]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-cgroup.c
powerpc/pseries/mce: restore msr before returning from handler
[mirror_ubuntu-jammy-kernel.git] / block / blk-cgroup.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include "blk.h"
34
35 #define MAX_KEY_LEN 100
36
37 /*
38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40 * policy [un]register operations including cgroup file additions /
41 * removals. Putting cgroup file registration outside blkcg_pol_mutex
42 * allows grabbing it from cgroup callbacks.
43 */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54
55 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
56
57 bool blkcg_debug_stats = false;
58 static struct workqueue_struct *blkcg_punt_bio_wq;
59
60 static bool blkcg_policy_enabled(struct request_queue *q,
61 const struct blkcg_policy *pol)
62 {
63 return pol && test_bit(pol->plid, q->blkcg_pols);
64 }
65
66 /**
67 * blkg_free - free a blkg
68 * @blkg: blkg to free
69 *
70 * Free @blkg which may be partially allocated.
71 */
72 static void blkg_free(struct blkcg_gq *blkg)
73 {
74 int i;
75
76 if (!blkg)
77 return;
78
79 for (i = 0; i < BLKCG_MAX_POLS; i++)
80 if (blkg->pd[i])
81 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
82
83 free_percpu(blkg->iostat_cpu);
84 percpu_ref_exit(&blkg->refcnt);
85 kfree(blkg);
86 }
87
88 static void __blkg_release(struct rcu_head *rcu)
89 {
90 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
91
92 WARN_ON(!bio_list_empty(&blkg->async_bios));
93
94 /* release the blkcg and parent blkg refs this blkg has been holding */
95 css_put(&blkg->blkcg->css);
96 if (blkg->parent)
97 blkg_put(blkg->parent);
98 blkg_free(blkg);
99 }
100
101 /*
102 * A group is RCU protected, but having an rcu lock does not mean that one
103 * can access all the fields of blkg and assume these are valid. For
104 * example, don't try to follow throtl_data and request queue links.
105 *
106 * Having a reference to blkg under an rcu allows accesses to only values
107 * local to groups like group stats and group rate limits.
108 */
109 static void blkg_release(struct percpu_ref *ref)
110 {
111 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
112
113 call_rcu(&blkg->rcu_head, __blkg_release);
114 }
115
116 static void blkg_async_bio_workfn(struct work_struct *work)
117 {
118 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
119 async_bio_work);
120 struct bio_list bios = BIO_EMPTY_LIST;
121 struct bio *bio;
122 struct blk_plug plug;
123 bool need_plug = false;
124
125 /* as long as there are pending bios, @blkg can't go away */
126 spin_lock_bh(&blkg->async_bio_lock);
127 bio_list_merge(&bios, &blkg->async_bios);
128 bio_list_init(&blkg->async_bios);
129 spin_unlock_bh(&blkg->async_bio_lock);
130
131 /* start plug only when bio_list contains at least 2 bios */
132 if (bios.head && bios.head->bi_next) {
133 need_plug = true;
134 blk_start_plug(&plug);
135 }
136 while ((bio = bio_list_pop(&bios)))
137 submit_bio(bio);
138 if (need_plug)
139 blk_finish_plug(&plug);
140 }
141
142 /**
143 * blkg_alloc - allocate a blkg
144 * @blkcg: block cgroup the new blkg is associated with
145 * @q: request_queue the new blkg is associated with
146 * @gfp_mask: allocation mask to use
147 *
148 * Allocate a new blkg assocating @blkcg and @q.
149 */
150 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
151 gfp_t gfp_mask)
152 {
153 struct blkcg_gq *blkg;
154 int i, cpu;
155
156 /* alloc and init base part */
157 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
158 if (!blkg)
159 return NULL;
160
161 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
162 goto err_free;
163
164 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
165 if (!blkg->iostat_cpu)
166 goto err_free;
167
168 blkg->q = q;
169 INIT_LIST_HEAD(&blkg->q_node);
170 spin_lock_init(&blkg->async_bio_lock);
171 bio_list_init(&blkg->async_bios);
172 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
173 blkg->blkcg = blkcg;
174
175 u64_stats_init(&blkg->iostat.sync);
176 for_each_possible_cpu(cpu)
177 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
178
179 for (i = 0; i < BLKCG_MAX_POLS; i++) {
180 struct blkcg_policy *pol = blkcg_policy[i];
181 struct blkg_policy_data *pd;
182
183 if (!blkcg_policy_enabled(q, pol))
184 continue;
185
186 /* alloc per-policy data and attach it to blkg */
187 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
188 if (!pd)
189 goto err_free;
190
191 blkg->pd[i] = pd;
192 pd->blkg = blkg;
193 pd->plid = i;
194 }
195
196 return blkg;
197
198 err_free:
199 blkg_free(blkg);
200 return NULL;
201 }
202
203 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
204 struct request_queue *q, bool update_hint)
205 {
206 struct blkcg_gq *blkg;
207
208 /*
209 * Hint didn't match. Look up from the radix tree. Note that the
210 * hint can only be updated under queue_lock as otherwise @blkg
211 * could have already been removed from blkg_tree. The caller is
212 * responsible for grabbing queue_lock if @update_hint.
