]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/bio.c
block: bio_iov_iter_get_pages: fix size of last iovec
[mirror_ubuntu-bionic-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33 #include "blk.h"
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 /*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
46 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
49 };
50 #undef BV
51
52 /*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58
59 /*
60 * Our slab pool management
61 */
62 struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
105 goto out_unlock;
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
119
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123 out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126 }
127
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 return bvec_slabs[idx].nr_vecs;
160 }
161
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
169
170 if (idx == BVEC_POOL_MAX) {
171 mempool_free(bv, pool);
172 } else {
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177 }
178
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
181 {
182 struct bio_vec *bvl;
183
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
214 if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 bvl = mempool_alloc(pool, gfp_mask);
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220
221 /*
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
225 */
226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227
228 /*
229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 * is set, retry with the 1-entry mempool
231 */
232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 *idx = BVEC_POOL_MAX;
235 goto fallback;
236 }
237 }
238
239 (*idx)++;
240 return bvl;
241 }
242
243 void bio_uninit(struct bio *bio)
244 {
245 bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248
249 static void bio_free(struct bio *bio)
250 {
251 struct bio_set *bs = bio->bi_pool;
252 void *p;
253
254 bio_uninit(bio);
255
256 if (bs) {
257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
263 p -= bs->front_pad;
264
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
270 }
271
272 /*
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
276 */
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 unsigned short max_vecs)
279 {
280 memset(bio, 0, sizeof(*bio));
281 atomic_set(&bio->__bi_remaining, 1);
282 atomic_set(&bio->__bi_cnt, 1);
283
284 bio->bi_io_vec = table;
285 bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288
289 /**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 *
293 * Description:
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
298 */
299 void bio_reset(struct bio *bio)
300 {
301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302
303 bio_uninit(bio);
304
305 memset(bio, 0, BIO_RESET_BYTES);
306 bio->bi_flags = flags;
307 atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 struct bio *parent = bio->bi_private;
314
315 if (!parent->bi_status)
316 parent->bi_status = bio->bi_status;
317 bio_put(bio);
318 return parent;
319 }
320
321 static void bio_chain_endio(struct bio *bio)
322 {
323 bio_endio(__bio_chain_endio(bio));
324 }
325
326 /**
327 * bio_chain - chain bio completions
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
343 bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
351
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
356
357 if (!bio)
358 break;
359
360 generic_make_request(bio);
361 }
362 }
363
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 struct bio_list punt, nopunt;
367 struct bio *bio;
368
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
371 /*
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
377 *
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
380 */
381
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
384
385 while ((bio = bio_list_pop(&current->bio_list[0])))
386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 current->bio_list[0] = nopunt;
388
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(&current->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
393
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
397
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400
401 /**
402 * bio_alloc_bioset - allocate a bio for I/O
403 * @gfp_mask: the GFP_* mask given to the slab allocator
404 * @nr_iovecs: number of iovecs to pre-allocate
405 * @bs: the bio_set to allocate from.
406 *
407 * Description:
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
410 *
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
417 *
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
421 * stack overflows.
422 *
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
426 * thread.
427 *
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
432 *
433 * RETURNS:
434 * Pointer to new bio on success, NULL on failure.
435 */
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 struct bio_set *bs)
438 {
439 gfp_t saved_gfp = gfp_mask;
440 unsigned front_pad;
441 unsigned inline_vecs;
442 struct bio_vec *bvl = NULL;
443 struct bio *bio;
444 void *p;
445
446 if (!bs) {
447 if (nr_iovecs > UIO_MAXIOV)
448 return NULL;
449
450 p = kmalloc(sizeof(struct bio) +
451 nr_iovecs * sizeof(struct bio_vec),
452 gfp_mask);
453 front_pad = 0;
454 inline_vecs = nr_iovecs;
455 } else {
456 /* should not use nobvec bioset for nr_iovecs > 0 */
457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 return NULL;
459 /*
460 * generic_make_request() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath generic_make_request(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
478 */
479
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485
486 p = mempool_alloc(bs->bio_pool, gfp_mask);
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(bs->bio_pool, gfp_mask);
491 }
492
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
497 if (unlikely(!p))
498 return NULL;
499
500 bio = p + front_pad;
501 bio_init(bio, NULL, 0);
502
503 if (nr_iovecs > inline_vecs) {
504 unsigned long idx = 0;
505
506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 }
512
513 if (unlikely(!bvl))
514 goto err_free;
515
516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
519 }
520
521 bio->bi_pool = bs;
522 bio->bi_max_vecs = nr_iovecs;
523 bio->bi_io_vec = bvl;
524 return bio;
525
526 err_free:
527 mempool_free(p, bs->bio_pool);
528 return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531
532 void zero_fill_bio(struct bio *bio)
533 {
534 unsigned long flags;
535 struct bio_vec bv;
536 struct bvec_iter iter;
537
538 bio_for_each_segment(bv, bio, iter) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
542 bvec_kunmap_irq(data, &flags);
543 }
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546
547 /**
548 * bio_put - release a reference to a bio
549 * @bio: bio to release reference to
550 *
551 * Description:
552 * Put a reference to a &struct bio, either one you have gotten with
553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
554 **/
555 void bio_put(struct bio *bio)
556 {
557 if (!bio_flagged(bio, BIO_REFFED))
558 bio_free(bio);
559 else {
560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561
562 /*
563 * last put frees it
564 */
565 if (atomic_dec_and_test(&bio->__bi_cnt))
566 bio_free(bio);
567 }
568 }
569 EXPORT_SYMBOL(bio_put);
570
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 blk_recount_segments(q, bio);
575
576 return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579
580 /**
581 * __bio_clone_fast - clone a bio that shares the original bio's biovec
582 * @bio: destination bio
583 * @bio_src: bio to clone
584 *
585 * Clone a &bio. Caller will own the returned bio, but not
586 * the actual data it points to. Reference count of returned
587 * bio will be one.
588 *
589 * Caller must ensure that @bio_src is not freed before @bio.
