]>
git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/bio.c
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
32 #include <trace/events/block.h>
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
38 #define BIO_INLINE_VECS 4
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs
[BVEC_POOL_NR
] __read_mostly
= {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES
),
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
55 struct bio_set
*fs_bio_set
;
56 EXPORT_SYMBOL(fs_bio_set
);
59 * Our slab pool management
62 struct kmem_cache
*slab
;
63 unsigned int slab_ref
;
64 unsigned int slab_size
;
67 static DEFINE_MUTEX(bio_slab_lock
);
68 static struct bio_slab
*bio_slabs
;
69 static unsigned int bio_slab_nr
, bio_slab_max
;
71 static struct kmem_cache
*bio_find_or_create_slab(unsigned int extra_size
)
73 unsigned int sz
= sizeof(struct bio
) + extra_size
;
74 struct kmem_cache
*slab
= NULL
;
75 struct bio_slab
*bslab
, *new_bio_slabs
;
76 unsigned int new_bio_slab_max
;
77 unsigned int i
, entry
= -1;
79 mutex_lock(&bio_slab_lock
);
82 while (i
< bio_slab_nr
) {
83 bslab
= &bio_slabs
[i
];
85 if (!bslab
->slab
&& entry
== -1)
87 else if (bslab
->slab_size
== sz
) {
98 if (bio_slab_nr
== bio_slab_max
&& entry
== -1) {
99 new_bio_slab_max
= bio_slab_max
<< 1;
100 new_bio_slabs
= krealloc(bio_slabs
,
101 new_bio_slab_max
* sizeof(struct bio_slab
),
105 bio_slab_max
= new_bio_slab_max
;
106 bio_slabs
= new_bio_slabs
;
109 entry
= bio_slab_nr
++;
111 bslab
= &bio_slabs
[entry
];
113 snprintf(bslab
->name
, sizeof(bslab
->name
), "bio-%d", entry
);
114 slab
= kmem_cache_create(bslab
->name
, sz
, ARCH_KMALLOC_MINALIGN
,
115 SLAB_HWCACHE_ALIGN
, NULL
);
121 bslab
->slab_size
= sz
;
123 mutex_unlock(&bio_slab_lock
);
127 static void bio_put_slab(struct bio_set
*bs
)
129 struct bio_slab
*bslab
= NULL
;
132 mutex_lock(&bio_slab_lock
);
134 for (i
= 0; i
< bio_slab_nr
; i
++) {
135 if (bs
->bio_slab
== bio_slabs
[i
].slab
) {
136 bslab
= &bio_slabs
[i
];
141 if (WARN(!bslab
, KERN_ERR
"bio: unable to find slab!\n"))
144 WARN_ON(!bslab
->slab_ref
);
146 if (--bslab
->slab_ref
)
149 kmem_cache_destroy(bslab
->slab
);
153 mutex_unlock(&bio_slab_lock
);
156 unsigned int bvec_nr_vecs(unsigned short idx
)
158 return bvec_slabs
[idx
].nr_vecs
;
161 void bvec_free(mempool_t
*pool
, struct bio_vec
*bv
, unsigned int idx
)
167 BIO_BUG_ON(idx
>= BVEC_POOL_NR
);
169 if (idx
== BVEC_POOL_MAX
) {
170 mempool_free(bv
, pool
);
172 struct biovec_slab
*bvs
= bvec_slabs
+ idx
;
174 kmem_cache_free(bvs
->slab
, bv
);
178 struct bio_vec
*bvec_alloc(gfp_t gfp_mask
, int nr
, unsigned long *idx
,
184 * see comment near bvec_array define!
202 case 129 ... BIO_MAX_PAGES
:
210 * idx now points to the pool we want to allocate from. only the
211 * 1-vec entry pool is mempool backed.
213 if (*idx
== BVEC_POOL_MAX
) {
215 bvl
= mempool_alloc(pool
, gfp_mask
);
217 struct biovec_slab
*bvs
= bvec_slabs
+ *idx
;
218 gfp_t __gfp_mask
= gfp_mask
& ~(__GFP_DIRECT_RECLAIM
| __GFP_IO
);
221 * Make this allocation restricted and don't dump info on
222 * allocation failures, since we'll fallback to the mempool
223 * in case of failure.
225 __gfp_mask
|= __GFP_NOMEMALLOC
| __GFP_NORETRY
| __GFP_NOWARN
;
228 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
229 * is set, retry with the 1-entry mempool
231 bvl
= kmem_cache_alloc(bvs
->slab
, __gfp_mask
);
232 if (unlikely(!bvl
&& (gfp_mask
& __GFP_DIRECT_RECLAIM
))) {
233 *idx
= BVEC_POOL_MAX
;
242 static void __bio_free(struct bio
*bio
)
244 bio_disassociate_task(bio
);
246 if (bio_integrity(bio
))
247 bio_integrity_free(bio
);
250 static void bio_free(struct bio
*bio
)
252 struct bio_set
*bs
= bio
->bi_pool
;
258 bvec_free(bs
->bvec_pool
, bio
->bi_io_vec
, BVEC_POOL_IDX(bio
));
261 * If we have front padding, adjust the bio pointer before freeing
266 mempool_free(p
, bs
->bio_pool
);
268 /* Bio was allocated by bio_kmalloc() */
273 void bio_init(struct bio
*bio
, struct bio_vec
*table
,
274 unsigned short max_vecs
)
276 memset(bio
, 0, sizeof(*bio
));
277 atomic_set(&bio
->__bi_remaining
, 1);
278 atomic_set(&bio
->__bi_cnt
, 1);
280 bio
->bi_io_vec
= table
;
281 bio
->bi_max_vecs
= max_vecs
;
283 EXPORT_SYMBOL(bio_init
);
286 * bio_reset - reinitialize a bio
290 * After calling bio_reset(), @bio will be in the same state as a freshly
291 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
292 * preserved are the ones that are initialized by bio_alloc_bioset(). See
293 * comment in struct bio.
295 void bio_reset(struct bio
*bio
)
297 unsigned long flags
= bio
->bi_flags
& (~0UL << BIO_RESET_BITS
);
301 memset(bio
, 0, BIO_RESET_BYTES
);
302 bio
->bi_flags
= flags
;
303 atomic_set(&bio
->__bi_remaining
, 1);
305 EXPORT_SYMBOL(bio_reset
);
307 static struct bio
*__bio_chain_endio(struct bio
*bio
)
309 struct bio
*parent
= bio
->bi_private
;
311 if (!parent
->bi_error
)
312 parent
->bi_error
= bio
->bi_error
;
317 static void bio_chain_endio(struct bio
*bio
)
319 bio_endio(__bio_chain_endio(bio
));
323 * bio_chain - chain bio completions
324 * @bio: the target bio
325 * @parent: the @bio's parent bio
327 * The caller won't have a bi_end_io called when @bio completes - instead,
328 * @parent's bi_end_io won't be called until both @parent and @bio have
329 * completed; the chained bio will also be freed when it completes.
