]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/bio.c
Merge tag 'exfat-for-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/linki...
[mirror_ubuntu-hirsute-kernel.git] / block / bio.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22
23 #include <trace/events/block.h>
24 #include "blk.h"
25 #include "blk-rq-qos.h"
26
27 /*
28 * Test patch to inline a certain number of bi_io_vec's inside the bio
29 * itself, to shrink a bio data allocation from two mempool calls to one
30 */
31 #define BIO_INLINE_VECS 4
32
33 /*
34 * if you change this list, also change bvec_alloc or things will
35 * break badly! cannot be bigger than what you can fit into an
36 * unsigned short
37 */
38 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
39 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
40 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
41 };
42 #undef BV
43
44 /*
45 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
46 * IO code that does not need private memory pools.
47 */
48 struct bio_set fs_bio_set;
49 EXPORT_SYMBOL(fs_bio_set);
50
51 /*
52 * Our slab pool management
53 */
54 struct bio_slab {
55 struct kmem_cache *slab;
56 unsigned int slab_ref;
57 unsigned int slab_size;
58 char name[8];
59 };
60 static DEFINE_MUTEX(bio_slab_lock);
61 static struct bio_slab *bio_slabs;
62 static unsigned int bio_slab_nr, bio_slab_max;
63
64 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
65 {
66 unsigned int sz = sizeof(struct bio) + extra_size;
67 struct kmem_cache *slab = NULL;
68 struct bio_slab *bslab, *new_bio_slabs;
69 unsigned int new_bio_slab_max;
70 unsigned int i, entry = -1;
71
72 mutex_lock(&bio_slab_lock);
73
74 i = 0;
75 while (i < bio_slab_nr) {
76 bslab = &bio_slabs[i];
77
78 if (!bslab->slab && entry == -1)
79 entry = i;
80 else if (bslab->slab_size == sz) {
81 slab = bslab->slab;
82 bslab->slab_ref++;
83 break;
84 }
85 i++;
86 }
87
88 if (slab)
89 goto out_unlock;
90
91 if (bio_slab_nr == bio_slab_max && entry == -1) {
92 new_bio_slab_max = bio_slab_max << 1;
93 new_bio_slabs = krealloc(bio_slabs,
94 new_bio_slab_max * sizeof(struct bio_slab),
95 GFP_KERNEL);
96 if (!new_bio_slabs)
97 goto out_unlock;
98 bio_slab_max = new_bio_slab_max;
99 bio_slabs = new_bio_slabs;
100 }
101 if (entry == -1)
102 entry = bio_slab_nr++;
103
104 bslab = &bio_slabs[entry];
105
106 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
107 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
108 SLAB_HWCACHE_ALIGN, NULL);
109 if (!slab)
110 goto out_unlock;
111
112 bslab->slab = slab;
113 bslab->slab_ref = 1;
114 bslab->slab_size = sz;
115 out_unlock:
116 mutex_unlock(&bio_slab_lock);
117 return slab;
118 }
119
120 static void bio_put_slab(struct bio_set *bs)
121 {
122 struct bio_slab *bslab = NULL;
123 unsigned int i;
124
125 mutex_lock(&bio_slab_lock);
126
127 for (i = 0; i < bio_slab_nr; i++) {
128 if (bs->bio_slab == bio_slabs[i].slab) {
129 bslab = &bio_slabs[i];
130 break;
131 }
132 }
133
134 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
135 goto out;
136
137 WARN_ON(!bslab->slab_ref);
138
139 if (--bslab->slab_ref)
140 goto out;
141
142 kmem_cache_destroy(bslab->slab);
143 bslab->slab = NULL;
144
145 out:
146 mutex_unlock(&bio_slab_lock);
147 }
148
149 unsigned int bvec_nr_vecs(unsigned short idx)
150 {
151 return bvec_slabs[--idx].nr_vecs;
152 }
153
154 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
155 {
156 if (!idx)
157 return;
158 idx--;
159
160 BIO_BUG_ON(idx >= BVEC_POOL_NR);
161
162 if (idx == BVEC_POOL_MAX) {
163 mempool_free(bv, pool);
164 } else {
165 struct biovec_slab *bvs = bvec_slabs + idx;
166
167 kmem_cache_free(bvs->slab, bv);
168 }
169 }
170
171 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
172 mempool_t *pool)
173 {
174 struct bio_vec *bvl;
175
176 /*
177 * see comment near bvec_array define!
178 */
179 switch (nr) {
180 case 1:
181 *idx = 0;
182 break;
183 case 2 ... 4:
184 *idx = 1;
185 break;
186 case 5 ... 16:
187 *idx = 2;
188 break;
189 case 17 ... 64:
190 *idx = 3;
191 break;
192 case 65 ... 128:
193 *idx = 4;
194 break;
195 case 129 ... BIO_MAX_PAGES:
196 *idx = 5;
197 break;
198 default:
199 return NULL;
200 }
201
202 /*
203 * idx now points to the pool we want to allocate from. only the
204 * 1-vec entry pool is mempool backed.
205 */
206 if (*idx == BVEC_POOL_MAX) {
207 fallback:
208 bvl = mempool_alloc(pool, gfp_mask);
209 } else {
210 struct biovec_slab *bvs = bvec_slabs + *idx;
211 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
212
213 /*
214 * Make this allocation restricted and don't dump info on
215 * allocation failures, since we'll fallback to the mempool
216 * in case of failure.