213 */
214 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
215 if (blkg && blkg->q == q) {
216 if (update_hint) {
217 lockdep_assert_held(&q->queue_lock);
218 rcu_assign_pointer(blkcg->blkg_hint, blkg);
219 }
220 return blkg;
221 }
222
223 return NULL;
224 }
225 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
226
227 /*
228 * If @new_blkg is %NULL, this function tries to allocate a new one as
229 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
230 */
231 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
232 struct request_queue *q,
233 struct blkcg_gq *new_blkg)
234 {
235 struct blkcg_gq *blkg;
236 int i, ret;
237
238 WARN_ON_ONCE(!rcu_read_lock_held());
239 lockdep_assert_held(&q->queue_lock);
240
241 /* request_queue is dying, do not create/recreate a blkg */
242 if (blk_queue_dying(q)) {
243 ret = -ENODEV;
244 goto err_free_blkg;
245 }
246
247 /* blkg holds a reference to blkcg */
248 if (!css_tryget_online(&blkcg->css)) {
249 ret = -ENODEV;
250 goto err_free_blkg;
251 }
252
253 /* allocate */
254 if (!new_blkg) {
255 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
256 if (unlikely(!new_blkg)) {
257 ret = -ENOMEM;
258 goto err_put_css;
259 }
260 }
261 blkg = new_blkg;
262
263 /* link parent */
264 if (blkcg_parent(blkcg)) {
265 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
266 if (WARN_ON_ONCE(!blkg->parent)) {
267 ret = -ENODEV;
268 goto err_put_css;
269 }
270 blkg_get(blkg->parent);
271 }
272
273 /* invoke per-policy init */
274 for (i = 0; i < BLKCG_MAX_POLS; i++) {
275 struct blkcg_policy *pol = blkcg_policy[i];
276
277 if (blkg->pd[i] && pol->pd_init_fn)
278 pol->pd_init_fn(blkg->pd[i]);
279 }
280
281 /* insert */
282 spin_lock(&blkcg->lock);
283 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
284 if (likely(!ret)) {
285 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
286 list_add(&blkg->q_node, &q->blkg_list);
287
288 for (i = 0; i < BLKCG_MAX_POLS; i++) {
289 struct blkcg_policy *pol = blkcg_policy[i];
290
291 if (blkg->pd[i] && pol->pd_online_fn)
292 pol->pd_online_fn(blkg->pd[i]);
293 }
294 }
295 blkg->online = true;
296 spin_unlock(&blkcg->lock);
297
298 if (!ret)
299 return blkg;
300
301 /* @blkg failed fully initialized, use the usual release path */
302 blkg_put(blkg);
303 return ERR_PTR(ret);
304
305 err_put_css:
306 css_put(&blkcg->css);
307 err_free_blkg:
308 blkg_free(new_blkg);
309 return ERR_PTR(ret);
310 }
311
312 /**
313 * blkg_lookup_create - lookup blkg, try to create one if not there
314 * @blkcg: blkcg of interest
315 * @q: request_queue of interest
316 *
317 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to
318 * create one. blkg creation is performed recursively from blkcg_root such
319 * that all non-root blkg's have access to the parent blkg. This function
320 * should be called under RCU read lock and takes @q->queue_lock.
321 *
322 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
323 * down from root.