590 */
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594
595 /*
596 * most users will be overriding ->bi_disk with a new target,
597 * so we don't set nor calculate new physical/hw segment counts here
598 */
599 bio->bi_disk = bio_src->bi_disk;
600 bio->bi_partno = bio_src->bi_partno;
601 bio_set_flag(bio, BIO_CLONED);
602 if (bio_flagged(bio_src, BIO_THROTTLED))
603 bio_set_flag(bio, BIO_THROTTLED);
604 bio->bi_opf = bio_src->bi_opf;
605 bio->bi_write_hint = bio_src->bi_write_hint;
606 bio->bi_iter = bio_src->bi_iter;
607 bio->bi_io_vec = bio_src->bi_io_vec;
608
609 bio_clone_blkcg_association(bio, bio_src);
610 }
611 EXPORT_SYMBOL(__bio_clone_fast);
612
613 /**
614 * bio_clone_fast - clone a bio that shares the original bio's biovec
615 * @bio: bio to clone
616 * @gfp_mask: allocation priority
617 * @bs: bio_set to allocate from
618 *
619 * Like __bio_clone_fast, only also allocates the returned bio
620 */
621 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
622 {
623 struct bio *b;
624
625 b = bio_alloc_bioset(gfp_mask, 0, bs);
626 if (!b)
627 return NULL;
628
629 __bio_clone_fast(b, bio);
630
631 if (bio_integrity(bio)) {
632 int ret;
633
634 ret = bio_integrity_clone(b, bio, gfp_mask);
635
636 if (ret < 0) {
637 bio_put(b);
638 return NULL;
639 }
640 }
641
642 return b;
643 }
644 EXPORT_SYMBOL(bio_clone_fast);
645
646 /**
647 * bio_clone_bioset - clone a bio
648 * @bio_src: bio to clone
649 * @gfp_mask: allocation priority
650 * @bs: bio_set to allocate from
651 *
652 * Clone bio. Caller will own the returned bio, but not the actual data it
653 * points to. Reference count of returned bio will be one.
654 */
655 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
656 struct bio_set *bs)
657 {
658 struct bvec_iter iter;
659 struct bio_vec bv;
660 struct bio *bio;
661
662 /*
663 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
664 * bio_src->bi_io_vec to bio->bi_io_vec.
665 *
666 * We can't do that anymore, because:
667 *
668 * - The point of cloning the biovec is to produce a bio with a biovec
669 * the caller can modify: bi_idx and bi_bvec_done should be 0.
670 *
671 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
672 * we tried to clone the whole thing bio_alloc_bioset() would fail.
673 * But the clone should succeed as long as the number of biovecs we
674 * actually need to allocate is fewer than BIO_MAX_PAGES.
675 *
676 * - Lastly, bi_vcnt should not be looked at or relied upon by code
677 * that does not own the bio - reason being drivers don't use it for
678 * iterating over the biovec anymore, so expecting it to be kept up
679 * to date (i.e. for clones that share the parent biovec) is just
680 * asking for trouble and would force extra work on
681 * __bio_clone_fast() anyways.
682 */
683
684 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
685 if (!bio)
686 return NULL;
687 bio->bi_disk = bio_src->bi_disk;
688 bio->bi_opf = bio_src->bi_opf;
689 bio->bi_write_hint = bio_src->bi_write_hint;
690 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
691 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
692
693 switch (bio_op(bio)) {
694 case REQ_OP_DISCARD:
695 case REQ_OP_SECURE_ERASE:
696 case REQ_OP_WRITE_ZEROES:
697 break;
698 case REQ_OP_WRITE_SAME:
699 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
700 break;
701 default:
702 bio_for_each_segment(bv, bio_src, iter)
703 bio->bi_io_vec[bio->bi_vcnt++] = bv;
704 break;
705 }
706
707 if (bio_integrity(bio_src)) {
708 int ret;
709
710 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
711 if (ret < 0) {
712 bio_put(bio);
713 return NULL;
714 }
715 }
716
717 bio_clone_blkcg_association(bio, bio_src);
718
719 return bio;
720 }
721 EXPORT_SYMBOL(bio_clone_bioset);
722
723 /**
724 * bio_add_pc_page - attempt to add page to bio
725 * @q: the target queue
726 * @bio: destination bio
727 * @page: page to add
728 * @len: vec entry length
729 * @offset: vec entry offset
730 *
731 * Attempt to add a page to the bio_vec maplist. This can fail for a
732 * number of reasons, such as the bio being full or target block device
733 * limitations. The target block device must allow bio's up to PAGE_SIZE,
734 * so it is always possible to add a single page to an empty bio.
735 *
736 * This should only be used by REQ_PC bios.
737 */
738 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
739 *page, unsigned int len, unsigned int offset)
740 {
741 int retried_segments = 0;
742 struct bio_vec *bvec;
743
744 /*
745 * cloned bio must not modify vec list
746 */
747 if (unlikely(bio_flagged(bio, BIO_CLONED)))
748 return 0;
749
750 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
751 return 0;
752
753 /*
754 * For filesystems with a blocksize smaller than the pagesize
755 * we will often be called with the same page as last time and
756 * a consecutive offset. Optimize this special case.
757 */
758 if (bio->bi_vcnt > 0) {
759 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
760
761 if (page == prev->bv_page &&
762 offset == prev->bv_offset + prev->bv_len) {
763 prev->bv_len += len;
764 bio->bi_iter.bi_size += len;
765 goto done;
766 }
767
768 /*
769 * If the queue doesn't support SG gaps and adding this
770 * offset would create a gap, disallow it.
771 */
772 if (bvec_gap_to_prev(q, prev, offset))
773 return 0;
774 }
775
776 if (bio_full(bio))
777 return 0;
778
779 /*
780 * setup the new entry, we might clear it again later if we
781 * cannot add the page
782 */
783 bvec = &bio->bi_io_vec[bio->bi_vcnt];
784 bvec->bv_page = page;
785 bvec->bv_len = len;
786 bvec->bv_offset = offset;
787 bio->bi_vcnt++;
788 bio->bi_phys_segments++;
789 bio->bi_iter.bi_size += len;
790
791 /*
792 * Perform a recount if the number of segments is greater
793 * than queue_max_segments(q).
794 */
795
796 while (bio->bi_phys_segments > queue_max_segments(q)) {
797
798 if (retried_segments)
799 goto failed;
800
801 retried_segments = 1;
802 blk_recount_segments(q, bio);
803 }
804
805 /* If we may be able to merge these biovecs, force a recount */
806 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
807 bio_clear_flag(bio, BIO_SEG_VALID);
808
809 done:
810 return len;
811
812 failed:
813 bvec->bv_page = NULL;
814 bvec->bv_len = 0;
815 bvec->bv_offset = 0;
816 bio->bi_vcnt--;
817 bio->bi_iter.bi_size -= len;
818 blk_recount_segments(q, bio);
819 return 0;
820 }
821 EXPORT_SYMBOL(bio_add_pc_page);
822
823 /**
824 * __bio_try_merge_page - try appending data to an existing bvec.