217 */
218 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
219
220 /*
221 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
222 * is set, retry with the 1-entry mempool
223 */
224 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
225 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
226 *idx = BVEC_POOL_MAX;
227 goto fallback;
228 }
229 }
230
231 (*idx)++;
232 return bvl;
233 }
234
235 void bio_uninit(struct bio *bio)
236 {
237 #ifdef CONFIG_BLK_CGROUP
238 if (bio->bi_blkg) {
239 blkg_put(bio->bi_blkg);
240 bio->bi_blkg = NULL;
241 }
242 #endif
243 if (bio_integrity(bio))
244 bio_integrity_free(bio);
245
246 bio_crypt_free_ctx(bio);
247 }
248 EXPORT_SYMBOL(bio_uninit);
249
250 static void bio_free(struct bio *bio)
251 {
252 struct bio_set *bs = bio->bi_pool;
253 void *p;
254
255 bio_uninit(bio);
256
257 if (bs) {
258 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259
260 /*
261 * If we have front padding, adjust the bio pointer before freeing
262 */
263 p = bio;
264 p -= bs->front_pad;
265
266 mempool_free(p, &bs->bio_pool);
267 } else {
268 /* Bio was allocated by bio_kmalloc() */
269 kfree(bio);
270 }
271 }
272
273 /*
274 * Users of this function have their own bio allocation. Subsequently,
275 * they must remember to pair any call to bio_init() with bio_uninit()
276 * when IO has completed, or when the bio is released.
277 */
278 void bio_init(struct bio *bio, struct bio_vec *table,
279 unsigned short max_vecs)
280 {
281 memset(bio, 0, sizeof(*bio));
282 atomic_set(&bio->__bi_remaining, 1);
283 atomic_set(&bio->__bi_cnt, 1);
284
285 bio->bi_io_vec = table;
286 bio->bi_max_vecs = max_vecs;
287 }
288 EXPORT_SYMBOL(bio_init);
289
290 /**
291 * bio_reset - reinitialize a bio
292 * @bio: bio to reset
293 *
294 * Description:
295 * After calling bio_reset(), @bio will be in the same state as a freshly
296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
297 * preserved are the ones that are initialized by bio_alloc_bioset(). See
298 * comment in struct bio.
299 */
300 void bio_reset(struct bio *bio)
301 {
302 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
303
304 bio_uninit(bio);
305
306 memset(bio, 0, BIO_RESET_BYTES);
307 bio->bi_flags = flags;
308 atomic_set(&bio->__bi_remaining, 1);
309 }
310 EXPORT_SYMBOL(bio_reset);
311
312 static struct bio *__bio_chain_endio(struct bio *bio)
313 {
314 struct bio *parent = bio->bi_private;
315
316 if (!parent->bi_status)
317 parent->bi_status = bio->bi_status;
318 bio_put(bio);
319 return parent;
320 }
321
322 static void bio_chain_endio(struct bio *bio)
323 {
324 bio_endio(__bio_chain_endio(bio));
325 }
326
327 /**
328 * bio_chain - chain bio completions
329 * @bio: the target bio
330 * @parent: the parent bio of @bio
331 *
332 * The caller won't have a bi_end_io called when @bio completes - instead,
333 * @parent's bi_end_io won't be called until both @parent and @bio have
334 * completed; the chained bio will also be freed when it completes.
335 *
336 * The caller must not set bi_private or bi_end_io in @bio.
337 */
338 void bio_chain(struct bio *bio, struct bio *parent)
339 {
340 BUG_ON(bio->bi_private || bio->bi_end_io);
341
342 bio->bi_private = parent;
343 bio->bi_end_io = bio_chain_endio;
344 bio_inc_remaining(parent);
345 }
346 EXPORT_SYMBOL(bio_chain);
347
348 static void bio_alloc_rescue(struct work_struct *work)
349 {
350 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
351 struct bio *bio;
352
353 while (1) {
354 spin_lock(&bs->rescue_lock);
355 bio = bio_list_pop(&bs->rescue_list);
356 spin_unlock(&bs->rescue_lock);
357
358 if (!bio)
359 break;
360
361 submit_bio_noacct(bio);
362 }
363 }
364
365 static void punt_bios_to_rescuer(struct bio_set *bs)
366 {
367 struct bio_list punt, nopunt;
368 struct bio *bio;
369
370 if (WARN_ON_ONCE(!bs->rescue_workqueue))
371 return;
372 /*
373 * In order to guarantee forward progress we must punt only bios that
374 * were allocated from this bio_set; otherwise, if there was a bio on
375 * there for a stacking driver higher up in the stack, processing it
376 * could require allocating bios from this bio_set, and doing that from
377 * our own rescuer would be bad.
378 *
379 * Since bio lists are singly linked, pop them all instead of trying to
380 * remove from the middle of the list:
381 */
382
383 bio_list_init(&punt);
384 bio_list_init(&nopunt);
385
386 while ((bio = bio_list_pop(&current->bio_list[0])))
387 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
388 current->bio_list[0] = nopunt;
389
390 bio_list_init(&nopunt);
391 while ((bio = bio_list_pop(&current->bio_list[1])))
392 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
393 current->bio_list[1] = nopunt;
394
395 spin_lock(&bs->rescue_lock);
396 bio_list_merge(&bs->rescue_list, &punt);
397 spin_unlock(&bs->rescue_lock);
398
399 queue_work(bs->rescue_workqueue, &bs->rescue_work);
400 }
401
402 /**
403 * bio_alloc_bioset - allocate a bio for I/O
404 * @gfp_mask: the GFP_* mask given to the slab allocator
405 * @nr_iovecs: number of iovecs to pre-allocate
406 * @bs: the bio_set to allocate from.
407 *
408 * Description:
409 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
410 * backed by the @bs's mempool.
411 *
412 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
413 * always be able to allocate a bio. This is due to the mempool guarantees.
414 * To make this work, callers must never allocate more than 1 bio at a time
415 * from this pool. Callers that need to allocate more than 1 bio must always
416 * submit the previously allocated bio for IO before attempting to allocate
417 * a new one. Failure to do so can cause deadlocks under memory pressure.
418 *
419 * Note that when running under submit_bio_noacct() (i.e. any block
420 * driver), bios are not submitted until after you return - see the code in
421 * submit_bio_noacct() that converts recursion into iteration, to prevent
422 * stack overflows.
423 *
424 * This would normally mean allocating multiple bios under
425 * submit_bio_noacct() would be susceptible to deadlocks, but we have
426 * deadlock avoidance code that resubmits any blocked bios from a rescuer
427 * thread.
428 *
429 * However, we do not guarantee forward progress for allocations from other
430 * mempools. Doing multiple allocations from the same mempool under
431 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
432 * for per bio allocations.