324 */
325 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
326 struct request_queue *q)
327 {
328 struct blkcg_gq *blkg;
329 unsigned long flags;
330
331 WARN_ON_ONCE(!rcu_read_lock_held());
332
333 blkg = blkg_lookup(blkcg, q);
334 if (blkg)
335 return blkg;
336
337 spin_lock_irqsave(&q->queue_lock, flags);
338 blkg = __blkg_lookup(blkcg, q, true);
339 if (blkg)
340 goto found;
341
342 /*
343 * Create blkgs walking down from blkcg_root to @blkcg, so that all
344 * non-root blkgs have access to their parents. Returns the closest
345 * blkg to the intended blkg should blkg_create() fail.
346 */
347 while (true) {
348 struct blkcg *pos = blkcg;
349 struct blkcg *parent = blkcg_parent(blkcg);
350 struct blkcg_gq *ret_blkg = q->root_blkg;
351
352 while (parent) {
353 blkg = __blkg_lookup(parent, q, false);
354 if (blkg) {
355 /* remember closest blkg */
356 ret_blkg = blkg;
357 break;
358 }
359 pos = parent;
360 parent = blkcg_parent(parent);
361 }
362
363 blkg = blkg_create(pos, q, NULL);
364 if (IS_ERR(blkg)) {
365 blkg = ret_blkg;
366 break;
367 }
368 if (pos == blkcg)
369 break;
370 }
371
372 found:
373 spin_unlock_irqrestore(&q->queue_lock, flags);
374 return blkg;
375 }
376
377 static void blkg_destroy(struct blkcg_gq *blkg)
378 {
379 struct blkcg *blkcg = blkg->blkcg;
380 int i;
381
382 lockdep_assert_held(&blkg->q->queue_lock);
383 lockdep_assert_held(&blkcg->lock);
384
385 /* Something wrong if we are trying to remove same group twice */
386 WARN_ON_ONCE(list_empty(&blkg->q_node));
387 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
388
389 for (i = 0; i < BLKCG_MAX_POLS; i++) {
390 struct blkcg_policy *pol = blkcg_policy[i];
391
392 if (blkg->pd[i] && pol->pd_offline_fn)
393 pol->pd_offline_fn(blkg->pd[i]);
394 }
395
396 blkg->online = false;
397
398 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
399 list_del_init(&blkg->q_node);
400 hlist_del_init_rcu(&blkg->blkcg_node);
401
402 /*
403 * Both setting lookup hint to and clearing it from @blkg are done
404 * under queue_lock. If it's not pointing to @blkg now, it never
405 * will. Hint assignment itself can race safely.
406 */
407 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
408 rcu_assign_pointer(blkcg->blkg_hint, NULL);
409
410 /*
411 * Put the reference taken at the time of creation so that when all
412 * queues are gone, group can be destroyed.
413 */
414 percpu_ref_kill(&blkg->refcnt);
415 }
416
417 /**
418 * blkg_destroy_all - destroy all blkgs associated with a request_queue
419 * @q: request_queue of interest
420 *
421 * Destroy all blkgs associated with @q.
422 */
423 static void blkg_destroy_all(struct request_queue *q)
424 {
425 struct blkcg_gq *blkg, *n;
426
427 spin_lock_irq(&q->queue_lock);
428 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
429 struct blkcg *blkcg = blkg->blkcg;
430
431 spin_lock(&blkcg->lock);
432 blkg_destroy(blkg);
433 spin_unlock(&blkcg->lock);
434 }
435
436 q->root_blkg = NULL;
437 spin_unlock_irq(&q->queue_lock);
438 }
439
440 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
441 struct cftype *cftype, u64 val)
442 {
443 struct blkcg *blkcg = css_to_blkcg(css);
444 struct blkcg_gq *blkg;
445 int i, cpu;
446
447 mutex_lock(&blkcg_pol_mutex);
448 spin_lock_irq(&blkcg->lock);
449
450 /*
451 * Note that stat reset is racy - it doesn't synchronize against
452 * stat updates. This is a debug feature which shouldn't exist
453 * anyway. If you get hit by a race, retry.