331 * The caller must not set bi_private or bi_end_io in @bio.
333 void bio_chain(struct bio
*bio
, struct bio
*parent
)
335 BUG_ON(bio
->bi_private
|| bio
->bi_end_io
);
337 bio
->bi_private
= parent
;
338 bio
->bi_end_io
= bio_chain_endio
;
339 bio_inc_remaining(parent
);
341 EXPORT_SYMBOL(bio_chain
);
343 static void bio_alloc_rescue(struct work_struct
*work
)
345 struct bio_set
*bs
= container_of(work
, struct bio_set
, rescue_work
);
349 spin_lock(&bs
->rescue_lock
);
350 bio
= bio_list_pop(&bs
->rescue_list
);
351 spin_unlock(&bs
->rescue_lock
);
356 generic_make_request(bio
);
360 static void punt_bios_to_rescuer(struct bio_set
*bs
)
362 struct bio_list punt
, nopunt
;
366 * In order to guarantee forward progress we must punt only bios that
367 * were allocated from this bio_set; otherwise, if there was a bio on
368 * there for a stacking driver higher up in the stack, processing it
369 * could require allocating bios from this bio_set, and doing that from
370 * our own rescuer would be bad.
372 * Since bio lists are singly linked, pop them all instead of trying to
373 * remove from the middle of the list:
376 bio_list_init(&punt
);
377 bio_list_init(&nopunt
);
379 while ((bio
= bio_list_pop(current
->bio_list
)))
380 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
382 *current
->bio_list
= nopunt
;
384 spin_lock(&bs
->rescue_lock
);
385 bio_list_merge(&bs
->rescue_list
, &punt
);
386 spin_unlock(&bs
->rescue_lock
);
388 queue_work(bs
->rescue_workqueue
, &bs
->rescue_work
);
392 * bio_alloc_bioset - allocate a bio for I/O
393 * @gfp_mask: the GFP_ mask given to the slab allocator
394 * @nr_iovecs: number of iovecs to pre-allocate
395 * @bs: the bio_set to allocate from.
398 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
399 * backed by the @bs's mempool.
401 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
402 * always be able to allocate a bio. This is due to the mempool guarantees.
403 * To make this work, callers must never allocate more than 1 bio at a time
404 * from this pool. Callers that need to allocate more than 1 bio must always
405 * submit the previously allocated bio for IO before attempting to allocate
406 * a new one. Failure to do so can cause deadlocks under memory pressure.
408 * Note that when running under generic_make_request() (i.e. any block
409 * driver), bios are not submitted until after you return - see the code in
410 * generic_make_request() that converts recursion into iteration, to prevent
413 * This would normally mean allocating multiple bios under
414 * generic_make_request() would be susceptible to deadlocks, but we have
415 * deadlock avoidance code that resubmits any blocked bios from a rescuer
418 * However, we do not guarantee forward progress for allocations from other
419 * mempools. Doing multiple allocations from the same mempool under
420 * generic_make_request() should be avoided - instead, use bio_set's front_pad
421 * for per bio allocations.
424 * Pointer to new bio on success, NULL on failure.
426 struct bio
*bio_alloc_bioset(gfp_t gfp_mask
, int nr_iovecs
, struct bio_set
*bs
)
428 gfp_t saved_gfp
= gfp_mask
;
430 unsigned inline_vecs
;
431 struct bio_vec
*bvl
= NULL
;
436 if (nr_iovecs
> UIO_MAXIOV
)
439 p
= kmalloc(sizeof(struct bio
) +
440 nr_iovecs
* sizeof(struct bio_vec
),
443 inline_vecs
= nr_iovecs
;
445 /* should not use nobvec bioset for nr_iovecs > 0 */
446 if (WARN_ON_ONCE(!bs
->bvec_pool
&& nr_iovecs
> 0))
449 * generic_make_request() converts recursion to iteration; this
450 * means if we're running beneath it, any bios we allocate and
451 * submit will not be submitted (and thus freed) until after we
454 * This exposes us to a potential deadlock if we allocate
455 * multiple bios from the same bio_set() while running
456 * underneath generic_make_request(). If we were to allocate
457 * multiple bios (say a stacking block driver that was splitting
458 * bios), we would deadlock if we exhausted the mempool's
461 * We solve this, and guarantee forward progress, with a rescuer
462 * workqueue per bio_set. If we go to allocate and there are
463 * bios on current->bio_list, we first try the allocation
464 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
465 * bios we would be blocking to the rescuer workqueue before
466 * we retry with the original gfp_flags.
469 if (current
->bio_list
&& !bio_list_empty(current
->bio_list
))
470 gfp_mask
&= ~__GFP_DIRECT_RECLAIM
;
472 p
= mempool_alloc(bs
->bio_pool
, gfp_mask
);
473 if (!p
&& gfp_mask
!= saved_gfp
) {
474 punt_bios_to_rescuer(bs
);
475 gfp_mask
= saved_gfp
;
476 p
= mempool_alloc(bs
->bio_pool
, gfp_mask
);
479 front_pad
= bs
->front_pad
;
480 inline_vecs
= BIO_INLINE_VECS
;
487 bio_init(bio
, NULL
, 0);
489 if (nr_iovecs
> inline_vecs
) {
490 unsigned long idx
= 0;
492 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, bs
->bvec_pool
);
493 if (!bvl
&& gfp_mask
!= saved_gfp
) {
494 punt_bios_to_rescuer(bs
);
495 gfp_mask
= saved_gfp
;
496 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, bs
->bvec_pool
);
502 bio
->bi_flags
|= idx
<< BVEC_POOL_OFFSET
;
503 } else if (nr_iovecs
) {
504 bvl
= bio
->bi_inline_vecs
;
508 bio
->bi_max_vecs
= nr_iovecs
;
509 bio
->bi_io_vec
= bvl
;
513 mempool_free(p
, bs
->bio_pool
);
516 EXPORT_SYMBOL(bio_alloc_bioset
);
518 void zero_fill_bio(struct bio
*bio
)
522 struct bvec_iter iter
;
524 bio_for_each_segment(bv
, bio
, iter
) {
525 char *data
= bvec_kmap_irq(&bv
, &flags
);
526 memset(data
, 0, bv
.bv_len
);
527 flush_dcache_page(bv
.bv_page
);
528 bvec_kunmap_irq(data
, &flags
);
531 EXPORT_SYMBOL(zero_fill_bio
);
534 * bio_put - release a reference to a bio
535 * @bio: bio to release reference to
538 * Put a reference to a &struct bio, either one you have gotten with
539 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
541 void bio_put(struct bio
*bio
)
543 if (!bio_flagged(bio
, BIO_REFFED
))
546 BIO_BUG_ON(!atomic_read(&bio
->__bi_cnt
));
551 if (atomic_dec_and_test(&bio
->__bi_cnt
))
555 EXPORT_SYMBOL(bio_put
);
557 inline int bio_phys_segments(struct request_queue
*q
, struct bio
*bio
)
559 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
560 blk_recount_segments(q
, bio
);
562 return bio
->bi_phys_segments
;
564 EXPORT_SYMBOL(bio_phys_segments
);
567 * __bio_clone_fast - clone a bio that shares the original bio's biovec
568 * @bio: destination bio
569 * @bio_src: bio to clone
571 * Clone a &bio. Caller will own the returned bio, but not
572 * the actual data it points to. Reference count of returned
575 * Caller must ensure that @bio_src is not freed before @bio.