433 *
434 * RETURNS:
435 * Pointer to new bio on success, NULL on failure.
436 */
437 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
438 struct bio_set *bs)
439 {
440 gfp_t saved_gfp = gfp_mask;
441 unsigned front_pad;
442 unsigned inline_vecs;
443 struct bio_vec *bvl = NULL;
444 struct bio *bio;
445 void *p;
446
447 if (!bs) {
448 if (nr_iovecs > UIO_MAXIOV)
449 return NULL;
450
451 p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
452 front_pad = 0;
453 inline_vecs = nr_iovecs;
454 } else {
455 /* should not use nobvec bioset for nr_iovecs > 0 */
456 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
457 nr_iovecs > 0))
458 return NULL;
459 /*
460 * submit_bio_noacct() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath submit_bio_noacct(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
478 */
479
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485
486 p = mempool_alloc(&bs->bio_pool, gfp_mask);
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(&bs->bio_pool, gfp_mask);
491 }
492
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
497 if (unlikely(!p))
498 return NULL;
499
500 bio = p + front_pad;
501 bio_init(bio, NULL, 0);
502
503 if (nr_iovecs > inline_vecs) {
504 unsigned long idx = 0;
505
506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
511 }
512
513 if (unlikely(!bvl))
514 goto err_free;
515
516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
519 }
520
521 bio->bi_pool = bs;
522 bio->bi_max_vecs = nr_iovecs;
523 bio->bi_io_vec = bvl;
524 return bio;
525
526 err_free:
527 mempool_free(p, &bs->bio_pool);
528 return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531
532 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
533 {
534 unsigned long flags;
535 struct bio_vec bv;
536 struct bvec_iter iter;
537
538 __bio_for_each_segment(bv, bio, iter, start) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
542 bvec_kunmap_irq(data, &flags);
543 }
544 }
545 EXPORT_SYMBOL(zero_fill_bio_iter);
546
547 /**
548 * bio_truncate - truncate the bio to small size of @new_size
549 * @bio: the bio to be truncated
550 * @new_size: new size for truncating the bio
551 *
552 * Description:
553 * Truncate the bio to new size of @new_size. If bio_op(bio) is
554 * REQ_OP_READ, zero the truncated part. This function should only
555 * be used for handling corner cases, such as bio eod.
556 */
557 void bio_truncate(struct bio *bio, unsigned new_size)
558 {
559 struct bio_vec bv;
560 struct bvec_iter iter;
561 unsigned int done = 0;
562 bool truncated = false;
563
564 if (new_size >= bio->bi_iter.bi_size)
565 return;
566
567 if (bio_op(bio) != REQ_OP_READ)
568 goto exit;
569
570 bio_for_each_segment(bv, bio, iter) {
571 if (done + bv.bv_len > new_size) {
572 unsigned offset;
573
574 if (!truncated)
575 offset = new_size - done;
576 else
577 offset = 0;
578 zero_user(bv.bv_page, offset, bv.bv_len - offset);
579 truncated = true;
580 }
581 done += bv.bv_len;
582 }
583
584 exit:
585 /*
586 * Don't touch bvec table here and make it really immutable, since
587 * fs bio user has to retrieve all pages via bio_for_each_segment_all
588 * in its .end_bio() callback.
589 *
590 * It is enough to truncate bio by updating .bi_size since we can make
591 * correct bvec with the updated .bi_size for drivers.
592 */
593 bio->bi_iter.bi_size = new_size;
594 }
595
596 /**
597 * guard_bio_eod - truncate a BIO to fit the block device
598 * @bio: bio to truncate
599 *
600 * This allows us to do IO even on the odd last sectors of a device, even if the
601 * block size is some multiple of the physical sector size.
602 *
603 * We'll just truncate the bio to the size of the device, and clear the end of
604 * the buffer head manually. Truly out-of-range accesses will turn into actual
605 * I/O errors, this only handles the "we need to be able to do I/O at the final
606 * sector" case.
607 */
608 void guard_bio_eod(struct bio *bio)
609 {
610 sector_t maxsector;
611 struct block_device *part;
612
613 rcu_read_lock();
614 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
615 if (part)
616 maxsector = bdev_nr_sectors(part);
617 else
618 maxsector = get_capacity(bio->bi_disk);
619 rcu_read_unlock();
620
621 if (!maxsector)
622 return;
623
624 /*
625 * If the *whole* IO is past the end of the device,
626 * let it through, and the IO layer will turn it into
627 * an EIO.
628 */
629 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
630 return;
631
632 maxsector -= bio->bi_iter.bi_sector;
633 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
634 return;
635
636 bio_truncate(bio, maxsector << 9);
637 }
638
639 /**
640 * bio_put - release a reference to a bio
641 * @bio: bio to release reference to
642 *
643 * Description:
644 * Put a reference to a &struct bio, either one you have gotten with
645 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
646 **/
647 void bio_put(struct bio *bio)
648 {
649 if (!bio_flagged(bio, BIO_REFFED))
650 bio_free(bio);
651 else {
652 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
653
654 /*
655 * last put frees it
656 */
657 if (atomic_dec_and_test(&bio->__bi_cnt))
658 bio_free(bio);
659 }
660 }
661 EXPORT_SYMBOL(bio_put);
662
663 /**
664 * __bio_clone_fast - clone a bio that shares the original bio's biovec
665 * @bio: destination bio
666 * @bio_src: bio to clone
667 *
668 * Clone a &bio. Caller will own the returned bio, but not
669 * the actual data it points to. Reference count of returned
670 * bio will be one.
671 *
672 * Caller must ensure that @bio_src is not freed before @bio.