454 */
455 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
456 for_each_possible_cpu(cpu) {
457 struct blkg_iostat_set *bis =
458 per_cpu_ptr(blkg->iostat_cpu, cpu);
459 memset(bis, 0, sizeof(*bis));
460 }
461 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
462
463 for (i = 0; i < BLKCG_MAX_POLS; i++) {
464 struct blkcg_policy *pol = blkcg_policy[i];
465
466 if (blkg->pd[i] && pol->pd_reset_stats_fn)
467 pol->pd_reset_stats_fn(blkg->pd[i]);
468 }
469 }
470
471 spin_unlock_irq(&blkcg->lock);
472 mutex_unlock(&blkcg_pol_mutex);
473 return 0;
474 }
475
476 const char *blkg_dev_name(struct blkcg_gq *blkg)
477 {
478 /* some drivers (floppy) instantiate a queue w/o disk registered */
479 if (blkg->q->backing_dev_info->dev)
480 return bdi_dev_name(blkg->q->backing_dev_info);
481 return NULL;
482 }
483
484 /**
485 * blkcg_print_blkgs - helper for printing per-blkg data
486 * @sf: seq_file to print to
487 * @blkcg: blkcg of interest
488 * @prfill: fill function to print out a blkg
489 * @pol: policy in question
490 * @data: data to be passed to @prfill
491 * @show_total: to print out sum of prfill return values or not
492 *
493 * This function invokes @prfill on each blkg of @blkcg if pd for the
494 * policy specified by @pol exists. @prfill is invoked with @sf, the
495 * policy data and @data and the matching queue lock held. If @show_total
496 * is %true, the sum of the return values from @prfill is printed with
497 * "Total" label at the end.
498 *
499 * This is to be used to construct print functions for
500 * cftype->read_seq_string method.
501 */
502 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
503 u64 (*prfill)(struct seq_file *,
504 struct blkg_policy_data *, int),
505 const struct blkcg_policy *pol, int data,
506 bool show_total)
507 {
508 struct blkcg_gq *blkg;
509 u64 total = 0;
510
511 rcu_read_lock();
512 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
513 spin_lock_irq(&blkg->q->queue_lock);
514 if (blkcg_policy_enabled(blkg->q, pol))
515 total += prfill(sf, blkg->pd[pol->plid], data);
516 spin_unlock_irq(&blkg->q->queue_lock);
517 }
518 rcu_read_unlock();
519
520 if (show_total)
521 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
522 }
523 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
524
525 /**
526 * __blkg_prfill_u64 - prfill helper for a single u64 value
527 * @sf: seq_file to print to
528 * @pd: policy private data of interest
529 * @v: value to print
530 *
531 * Print @v to @sf for the device assocaited with @pd.
532 */
533 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
534 {
535 const char *dname = blkg_dev_name(pd->blkg);
536
537 if (!dname)
538 return 0;
539
540 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
541 return v;
542 }
543 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
544
545 /* Performs queue bypass and policy enabled checks then looks up blkg. */
546 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
547 const struct blkcg_policy *pol,
548 struct request_queue *q)
549 {
550 WARN_ON_ONCE(!rcu_read_lock_held());
551 lockdep_assert_held(&q->queue_lock);
552
553 if (!blkcg_policy_enabled(q, pol))
554 return ERR_PTR(-EOPNOTSUPP);
555 return __blkg_lookup(blkcg, q, true /* update_hint */);
556 }
557
558 /**
559 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
560 * @inputp: input string pointer
561 *
562 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
563 * from @input and get and return the matching bdev. *@inputp is
564 * updated to point past the device node prefix. Returns an ERR_PTR()
565 * value on error.
566 *
567 * Use this function iff blkg_conf_prep() can't be used for some reason.
568 */
569 struct block_device *blkcg_conf_open_bdev(char **inputp)
570 {
571 char *input = *inputp;
572 unsigned int major, minor;
573 struct block_device *bdev;
574 int key_len;
575
576 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
577 return ERR_PTR(-EINVAL);
578
579 input += key_len;
580 if (!isspace(*input))
581 return ERR_PTR(-EINVAL);
582 input = skip_spaces(input);
583
584 bdev = blkdev_get_no_open(MKDEV(major, minor));
585 if (!bdev)
586 return ERR_PTR(-ENODEV);
587 if (bdev_is_partition(bdev)) {
588 blkdev_put_no_open(bdev);
589 return ERR_PTR(-ENODEV);
590 }
591
592 *inputp = input;
593 return bdev;
594 }
595
596 /**
597 * blkg_conf_prep - parse and prepare for per-blkg config update
598 * @blkcg: target block cgroup
599 * @pol: target policy
600 * @input: input string
601 * @ctx: blkg_conf_ctx to be filled
602 *
603 * Parse per-blkg config update from @input and initialize @ctx with the
604 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
605 * part of @input following MAJ:MIN. This function returns with RCU read
606 * lock and queue lock held and must be paired with blkg_conf_finish().
