;
1206
1207 if (iter->type & WRITE)
1208 bio->bi_rw |= REQ_WRITE;
1209
1210 ret = 0;
1211
1212 if (map_data) {
1213 nr_pages = 1 << map_data->page_order;
1214 i = map_data->offset / PAGE_SIZE;
1215 }
1216 while (len) {
1217 unsigned int bytes = PAGE_SIZE;
1218
1219 bytes -= offset;
1220
1221 if (bytes > len)
1222 bytes = len;
1223
1224 if (map_data) {
1225 if (i == map_data->nr_entries * nr_pages) {
1226 ret = -ENOMEM;
1227 break;
1228 }
1229
1230 page = map_data->pages[i / nr_pages];
1231 page += (i % nr_pages);
1232
1233 i++;
1234 } else {
1235 page = alloc_page(q->bounce_gfp | gfp_mask);
1236 if (!page) {
1237 ret = -ENOMEM;
1238 break;
1239 }
1240 }
1241
1242 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1243 break;
1244
1245 len -= bytes;
1246 offset = 0;
1247 }
1248
1249 if (ret)
1250 goto cleanup;
1251
1252 /*
1253 * success
1254 */
1255 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1256 (map_data && map_data->from_user)) {
1257 ret = bio_copy_from_iter(bio, *iter);
1258 if (ret)
1259 goto cleanup;
1260 }
1261
1262 bio->bi_private = bmd;
1263 return bio;
1264 cleanup:
1265 if (!map_data)
1266 bio_free_pages(bio);
1267 bio_put(bio);
1268 out_bmd:
1269 kfree(bmd);
1270 return ERR_PTR(ret);
1271 }
1272
1273 /**
1274 * bio_map_user_iov - map user iovec into bio
1275 * @q: the struct request_queue for the bio
1276 * @iter: iovec iterator
1277 * @gfp_mask: memory allocation flags
1278 *
1279 * Map the user space address into a bio suitable for io to a block
1280 * device. Returns an error pointer in case of error.
1281 */
1282 struct bio *bio_map_user_iov(struct request_queue *q,
1283 const struct iov_iter *iter,
1284 gfp_t gfp_mask)
1285 {
1286 int j;
1287 int nr_pages = 0;
1288 struct page **pages;
1289 struct bio *bio;
1290 int cur_page = 0;
1291 int ret, offset;
1292 struct iov_iter i;
1293 struct iovec iov;
1294
1295 iov_for_each(iov, i, *iter) {
1296 unsigned long uaddr = (unsigned long) iov.iov_base;
1297 unsigned long len = iov.iov_len;
1298 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1299 unsigned long start = uaddr >> PAGE_SHIFT;
1300
1301 /*
1302 * Overflow, abort
1303 */
1304 if (end < start)
1305 return ERR_PTR(-EINVAL);
1306
1307 nr_pages += end - start;
1308 /*
1309 * buffer must be aligned to at least hardsector size for now
1310 */
1311 if (uaddr & queue_dma_alignment(q))
1312 return ERR_PTR(-EINVAL);
1313 }
1314
1315 if (!nr_pages)
1316 return ERR_PTR(-EINVAL);
1317
1318 bio = bio_kmalloc(gfp_mask, nr_pages);
1319 if (!bio)
1320 return ERR_PTR(-ENOMEM);
1321
1322 ret = -ENOMEM;
1323 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1324 if (!pages)
1325 goto out;
1326
1327 iov_for_each(iov, i, *iter) {
1328 unsigned long uaddr = (unsigned long) iov.iov_base;
1329 unsigned long len = iov.iov_len;
1330 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1331 unsigned long start = uaddr >> PAGE_SHIFT;
1332 const int local_nr_pages = end - start;
1333 const int page_limit = cur_page + local_nr_pages;
1334
1335 ret = get_user_pages_fast(uaddr, local_nr_pages,
1336 (iter->type & WRITE) != WRITE,
1337 &pages[cur_page]);
1338 if (ret < local_nr_pages) {
1339 ret = -EFAULT;
1340 goto out_unmap;
1341 }
1342
1343 offset = uaddr & ~PAGE_MASK;
1344 for (j = cur_page; j < page_limit; j++) {
1345 unsigned int bytes = PAGE_SIZE - offset;
1346
1347 if (len <= 0)
1348 break;
1349
1350 if (bytes > len)
1351 bytes = len;
1352
1353 /*
1354 * sorry...