577 void __bio_clone_fast(struct bio
*bio
, struct bio
*bio_src
)
579 BUG_ON(bio
->bi_pool
&& BVEC_POOL_IDX(bio
));
582 * most users will be overriding ->bi_bdev with a new target,
583 * so we don't set nor calculate new physical/hw segment counts here
585 bio
->bi_bdev
= bio_src
->bi_bdev
;
586 bio_set_flag(bio
, BIO_CLONED
);
587 bio
->bi_opf
= bio_src
->bi_opf
;
588 bio
->bi_iter
= bio_src
->bi_iter
;
589 bio
->bi_io_vec
= bio_src
->bi_io_vec
;
591 bio_clone_blkcg_association(bio
, bio_src
);
593 EXPORT_SYMBOL(__bio_clone_fast
);
596 * bio_clone_fast - clone a bio that shares the original bio's biovec
598 * @gfp_mask: allocation priority
599 * @bs: bio_set to allocate from
601 * Like __bio_clone_fast, only also allocates the returned bio
603 struct bio
*bio_clone_fast(struct bio
*bio
, gfp_t gfp_mask
, struct bio_set
*bs
)
607 b
= bio_alloc_bioset(gfp_mask
, 0, bs
);
611 __bio_clone_fast(b
, bio
);
613 if (bio_integrity(bio
)) {
616 ret
= bio_integrity_clone(b
, bio
, gfp_mask
);
626 EXPORT_SYMBOL(bio_clone_fast
);
629 * bio_clone_bioset - clone a bio
630 * @bio_src: bio to clone
631 * @gfp_mask: allocation priority
632 * @bs: bio_set to allocate from
634 * Clone bio. Caller will own the returned bio, but not the actual data it
635 * points to. Reference count of returned bio will be one.
637 struct bio
*bio_clone_bioset(struct bio
*bio_src
, gfp_t gfp_mask
,
640 struct bvec_iter iter
;
645 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
646 * bio_src->bi_io_vec to bio->bi_io_vec.
648 * We can't do that anymore, because:
650 * - The point of cloning the biovec is to produce a bio with a biovec
651 * the caller can modify: bi_idx and bi_bvec_done should be 0.
653 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
654 * we tried to clone the whole thing bio_alloc_bioset() would fail.
655 * But the clone should succeed as long as the number of biovecs we
656 * actually need to allocate is fewer than BIO_MAX_PAGES.
658 * - Lastly, bi_vcnt should not be looked at or relied upon by code
659 * that does not own the bio - reason being drivers don't use it for
660 * iterating over the biovec anymore, so expecting it to be kept up
661 * to date (i.e. for clones that share the parent biovec) is just
662 * asking for trouble and would force extra work on
663 * __bio_clone_fast() anyways.
666 bio
= bio_alloc_bioset(gfp_mask
, bio_segments(bio_src
), bs
);
669 bio
->bi_bdev
= bio_src
->bi_bdev
;
670 bio
->bi_opf
= bio_src
->bi_opf
;
671 bio
->bi_iter
.bi_sector
= bio_src
->bi_iter
.bi_sector
;
672 bio
->bi_iter
.bi_size
= bio_src
->bi_iter
.bi_size
;
674 switch (bio_op(bio
)) {
676 case REQ_OP_SECURE_ERASE
:
677 case REQ_OP_WRITE_ZEROES
:
679 case REQ_OP_WRITE_SAME
:
680 bio
->bi_io_vec
[bio
->bi_vcnt
++] = bio_src
->bi_io_vec
[0];
683 bio_for_each_segment(bv
, bio_src
, iter
)
684 bio
->bi_io_vec
[bio
->bi_vcnt
++] = bv
;
688 if (bio_integrity(bio_src
)) {
691 ret
= bio_integrity_clone(bio
, bio_src
, gfp_mask
);
698 bio_clone_blkcg_association(bio
, bio_src
);
702 EXPORT_SYMBOL(bio_clone_bioset
);
705 * bio_add_pc_page - attempt to add page to bio
706 * @q: the target queue
707 * @bio: destination bio
709 * @len: vec entry length
710 * @offset: vec entry offset
712 * Attempt to add a page to the bio_vec maplist. This can fail for a
713 * number of reasons, such as the bio being full or target block device
714 * limitations. The target block device must allow bio's up to PAGE_SIZE,
715 * so it is always possible to add a single page to an empty bio.
717 * This should only be used by REQ_PC bios.
719 int bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
, struct page
720 *page
, unsigned int len
, unsigned int offset
)
722 int retried_segments
= 0;
723 struct bio_vec
*bvec
;
726 * cloned bio must not modify vec list
728 if (unlikely(bio_flagged(bio
, BIO_CLONED
)))
731 if (((bio
->bi_iter
.bi_size
+ len
) >> 9) > queue_max_hw_sectors(q
))
735 * For filesystems with a blocksize smaller than the pagesize
736 * we will often be called with the same page as last time and
737 * a consecutive offset. Optimize this special case.
739 if (bio
->bi_vcnt
> 0) {
740 struct bio_vec
*prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
742 if (page
== prev
->bv_page
&&
743 offset
== prev
->bv_offset
+ prev
->bv_len
) {
745 bio
->bi_iter
.bi_size
+= len
;
750 * If the queue doesn't support SG gaps and adding this
751 * offset would create a gap, disallow it.