825 * @bio: destination bio
826 * @page: page to add
827 * @len: length of the data to add
828 * @off: offset of the data in @page
829 *
830 * Try to add the data at @page + @off to the last bvec of @bio. This is a
831 * a useful optimisation for file systems with a block size smaller than the
832 * page size.
833 *
834 * Return %true on success or %false on failure.
835 */
836 bool __bio_try_merge_page(struct bio *bio, struct page *page,
837 unsigned int len, unsigned int off)
838 {
839 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
840 return false;
841
842 if (bio->bi_vcnt > 0) {
843 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
844
845 if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
846 bv->bv_len += len;
847 bio->bi_iter.bi_size += len;
848 return true;
849 }
850 }
851 return false;
852 }
853 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
854
855 /**
856 * __bio_add_page - add page to a bio in a new segment
857 * @bio: destination bio
858 * @page: page to add
859 * @len: length of the data to add
860 * @off: offset of the data in @page
861 *
862 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
863 * that @bio has space for another bvec.
864 */
865 void __bio_add_page(struct bio *bio, struct page *page,
866 unsigned int len, unsigned int off)
867 {
868 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
869
870 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
871 WARN_ON_ONCE(bio_full(bio));
872
873 bv->bv_page = page;
874 bv->bv_offset = off;
875 bv->bv_len = len;
876
877 bio->bi_iter.bi_size += len;
878 bio->bi_vcnt++;
879 }
880 EXPORT_SYMBOL_GPL(__bio_add_page);
881
882 /**
883 * bio_add_page - attempt to add page to bio
884 * @bio: destination bio
885 * @page: page to add
886 * @len: vec entry length
887 * @offset: vec entry offset
888 *
889 * Attempt to add a page to the bio_vec maplist. This will only fail
890 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
891 */
892 int bio_add_page(struct bio *bio, struct page *page,
893 unsigned int len, unsigned int offset)
894 {
895 if (!__bio_try_merge_page(bio, page, len, offset)) {
896 if (bio_full(bio))
897 return 0;
898 __bio_add_page(bio, page, len, offset);
899 }
900 return len;
901 }
902 EXPORT_SYMBOL(bio_add_page);
903
904 /**
905 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
906 * @bio: bio to add pages to
907 * @iter: iov iterator describing the region to be mapped
908 *
909 * Pins as many pages from *iter and appends them to @bio's bvec array. The
910 * pages will have to be released using put_page() when done.
911 */
912 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
913 {
914 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt, idx;
915 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
916 struct page **pages = (struct page **)bv;
917 size_t offset;
918 ssize_t size;
919
920 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
921 if (unlikely(size <= 0))
922 return size ? size : -EFAULT;
923 idx = nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
924
925 /*
926 * Deep magic below: We need to walk the pinned pages backwards
927 * because we are abusing the space allocated for the bio_vecs
928 * for the page array. Because the bio_vecs are larger than the
929 * page pointers by definition this will always work. But it also
930 * means we can't use bio_add_page, so any changes to it's semantics
931 * need to be reflected here as well.
932 */
933 bio->bi_iter.bi_size += size;
934 bio->bi_vcnt += nr_pages;
935
936 while (idx--) {
937 bv[idx].bv_page = pages[idx];
938 bv[idx].bv_len = PAGE_SIZE;
939 bv[idx].bv_offset = 0;
940 }
941
942 bv[0].bv_offset += offset;
943 bv[0].bv_len -= offset;
944 bv[nr_pages - 1].bv_len -= nr_pages * PAGE_SIZE - offset - size;
945
946 iov_iter_advance(iter, size);
947 return 0;
948 }
949 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
950
951 static void submit_bio_wait_endio(struct bio *bio)
952 {
953 complete(bio->bi_private);
954 }
955
956 /**
957 * submit_bio_wait - submit a bio, and wait until it completes
958 * @bio: The &struct bio which describes the I/O
959 *
960 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
961 * bio_endio() on failure.
962 *
963 * WARNING: Unlike to how submit_bio() is usually used, this function does not
964 * result in bio reference to be consumed. The caller must drop the reference
965 * on his own.
966 */
967 int submit_bio_wait(struct bio *bio)
968 {
969 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
970
971 bio->bi_private = &done;
972 bio->bi_end_io = submit_bio_wait_endio;
973 bio->bi_opf |= REQ_SYNC;
974 submit_bio(bio);
975 wait_for_completion_io(&done);
976
977 return blk_status_to_errno(bio->bi_status);
978 }
979 EXPORT_SYMBOL(submit_bio_wait);
980
981 /**
982 * bio_advance - increment/complete a bio by some number of bytes
983 * @bio: bio to advance
984 * @bytes: number of bytes to complete
985 *
986 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
987 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
988 * be updated on the last bvec as well.
989 *
990 * @bio will then represent the remaining, uncompleted portion of the io.
991 */
992 void bio_advance(struct bio *bio, unsigned bytes)
993 {
994 if (bio_integrity(bio))
995 bio_integrity_advance(bio, bytes);
996
997 bio_advance_iter(bio, &bio->bi_iter, bytes);
998 }
999 EXPORT_SYMBOL(bio_advance);
1000
1001 /**
1002 * bio_alloc_pages - allocates a single page for each bvec in a bio
1003 * @bio: bio to allocate pages for
1004 * @gfp_mask: flags for allocation
1005 *
1006 * Allocates pages up to @bio->bi_vcnt.
1007 *
1008 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
1009 * freed.
1010 */
1011 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
1012 {
1013 int i;
1014 struct bio_vec *bv;
1015
1016 bio_for_each_segment_all(bv, bio, i) {
1017 bv->bv_page = alloc_page(gfp_mask);
1018 if (!bv->bv_page) {
1019 while (--bv >= bio->bi_io_vec)
1020 __free_page(bv->bv_page);
1021 return -ENOMEM;
1022 }
1023 }
1024
1025 return 0;
1026 }
1027 EXPORT_SYMBOL(bio_alloc_pages);
1028
1029 /**
1030 * bio_copy_data - copy contents of data buffers from one chain of bios to
1031 * another
1032 * @src: source bio list
1033 * @dst: destination bio list
1034 *
1035 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1036 * @src and @dst as linked lists of bios.