1355 */
1356 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1357 bytes)
1358 break;
1359
1360 len -= bytes;
1361 offset = 0;
1362 }
1363
1364 cur_page = j;
1365 /*
1366 * release the pages we didn't map into the bio, if any
1367 */
1368 while (j < page_limit)
1369 page_cache_release(pages[j++]);
1370 }
1371
1372 kfree(pages);
1373
1374 /*
1375 * set data direction, and check if mapped pages need bouncing
1376 */
1377 if (iter->type & WRITE)
1378 bio->bi_rw |= REQ_WRITE;
1379
1380 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1381
1382 /*
1383 * subtle -- if __bio_map_user() ended up bouncing a bio,
1384 * it would normally disappear when its bi_end_io is run.
1385 * however, we need it for the unmap, so grab an extra
1386 * reference to it
1387 */
1388 bio_get(bio);
1389 return bio;
1390
1391 out_unmap:
1392 for (j = 0; j < nr_pages; j++) {
1393 if (!pages[j])
1394 break;
1395 page_cache_release(pages[j]);
1396 }
1397 out:
1398 kfree(pages);
1399 bio_put(bio);
1400 return ERR_PTR(ret);
1401 }
1402
1403 static void __bio_unmap_user(struct bio *bio)
1404 {
1405 struct bio_vec *bvec;
1406 int i;
1407
1408 /*
1409 * make sure we dirty pages we wrote to
1410 */
1411 bio_for_each_segment_all(bvec, bio, i) {
1412 if (bio_data_dir(bio) == READ)
1413 set_page_dirty_lock(bvec->bv_page);
1414
1415 page_cache_release(bvec->bv_page);
1416 }
1417
1418 bio_put(bio);
1419 }
1420
1421 /**
1422 * bio_unmap_user - unmap a bio
1423 * @bio: the bio being unmapped
1424 *
1425 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1426 * a process context.
1427 *
1428 * bio_unmap_user() may sleep.
1429 */
1430 void bio_unmap_user(struct bio *bio)
1431 {
1432 __bio_unmap_user(bio);
1433 bio_put(bio);
1434 }
1435 EXPORT_SYMBOL(bio_unmap_user);
1436
1437 static void bio_map_kern_endio(struct bio *bio, int err)
1438 {
1439 bio_put(bio);
1440 }
1441
1442 /**
1443 * bio_map_kern - map kernel address into bio
1444 * @q: the struct request_queue for the bio
1445 * @data: pointer to buffer to map
1446 * @len: length in bytes
1447 * @gfp_mask: allocation flags for bio allocation
1448 *
1449 * Map the kernel address into a bio suitable for io to a block
1450 * device. Returns an error pointer in case of error.
1451 */
1452 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1453 gfp_t gfp_mask)
1454 {
1455 unsigned long kaddr = (unsigned long)data;
1456 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1457 unsigned long start = kaddr >> PAGE_SHIFT;
1458 const int nr_pages = end - start;
1459 int offset, i;
1460 struct bio *bio;
1461
1462 bio = bio_kmalloc(gfp_mask, nr_pages);
1463 if (!bio)
1464 return ERR_PTR(-ENOMEM);
1465
1466 offset = offset_in_page(kaddr);
1467 for (i = 0; i < nr_pages; i++) {
1468 unsigned int bytes = PAGE_SIZE - offset;
1469
1470 if (len <= 0)
1471 break;
1472
1473 if (bytes > len)
1474 bytes = len;
1475
1476 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1477 offset) < bytes) {
1478 /* we don't support partial mappings */
1479 bio_put(bio);
1480 return ERR_PTR(-EINVAL);
1481 }
1482
1483 data += bytes;
1484 len -= bytes;
1485 offset = 0;
1486 }
1487
1488 bio->bi_end_io = bio_map_kern_endio;
1489 return bio;
1490 }
1491 EXPORT_SYMBOL(bio_map_kern);
1492
1493 static void bio_copy_kern_endio(struct bio *bio, int err)
1494 {
1495 bio_free_pages(bio);
1496 bio_put(bio);
1497 }
1498
1499 static void bio_copy_kern_endio_read(struct bio *bio, int err)
1500 {
1501 char *p = bio->bi_private;
1502 struct bio_vec *bvec;
1503 int i;
1504
1505 bio_for_each_segment_all(bvec, bio, i) {
1506 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1507 p += bvec->bv_len;
1508 }
1509
1510 bio_copy_kern_endio(bio, err);
1511 }
1512
1513 /**
1514 * bio_copy_kern - copy kernel address into bio
1515 * @q: the struct request_queue for the bio
1516 * @data: pointer to buffer to copy
1517 * @len: length in bytes
1518 * @gfp_mask: allocation flags for bio and page allocation
1519 * @reading: data direction is READ
1520 *
1521 * copy the kernel address into a bio suitable for io to a block
1522 * device. Returns an error pointer in case of error.