673 */
674 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
675 {
676 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
677
678 /*
679 * most users will be overriding ->bi_disk with a new target,
680 * so we don't set nor calculate new physical/hw segment counts here
681 */
682 bio->bi_disk = bio_src->bi_disk;
683 bio->bi_partno = bio_src->bi_partno;
684 bio_set_flag(bio, BIO_CLONED);
685 if (bio_flagged(bio_src, BIO_THROTTLED))
686 bio_set_flag(bio, BIO_THROTTLED);
687 bio->bi_opf = bio_src->bi_opf;
688 bio->bi_ioprio = bio_src->bi_ioprio;
689 bio->bi_write_hint = bio_src->bi_write_hint;
690 bio->bi_iter = bio_src->bi_iter;
691 bio->bi_io_vec = bio_src->bi_io_vec;
692
693 bio_clone_blkg_association(bio, bio_src);
694 blkcg_bio_issue_init(bio);
695 }
696 EXPORT_SYMBOL(__bio_clone_fast);
697
698 /**
699 * bio_clone_fast - clone a bio that shares the original bio's biovec
700 * @bio: bio to clone
701 * @gfp_mask: allocation priority
702 * @bs: bio_set to allocate from
703 *
704 * Like __bio_clone_fast, only also allocates the returned bio
705 */
706 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
707 {
708 struct bio *b;
709
710 b = bio_alloc_bioset(gfp_mask, 0, bs);
711 if (!b)
712 return NULL;
713
714 __bio_clone_fast(b, bio);
715
716 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
717 goto err_put;
718
719 if (bio_integrity(bio) &&
720 bio_integrity_clone(b, bio, gfp_mask) < 0)
721 goto err_put;
722
723 return b;
724
725 err_put:
726 bio_put(b);
727 return NULL;
728 }
729 EXPORT_SYMBOL(bio_clone_fast);
730
731 const char *bio_devname(struct bio *bio, char *buf)
732 {
733 return disk_name(bio->bi_disk, bio->bi_partno, buf);
734 }
735 EXPORT_SYMBOL(bio_devname);
736
737 static inline bool page_is_mergeable(const struct bio_vec *bv,
738 struct page *page, unsigned int len, unsigned int off,
739 bool *same_page)
740 {
741 size_t bv_end = bv->bv_offset + bv->bv_len;
742 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
743 phys_addr_t page_addr = page_to_phys(page);
744
745 if (vec_end_addr + 1 != page_addr + off)
746 return false;
747 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
748 return false;
749
750 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
751 if (*same_page)
752 return true;
753 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
754 }
755
756 /*
757 * Try to merge a page into a segment, while obeying the hardware segment
758 * size limit. This is not for normal read/write bios, but for passthrough
759 * or Zone Append operations that we can't split.
760 */
761 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
762 struct page *page, unsigned len,
763 unsigned offset, bool *same_page)
764 {
765 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
766 unsigned long mask = queue_segment_boundary(q);
767 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
768 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
769
770 if ((addr1 | mask) != (addr2 | mask))
771 return false;
772 if (bv->bv_len + len > queue_max_segment_size(q))
773 return false;
774 return __bio_try_merge_page(bio, page, len, offset, same_page);
775 }
776
777 /**
778 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
779 * @q: the target queue
780 * @bio: destination bio
781 * @page: page to add
782 * @len: vec entry length
783 * @offset: vec entry offset
784 * @max_sectors: maximum number of sectors that can be added
785 * @same_page: return if the segment has been merged inside the same page
786 *
787 * Add a page to a bio while respecting the hardware max_sectors, max_segment
788 * and gap limitations.
789 */
790 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
791 struct page *page, unsigned int len, unsigned int offset,
792 unsigned int max_sectors, bool *same_page)
793 {
794 struct bio_vec *bvec;
795
796 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
797 return 0;
798
799 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
800 return 0;
801
802 if (bio->bi_vcnt > 0) {
803 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
804 return len;
805
806 /*
807 * If the queue doesn't support SG gaps and adding this segment
808 * would create a gap, disallow it.
809 */
810 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
811 if (bvec_gap_to_prev(q, bvec, offset))
812 return 0;
813 }
814
815 if (bio_full(bio, len))
816 return 0;
817
818 if (bio->bi_vcnt >= queue_max_segments(q))
819 return 0;
820
821 bvec = &bio->bi_io_vec[bio->bi_vcnt];
822 bvec->bv_page = page;
823 bvec->bv_len = len;
824 bvec->bv_offset = offset;
825 bio->bi_vcnt++;
826 bio->bi_iter.bi_size += len;
827 return len;
828 }
829
830 /**
831 * bio_add_pc_page - attempt to add page to passthrough bio
832 * @q: the target queue
833 * @bio: destination bio
834 * @page: page to add
835 * @len: vec entry length
836 * @offset: vec entry offset
837 *
838 * Attempt to add a page to the bio_vec maplist. This can fail for a
839 * number of reasons, such as the bio being full or target block device
840 * limitations. The target block device must allow bio's up to PAGE_SIZE,
841 * so it is always possible to add a single page to an empty bio.
842 *
843 * This should only be used by passthrough bios.
844 */
845 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
846 struct page *page, unsigned int len, unsigned int offset)
847 {
848 bool same_page = false;
849 return bio_add_hw_page(q, bio, page, len, offset,
850 queue_max_hw_sectors(q), &same_page);
851 }
852 EXPORT_SYMBOL(bio_add_pc_page);
853
854 /**
855 * __bio_try_merge_page - try appending data to an existing bvec.
856 * @bio: destination bio
857 * @page: start page to add
858 * @len: length of the data to add
859 * @off: offset of the data relative to @page
860 * @same_page: return if the segment has been merged inside the same page
861 *
862 * Try to add the data at @page + @off to the last bvec of @bio. This is a
863 * useful optimisation for file systems with a block size smaller than the
864 * page size.
865 *
866 * Warn if (@len, @off) crosses pages in case that @same_page is true.
867 *
868 * Return %true on success or %false on failure.