1037 *
1038 * Stops when it reaches the end of either @src or @dst - that is, copies
1039 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1040 */
1041 void bio_copy_data(struct bio *dst, struct bio *src)
1042 {
1043 struct bvec_iter src_iter, dst_iter;
1044 struct bio_vec src_bv, dst_bv;
1045 void *src_p, *dst_p;
1046 unsigned bytes;
1047
1048 src_iter = src->bi_iter;
1049 dst_iter = dst->bi_iter;
1050
1051 while (1) {
1052 if (!src_iter.bi_size) {
1053 src = src->bi_next;
1054 if (!src)
1055 break;
1056
1057 src_iter = src->bi_iter;
1058 }
1059
1060 if (!dst_iter.bi_size) {
1061 dst = dst->bi_next;
1062 if (!dst)
1063 break;
1064
1065 dst_iter = dst->bi_iter;
1066 }
1067
1068 src_bv = bio_iter_iovec(src, src_iter);
1069 dst_bv = bio_iter_iovec(dst, dst_iter);
1070
1071 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1072
1073 src_p = kmap_atomic(src_bv.bv_page);
1074 dst_p = kmap_atomic(dst_bv.bv_page);
1075
1076 memcpy(dst_p + dst_bv.bv_offset,
1077 src_p + src_bv.bv_offset,
1078 bytes);
1079
1080 kunmap_atomic(dst_p);
1081 kunmap_atomic(src_p);
1082
1083 bio_advance_iter(src, &src_iter, bytes);
1084 bio_advance_iter(dst, &dst_iter, bytes);
1085 }
1086 }
1087 EXPORT_SYMBOL(bio_copy_data);
1088
1089 struct bio_map_data {
1090 int is_our_pages;
1091 struct iov_iter iter;
1092 struct iovec iov[];
1093 };
1094
1095 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1096 gfp_t gfp_mask)
1097 {
1098 struct bio_map_data *bmd;
1099 if (data->nr_segs > UIO_MAXIOV)
1100 return NULL;
1101
1102 bmd = kmalloc(sizeof(struct bio_map_data) +
1103 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1104 if (!bmd)
1105 return NULL;
1106 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1107 bmd->iter = *data;
1108 bmd->iter.iov = bmd->iov;
1109 return bmd;
1110 }
1111
1112 /**
1113 * bio_copy_from_iter - copy all pages from iov_iter to bio
1114 * @bio: The &struct bio which describes the I/O as destination
1115 * @iter: iov_iter as source
1116 *
1117 * Copy all pages from iov_iter to bio.
1118 * Returns 0 on success, or error on failure.
1119 */
1120 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1121 {
1122 int i;
1123 struct bio_vec *bvec;
1124
1125 bio_for_each_segment_all(bvec, bio, i) {
1126 ssize_t ret;
1127
1128 ret = copy_page_from_iter(bvec->bv_page,
1129 bvec->bv_offset,
1130 bvec->bv_len,
1131 iter);
1132
1133 if (!iov_iter_count(iter))
1134 break;
1135
1136 if (ret < bvec->bv_len)
1137 return -EFAULT;
1138 }
1139
1140 return 0;
1141 }
1142
1143 /**
1144 * bio_copy_to_iter - copy all pages from bio to iov_iter
1145 * @bio: The &struct bio which describes the I/O as source
1146 * @iter: iov_iter as destination
1147 *
1148 * Copy all pages from bio to iov_iter.
1149 * Returns 0 on success, or error on failure.
1150 */
1151 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1152 {
1153 int i;
1154 struct bio_vec *bvec;
1155
1156 bio_for_each_segment_all(bvec, bio, i) {
1157 ssize_t ret;
1158
1159 ret = copy_page_to_iter(bvec->bv_page,
1160 bvec->bv_offset,
1161 bvec->bv_len,
1162 &iter);
1163
1164 if (!iov_iter_count(&iter))
1165 break;
1166
1167 if (ret < bvec->bv_len)
1168 return -EFAULT;
1169 }
1170
1171 return 0;
1172 }
1173
1174 void bio_free_pages(struct bio *bio)
1175 {
1176 struct bio_vec *bvec;
1177 int i;
1178
1179 bio_for_each_segment_all(bvec, bio, i)
1180 __free_page(bvec->bv_page);
1181 }
1182 EXPORT_SYMBOL(bio_free_pages);
1183
1184 /**
1185 * bio_uncopy_user - finish previously mapped bio
1186 * @bio: bio being terminated
1187 *
1188 * Free pages allocated from bio_copy_user_iov() and write back data
1189 * to user space in case of a read.
1190 */
1191 int bio_uncopy_user(struct bio *bio)
1192 {
1193 struct bio_map_data *bmd = bio->bi_private;
1194 int ret = 0;
1195
1196 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1197 /*
1198 * if we're in a workqueue, the request is orphaned, so
1199 * don't copy into a random user address space, just free
1200 * and return -EINTR so user space doesn't expect any data.
1201 */
1202 if (!current->mm)
1203 ret = -EINTR;
1204 else if (bio_data_dir(bio) == READ)
1205 ret = bio_copy_to_iter(bio, bmd->iter);
1206 if (bmd->is_our_pages)
1207 bio_free_pages(bio);
1208 }
1209 kfree(bmd);
1210 bio_put(bio);
1211 return ret;
1212 }
1213
1214 /**
1215 * bio_copy_user_iov - copy user data to bio
1216 * @q: destination block queue
1217 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1218 * @iter: iovec iterator
1219 * @gfp_mask: memory allocation flags
1220 *
1221 * Prepares and returns a bio for indirect user io, bouncing data
1222 * to/from kernel pages as necessary. Must be paired with
1223 * call bio_uncopy_user() on io completion.
1224 */
1225 struct bio *bio_copy_user_iov(struct request_queue *q,
1226 struct rq_map_data *map_data,
1227 struct iov_iter *iter,
1228 gfp_t gfp_mask)
1229 {
1230 struct bio_map_data *bmd;
1231 struct page *page;
1232 struct bio *bio;
1233 int i = 0, ret;
1234 int nr_pages;
1235 unsigned int len = iter->count;
1236 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1237
1238 bmd = bio_alloc_map_data(iter, gfp_mask);
1239 if (!bmd)
1240 return ERR_PTR(-ENOMEM);
1241
1242 /*
1243 * We need to do a deep copy of the iov_iter including the iovecs.