1523 */
1524 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1525 gfp_t gfp_mask, int reading)
1526 {
1527 unsigned long kaddr = (unsigned long)data;
1528 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1529 unsigned long start = kaddr >> PAGE_SHIFT;
1530 struct bio *bio;
1531 void *p = data;
1532 int nr_pages = 0;
1533
1534 /*
1535 * Overflow, abort
1536 */
1537 if (end < start)
1538 return ERR_PTR(-EINVAL);
1539
1540 nr_pages = end - start;
1541 bio = bio_kmalloc(gfp_mask, nr_pages);
1542 if (!bio)
1543 return ERR_PTR(-ENOMEM);
1544
1545 while (len) {
1546 struct page *page;
1547 unsigned int bytes = PAGE_SIZE;
1548
1549 if (bytes > len)
1550 bytes = len;
1551
1552 page = alloc_page(q->bounce_gfp | gfp_mask);
1553 if (!page)
1554 goto cleanup;
1555
1556 if (!reading)
1557 memcpy(page_address(page), p, bytes);
1558
1559 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1560 break;
1561
1562 len -= bytes;
1563 p += bytes;
1564 }
1565
1566 if (reading) {
1567 bio->bi_end_io = bio_copy_kern_endio_read;
1568 bio->bi_private = data;
1569 } else {
1570 bio->bi_end_io = bio_copy_kern_endio;
1571 bio->bi_rw |= REQ_WRITE;
1572 }
1573
1574 return bio;
1575
1576 cleanup:
1577 bio_free_pages(bio);
1578 bio_put(bio);
1579 return ERR_PTR(-ENOMEM);
1580 }
1581 EXPORT_SYMBOL(bio_copy_kern);
1582
1583 /*
1584 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1585 * for performing direct-IO in BIOs.
1586 *
1587 * The problem is that we cannot run set_page_dirty() from interrupt context
1588 * because the required locks are not interrupt-safe. So what we can do is to
1589 * mark the pages dirty _before_ performing IO. And in interrupt context,
1590 * check that the pages are still dirty. If so, fine. If not, redirty them
1591 * in process context.
1592 *
1593 * We special-case compound pages here: normally this means reads into hugetlb
1594 * pages. The logic in here doesn't really work right for compound pages
1595 * because the VM does not uniformly chase down the head page in all cases.
1596 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1597 * handle them at all. So we skip compound pages here at an early stage.
1598 *
1599 * Note that this code is very hard to test under normal circumstances because
1600 * direct-io pins the pages with get_user_pages(). This makes
1601 * is_page_cache_freeable return false, and the VM will not clean the pages.
1602 * But other code (eg, flusher threads) could clean the pages if they are mapped
1603 * pagecache.
1604 *
1605 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1606 * deferred bio dirtying paths.
1607 */
1608
1609 /*
1610 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1611 */
1612 void bio_set_pages_dirty(struct bio *bio)
1613 {
1614 struct bio_vec *bvec;
1615 int i;
1616
1617 bio_for_each_segment_all(bvec, bio, i) {
1618 struct page *page = bvec->bv_page;
1619
1620 if (page && !PageCompound(page))
1621 set_page_dirty_lock(page);
1622 }
1623 }
1624
1625 static void bio_release_pages(struct bio *bio)
1626 {
1627 struct bio_vec *bvec;
1628 int i;
1629
1630 bio_for_each_segment_all(bvec, bio, i) {
1631 struct page *page = bvec->bv_page;
1632
1633 if (page)
1634 put_page(page);
1635 }
1636 }
1637
1638 /*
1639 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1640 * If they are, then fine. If, however, some pages are clean then they must
1641 * have been written out during the direct-IO read. So we take another ref on
1642 * the BIO and the offending pages and re-dirty the pages in process context.
1643 *
1644 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1645 * here on. It will run one page_cache_release() against each page and will
1646 * run one bio_put() against the BIO.