753 if (bvec_gap_to_prev(q
, prev
, offset
))
757 if (bio
->bi_vcnt
>= bio
->bi_max_vecs
)
761 * setup the new entry, we might clear it again later if we
762 * cannot add the page
764 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
765 bvec
->bv_page
= page
;
767 bvec
->bv_offset
= offset
;
769 bio
->bi_phys_segments
++;
770 bio
->bi_iter
.bi_size
+= len
;
773 * Perform a recount if the number of segments is greater
774 * than queue_max_segments(q).
777 while (bio
->bi_phys_segments
> queue_max_segments(q
)) {
779 if (retried_segments
)
782 retried_segments
= 1;
783 blk_recount_segments(q
, bio
);
786 /* If we may be able to merge these biovecs, force a recount */
787 if (bio
->bi_vcnt
> 1 && (BIOVEC_PHYS_MERGEABLE(bvec
-1, bvec
)))
788 bio_clear_flag(bio
, BIO_SEG_VALID
);
794 bvec
->bv_page
= NULL
;
798 bio
->bi_iter
.bi_size
-= len
;
799 blk_recount_segments(q
, bio
);
802 EXPORT_SYMBOL(bio_add_pc_page
);
805 * bio_add_page - attempt to add page to bio
806 * @bio: destination bio
808 * @len: vec entry length
809 * @offset: vec entry offset
811 * Attempt to add a page to the bio_vec maplist. This will only fail
812 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
814 int bio_add_page(struct bio
*bio
, struct page
*page
,
815 unsigned int len
, unsigned int offset
)
820 * cloned bio must not modify vec list
822 if (WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
)))
826 * For filesystems with a blocksize smaller than the pagesize
827 * we will often be called with the same page as last time and
828 * a consecutive offset. Optimize this special case.
830 if (bio
->bi_vcnt
> 0) {
831 bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
833 if (page
== bv
->bv_page
&&
834 offset
== bv
->bv_offset
+ bv
->bv_len
) {
840 if (bio
->bi_vcnt
>= bio
->bi_max_vecs
)
843 bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
846 bv
->bv_offset
= offset
;
850 bio
->bi_iter
.bi_size
+= len
;
853 EXPORT_SYMBOL(bio_add_page
);
856 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
857 * @bio: bio to add pages to
858 * @iter: iov iterator describing the region to be mapped
860 * Pins as many pages from *iter and appends them to @bio's bvec array. The
861 * pages will have to be released using put_page() when done.
863 int bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
865 unsigned short nr_pages
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
866 struct bio_vec
*bv
= bio
->bi_io_vec
+ bio
->bi_vcnt
;
867 struct page
**pages
= (struct page
**)bv
;
871 size
= iov_iter_get_pages(iter
, pages
, LONG_MAX
, nr_pages
, &offset
);
872 if (unlikely(size
<= 0))
873 return size
? size
: -EFAULT
;
874 nr_pages
= (size
+ offset
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
877 * Deep magic below: We need to walk the pinned pages backwards
878 * because we are abusing the space allocated for the bio_vecs
879 * for the page array. Because the bio_vecs are larger than the
880 * page pointers by definition this will always work. But it also
881 * means we can't use bio_add_page, so any changes to it's semantics
882 * need to be reflected here as well.
884 bio
->bi_iter
.bi_size
+= size
;
885 bio
->bi_vcnt
+= nr_pages
;
887 diff
= (nr_pages
* PAGE_SIZE
- offset
) - size
;
889 bv
[nr_pages
].bv_page
= pages
[nr_pages
];
890 bv
[nr_pages
].bv_len
= PAGE_SIZE
;
891 bv
[nr_pages
].bv_offset
= 0;
894 bv
[0].bv_offset
+= offset
;
895 bv
[0].bv_len
-= offset
;
897 bv
[bio
->bi_vcnt
- 1].bv_len
-= diff
;
899 iov_iter_advance(iter
, size
);
902 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages
);
904 struct submit_bio_ret
{
905 struct completion event
;
909 static void submit_bio_wait_endio(struct bio
*bio
)
911 struct submit_bio_ret
*ret
= bio
->bi_private
;
913 ret
->error
= bio
->bi_error
;
914 complete(&ret
->event
);
918 * submit_bio_wait - submit a bio, and wait until it completes
919 * @bio: The &struct bio which describes the I/O
921 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
922 * bio_endio() on failure.
924 int submit_bio_wait(struct bio
*bio
)
926 struct submit_bio_ret ret
;
928 init_completion(&ret
.event
);
929 bio
->bi_private
= &ret
;
930 bio
->bi_end_io
= submit_bio_wait_endio
;
931 bio
->bi_opf
|= REQ_SYNC
;
933 wait_for_completion_io(&ret
.event
);
937 EXPORT_SYMBOL(submit_bio_wait
);
940 * bio_advance - increment/complete a bio by some number of bytes
941 * @bio: bio to advance
942 * @bytes: number of bytes to complete
944 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
945 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
946 * be updated on the last bvec as well.
948 * @bio will then represent the remaining, uncompleted portion of the io.
950 void bio_advance(struct bio
*bio
, unsigned bytes
)
952 if (bio_integrity(bio
))
953 bio_integrity_advance(bio
, bytes
);
955 bio_advance_iter(bio
, &bio
->bi_iter
, bytes
);
957 EXPORT_SYMBOL(bio_advance
);
960 * bio_alloc_pages - allocates a single page for each bvec in a bio
961 * @bio: bio to allocate pages for
962 * @gfp_mask: flags for allocation
964 * Allocates pages up to @bio->bi_vcnt.
966 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
969 int bio_alloc_pages(struct bio
*bio
, gfp_t gfp_mask
)
974 bio_for_each_segment_all(bv
, bio
, i
) {
975 bv
->bv_page
= alloc_page(gfp_mask
);
977 while (--bv
>= bio
->bi_io_vec
)
978 __free_page(bv
->bv_page
);
985 EXPORT_SYMBOL(bio_alloc_pages
);
988 * bio_copy_data - copy contents of data buffers from one chain of bios to
990 * @src: source bio list
991 * @dst: destination bio list
993 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
994 * @src and @dst as linked lists of bios.