1244 * The caller provided iov might point to an on-stack or otherwise
1245 * shortlived one.
1246 */
1247 bmd->is_our_pages = map_data ? 0 : 1;
1248
1249 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1250 if (nr_pages > BIO_MAX_PAGES)
1251 nr_pages = BIO_MAX_PAGES;
1252
1253 ret = -ENOMEM;
1254 bio = bio_kmalloc(gfp_mask, nr_pages);
1255 if (!bio)
1256 goto out_bmd;
1257
1258 ret = 0;
1259
1260 if (map_data) {
1261 nr_pages = 1 << map_data->page_order;
1262 i = map_data->offset / PAGE_SIZE;
1263 }
1264 while (len) {
1265 unsigned int bytes = PAGE_SIZE;
1266
1267 bytes -= offset;
1268
1269 if (bytes > len)
1270 bytes = len;
1271
1272 if (map_data) {
1273 if (i == map_data->nr_entries * nr_pages) {
1274 ret = -ENOMEM;
1275 break;
1276 }
1277
1278 page = map_data->pages[i / nr_pages];
1279 page += (i % nr_pages);
1280
1281 i++;
1282 } else {
1283 page = alloc_page(q->bounce_gfp | gfp_mask);
1284 if (!page) {
1285 ret = -ENOMEM;
1286 break;
1287 }
1288 }
1289
1290 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1291 break;
1292
1293 len -= bytes;
1294 offset = 0;
1295 }
1296
1297 if (ret)
1298 goto cleanup;
1299
1300 if (map_data)
1301 map_data->offset += bio->bi_iter.bi_size;
1302
1303 /*
1304 * success
1305 */
1306 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1307 (map_data && map_data->from_user)) {
1308 ret = bio_copy_from_iter(bio, iter);
1309 if (ret)
1310 goto cleanup;
1311 } else {
1312 iov_iter_advance(iter, bio->bi_iter.bi_size);
1313 }
1314
1315 bio->bi_private = bmd;
1316 if (map_data && map_data->null_mapped)
1317 bio_set_flag(bio, BIO_NULL_MAPPED);
1318 return bio;
1319 cleanup:
1320 if (!map_data)
1321 bio_free_pages(bio);
1322 bio_put(bio);
1323 out_bmd:
1324 kfree(bmd);
1325 return ERR_PTR(ret);
1326 }
1327
1328 /**
1329 * bio_map_user_iov - map user iovec into bio
1330 * @q: the struct request_queue for the bio
1331 * @iter: iovec iterator
1332 * @gfp_mask: memory allocation flags
1333 *
1334 * Map the user space address into a bio suitable for io to a block
1335 * device. Returns an error pointer in case of error.
1336 */
1337 struct bio *bio_map_user_iov(struct request_queue *q,
1338 struct iov_iter *iter,
1339 gfp_t gfp_mask)
1340 {
1341 int j;
1342 struct bio *bio;
1343 int ret;
1344 struct bio_vec *bvec;
1345
1346 if (!iov_iter_count(iter))
1347 return ERR_PTR(-EINVAL);
1348
1349 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1350 if (!bio)
1351 return ERR_PTR(-ENOMEM);
1352
1353 while (iov_iter_count(iter)) {
1354 struct page **pages;
1355 ssize_t bytes;
1356 size_t offs, added = 0;
1357 int npages;
1358
1359 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1360 if (unlikely(bytes <= 0)) {
1361 ret = bytes ? bytes : -EFAULT;
1362 goto out_unmap;
1363 }
1364
1365 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1366
1367 if (unlikely(offs & queue_dma_alignment(q))) {
1368 ret = -EINVAL;
1369 j = 0;
1370 } else {
1371 for (j = 0; j < npages; j++) {
1372 struct page *page = pages[j];
1373 unsigned int n = PAGE_SIZE - offs;
1374 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1375
1376 if (n > bytes)
1377 n = bytes;
1378
1379 if (!bio_add_pc_page(q, bio, page, n, offs))
1380 break;
1381
1382 /*
1383 * check if vector was merged with previous
1384 * drop page reference if needed
1385 */
1386 if (bio->bi_vcnt == prev_bi_vcnt)
1387 put_page(page);
1388
1389 added += n;
1390 bytes -= n;
1391 offs = 0;
1392 }
1393 iov_iter_advance(iter, added);
1394 }
1395 /*
1396 * release the pages we didn't map into the bio, if any
1397 */
1398 while (j < npages)
1399 put_page(pages[j++]);
1400 kvfree(pages);
1401 /* couldn't stuff something into bio? */
1402 if (bytes)
1403 break;
1404 }
1405
1406 bio_set_flag(bio, BIO_USER_MAPPED);
1407
1408 /*
1409 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1410 * it would normally disappear when its bi_end_io is run.
1411 * however, we need it for the unmap, so grab an extra
1412 * reference to it
1413 */
1414 bio_get(bio);
1415 return bio;
1416
1417 out_unmap:
1418 bio_for_each_segment_all(bvec, bio, j) {
1419 put_page(bvec->bv_page);
1420 }
1421 bio_put(bio);
1422 return ERR_PTR(ret);
1423 }
1424
1425 static void __bio_unmap_user(struct bio *bio)
1426 {
1427 struct bio_vec *bvec;
1428 int i;
1429
1430 /*
1431 * make sure we dirty pages we wrote to
1432 */
1433 bio_for_each_segment_all(bvec, bio, i) {
1434 if (bio_data_dir(bio) == READ)
1435 set_page_dirty_lock(bvec->bv_page);
1436
1437 put_page(bvec->bv_page);
1438 }
1439
1440 bio_put(bio);
1441 }
1442
1443 /**
1444 * bio_unmap_user - unmap a bio
1445 * @bio: the bio being unmapped
1446 *
1447 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1448 * process context.
1449 *
1450 * bio_unmap_user() may sleep.