607 */
608 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
609 char *input, struct blkg_conf_ctx *ctx)
610 __acquires(rcu) __acquires(&bdev->bd_disk->queue->queue_lock)
611 {
612 struct block_device *bdev;
613 struct request_queue *q;
614 struct blkcg_gq *blkg;
615 int ret;
616
617 bdev = blkcg_conf_open_bdev(&input);
618 if (IS_ERR(bdev))
619 return PTR_ERR(bdev);
620
621 q = bdev->bd_disk->queue;
622
623 rcu_read_lock();
624 spin_lock_irq(&q->queue_lock);
625
626 blkg = blkg_lookup_check(blkcg, pol, q);
627 if (IS_ERR(blkg)) {
628 ret = PTR_ERR(blkg);
629 goto fail_unlock;
630 }
631
632 if (blkg)
633 goto success;
634
635 /*
636 * Create blkgs walking down from blkcg_root to @blkcg, so that all
637 * non-root blkgs have access to their parents.
638 */
639 while (true) {
640 struct blkcg *pos = blkcg;
641 struct blkcg *parent;
642 struct blkcg_gq *new_blkg;
643
644 parent = blkcg_parent(blkcg);
645 while (parent && !__blkg_lookup(parent, q, false)) {
646 pos = parent;
647 parent = blkcg_parent(parent);
648 }
649
650 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
651 spin_unlock_irq(&q->queue_lock);
652 rcu_read_unlock();
653
654 new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
655 if (unlikely(!new_blkg)) {
656 ret = -ENOMEM;
657 goto fail;
658 }
659
660 if (radix_tree_preload(GFP_KERNEL)) {
661 blkg_free(new_blkg);
662 ret = -ENOMEM;
663 goto fail;
664 }
665
666 rcu_read_lock();
667 spin_lock_irq(&q->queue_lock);
668
669 blkg = blkg_lookup_check(pos, pol, q);
670 if (IS_ERR(blkg)) {
671 ret = PTR_ERR(blkg);
672 blkg_free(new_blkg);
673 goto fail_preloaded;
674 }
675
676 if (blkg) {
677 blkg_free(new_blkg);
678 } else {
679 blkg = blkg_create(pos, q, new_blkg);
680 if (IS_ERR(blkg)) {
681 ret = PTR_ERR(blkg);
682 goto fail_preloaded;
683 }
684 }
685
686 radix_tree_preload_end();
687
688 if (pos == blkcg)
689 goto success;
690 }
691 success:
692 ctx->bdev = bdev;
693 ctx->blkg = blkg;
694 ctx->body = input;
695 return 0;
696
697 fail_preloaded:
698 radix_tree_preload_end();
699 fail_unlock:
700 spin_unlock_irq(&q->queue_lock);
701 rcu_read_unlock();
702 fail:
703 blkdev_put_no_open(bdev);
704 /*
705 * If queue was bypassing, we should retry. Do so after a
706 * short msleep(). It isn't strictly necessary but queue
707 * can be bypassing for some time and it's always nice to
708 * avoid busy looping.
709 */
710 if (ret == -EBUSY) {
711 msleep(10);
712 ret = restart_syscall();
713 }
714 return ret;
715 }
716 EXPORT_SYMBOL_GPL(blkg_conf_prep);
717
718 /**
719 * blkg_conf_finish - finish up per-blkg config update
720 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
721 *
722 * Finish up after per-blkg config update. This function must be paired
723 * with blkg_conf_prep().