869 */
870 bool __bio_try_merge_page(struct bio *bio, struct page *page,
871 unsigned int len, unsigned int off, bool *same_page)
872 {
873 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
874 return false;
875
876 if (bio->bi_vcnt > 0) {
877 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
878
879 if (page_is_mergeable(bv, page, len, off, same_page)) {
880 if (bio->bi_iter.bi_size > UINT_MAX - len) {
881 *same_page = false;
882 return false;
883 }
884 bv->bv_len += len;
885 bio->bi_iter.bi_size += len;
886 return true;
887 }
888 }
889 return false;
890 }
891 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
892
893 /**
894 * __bio_add_page - add page(s) to a bio in a new segment
895 * @bio: destination bio
896 * @page: start page to add
897 * @len: length of the data to add, may cross pages
898 * @off: offset of the data relative to @page, may cross pages
899 *
900 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
901 * that @bio has space for another bvec.
902 */
903 void __bio_add_page(struct bio *bio, struct page *page,
904 unsigned int len, unsigned int off)
905 {
906 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
907
908 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
909 WARN_ON_ONCE(bio_full(bio, len));
910
911 bv->bv_page = page;
912 bv->bv_offset = off;
913 bv->bv_len = len;
914
915 bio->bi_iter.bi_size += len;
916 bio->bi_vcnt++;
917
918 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
919 bio_set_flag(bio, BIO_WORKINGSET);
920 }
921 EXPORT_SYMBOL_GPL(__bio_add_page);
922
923 /**
924 * bio_add_page - attempt to add page(s) to bio
925 * @bio: destination bio
926 * @page: start page to add
927 * @len: vec entry length, may cross pages
928 * @offset: vec entry offset relative to @page, may cross pages
929 *
930 * Attempt to add page(s) to the bio_vec maplist. This will only fail
931 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
932 */
933 int bio_add_page(struct bio *bio, struct page *page,
934 unsigned int len, unsigned int offset)
935 {
936 bool same_page = false;
937
938 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
939 if (bio_full(bio, len))
940 return 0;
941 __bio_add_page(bio, page, len, offset);
942 }
943 return len;
944 }
945 EXPORT_SYMBOL(bio_add_page);
946
947 void bio_release_pages(struct bio *bio, bool mark_dirty)
948 {
949 struct bvec_iter_all iter_all;
950 struct bio_vec *bvec;
951
952 if (bio_flagged(bio, BIO_NO_PAGE_REF))
953 return;
954
955 bio_for_each_segment_all(bvec, bio, iter_all) {
956 if (mark_dirty && !PageCompound(bvec->bv_page))
957 set_page_dirty_lock(bvec->bv_page);
958 put_page(bvec->bv_page);
959 }
960 }
961 EXPORT_SYMBOL_GPL(bio_release_pages);
962
963 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
964 {
965 const struct bio_vec *bv = iter->bvec;
966 unsigned int len;
967 size_t size;
968
969 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
970 return -EINVAL;
971
972 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
973 size = bio_add_page(bio, bv->bv_page, len,
974 bv->bv_offset + iter->iov_offset);
975 if (unlikely(size != len))
976 return -EINVAL;
977 iov_iter_advance(iter, size);
978 return 0;
979 }
980
981 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
982
983 /**
984 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
985 * @bio: bio to add pages to
986 * @iter: iov iterator describing the region to be mapped
987 *
988 * Pins pages from *iter and appends them to @bio's bvec array. The
989 * pages will have to be released using put_page() when done.
990 * For multi-segment *iter, this function only adds pages from the
991 * next non-empty segment of the iov iterator.
992 */
993 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
994 {
995 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
996 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
997 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
998 struct page **pages = (struct page **)bv;
999 bool same_page = false;
1000 ssize_t size, left;
1001 unsigned len, i;
1002 size_t offset;
1003
1004 /*
1005 * Move page array up in the allocated memory for the bio vecs as far as
1006 * possible so that we can start filling biovecs from the beginning
1007 * without overwriting the temporary page array.
1008 */
1009 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1010 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1011
1012 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1013 if (unlikely(size <= 0))
1014 return size ? size : -EFAULT;
1015
1016 for (left = size, i = 0; left > 0; left -= len, i++) {
1017 struct page *page = pages[i];
1018
1019 len = min_t(size_t, PAGE_SIZE - offset, left);
1020
1021 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1022 if (same_page)
1023 put_page(page);
1024 } else {
1025 if (WARN_ON_ONCE(bio_full(bio, len)))
1026 return -EINVAL;
1027 __bio_add_page(bio, page, len, offset);
1028 }
1029 offset = 0;
1030 }
1031
1032 iov_iter_advance(iter, size);
1033 return 0;
1034 }
1035
1036 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1037 {
1038 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1039 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1040 struct request_queue *q = bio->bi_disk->queue;
1041 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1042 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1043 struct page **pages = (struct page **)bv;
1044 ssize_t size, left;
1045 unsigned len, i;
1046 size_t offset;
1047 int ret = 0;
1048
1049 if (WARN_ON_ONCE(!max_append_sectors))
1050 return 0;
1051
1052 /*
1053 * Move page array up in the allocated memory for the bio vecs as far as
1054 * possible so that we can start filling biovecs from the beginning
1055 * without overwriting the temporary page array.
1056 */
1057 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1058 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1059
1060 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1061 if (unlikely(size <= 0))
1062 return size ? size : -EFAULT;
1063
1064 for (left = size, i = 0; left > 0; left -= len, i++) {
1065 struct page *page = pages[i];
1066 bool same_page = false;
1067
1068 len = min_t(size_t, PAGE_SIZE - offset, left);
1069 if (bio_add_hw_page(q, bio, page, len, offset,
1070 max_append_sectors, &same_page) != len) {
1071 ret = -EINVAL;
1072 break;
1073 }
1074 if (same_page)
1075 put_page(page);
1076 offset = 0;
1077 }
1078
1079 iov_iter_advance(iter, size - left);
1080 return ret;
1081 }
1082
1083 /**
1084 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1085 * @bio: bio to add pages to
1086 * @iter: iov iterator describing the region to be added
1087 *
1088 * This takes either an iterator pointing to user memory, or one pointing to
1089 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1090 * map them into the kernel. On IO completion, the caller should put those
1091 * pages. If we're adding kernel pages, and the caller told us it's safe to
1092 * do so, we just have to add the pages to the bio directly. We don't grab an
1093 * extra reference to those pages (the user should already have that), and we
1094 * don't put the page on IO completion. The caller needs to check if the bio is
1095 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1096 * released.