1451 */
1452 void bio_unmap_user(struct bio *bio)
1453 {
1454 __bio_unmap_user(bio);
1455 bio_put(bio);
1456 }
1457
1458 static void bio_map_kern_endio(struct bio *bio)
1459 {
1460 bio_put(bio);
1461 }
1462
1463 /**
1464 * bio_map_kern - map kernel address into bio
1465 * @q: the struct request_queue for the bio
1466 * @data: pointer to buffer to map
1467 * @len: length in bytes
1468 * @gfp_mask: allocation flags for bio allocation
1469 *
1470 * Map the kernel address into a bio suitable for io to a block
1471 * device. Returns an error pointer in case of error.
1472 */
1473 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1474 gfp_t gfp_mask)
1475 {
1476 unsigned long kaddr = (unsigned long)data;
1477 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1478 unsigned long start = kaddr >> PAGE_SHIFT;
1479 const int nr_pages = end - start;
1480 int offset, i;
1481 struct bio *bio;
1482
1483 bio = bio_kmalloc(gfp_mask, nr_pages);
1484 if (!bio)
1485 return ERR_PTR(-ENOMEM);
1486
1487 offset = offset_in_page(kaddr);
1488 for (i = 0; i < nr_pages; i++) {
1489 unsigned int bytes = PAGE_SIZE - offset;
1490
1491 if (len <= 0)
1492 break;
1493
1494 if (bytes > len)
1495 bytes = len;
1496
1497 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1498 offset) < bytes) {
1499 /* we don't support partial mappings */
1500 bio_put(bio);
1501 return ERR_PTR(-EINVAL);
1502 }
1503
1504 data += bytes;
1505 len -= bytes;
1506 offset = 0;
1507 }
1508
1509 bio->bi_end_io = bio_map_kern_endio;
1510 return bio;
1511 }
1512 EXPORT_SYMBOL(bio_map_kern);
1513
1514 static void bio_copy_kern_endio(struct bio *bio)
1515 {
1516 bio_free_pages(bio);
1517 bio_put(bio);
1518 }
1519
1520 static void bio_copy_kern_endio_read(struct bio *bio)
1521 {
1522 char *p = bio->bi_private;
1523 struct bio_vec *bvec;
1524 int i;
1525
1526 bio_for_each_segment_all(bvec, bio, i) {
1527 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1528 p += bvec->bv_len;
1529 }
1530
1531 bio_copy_kern_endio(bio);
1532 }
1533
1534 /**
1535 * bio_copy_kern - copy kernel address into bio
1536 * @q: the struct request_queue for the bio
1537 * @data: pointer to buffer to copy
1538 * @len: length in bytes
1539 * @gfp_mask: allocation flags for bio and page allocation
1540 * @reading: data direction is READ
1541 *
1542 * copy the kernel address into a bio suitable for io to a block
1543 * device. Returns an error pointer in case of error.
1544 */
1545 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1546 gfp_t gfp_mask, int reading)
1547 {
1548 unsigned long kaddr = (unsigned long)data;
1549 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1550 unsigned long start = kaddr >> PAGE_SHIFT;
1551 struct bio *bio;
1552 void *p = data;
1553 int nr_pages = 0;
1554
1555 /*
1556 * Overflow, abort
1557 */
1558 if (end < start)
1559 return ERR_PTR(-EINVAL);
1560
1561 nr_pages = end - start;
1562 bio = bio_kmalloc(gfp_mask, nr_pages);
1563 if (!bio)
1564 return ERR_PTR(-ENOMEM);
1565
1566 while (len) {
1567 struct page *page;
1568 unsigned int bytes = PAGE_SIZE;
1569
1570 if (bytes > len)
1571 bytes = len;
1572
1573 page = alloc_page(q->bounce_gfp | gfp_mask);
1574 if (!page)
1575 goto cleanup;
1576
1577 if (!reading)
1578 memcpy(page_address(page), p, bytes);
1579
1580 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1581 break;
1582
1583 len -= bytes;
1584 p += bytes;
1585 }
1586
1587 if (reading) {
1588 bio->bi_end_io = bio_copy_kern_endio_read;
1589 bio->bi_private = data;
1590 } else {
1591 bio->bi_end_io = bio_copy_kern_endio;
1592 }
1593
1594 return bio;
1595
1596 cleanup:
1597 bio_free_pages(bio);
1598 bio_put(bio);
1599 return ERR_PTR(-ENOMEM);
1600 }
1601
1602 /*
1603 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1604 * for performing direct-IO in BIOs.
1605 *
1606 * The problem is that we cannot run set_page_dirty() from interrupt context
1607 * because the required locks are not interrupt-safe. So what we can do is to
1608 * mark the pages dirty _before_ performing IO. And in interrupt context,
1609 * check that the pages are still dirty. If so, fine. If not, redirty them
1610 * in process context.
1611 *
1612 * We special-case compound pages here: normally this means reads into hugetlb
1613 * pages. The logic in here doesn't really work right for compound pages
1614 * because the VM does not uniformly chase down the head page in all cases.
1615 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1616 * handle them at all. So we skip compound pages here at an early stage.
1617 *
1618 * Note that this code is very hard to test under normal circumstances because
1619 * direct-io pins the pages with get_user_pages(). This makes
1620 * is_page_cache_freeable return false, and the VM will not clean the pages.
1621 * But other code (eg, flusher threads) could clean the pages if they are mapped
1622 * pagecache.
1623 *
1624 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1625 * deferred bio dirtying paths.
1626 */
1627
1628 /*
1629 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1630 */
1631 void bio_set_pages_dirty(struct bio *bio)
1632 {
1633 struct bio_vec *bvec;
1634 int i;
1635
1636 bio_for_each_segment_all(bvec, bio, i) {
1637 struct page *page = bvec->bv_page;
1638
1639 if (page && !PageCompound(page))
1640 set_page_dirty_lock(page);
1641 }
1642 }
1643
1644 static void bio_release_pages(struct bio *bio)
1645 {
1646 struct bio_vec *bvec;
1647 int i;
1648
1649 bio_for_each_segment_all(bvec, bio, i) {
1650 struct page *page = bvec->bv_page;
1651
1652 if (page)
1653 put_page(page);
1654 }
1655 }
1656
1657 /*
1658 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1659 * If they are, then fine. If, however, some pages are clean then they must
1660 * have been written out during the direct-IO read. So we take another ref on
1661 * the BIO and the offending pages and re-dirty the pages in process context.
1662 *
1663 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1664 * here on. It will run one put_page() against each page and will run one
1665 * bio_put() against the BIO.