1647 */
1648
1649 static void bio_dirty_fn(struct work_struct *work);
1650
1651 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1652 static DEFINE_SPINLOCK(bio_dirty_lock);
1653 static struct bio *bio_dirty_list;
1654
1655 /*
1656 * This runs in process context
1657 */
1658 static void bio_dirty_fn(struct work_struct *work)
1659 {
1660 unsigned long flags;
1661 struct bio *bio;
1662
1663 spin_lock_irqsave(&bio_dirty_lock, flags);
1664 bio = bio_dirty_list;
1665 bio_dirty_list = NULL;
1666 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1667
1668 while (bio) {
1669 struct bio *next = bio->bi_private;
1670
1671 bio_set_pages_dirty(bio);
1672 bio_release_pages(bio);
1673 bio_put(bio);
1674 bio = next;
1675 }
1676 }
1677
1678 void bio_check_pages_dirty(struct bio *bio)
1679 {
1680 struct bio_vec *bvec;
1681 int nr_clean_pages = 0;
1682 int i;
1683
1684 bio_for_each_segment_all(bvec, bio, i) {
1685 struct page *page = bvec->bv_page;
1686
1687 if (PageDirty(page) || PageCompound(page)) {
1688 page_cache_release(page);
1689 bvec->bv_page = NULL;
1690 } else {
1691 nr_clean_pages++;
1692 }
1693 }
1694
1695 if (nr_clean_pages) {
1696 unsigned long flags;
1697
1698 spin_lock_irqsave(&bio_dirty_lock, flags);
1699 bio->bi_private = bio_dirty_list;
1700 bio_dirty_list = bio;
1701 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1702 schedule_work(&bio_dirty_work);
1703 } else {
1704 bio_put(bio);
1705 }
1706 }
1707
1708 void generic_start_io_acct(int rw, unsigned long sectors,
1709 struct hd_struct *part)
1710 {
1711 int cpu = part_stat_lock();
1712
1713 part_round_stats(cpu, part);
1714 part_stat_inc(cpu, part, ios[rw]);
1715 part_stat_add(cpu, part, sectors[rw], sectors);
1716 part_inc_in_flight(part, rw);
1717
1718 part_stat_unlock();
1719 }
1720 EXPORT_SYMBOL(generic_start_io_acct);
1721
1722 void generic_end_io_acct(int rw, struct hd_struct *part,
1723 unsigned long start_time)
1724 {
1725 unsigned long duration = jiffies - start_time;
1726 int cpu = part_stat_lock();
1727
1728 part_stat_add(cpu, part, ticks[rw], duration);
1729 part_round_stats(cpu, part);
1730 part_dec_in_flight(part, rw);
1731
1732 part_stat_unlock();
1733 }
1734 EXPORT_SYMBOL(generic_end_io_acct);
1735
1736 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1737 void bio_flush_dcache_pages(struct bio *bi)
1738 {
1739 struct bio_vec bvec;
1740 struct bvec_iter iter;
1741
1742 bio_for_each_segment(bvec, bi, iter)
1743 flush_dcache_page(bvec.bv_page);
1744 }
1745 EXPORT_SYMBOL(bio_flush_dcache_pages);
1746 #endif
1747
1748 static inline bool bio_remaining_done(struct bio *bio)
1749 {
1750 /*
1751 * If we're not chaining, then ->__bi_remaining is always 1 and
1752 * we always end io on the first invocation.
1753 */
1754 if (!bio_flagged(bio, BIO_CHAIN))
1755 return true;
1756
1757 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1758
1759 if (atomic_dec_and_test(&bio->__bi_remaining))
1760 return true;
1761
1762 return false;
1763 }
1764
1765 /**
1766 * bio_endio - end I/O on a bio
1767 * @bio: bio
1768 * @error: error, if any
1769 *
1770 * Description:
1771 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1772 * preferred way to end I/O on a bio, it takes care of clearing
1773 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1774 * established -Exxxx (-EIO, for instance) error values in case
1775 * something went wrong. No one should call bi_end_io() directly on a
1776 * bio unless they own it and thus know that it has an end_io
1777 * function.
1778 **/
1779 void bio_endio(struct bio *bio, int error)
1780 {
1781 while (bio) {
1782 if (error)
1783 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1784 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1785 error = -EIO;
1786
1787 if (unlikely(!bio_remaining_done(bio)))
1788 break;
1789
1790 /*
1791 * Need to have a real endio function for chained bios,
1792 * otherwise various corner cases will break (like stacking
1793 * block devices that save/restore bi_end_io) - however, we want
1794 * to avoid unbounded recursion and blowing the stack. Tail call
1795 * optimization would handle this, but compiling with frame
1796 * pointers also disables gcc's sibling call optimization.