1097 *
1098 * The function tries, but does not guarantee, to pin as many pages as
1099 * fit into the bio, or are requested in @iter, whatever is smaller. If
1100 * MM encounters an error pinning the requested pages, it stops. Error
1101 * is returned only if 0 pages could be pinned.
1102 */
1103 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1104 {
1105 const bool is_bvec = iov_iter_is_bvec(iter);
1106 int ret;
1107
1108 if (WARN_ON_ONCE(bio->bi_vcnt))
1109 return -EINVAL;
1110
1111 do {
1112 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1113 if (WARN_ON_ONCE(is_bvec))
1114 return -EINVAL;
1115 ret = __bio_iov_append_get_pages(bio, iter);
1116 } else {
1117 if (is_bvec)
1118 ret = __bio_iov_bvec_add_pages(bio, iter);
1119 else
1120 ret = __bio_iov_iter_get_pages(bio, iter);
1121 }
1122 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1123
1124 if (is_bvec)
1125 bio_set_flag(bio, BIO_NO_PAGE_REF);
1126 return bio->bi_vcnt ? 0 : ret;
1127 }
1128 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1129
1130 static void submit_bio_wait_endio(struct bio *bio)
1131 {
1132 complete(bio->bi_private);
1133 }
1134
1135 /**
1136 * submit_bio_wait - submit a bio, and wait until it completes
1137 * @bio: The &struct bio which describes the I/O
1138 *
1139 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1140 * bio_endio() on failure.
1141 *
1142 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1143 * result in bio reference to be consumed. The caller must drop the reference
1144 * on his own.
1145 */
1146 int submit_bio_wait(struct bio *bio)
1147 {
1148 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1149 unsigned long hang_check;
1150
1151 bio->bi_private = &done;
1152 bio->bi_end_io = submit_bio_wait_endio;
1153 bio->bi_opf |= REQ_SYNC;
1154 submit_bio(bio);
1155
1156 /* Prevent hang_check timer from firing at us during very long I/O */
1157 hang_check = sysctl_hung_task_timeout_secs;
1158 if (hang_check)
1159 while (!wait_for_completion_io_timeout(&done,
1160 hang_check * (HZ/2)))
1161 ;
1162 else
1163 wait_for_completion_io(&done);
1164
1165 return blk_status_to_errno(bio->bi_status);
1166 }
1167 EXPORT_SYMBOL(submit_bio_wait);
1168
1169 /**
1170 * bio_advance - increment/complete a bio by some number of bytes
1171 * @bio: bio to advance
1172 * @bytes: number of bytes to complete
1173 *
1174 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1175 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1176 * be updated on the last bvec as well.
1177 *
1178 * @bio will then represent the remaining, uncompleted portion of the io.
1179 */
1180 void bio_advance(struct bio *bio, unsigned bytes)
1181 {
1182 if (bio_integrity(bio))
1183 bio_integrity_advance(bio, bytes);
1184
1185 bio_crypt_advance(bio, bytes);
1186 bio_advance_iter(bio, &bio->bi_iter, bytes);
1187 }
1188 EXPORT_SYMBOL(bio_advance);
1189
1190 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1191 struct bio *src, struct bvec_iter *src_iter)
1192 {
1193 struct bio_vec src_bv, dst_bv;
1194 void *src_p, *dst_p;
1195 unsigned bytes;
1196
1197 while (src_iter->bi_size && dst_iter->bi_size) {
1198 src_bv = bio_iter_iovec(src, *src_iter);
1199 dst_bv = bio_iter_iovec(dst, *dst_iter);
1200
1201 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1202
1203 src_p = kmap_atomic(src_bv.bv_page);
1204 dst_p = kmap_atomic(dst_bv.bv_page);
1205
1206 memcpy(dst_p + dst_bv.bv_offset,
1207 src_p + src_bv.bv_offset,
1208 bytes);
1209
1210 kunmap_atomic(dst_p);
1211 kunmap_atomic(src_p);
1212
1213 flush_dcache_page(dst_bv.bv_page);
1214
1215 bio_advance_iter_single(src, src_iter, bytes);
1216 bio_advance_iter_single(dst, dst_iter, bytes);
1217 }
1218 }
1219 EXPORT_SYMBOL(bio_copy_data_iter);
1220
1221 /**
1222 * bio_copy_data - copy contents of data buffers from one bio to another
1223 * @src: source bio
1224 * @dst: destination bio
1225 *
1226 * Stops when it reaches the end of either @src or @dst - that is, copies
1227 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1228 */
1229 void bio_copy_data(struct bio *dst, struct bio *src)
1230 {
1231 struct bvec_iter src_iter = src->bi_iter;
1232 struct bvec_iter dst_iter = dst->bi_iter;
1233
1234 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1235 }
1236 EXPORT_SYMBOL(bio_copy_data);
1237
1238 /**
1239 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1240 * another
1241 * @src: source bio list
1242 * @dst: destination bio list
1243 *
1244 * Stops when it reaches the end of either the @src list or @dst list - that is,
1245 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1246 * bios).
1247 */
1248 void bio_list_copy_data(struct bio *dst, struct bio *src)
1249 {
1250 struct bvec_iter src_iter = src->bi_iter;
1251 struct bvec_iter dst_iter = dst->bi_iter;
1252
1253 while (1) {
1254 if (!src_iter.bi_size) {
1255 src = src->bi_next;
1256 if (!src)
1257 break;
1258
1259 src_iter = src->bi_iter;
1260 }
1261
1262 if (!dst_iter.bi_size) {
1263 dst = dst->bi_next;
1264 if (!dst)
1265 break;
1266
1267 dst_iter = dst->bi_iter;
1268 }
1269
1270 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1271 }
1272 }
1273 EXPORT_SYMBOL(bio_list_copy_data);
1274
1275 void bio_free_pages(struct bio *bio)
1276 {
1277 struct bio_vec *bvec;
1278 struct bvec_iter_all iter_all;
1279
1280 bio_for_each_segment_all(bvec, bio, iter_all)
1281 __free_page(bvec->bv_page);
1282 }
1283 EXPORT_SYMBOL(bio_free_pages);
1284
1285 /*
1286 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1287 * for performing direct-IO in BIOs.