1666 */
1667
1668 static void bio_dirty_fn(struct work_struct *work);
1669
1670 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1671 static DEFINE_SPINLOCK(bio_dirty_lock);
1672 static struct bio *bio_dirty_list;
1673
1674 /*
1675 * This runs in process context
1676 */
1677 static void bio_dirty_fn(struct work_struct *work)
1678 {
1679 unsigned long flags;
1680 struct bio *bio;
1681
1682 spin_lock_irqsave(&bio_dirty_lock, flags);
1683 bio = bio_dirty_list;
1684 bio_dirty_list = NULL;
1685 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1686
1687 while (bio) {
1688 struct bio *next = bio->bi_private;
1689
1690 bio_set_pages_dirty(bio);
1691 bio_release_pages(bio);
1692 bio_put(bio);
1693 bio = next;
1694 }
1695 }
1696
1697 void bio_check_pages_dirty(struct bio *bio)
1698 {
1699 struct bio_vec *bvec;
1700 int nr_clean_pages = 0;
1701 int i;
1702
1703 bio_for_each_segment_all(bvec, bio, i) {
1704 struct page *page = bvec->bv_page;
1705
1706 if (PageDirty(page) || PageCompound(page)) {
1707 put_page(page);
1708 bvec->bv_page = NULL;
1709 } else {
1710 nr_clean_pages++;
1711 }
1712 }
1713
1714 if (nr_clean_pages) {
1715 unsigned long flags;
1716
1717 spin_lock_irqsave(&bio_dirty_lock, flags);
1718 bio->bi_private = bio_dirty_list;
1719 bio_dirty_list = bio;
1720 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1721 schedule_work(&bio_dirty_work);
1722 } else {
1723 bio_put(bio);
1724 }
1725 }
1726
1727 void generic_start_io_acct(struct request_queue *q, int rw,
1728 unsigned long sectors, struct hd_struct *part)
1729 {
1730 int cpu = part_stat_lock();
1731
1732 part_round_stats(q, cpu, part);
1733 part_stat_inc(cpu, part, ios[rw]);
1734 part_stat_add(cpu, part, sectors[rw], sectors);
1735 part_inc_in_flight(q, part, rw);
1736
1737 part_stat_unlock();
1738 }
1739 EXPORT_SYMBOL(generic_start_io_acct);
1740
1741 void generic_end_io_acct(struct request_queue *q, int rw,
1742 struct hd_struct *part, unsigned long start_time)
1743 {
1744 unsigned long duration = jiffies - start_time;
1745 int cpu = part_stat_lock();
1746
1747 part_stat_add(cpu, part, ticks[rw], duration);
1748 part_round_stats(q, cpu, part);
1749 part_dec_in_flight(q, part, rw);
1750
1751 part_stat_unlock();
1752 }
1753 EXPORT_SYMBOL(generic_end_io_acct);
1754
1755 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1756 void bio_flush_dcache_pages(struct bio *bi)
1757 {
1758 struct bio_vec bvec;
1759 struct bvec_iter iter;
1760
1761 bio_for_each_segment(bvec, bi, iter)
1762 flush_dcache_page(bvec.bv_page);
1763 }
1764 EXPORT_SYMBOL(bio_flush_dcache_pages);
1765 #endif
1766
1767 static inline bool bio_remaining_done(struct bio *bio)
1768 {
1769 /*
1770 * If we're not chaining, then ->__bi_remaining is always 1 and
1771 * we always end io on the first invocation.
1772 */
1773 if (!bio_flagged(bio, BIO_CHAIN))
1774 return true;
1775
1776 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1777
1778 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1779 bio_clear_flag(bio, BIO_CHAIN);
1780 return true;
1781 }
1782
1783 return false;
1784 }
1785
1786 /**
1787 * bio_endio - end I/O on a bio
1788 * @bio: bio
1789 *
1790 * Description:
1791 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1792 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1793 * bio unless they own it and thus know that it has an end_io function.
1794 *
1795 * bio_endio() can be called several times on a bio that has been chained
1796 * using bio_chain(). The ->bi_end_io() function will only be called the
1797 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1798 * generated if BIO_TRACE_COMPLETION is set.
1799 **/
1800 void bio_endio(struct bio *bio)
1801 {
1802 again:
1803 if (!bio_remaining_done(bio))
1804 return;
1805 if (!bio_integrity_endio(bio))
1806 return;
1807
1808 /*
1809 * Need to have a real endio function for chained bios, otherwise
1810 * various corner cases will break (like stacking block devices that
1811 * save/restore bi_end_io) - however, we want to avoid unbounded
1812 * recursion and blowing the stack. Tail call optimization would
1813 * handle this, but compiling with frame pointers also disables
1814 * gcc's sibling call optimization.
1815 */
1816 if (bio->bi_end_io == bio_chain_endio) {
1817 bio = __bio_chain_endio(bio);
1818 goto again;
1819 }
1820
1821 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1822 trace_block_bio_complete(bio->bi_disk->queue, bio,
1823 blk_status_to_errno(bio->bi_status));
1824 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1825 }
1826
1827 blk_throtl_bio_endio(bio);
1828 /* release cgroup info */
1829 bio_uninit(bio);
1830 if (bio->bi_end_io)
1831 bio->bi_end_io(bio);
1832 }
1833 EXPORT_SYMBOL(bio_endio);
1834
1835 /**
1836 * bio_split - split a bio
1837 * @bio: bio to split
1838 * @sectors: number of sectors to split from the front of @bio
1839 * @gfp: gfp mask
1840 * @bs: bio set to allocate from
1841 *
1842 * Allocates and returns a new bio which represents @sectors from the start of
1843 * @bio, and updates @bio to represent the remaining sectors.
1844 *
1845 * Unless this is a discard request the newly allocated bio will point
1846 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1847 * @bio is not freed before the split.