724 */
725 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
726 __releases(&ctx->bdev->bd_disk->queue->queue_lock) __releases(rcu)
727 {
728 spin_unlock_irq(&ctx->bdev->bd_disk->queue->queue_lock);
729 rcu_read_unlock();
730 blkdev_put_no_open(ctx->bdev);
731 }
732 EXPORT_SYMBOL_GPL(blkg_conf_finish);
733
734 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
735 {
736 int i;
737
738 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
739 dst->bytes[i] = src->bytes[i];
740 dst->ios[i] = src->ios[i];
741 }
742 }
743
744 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
745 {
746 int i;
747
748 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
749 dst->bytes[i] += src->bytes[i];
750 dst->ios[i] += src->ios[i];
751 }
752 }
753
754 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
755 {
756 int i;
757
758 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
759 dst->bytes[i] -= src->bytes[i];
760 dst->ios[i] -= src->ios[i];
761 }
762 }
763
764 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
765 {
766 struct blkcg *blkcg = css_to_blkcg(css);
767 struct blkcg_gq *blkg;
768
769 rcu_read_lock();
770
771 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
772 struct blkcg_gq *parent = blkg->parent;
773 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
774 struct blkg_iostat cur, delta;
775 unsigned int seq;
776
777 /* fetch the current per-cpu values */
778 do {
779 seq = u64_stats_fetch_begin(&bisc->sync);
780 blkg_iostat_set(&cur, &bisc->cur);
781 } while (u64_stats_fetch_retry(&bisc->sync, seq));
782
783 /* propagate percpu delta to global */
784 u64_stats_update_begin(&blkg->iostat.sync);
785 blkg_iostat_set(&delta, &cur);
786 blkg_iostat_sub(&delta, &bisc->last);
787 blkg_iostat_add(&blkg->iostat.cur, &delta);
788 blkg_iostat_add(&bisc->last, &delta);
789 u64_stats_update_end(&blkg->iostat.sync);
790
791 /* propagate global delta to parent */
792 if (parent) {
793 u64_stats_update_begin(&parent->iostat.sync);
794 blkg_iostat_set(&delta, &blkg->iostat.cur);
795 blkg_iostat_sub(&delta, &blkg->iostat.last);
796 blkg_iostat_add(&parent->iostat.cur, &delta);
797 blkg_iostat_add(&blkg->iostat.last, &delta);
798 u64_stats_update_end(&parent->iostat.sync);
799 }
800 }
801
802 rcu_read_unlock();
803 }
804
805 /*
806 * The rstat algorithms intentionally don't handle the root cgroup to avoid
807 * incurring overhead when no cgroups are defined. For that reason,
808 * cgroup_rstat_flush in blkcg_print_stat does not actually fill out the
809 * iostat in the root cgroup's blkcg_gq.
810 *
811 * However, we would like to re-use the printing code between the root and
812 * non-root cgroups to the extent possible. For that reason, we simulate
813 * flushing the root cgroup's stats by explicitly filling in the iostat
814 * with disk level statistics.
815 */
816 static void blkcg_fill_root_iostats(void)
817 {
818 struct class_dev_iter iter;
819 struct device *dev;
820
821 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
822 while ((dev = class_dev_iter_next(&iter))) {
823 struct block_device *bdev = dev_to_bdev(dev);
824 struct blkcg_gq *blkg =
825 blk_queue_root_blkg(bdev->bd_disk->queue);
826 struct blkg_iostat tmp;
827 int cpu;
828
829 memset(&tmp, 0, sizeof(tmp));
830 for_each_possible_cpu(cpu) {
831 struct disk_stats *cpu_dkstats;
832
833 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
834 tmp.ios[BLKG_IOSTAT_READ] +=
835 cpu_dkstats->ios[STAT_READ];
836 tmp.ios[BLKG_IOSTAT_WRITE] +=
837 cpu_dkstats->ios[STAT_WRITE];
838 tmp.ios[BLKG_IOSTAT_DISCARD] +=
839 cpu_dkstats->ios[STAT_DISCARD];
840 // convert sectors to bytes
841 tmp.bytes[BLKG_IOSTAT_READ] +=
842 cpu_dkstats->sectors[STAT_READ] << 9;
843 tmp.bytes[BLKG_IOSTAT_WRITE] +=
844 cpu_dkstats->sectors[STAT_WRITE] << 9;
845 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
846 cpu_dkstats->sectors[STAT_DISCARD] << 9;
847
848 u64_stats_update_begin(&blkg->iostat.sync);
849 blkg_iostat_set(&blkg->iostat.cur, &tmp);
850 u64_stats_update_end(&blkg->iostat.sync);
851 }
852 }
853 }
854
855 static int blkcg_print_stat(struct seq_file *sf, void *v)
856 {
857 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
858 struct blkcg_gq *blkg;
859
860 if (!seq_css(sf)->parent)
861 blkcg_fill_root_iostats();
862 else
863 cgroup_rstat_flush(blkcg->css.cgroup);
864
865 rcu_read_lock();
866
867 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
868 struct blkg_iostat_set *bis = &blkg->iostat;
869 const char *dname;
870 char *buf;
871 u64 rbytes, wbytes, rios, wios, dbytes, dios;
872 size_t size = seq_get_buf(sf, &buf), off = 0;
873 int i;
874 bool has_stats = false;
875 unsigned seq;
876
877 spin_lock_irq(&blkg->q->queue_lock);
878
879 if (!blkg->online)
880 goto skip;
881
882 dname = blkg_dev_name(blkg);
883 if (!dname)
884 goto skip;
885
886 /*
887 * Hooray string manipulation, count is the size written NOT
888 * INCLUDING THE \0, so size is now count+1 less than what we
889 * had before, but we want to start writing the next bit from
890 * the \0 so we only add count to buf.