1288 *
1289 * The problem is that we cannot run set_page_dirty() from interrupt context
1290 * because the required locks are not interrupt-safe. So what we can do is to
1291 * mark the pages dirty _before_ performing IO. And in interrupt context,
1292 * check that the pages are still dirty. If so, fine. If not, redirty them
1293 * in process context.
1294 *
1295 * We special-case compound pages here: normally this means reads into hugetlb
1296 * pages. The logic in here doesn't really work right for compound pages
1297 * because the VM does not uniformly chase down the head page in all cases.
1298 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1299 * handle them at all. So we skip compound pages here at an early stage.
1300 *
1301 * Note that this code is very hard to test under normal circumstances because
1302 * direct-io pins the pages with get_user_pages(). This makes
1303 * is_page_cache_freeable return false, and the VM will not clean the pages.
1304 * But other code (eg, flusher threads) could clean the pages if they are mapped
1305 * pagecache.
1306 *
1307 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1308 * deferred bio dirtying paths.
1309 */
1310
1311 /*
1312 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1313 */
1314 void bio_set_pages_dirty(struct bio *bio)
1315 {
1316 struct bio_vec *bvec;
1317 struct bvec_iter_all iter_all;
1318
1319 bio_for_each_segment_all(bvec, bio, iter_all) {
1320 if (!PageCompound(bvec->bv_page))
1321 set_page_dirty_lock(bvec->bv_page);
1322 }
1323 }
1324
1325 /*
1326 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1327 * If they are, then fine. If, however, some pages are clean then they must
1328 * have been written out during the direct-IO read. So we take another ref on
1329 * the BIO and re-dirty the pages in process context.
1330 *
1331 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1332 * here on. It will run one put_page() against each page and will run one
1333 * bio_put() against the BIO.
1334 */
1335
1336 static void bio_dirty_fn(struct work_struct *work);
1337
1338 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1339 static DEFINE_SPINLOCK(bio_dirty_lock);
1340 static struct bio *bio_dirty_list;
1341
1342 /*
1343 * This runs in process context
1344 */
1345 static void bio_dirty_fn(struct work_struct *work)
1346 {
1347 struct bio *bio, *next;
1348
1349 spin_lock_irq(&bio_dirty_lock);
1350 next = bio_dirty_list;
1351 bio_dirty_list = NULL;
1352 spin_unlock_irq(&bio_dirty_lock);
1353
1354 while ((bio = next) != NULL) {
1355 next = bio->bi_private;
1356
1357 bio_release_pages(bio, true);
1358 bio_put(bio);
1359 }
1360 }
1361
1362 void bio_check_pages_dirty(struct bio *bio)
1363 {
1364 struct bio_vec *bvec;
1365 unsigned long flags;
1366 struct bvec_iter_all iter_all;
1367
1368 bio_for_each_segment_all(bvec, bio, iter_all) {
1369 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1370 goto defer;
1371 }
1372
1373 bio_release_pages(bio, false);
1374 bio_put(bio);
1375 return;
1376 defer:
1377 spin_lock_irqsave(&bio_dirty_lock, flags);
1378 bio->bi_private = bio_dirty_list;
1379 bio_dirty_list = bio;
1380 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1381 schedule_work(&bio_dirty_work);
1382 }
1383
1384 static inline bool bio_remaining_done(struct bio *bio)
1385 {
1386 /*
1387 * If we're not chaining, then ->__bi_remaining is always 1 and
1388 * we always end io on the first invocation.
1389 */
1390 if (!bio_flagged(bio, BIO_CHAIN))
1391 return true;
1392
1393 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1394
1395 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1396 bio_clear_flag(bio, BIO_CHAIN);
1397 return true;
1398 }
1399
1400 return false;
1401 }
1402
1403 /**
1404 * bio_endio - end I/O on a bio
1405 * @bio: bio
1406 *
1407 * Description:
1408 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1409 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1410 * bio unless they own it and thus know that it has an end_io function.
1411 *
1412 * bio_endio() can be called several times on a bio that has been chained
1413 * using bio_chain(). The ->bi_end_io() function will only be called the
1414 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1415 * generated if BIO_TRACE_COMPLETION is set.
1416 **/
1417 void bio_endio(struct bio *bio)
1418 {
1419 again:
1420 if (!bio_remaining_done(bio))
1421 return;
1422 if (!bio_integrity_endio(bio))
1423 return;
1424
1425 if (bio->bi_disk)
1426 rq_qos_done_bio(bio->bi_disk->queue, bio);
1427
1428 /*
1429 * Need to have a real endio function for chained bios, otherwise
1430 * various corner cases will break (like stacking block devices that
1431 * save/restore bi_end_io) - however, we want to avoid unbounded
1432 * recursion and blowing the stack. Tail call optimization would
1433 * handle this, but compiling with frame pointers also disables
1434 * gcc's sibling call optimization.
1435 */
1436 if (bio->bi_end_io == bio_chain_endio) {
1437 bio = __bio_chain_endio(bio);
1438 goto again;
1439 }
1440
1441 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1442 trace_block_bio_complete(bio->bi_disk->queue, bio);
1443 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1444 }
1445
1446 blk_throtl_bio_endio(bio);
1447 /* release cgroup info */
1448 bio_uninit(bio);
1449 if (bio->bi_end_io)
1450 bio->bi_end_io(bio);
1451 }
1452 EXPORT_SYMBOL(bio_endio);
1453
1454 /**
1455 * bio_split - split a bio
1456 * @bio: bio to split
1457 * @sectors: number of sectors to split from the front of @bio
1458 * @gfp: gfp mask
1459 * @bs: bio set to allocate from
1460 *
1461 * Allocates and returns a new bio which represents @sectors from the start of
1462 * @bio, and updates @bio to represent the remaining sectors.
1463 *
1464 * Unless this is a discard request the newly allocated bio will point
1465 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1466 * neither @bio nor @bs are freed before the split bio.