1797 */
1798 if (bio->bi_end_io == bio_chain_endio) {
1799 struct bio *parent = bio->bi_private;
1800 bio_put(bio);
1801 bio = parent;
1802 } else {
1803 if (bio->bi_end_io)
1804 bio->bi_end_io(bio, error);
1805 bio = NULL;
1806 }
1807 }
1808 }
1809 EXPORT_SYMBOL(bio_endio);
1810
1811 /**
1812 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1813 * @bio: bio
1814 * @error: error, if any
1815 *
1816 * For code that has saved and restored bi_end_io; thing hard before using this
1817 * function, probably you should've cloned the entire bio.
1818 **/
1819 void bio_endio_nodec(struct bio *bio, int error)
1820 {
1821 /*
1822 * If it's not flagged as a chain, we are not going to dec the count
1823 */
1824 if (bio_flagged(bio, BIO_CHAIN))
1825 bio_inc_remaining(bio);
1826
1827 bio_endio(bio, error);
1828 }
1829 EXPORT_SYMBOL(bio_endio_nodec);
1830
1831 /**
1832 * bio_split - split a bio
1833 * @bio: bio to split
1834 * @sectors: number of sectors to split from the front of @bio
1835 * @gfp: gfp mask
1836 * @bs: bio set to allocate from
1837 *
1838 * Allocates and returns a new bio which represents @sectors from the start of
1839 * @bio, and updates @bio to represent the remaining sectors.
1840 *
1841 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1842 * responsibility to ensure that @bio is not freed before the split.
1843 */
1844 struct bio *bio_split(struct bio *bio, int sectors,
1845 gfp_t gfp, struct bio_set *bs)
1846 {
1847 struct bio *split = NULL;
1848
1849 BUG_ON(sectors <= 0);
1850 BUG_ON(sectors >= bio_sectors(bio));
1851
1852 split = bio_clone_fast(bio, gfp, bs);
1853 if (!split)
1854 return NULL;
1855
1856 split->bi_iter.bi_size = sectors << 9;
1857
1858 if (bio_integrity(split))
1859 bio_integrity_trim(split, 0, sectors);
1860
1861 bio_advance(bio, split->bi_iter.bi_size);
1862
1863 return split;
1864 }
1865 EXPORT_SYMBOL(bio_split);
1866
1867 /**
1868 * bio_trim - trim a bio
1869 * @bio: bio to trim
1870 * @offset: number of sectors to trim from the front of @bio
1871 * @size: size we want to trim @bio to, in sectors
1872 */
1873 void bio_trim(struct bio *bio, int offset, int size)
1874 {
1875 /* 'bio' is a cloned bio which we need to trim to match
1876 * the given offset and size.
1877 */
1878
1879 size <<= 9;
1880 if (offset == 0 && size == bio->bi_iter.bi_size)
1881 return;
1882
1883 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1884
1885 bio_advance(bio, offset << 9);
1886
1887 bio->bi_iter.bi_size = size;
1888 }
1889 EXPORT_SYMBOL_GPL(bio_trim);
1890
1891 /*
1892 * create memory pools for biovec's in a bio_set.
1893 * use the global biovec slabs created for general use.
1894 */
1895 mempool_t *biovec_create_pool(int pool_entries)
1896 {
1897 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1898
1899 return mempool_create_slab_pool(pool_entries, bp->slab);
1900 }
1901
1902 void bioset_free(struct bio_set *bs)
1903 {
1904 if (bs->rescue_workqueue)
1905 destroy_workqueue(bs->rescue_workqueue);
1906
1907 if (bs->bio_pool)
1908 mempool_destroy(bs->bio_pool);
1909
1910 if (bs->bvec_pool)
1911 mempool_destroy(bs->bvec_pool);
1912
1913 bioset_integrity_free(bs);
1914 bio_put_slab(bs);
1915
1916 kfree(bs);
1917 }
1918 EXPORT_SYMBOL(bioset_free);
1919
1920 static struct bio_set *__bioset_create(unsigned int pool_size,
1921 unsigned int front_pad,
1922 bool create_bvec_pool)
1923 {
1924 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1925 struct bio_set *bs;
1926
1927 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1928 if (!bs)
1929 return NULL;
1930
1931 bs->front_pad = front_pad;
1932
1933 spin_lock_init(&bs->rescue_lock);
1934 bio_list_init(&bs->rescue_list);
1935 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1936
1937 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1938 if (!bs->bio_slab) {
1939 kfree(bs);
1940 return NULL;
1941 }
1942
1943 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1944 if (!bs->bio_pool)
1945 goto bad;
1946
1947 if (create_bvec_pool) {
1948 bs->bvec_pool = biovec_create_pool(pool_size);
1949 if (!bs->bvec_pool)
1950 goto bad;
1951 }
1952
1953 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1954 if (!bs->rescue_workqueue)
1955 goto bad;
1956
1957 return bs;
1958 bad:
1959 bioset_free(bs);
1960 return NULL;
1961 }
1962
1963 /**
1964 * bioset_create - Create a bio_set
1965 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1966 * @front_pad: Number of bytes to allocate in front of the returned bio
1967 *
1968 * Description:
1969 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1970 * to ask for a number of bytes to be allocated in front of the bio.