996 * Stops when it reaches the end of either @src or @dst - that is, copies
997 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
999 void bio_copy_data(struct bio
*dst
, struct bio
*src
)
1001 struct bvec_iter src_iter
, dst_iter
;
1002 struct bio_vec src_bv
, dst_bv
;
1003 void *src_p
, *dst_p
;
1006 src_iter
= src
->bi_iter
;
1007 dst_iter
= dst
->bi_iter
;
1010 if (!src_iter
.bi_size
) {
1015 src_iter
= src
->bi_iter
;
1018 if (!dst_iter
.bi_size
) {
1023 dst_iter
= dst
->bi_iter
;
1026 src_bv
= bio_iter_iovec(src
, src_iter
);
1027 dst_bv
= bio_iter_iovec(dst
, dst_iter
);
1029 bytes
= min(src_bv
.bv_len
, dst_bv
.bv_len
);
1031 src_p
= kmap_atomic(src_bv
.bv_page
);
1032 dst_p
= kmap_atomic(dst_bv
.bv_page
);
1034 memcpy(dst_p
+ dst_bv
.bv_offset
,
1035 src_p
+ src_bv
.bv_offset
,
1038 kunmap_atomic(dst_p
);
1039 kunmap_atomic(src_p
);
1041 bio_advance_iter(src
, &src_iter
, bytes
);
1042 bio_advance_iter(dst
, &dst_iter
, bytes
);
1045 EXPORT_SYMBOL(bio_copy_data
);
1047 struct bio_map_data
{
1049 struct iov_iter iter
;
1053 static struct bio_map_data
*bio_alloc_map_data(unsigned int iov_count
,
1056 if (iov_count
> UIO_MAXIOV
)
1059 return kmalloc(sizeof(struct bio_map_data
) +
1060 sizeof(struct iovec
) * iov_count
, gfp_mask
);
1064 * bio_copy_from_iter - copy all pages from iov_iter to bio
1065 * @bio: The &struct bio which describes the I/O as destination
1066 * @iter: iov_iter as source
1068 * Copy all pages from iov_iter to bio.
1069 * Returns 0 on success, or error on failure.
1071 static int bio_copy_from_iter(struct bio
*bio
, struct iov_iter iter
)
1074 struct bio_vec
*bvec
;
1076 bio_for_each_segment_all(bvec
, bio
, i
) {
1079 ret
= copy_page_from_iter(bvec
->bv_page
,
1084 if (!iov_iter_count(&iter
))
1087 if (ret
< bvec
->bv_len
)
1095 * bio_copy_to_iter - copy all pages from bio to iov_iter
1096 * @bio: The &struct bio which describes the I/O as source
1097 * @iter: iov_iter as destination
1099 * Copy all pages from bio to iov_iter.
1100 * Returns 0 on success, or error on failure.
1102 static int bio_copy_to_iter(struct bio
*bio
, struct iov_iter iter
)
1105 struct bio_vec
*bvec
;
1107 bio_for_each_segment_all(bvec
, bio
, i
) {
1110 ret
= copy_page_to_iter(bvec
->bv_page
,
1115 if (!iov_iter_count(&iter
))
1118 if (ret
< bvec
->bv_len
)
1125 void bio_free_pages(struct bio
*bio
)
1127 struct bio_vec
*bvec
;
1130 bio_for_each_segment_all(bvec
, bio
, i
)
1131 __free_page(bvec
->bv_page
);
1133 EXPORT_SYMBOL(bio_free_pages
);
1136 * bio_uncopy_user - finish previously mapped bio
1137 * @bio: bio being terminated
1139 * Free pages allocated from bio_copy_user_iov() and write back data
1140 * to user space in case of a read.
1142 int bio_uncopy_user(struct bio
*bio
)
1144 struct bio_map_data
*bmd
= bio
->bi_private
;
1147 if (!bio_flagged(bio
, BIO_NULL_MAPPED
)) {
1149 * if we're in a workqueue, the request is orphaned, so
1150 * don't copy into a random user address space, just free
1151 * and return -EINTR so user space doesn't expect any data.
1155 else if (bio_data_dir(bio
) == READ
)
1156 ret
= bio_copy_to_iter(bio
, bmd
->iter
);
1157 if (bmd
->is_our_pages
)
1158 bio_free_pages(bio
);
1166 * bio_copy_user_iov - copy user data to bio
1167 * @q: destination block queue
1168 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1169 * @iter: iovec iterator
1170 * @gfp_mask: memory allocation flags
1172 * Prepares and returns a bio for indirect user io, bouncing data
1173 * to/from kernel pages as necessary. Must be paired with
1174 * call bio_uncopy_user() on io completion.
1176 struct bio
*bio_copy_user_iov(struct request_queue
*q
,
1177 struct rq_map_data
*map_data
,
1178 const struct iov_iter
*iter
,
1181 struct bio_map_data
*bmd
;
1186 unsigned int len
= iter
->count
;
1187 unsigned int offset
= map_data
? offset_in_page(map_data
->offset
) : 0;
1189 for (i
= 0; i
< iter
->nr_segs
; i
++) {
1190 unsigned long uaddr
;
1192 unsigned long start
;
1194 uaddr
= (unsigned long) iter
->iov
[i
].iov_base
;
1195 end
= (uaddr
+ iter
->iov
[i
].iov_len
+ PAGE_SIZE
- 1)
1197 start
= uaddr
>> PAGE_SHIFT
;
1203 return ERR_PTR(-EINVAL
);
1205 nr_pages
+= end
- start
;
1211 bmd
= bio_alloc_map_data(iter
->nr_segs
, gfp_mask
);
1213 return ERR_PTR(-ENOMEM
);
1216 * We need to do a deep copy of the iov_iter including the iovecs.
1217 * The caller provided iov might point to an on-stack or otherwise
1220 bmd
->is_our_pages
= map_data
? 0 : 1;
1221 memcpy(bmd
->iov
, iter
->iov
, sizeof(struct iovec
) * iter
->nr_segs
);
1222 iov_iter_init(&bmd
->iter
, iter
->type
, bmd
->iov
,
1223 iter
->nr_segs
, iter
->count
);
1226 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1233 nr_pages
= 1 << map_data
->page_order
;
1234 i
= map_data
->offset
/ PAGE_SIZE
;
1237 unsigned int bytes
= PAGE_SIZE
;
1245 if (i
== map_data
->nr_entries
* nr_pages
) {
1250 page
= map_data
->pages
[i
/ nr_pages
];
1251 page
+= (i
% nr_pages
);
1255 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1262 if (bio_add_pc_page(q
, bio
, page
, bytes
, offset
) < bytes
)
1275 if (((iter
->type
& WRITE
) && (!map_data
|| !map_data
->null_mapped
)) ||
1276 (map_data
&& map_data
->from_user
)) {
1277 ret
= bio_copy_from_iter(bio
, *iter
);
1282 bio
->bi_private
= bmd
;
1286 bio_free_pages(bio
);
1290 return ERR_PTR(ret
);
1294 * bio_map_user_iov - map user iovec into bio
1295 * @q: the struct request_queue for the bio
1296 * @iter: iovec iterator
1297 * @gfp_mask: memory allocation flags
1299 * Map the user space address into a bio suitable for io to a block
1300 * device. Returns an error pointer in case of error.