1848 */
1849 struct bio *bio_split(struct bio *bio, int sectors,
1850 gfp_t gfp, struct bio_set *bs)
1851 {
1852 struct bio *split;
1853
1854 BUG_ON(sectors <= 0);
1855 BUG_ON(sectors >= bio_sectors(bio));
1856
1857 split = bio_clone_fast(bio, gfp, bs);
1858 if (!split)
1859 return NULL;
1860
1861 split->bi_iter.bi_size = sectors << 9;
1862
1863 if (bio_integrity(split))
1864 bio_integrity_trim(split);
1865
1866 bio_advance(bio, split->bi_iter.bi_size);
1867
1868 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1869 bio_set_flag(split, BIO_TRACE_COMPLETION);
1870
1871 return split;
1872 }
1873 EXPORT_SYMBOL(bio_split);
1874
1875 /**
1876 * bio_trim - trim a bio
1877 * @bio: bio to trim
1878 * @offset: number of sectors to trim from the front of @bio
1879 * @size: size we want to trim @bio to, in sectors
1880 */
1881 void bio_trim(struct bio *bio, int offset, int size)
1882 {
1883 /* 'bio' is a cloned bio which we need to trim to match
1884 * the given offset and size.
1885 */
1886
1887 size <<= 9;
1888 if (offset == 0 && size == bio->bi_iter.bi_size)
1889 return;
1890
1891 bio_clear_flag(bio, BIO_SEG_VALID);
1892
1893 bio_advance(bio, offset << 9);
1894
1895 bio->bi_iter.bi_size = size;
1896
1897 if (bio_integrity(bio))
1898 bio_integrity_trim(bio);
1899
1900 }
1901 EXPORT_SYMBOL_GPL(bio_trim);
1902
1903 /*
1904 * create memory pools for biovec's in a bio_set.
1905 * use the global biovec slabs created for general use.
1906 */
1907 mempool_t *biovec_create_pool(int pool_entries)
1908 {
1909 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1910
1911 return mempool_create_slab_pool(pool_entries, bp->slab);
1912 }
1913
1914 void bioset_free(struct bio_set *bs)
1915 {
1916 if (bs->rescue_workqueue)
1917 destroy_workqueue(bs->rescue_workqueue);
1918
1919 mempool_destroy(bs->bio_pool);
1920 mempool_destroy(bs->bvec_pool);
1921
1922 bioset_integrity_free(bs);
1923 bio_put_slab(bs);
1924
1925 kfree(bs);
1926 }
1927 EXPORT_SYMBOL(bioset_free);
1928
1929 /**
1930 * bioset_create - Create a bio_set
1931 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1932 * @front_pad: Number of bytes to allocate in front of the returned bio
1933 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1934 * and %BIOSET_NEED_RESCUER
1935 *
1936 * Description:
1937 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1938 * to ask for a number of bytes to be allocated in front of the bio.
1939 * Front pad allocation is useful for embedding the bio inside
1940 * another structure, to avoid allocating extra data to go with the bio.
1941 * Note that the bio must be embedded at the END of that structure always,
1942 * or things will break badly.
1943 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1944 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1945 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1946 * dispatch queued requests when the mempool runs out of space.
1947 *
1948 */
1949 struct bio_set *bioset_create(unsigned int pool_size,
1950 unsigned int front_pad,
1951 int flags)
1952 {
1953 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1954 struct bio_set *bs;
1955
1956 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1957 if (!bs)
1958 return NULL;
1959
1960 bs->front_pad = front_pad;
1961
1962 spin_lock_init(&bs->rescue_lock);
1963 bio_list_init(&bs->rescue_list);
1964 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1965
1966 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1967 if (!bs->bio_slab) {
1968 kfree(bs);
1969 return NULL;
1970 }
1971
1972 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1973 if (!bs->bio_pool)
1974 goto bad;
1975
1976 if (flags & BIOSET_NEED_BVECS) {
1977 bs->bvec_pool = biovec_create_pool(pool_size);
1978 if (!bs->bvec_pool)
1979 goto bad;
1980 }
1981
1982 if (!(flags & BIOSET_NEED_RESCUER))
1983 return bs;
1984
1985 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1986 if (!bs->rescue_workqueue)
1987 goto bad;
1988
1989 return bs;
1990 bad:
1991 bioset_free(bs);
1992 return NULL;
1993 }
1994 EXPORT_SYMBOL(bioset_create);
1995
1996 #ifdef CONFIG_BLK_CGROUP
1997
1998 /**
1999 * bio_associate_blkcg - associate a bio with the specified blkcg
2000 * @bio: target bio
2001 * @blkcg_css: css of the blkcg to associate
2002 *
2003 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2004 * treat @bio as if it were issued by a task which belongs to the blkcg.
2005 *
2006 * This function takes an extra reference of @blkcg_css which will be put
2007 * when @bio is released. The caller must own @bio and is responsible for
2008 * synchronizing calls to this function.
2009 */
2010 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2011 {
2012 if (unlikely(bio->bi_css))
2013 return -EBUSY;
2014 css_get(blkcg_css);
2015 bio->bi_css = blkcg_css;
2016 return 0;
2017 }
2018 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2019
2020 /**
2021 * bio_disassociate_task - undo bio_associate_current()
2022 * @bio: target bio
2023 */
2024 void bio_disassociate_task(struct bio *bio)
2025 {
2026 if (bio->bi_ioc) {
2027 put_io_context(bio->bi_ioc);
2028 bio->bi_ioc = NULL;
2029 }
2030 if (bio->bi_css) {
2031 css_put(bio->bi_css);
2032 bio->bi_css = NULL;
2033 }
2034 }
2035
2036 /**
2037 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2038 * @dst: destination bio
2039 * @src: source bio
2040 */
2041 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2042 {
2043 if (src->bi_css)
2044 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2045 }
2046 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2047 #endif /* CONFIG_BLK_CGROUP */
2048
2049 static void __init biovec_init_slabs(void)
2050 {
2051 int i;
2052
2053 for (i = 0; i < BVEC_POOL_NR; i++) {
2054 int size;
2055 struct biovec_slab *bvs = bvec_slabs + i;
2056
2057 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2058 bvs->slab = NULL;
2059 continue;
2060 }
2061
2062 size = bvs->nr_vecs * sizeof(struct bio_vec);
2063 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2064 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2065 }
2066 }
2067
2068 static int __init init_bio(void)
2069 {
2070 bio_slab_max = 2;
2071 bio_slab_nr = 0;
2072 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2073 if (!bio_slabs)
2074 panic("bio: can't allocate bios\n");
2075
2076 bio_integrity_init();
2077 biovec_init_slabs();
2078
2079 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2080 if (!fs_bio_set)
2081 panic("bio: can't allocate bios\n");
2082
2083 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2084 panic("bio: can't create integrity pool\n");
2085
2086 return 0;
2087 }
2088 subsys_initcall(init_bio);