1467 */
1468 struct bio *bio_split(struct bio *bio, int sectors,
1469 gfp_t gfp, struct bio_set *bs)
1470 {
1471 struct bio *split;
1472
1473 BUG_ON(sectors <= 0);
1474 BUG_ON(sectors >= bio_sectors(bio));
1475
1476 /* Zone append commands cannot be split */
1477 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1478 return NULL;
1479
1480 split = bio_clone_fast(bio, gfp, bs);
1481 if (!split)
1482 return NULL;
1483
1484 split->bi_iter.bi_size = sectors << 9;
1485
1486 if (bio_integrity(split))
1487 bio_integrity_trim(split);
1488
1489 bio_advance(bio, split->bi_iter.bi_size);
1490
1491 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1492 bio_set_flag(split, BIO_TRACE_COMPLETION);
1493
1494 return split;
1495 }
1496 EXPORT_SYMBOL(bio_split);
1497
1498 /**
1499 * bio_trim - trim a bio
1500 * @bio: bio to trim
1501 * @offset: number of sectors to trim from the front of @bio
1502 * @size: size we want to trim @bio to, in sectors
1503 */
1504 void bio_trim(struct bio *bio, int offset, int size)
1505 {
1506 /* 'bio' is a cloned bio which we need to trim to match
1507 * the given offset and size.
1508 */
1509
1510 size <<= 9;
1511 if (offset == 0 && size == bio->bi_iter.bi_size)
1512 return;
1513
1514 bio_advance(bio, offset << 9);
1515 bio->bi_iter.bi_size = size;
1516
1517 if (bio_integrity(bio))
1518 bio_integrity_trim(bio);
1519
1520 }
1521 EXPORT_SYMBOL_GPL(bio_trim);
1522
1523 /*
1524 * create memory pools for biovec's in a bio_set.
1525 * use the global biovec slabs created for general use.
1526 */
1527 int biovec_init_pool(mempool_t *pool, int pool_entries)
1528 {
1529 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1530
1531 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1532 }
1533
1534 /*
1535 * bioset_exit - exit a bioset initialized with bioset_init()
1536 *
1537 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1538 * kzalloc()).
1539 */
1540 void bioset_exit(struct bio_set *bs)
1541 {
1542 if (bs->rescue_workqueue)
1543 destroy_workqueue(bs->rescue_workqueue);
1544 bs->rescue_workqueue = NULL;
1545
1546 mempool_exit(&bs->bio_pool);
1547 mempool_exit(&bs->bvec_pool);
1548
1549 bioset_integrity_free(bs);
1550 if (bs->bio_slab)
1551 bio_put_slab(bs);
1552 bs->bio_slab = NULL;
1553 }
1554 EXPORT_SYMBOL(bioset_exit);
1555
1556 /**
1557 * bioset_init - Initialize a bio_set
1558 * @bs: pool to initialize
1559 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1560 * @front_pad: Number of bytes to allocate in front of the returned bio
1561 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1562 * and %BIOSET_NEED_RESCUER
1563 *
1564 * Description:
1565 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1566 * to ask for a number of bytes to be allocated in front of the bio.
1567 * Front pad allocation is useful for embedding the bio inside
1568 * another structure, to avoid allocating extra data to go with the bio.
1569 * Note that the bio must be embedded at the END of that structure always,
1570 * or things will break badly.
1571 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1572 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1573 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1574 * dispatch queued requests when the mempool runs out of space.
1575 *
1576 */
1577 int bioset_init(struct bio_set *bs,
1578 unsigned int pool_size,
1579 unsigned int front_pad,
1580 int flags)
1581 {
1582 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1583
1584 bs->front_pad = front_pad;
1585
1586 spin_lock_init(&bs->rescue_lock);
1587 bio_list_init(&bs->rescue_list);
1588 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1589
1590 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1591 if (!bs->bio_slab)
1592 return -ENOMEM;
1593
1594 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1595 goto bad;
1596
1597 if ((flags & BIOSET_NEED_BVECS) &&
1598 biovec_init_pool(&bs->bvec_pool, pool_size))
1599 goto bad;
1600
1601 if (!(flags & BIOSET_NEED_RESCUER))
1602 return 0;
1603
1604 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1605 if (!bs->rescue_workqueue)
1606 goto bad;
1607
1608 return 0;
1609 bad:
1610 bioset_exit(bs);
1611 return -ENOMEM;
1612 }
1613 EXPORT_SYMBOL(bioset_init);
1614
1615 /*
1616 * Initialize and setup a new bio_set, based on the settings from
1617 * another bio_set.
1618 */
1619 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1620 {
1621 int flags;
1622
1623 flags = 0;
1624 if (src->bvec_pool.min_nr)
1625 flags |= BIOSET_NEED_BVECS;
1626 if (src->rescue_workqueue)
1627 flags |= BIOSET_NEED_RESCUER;
1628
1629 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1630 }
1631 EXPORT_SYMBOL(bioset_init_from_src);
1632
1633 static void __init biovec_init_slabs(void)
1634 {
1635 int i;
1636
1637 for (i = 0; i < BVEC_POOL_NR; i++) {
1638 int size;
1639 struct biovec_slab *bvs = bvec_slabs + i;
1640
1641 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1642 bvs->slab = NULL;
1643 continue;
1644 }
1645
1646 size = bvs->nr_vecs * sizeof(struct bio_vec);
1647 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1648 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1649 }
1650 }
1651
1652 static int __init init_bio(void)
1653 {
1654 bio_slab_max = 2;
1655 bio_slab_nr = 0;
1656 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
1657 GFP_KERNEL);
1658
1659 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1660
1661 if (!bio_slabs)
1662 panic("bio: can't allocate bios\n");
1663
1664 bio_integrity_init();
1665 biovec_init_slabs();
1666
1667 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1668 panic("bio: can't allocate bios\n");
1669
1670 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1671 panic("bio: can't create integrity pool\n");
1672
1673 return 0;
1674 }
1675 subsys_initcall(init_bio);