1302 struct bio
*bio_map_user_iov(struct request_queue
*q
,
1303 const struct iov_iter
*iter
,
1308 struct page
**pages
;
1315 iov_for_each(iov
, i
, *iter
) {
1316 unsigned long uaddr
= (unsigned long) iov
.iov_base
;
1317 unsigned long len
= iov
.iov_len
;
1318 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1319 unsigned long start
= uaddr
>> PAGE_SHIFT
;
1325 return ERR_PTR(-EINVAL
);
1327 nr_pages
+= end
- start
;
1329 * buffer must be aligned to at least logical block size for now
1331 if (uaddr
& queue_dma_alignment(q
))
1332 return ERR_PTR(-EINVAL
);
1336 return ERR_PTR(-EINVAL
);
1338 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1340 return ERR_PTR(-ENOMEM
);
1343 pages
= kcalloc(nr_pages
, sizeof(struct page
*), gfp_mask
);
1347 iov_for_each(iov
, i
, *iter
) {
1348 unsigned long uaddr
= (unsigned long) iov
.iov_base
;
1349 unsigned long len
= iov
.iov_len
;
1350 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1351 unsigned long start
= uaddr
>> PAGE_SHIFT
;
1352 const int local_nr_pages
= end
- start
;
1353 const int page_limit
= cur_page
+ local_nr_pages
;
1355 ret
= get_user_pages_fast(uaddr
, local_nr_pages
,
1356 (iter
->type
& WRITE
) != WRITE
,
1358 if (ret
< local_nr_pages
) {
1363 offset
= offset_in_page(uaddr
);
1364 for (j
= cur_page
; j
< page_limit
; j
++) {
1365 unsigned int bytes
= PAGE_SIZE
- offset
;
1376 if (bio_add_pc_page(q
, bio
, pages
[j
], bytes
, offset
) <
1386 * release the pages we didn't map into the bio, if any
1388 while (j
< page_limit
)
1389 put_page(pages
[j
++]);
1394 bio_set_flag(bio
, BIO_USER_MAPPED
);
1397 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1398 * it would normally disappear when its bi_end_io is run.
1399 * however, we need it for the unmap, so grab an extra
1406 for (j
= 0; j
< nr_pages
; j
++) {
1414 return ERR_PTR(ret
);
1417 static void __bio_unmap_user(struct bio
*bio
)
1419 struct bio_vec
*bvec
;
1423 * make sure we dirty pages we wrote to
1425 bio_for_each_segment_all(bvec
, bio
, i
) {
1426 if (bio_data_dir(bio
) == READ
)
1427 set_page_dirty_lock(bvec
->bv_page
);
1429 put_page(bvec
->bv_page
);
1436 * bio_unmap_user - unmap a bio
1437 * @bio: the bio being unmapped
1439 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1442 * bio_unmap_user() may sleep.
1444 void bio_unmap_user(struct bio
*bio
)
1446 __bio_unmap_user(bio
);
1450 static void bio_map_kern_endio(struct bio
*bio
)
1456 * bio_map_kern - map kernel address into bio
1457 * @q: the struct request_queue for the bio
1458 * @data: pointer to buffer to map
1459 * @len: length in bytes
1460 * @gfp_mask: allocation flags for bio allocation
1462 * Map the kernel address into a bio suitable for io to a block
1463 * device. Returns an error pointer in case of error.
1465 struct bio
*bio_map_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1468 unsigned long kaddr
= (unsigned long)data
;
1469 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1470 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1471 const int nr_pages
= end
- start
;
1475 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1477 return ERR_PTR(-ENOMEM
);
1479 offset
= offset_in_page(kaddr
);
1480 for (i
= 0; i
< nr_pages
; i
++) {
1481 unsigned int bytes
= PAGE_SIZE
- offset
;
1489 if (bio_add_pc_page(q
, bio
, virt_to_page(data
), bytes
,
1491 /* we don't support partial mappings */
1493 return ERR_PTR(-EINVAL
);
1501 bio
->bi_end_io
= bio_map_kern_endio
;
1504 EXPORT_SYMBOL(bio_map_kern
);
1506 static void bio_copy_kern_endio(struct bio
*bio
)
1508 bio_free_pages(bio
);
1512 static void bio_copy_kern_endio_read(struct bio
*bio
)
1514 char *p
= bio
->bi_private
;
1515 struct bio_vec
*bvec
;
1518 bio_for_each_segment_all(bvec
, bio
, i
) {
1519 memcpy(p
, page_address(bvec
->bv_page
), bvec
->bv_len
);
1523 bio_copy_kern_endio(bio
);
1527 * bio_copy_kern - copy kernel address into bio
1528 * @q: the struct request_queue for the bio
1529 * @data: pointer to buffer to copy
1530 * @len: length in bytes
1531 * @gfp_mask: allocation flags for bio and page allocation
1532 * @reading: data direction is READ
1534 * copy the kernel address into a bio suitable for io to a block
1535 * device. Returns an error pointer in case of error.
1537 struct bio
*bio_copy_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1538 gfp_t gfp_mask
, int reading
)
1540 unsigned long kaddr
= (unsigned long)data
;
1541 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1542 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1551 return ERR_PTR(-EINVAL
);
1553 nr_pages
= end
- start
;
1554 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1556 return ERR_PTR(-ENOMEM
);
1560 unsigned int bytes
= PAGE_SIZE
;
1565 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1570 memcpy(page_address(page
), p
, bytes
);
1572 if (bio_add_pc_page(q
, bio
, page
, bytes
, 0) < bytes
)
1580 bio
->bi_end_io
= bio_copy_kern_endio_read
;
1581 bio
->bi_private
= data
;
1583 bio
->bi_end_io
= bio_copy_kern_endio
;
1589 bio_free_pages(bio
);
1591 return ERR_PTR(-ENOMEM
);
1595 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1596 * for performing direct-IO in BIOs.
1598 * The problem is that we cannot run set_page_dirty() from interrupt context
1599 * because the required locks are not interrupt-safe. So what we can do is to
1600 * mark the pages dirty _before_ performing IO. And in interrupt context,
1601 * check that the pages are still dirty. If so, fine. If not, redirty them
1602 * in process context.