1971 * Front pad allocation is useful for embedding the bio inside
1972 * another structure, to avoid allocating extra data to go with the bio.
1973 * Note that the bio must be embedded at the END of that structure always,
1974 * or things will break badly.
1975 */
1976 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1977 {
1978 return __bioset_create(pool_size, front_pad, true);
1979 }
1980 EXPORT_SYMBOL(bioset_create);
1981
1982 /**
1983 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1984 * @pool_size: Number of bio to cache in the mempool
1985 * @front_pad: Number of bytes to allocate in front of the returned bio
1986 *
1987 * Description:
1988 * Same functionality as bioset_create() except that mempool is not
1989 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1990 */
1991 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1992 {
1993 return __bioset_create(pool_size, front_pad, false);
1994 }
1995 EXPORT_SYMBOL(bioset_create_nobvec);
1996
1997 #ifdef CONFIG_BLK_CGROUP
1998 /**
1999 * bio_associate_current - associate a bio with %current
2000 * @bio: target bio
2001 *
2002 * Associate @bio with %current if it hasn't been associated yet. Block
2003 * layer will treat @bio as if it were issued by %current no matter which
2004 * task actually issues it.
2005 *
2006 * This function takes an extra reference of @task's io_context and blkcg
2007 * which will be put when @bio is released. The caller must own @bio,
2008 * ensure %current->io_context exists, and is responsible for synchronizing
2009 * calls to this function.
2010 */
2011 int bio_associate_current(struct bio *bio)
2012 {
2013 struct io_context *ioc;
2014 struct cgroup_subsys_state *css;
2015
2016 if (bio->bi_ioc)
2017 return -EBUSY;
2018
2019 ioc = current->io_context;
2020 if (!ioc)
2021 return -ENOENT;
2022
2023 /* acquire active ref on @ioc and associate */
2024 get_io_context_active(ioc);
2025 bio->bi_ioc = ioc;
2026
2027 /* associate blkcg if exists */
2028 rcu_read_lock();
2029 css = task_css(current, blkio_cgrp_id);
2030 if (css && css_tryget_online(css))
2031 bio->bi_css = css;
2032 rcu_read_unlock();
2033
2034 return 0;
2035 }
2036
2037 /**
2038 * bio_disassociate_task - undo bio_associate_current()
2039 * @bio: target bio
2040 */
2041 void bio_disassociate_task(struct bio *bio)
2042 {
2043 if (bio->bi_ioc) {
2044 put_io_context(bio->bi_ioc);
2045 bio->bi_ioc = NULL;
2046 }
2047 if (bio->bi_css) {
2048 css_put(bio->bi_css);
2049 bio->bi_css = NULL;
2050 }
2051 }
2052
2053 #endif /* CONFIG_BLK_CGROUP */
2054
2055 static void __init biovec_init_slabs(void)
2056 {
2057 int i;
2058
2059 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2060 int size;
2061 struct biovec_slab *bvs = bvec_slabs + i;
2062
2063 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2064 bvs->slab = NULL;
2065 continue;
2066 }
2067
2068 size = bvs->nr_vecs * sizeof(struct bio_vec);
2069 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2070 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2071 }
2072 }
2073
2074 static int __init init_bio(void)
2075 {
2076 bio_slab_max = 2;
2077 bio_slab_nr = 0;
2078 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2079 if (!bio_slabs)
2080 panic("bio: can't allocate bios\n");
2081
2082 bio_integrity_init();
2083 biovec_init_slabs();
2084
2085 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2086 if (!fs_bio_set)
2087 panic("bio: can't allocate bios\n");
2088
2089 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2090 panic("bio: can't create integrity pool\n");
2091
2092 return 0;
2093 }
2094 subsys_initcall(init_bio);