1604 * We special-case compound pages here: normally this means reads into hugetlb
1605 * pages. The logic in here doesn't really work right for compound pages
1606 * because the VM does not uniformly chase down the head page in all cases.
1607 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1608 * handle them at all. So we skip compound pages here at an early stage.
1610 * Note that this code is very hard to test under normal circumstances because
1611 * direct-io pins the pages with get_user_pages(). This makes
1612 * is_page_cache_freeable return false, and the VM will not clean the pages.
1613 * But other code (eg, flusher threads) could clean the pages if they are mapped
1616 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1617 * deferred bio dirtying paths.
1621 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1623 void bio_set_pages_dirty(struct bio
*bio
)
1625 struct bio_vec
*bvec
;
1628 bio_for_each_segment_all(bvec
, bio
, i
) {
1629 struct page
*page
= bvec
->bv_page
;
1631 if (page
&& !PageCompound(page
))
1632 set_page_dirty_lock(page
);
1636 static void bio_release_pages(struct bio
*bio
)
1638 struct bio_vec
*bvec
;
1641 bio_for_each_segment_all(bvec
, bio
, i
) {
1642 struct page
*page
= bvec
->bv_page
;
1650 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1651 * If they are, then fine. If, however, some pages are clean then they must
1652 * have been written out during the direct-IO read. So we take another ref on
1653 * the BIO and the offending pages and re-dirty the pages in process context.
1655 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1656 * here on. It will run one put_page() against each page and will run one
1657 * bio_put() against the BIO.
1660 static void bio_dirty_fn(struct work_struct
*work
);
1662 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
);
1663 static DEFINE_SPINLOCK(bio_dirty_lock
);
1664 static struct bio
*bio_dirty_list
;
1667 * This runs in process context
1669 static void bio_dirty_fn(struct work_struct
*work
)
1671 unsigned long flags
;
1674 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1675 bio
= bio_dirty_list
;
1676 bio_dirty_list
= NULL
;
1677 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1680 struct bio
*next
= bio
->bi_private
;
1682 bio_set_pages_dirty(bio
);
1683 bio_release_pages(bio
);
1689 void bio_check_pages_dirty(struct bio
*bio
)
1691 struct bio_vec
*bvec
;
1692 int nr_clean_pages
= 0;
1695 bio_for_each_segment_all(bvec
, bio
, i
) {
1696 struct page
*page
= bvec
->bv_page
;
1698 if (PageDirty(page
) || PageCompound(page
)) {
1700 bvec
->bv_page
= NULL
;
1706 if (nr_clean_pages
) {
1707 unsigned long flags
;
1709 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1710 bio
->bi_private
= bio_dirty_list
;
1711 bio_dirty_list
= bio
;
1712 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1713 schedule_work(&bio_dirty_work
);
1719 void generic_start_io_acct(int rw
, unsigned long sectors
,
1720 struct hd_struct
*part
)
1722 int cpu
= part_stat_lock();
1724 part_round_stats(cpu
, part
);
1725 part_stat_inc(cpu
, part
, ios
[rw
]);
1726 part_stat_add(cpu
, part
, sectors
[rw
], sectors
);
1727 part_inc_in_flight(part
, rw
);
1731 EXPORT_SYMBOL(generic_start_io_acct
);
1733 void generic_end_io_acct(int rw
, struct hd_struct
*part
,
1734 unsigned long start_time
)
1736 unsigned long duration
= jiffies
- start_time
;
1737 int cpu
= part_stat_lock();
1739 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
1740 part_round_stats(cpu
, part
);
1741 part_dec_in_flight(part
, rw
);
1745 EXPORT_SYMBOL(generic_end_io_acct
);
1747 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1748 void bio_flush_dcache_pages(struct bio
*bi
)
1750 struct bio_vec bvec
;
1751 struct bvec_iter iter
;
1753 bio_for_each_segment(bvec
, bi
, iter
)
1754 flush_dcache_page(bvec
.bv_page
);
1756 EXPORT_SYMBOL(bio_flush_dcache_pages
);
1759 static inline bool bio_remaining_done(struct bio
*bio
)
1762 * If we're not chaining, then ->__bi_remaining is always 1 and
1763 * we always end io on the first invocation.
1765 if (!bio_flagged(bio
, BIO_CHAIN
))
1768 BUG_ON(atomic_read(&bio
->__bi_remaining
) <= 0);
1770 if (atomic_dec_and_test(&bio
->__bi_remaining
)) {
1771 bio_clear_flag(bio
, BIO_CHAIN
);
1779 * bio_endio - end I/O on a bio
1783 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1784 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1785 * bio unless they own it and thus know that it has an end_io function.
1787 void bio_endio(struct bio
*bio
)
1790 if (!bio_remaining_done(bio
))
1794 * Need to have a real endio function for chained bios, otherwise
1795 * various corner cases will break (like stacking block devices that
1796 * save/restore bi_end_io) - however, we want to avoid unbounded
1797 * recursion and blowing the stack. Tail call optimization would
1798 * handle this, but compiling with frame pointers also disables
1799 * gcc's sibling call optimization.
1801 if (bio
->bi_end_io
== bio_chain_endio
) {
1802 bio
= __bio_chain_endio(bio
);
1807 bio
->bi_end_io(bio
);
1809 EXPORT_SYMBOL(bio_endio
);
1812 * bio_split - split a bio
1813 * @bio: bio to split
1814 * @sectors: number of sectors to split from the front of @bio
1816 * @bs: bio set to allocate from
1818 * Allocates and returns a new bio which represents @sectors from the start of
1819 * @bio, and updates @bio to represent the remaining sectors.
1821 * Unless this is a discard request the newly allocated bio will point
1822 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1823 * @bio is not freed before the split.
1825 struct bio
*bio_split(struct bio
*bio
, int sectors
,
1826 gfp_t gfp
, struct bio_set
*bs
)
1828 struct bio
*split
= NULL
;
1830 BUG_ON(sectors
<= 0);
1831 BUG_ON(sectors
>= bio_sectors(bio
));
1833 split
= bio_clone_fast(bio
, gfp
, bs
);
1837 split
->bi_iter
.bi_size
= sectors
<< 9;
1839 if (bio_integrity(split
))
1840 bio_integrity_trim(split
, 0, sectors
);
1842 bio_advance(bio
, split
->bi_iter
.bi_size
);
1846 EXPORT_SYMBOL(bio_split
);
1849 * bio_trim - trim a bio
1851 * @offset: number of sectors to trim from the front of @bio
1852 * @size: size we want to trim @bio to, in sectors
1854 void bio_trim(struct bio
*bio
, int offset
, int size
)
1856 /* 'bio' is a cloned bio which we need to trim to match
1857 * the given offset and size.
1861 if (offset
== 0 && size
== bio
->bi_iter
.bi_size
)
1864 bio_clear_flag(bio
, BIO_SEG_VALID
);
1866 bio_advance(bio
, offset
<< 9);
1868 bio
->bi_iter
.bi_size
= size
;
1870 EXPORT_SYMBOL_GPL(bio_trim
);
1873 * create memory pools for biovec's in a bio_set.
1874 * use the global biovec slabs created for general use.
1876 mempool_t
*biovec_create_pool(int pool_entries
)
1878 struct biovec_slab
*bp
= bvec_slabs
+ BVEC_POOL_MAX
;
1880 return mempool_create_slab_pool(pool_entries
, bp
->slab
);
1883 void bioset_free(struct bio_set
*bs
)
1885 if (bs
->rescue_workqueue
)
1886 destroy_workqueue(bs
->rescue_workqueue
);
1889 mempool_destroy(bs
->bio_pool
);
1892 mempool_destroy(bs
->bvec_pool
);
1894 bioset_integrity_free(bs
);
1899 EXPORT_SYMBOL(bioset_free
);
1901 static struct bio_set
*__bioset_create(unsigned int pool_size
,
1902 unsigned int front_pad
,
1903 bool create_bvec_pool
)
1905 unsigned int back_pad
= BIO_INLINE_VECS
* sizeof(struct bio_vec
);
1908 bs
= kzalloc(sizeof(*bs
), GFP_KERNEL
);
1912 bs
->front_pad
= front_pad
;
1914 spin_lock_init(&bs
->rescue_lock
);
1915 bio_list_init(&bs
->rescue_list
);
1916 INIT_WORK(&bs
->rescue_work
, bio_alloc_rescue
);
1918 bs
->bio_slab
= bio_find_or_create_slab(front_pad
+ back_pad
);
1919 if (!bs
->bio_slab
) {
1924 bs
->bio_pool
= mempool_create_slab_pool(pool_size
, bs
->bio_slab
);
1928 if (create_bvec_pool
) {
1929 bs
->bvec_pool
= biovec_create_pool(pool_size
);
1934 bs
->rescue_workqueue
= alloc_workqueue("bioset", WQ_MEM_RECLAIM
, 0);
1935 if (!bs
->rescue_workqueue
)
1945 * bioset_create - Create a bio_set
1946 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1947 * @front_pad: Number of bytes to allocate in front of the returned bio
1950 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1951 * to ask for a number of bytes to be allocated in front of the bio.
1952 * Front pad allocation is useful for embedding the bio inside
1953 * another structure, to avoid allocating extra data to go with the bio.
1954 * Note that the bio must be embedded at the END of that structure always,
1955 * or things will break badly.
1957 struct bio_set
*bioset_create(unsigned int pool_size
, unsigned int front_pad
)
1959 return __bioset_create(pool_size
, front_pad
, true);
1961 EXPORT_SYMBOL(bioset_create
);
1964 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1965 * @pool_size: Number of bio to cache in the mempool
1966 * @front_pad: Number of bytes to allocate in front of the returned bio
1969 * Same functionality as bioset_create() except that mempool is not
1970 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1972 struct bio_set
*bioset_create_nobvec(unsigned int pool_size
, unsigned int front_pad
)
1974 return __bioset_create(pool_size
, front_pad
, false);
1976 EXPORT_SYMBOL(bioset_create_nobvec
);
1978 #ifdef CONFIG_BLK_CGROUP
1981 * bio_associate_blkcg - associate a bio with the specified blkcg
1983 * @blkcg_css: css of the blkcg to associate
1985 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1986 * treat @bio as if it were issued by a task which belongs to the blkcg.
1988 * This function takes an extra reference of @blkcg_css which will be put
1989 * when @bio is released. The caller must own @bio and is responsible for
1990 * synchronizing calls to this function.
1992 int bio_associate_blkcg(struct bio
*bio
, struct cgroup_subsys_state
*blkcg_css
)
1994 if (unlikely(bio
->bi_css
))
1997 bio
->bi_css
= blkcg_css
;
2000 EXPORT_SYMBOL_GPL(bio_associate_blkcg
);
2003 * bio_associate_current - associate a bio with %current
2006 * Associate @bio with %current if it hasn't been associated yet. Block
2007 * layer will treat @bio as if it were issued by %current no matter which
2008 * task actually issues it.
2010 * This function takes an extra reference of @task's io_context and blkcg
2011 * which will be put when @bio is released. The caller must own @bio,
2012 * ensure %current->io_context exists, and is responsible for synchronizing
2013 * calls to this function.
2015 int bio_associate_current(struct bio
*bio
)
2017 struct io_context
*ioc
;
2022 ioc
= current
->io_context
;
2026 get_io_context_active(ioc
);
2028 bio
->bi_css
= task_get_css(current
, io_cgrp_id
);
2031 EXPORT_SYMBOL_GPL(bio_associate_current
);
2034 * bio_disassociate_task - undo bio_associate_current()
2037 void bio_disassociate_task(struct bio
*bio
)
2040 put_io_context(bio
->bi_ioc
);
2044 css_put(bio
->bi_css
);
2050 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2051 * @dst: destination bio
2054 void bio_clone_blkcg_association(struct bio
*dst
, struct bio
*src
)
2057 WARN_ON(bio_associate_blkcg(dst
, src
->bi_css
));
2060 #endif /* CONFIG_BLK_CGROUP */
2062 static void __init
biovec_init_slabs(void)
2066 for (i
= 0; i
< BVEC_POOL_NR
; i
++) {
2068 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
2070 if (bvs
->nr_vecs
<= BIO_INLINE_VECS
) {
2075 size
= bvs
->nr_vecs
* sizeof(struct bio_vec
);
2076 bvs
->slab
= kmem_cache_create(bvs
->name
, size
, 0,
2077 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2081 static int __init
init_bio(void)
2085 bio_slabs
= kzalloc(bio_slab_max
* sizeof(struct bio_slab
), GFP_KERNEL
);
2087 panic("bio: can't allocate bios\n");
2089 bio_integrity_init();
2090 biovec_init_slabs();
2092 fs_bio_set
= bioset_create(BIO_POOL_SIZE
, 0);
2094 panic("bio: can't allocate bios\n");
2096 if (bioset_integrity_create(fs_bio_set
, BIO_POOL_SIZE
))
2097 panic("bio: can't create integrity pool\n");
2101 subsys_initcall(init_bio
);