891 */
892 off += scnprintf(buf+off, size-off, "%s ", dname);
893
894 do {
895 seq = u64_stats_fetch_begin(&bis->sync);
896
897 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
898 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
899 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
900 rios = bis->cur.ios[BLKG_IOSTAT_READ];
901 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
902 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
903 } while (u64_stats_fetch_retry(&bis->sync, seq));
904
905 if (rbytes || wbytes || rios || wios) {
906 has_stats = true;
907 off += scnprintf(buf+off, size-off,
908 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
909 rbytes, wbytes, rios, wios,
910 dbytes, dios);
911 }
912
913 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
914 has_stats = true;
915 off += scnprintf(buf+off, size-off,
916 " use_delay=%d delay_nsec=%llu",
917 atomic_read(&blkg->use_delay),
918 (unsigned long long)atomic64_read(&blkg->delay_nsec));
919 }
920
921 for (i = 0; i < BLKCG_MAX_POLS; i++) {
922 struct blkcg_policy *pol = blkcg_policy[i];
923 size_t written;
924
925 if (!blkg->pd[i] || !pol->pd_stat_fn)
926 continue;
927
928 written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off);
929 if (written)
930 has_stats = true;
931 off += written;
932 }
933
934 if (has_stats) {
935 if (off < size - 1) {
936 off += scnprintf(buf+off, size-off, "\n");
937 seq_commit(sf, off);
938 } else {
939 seq_commit(sf, -1);
940 }
941 }
942 skip:
943 spin_unlock_irq(&blkg->q->queue_lock);
944 }
945
946 rcu_read_unlock();
947 return 0;
948 }
949
950 static struct cftype blkcg_files[] = {
951 {
952 .name = "stat",
953 .seq_show = blkcg_print_stat,
954 },
955 { } /* terminate */
956 };
957
958 static struct cftype blkcg_legacy_files[] = {
959 {
960 .name = "reset_stats",
961 .write_u64 = blkcg_reset_stats,
962 },
963 { } /* terminate */
964 };
965
966 /*
967 * blkcg destruction is a three-stage process.
968 *
969 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
970 * which offlines writeback. Here we tie the next stage of blkg destruction
971 * to the completion of writeback associated with the blkcg. This lets us
972 * avoid punting potentially large amounts of outstanding writeback to root
973 * while maintaining any ongoing policies. The next stage is triggered when
974 * the nr_cgwbs count goes to zero.
975 *
976 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
977 * and handles the destruction of blkgs. Here the css reference held by
978 * the blkg is put back eventually allowing blkcg_css_free() to be called.
979 * This work may occur in cgwb_release_workfn() on the cgwb_release
980 * workqueue. Any submitted ios that fail to get the blkg ref will be
981 * punted to the root_blkg.
982 *
983 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
984 * This finally frees the blkcg.
985 */
986
987 /**
988 * blkcg_css_offline - cgroup css_offline callback
989 * @css: css of interest
990 *
991 * This function is called when @css is about to go away. Here the cgwbs are
992 * offlined first and only once writeback associated with the blkcg has
993 * finished do we start step 2 (see above).
994 */
995 static void blkcg_css_offline(struct cgroup_subsys_state *css)
996 {
997 struct blkcg *blkcg = css_to_blkcg(css);
998
999 /* this prevents anyone from attaching or migrating to this blkcg */
1000 wb_blkcg_offline(blkcg);
1001
1002 /* put the base online pin allowing step 2 to be triggered */
1003 blkcg_unpin_online(blkcg);
1004 }
1005
1006 /**
1007 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1008 * @blkcg: blkcg of interest
1009 *
1010 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1011 * is nested inside q lock, this function performs reverse double lock dancing.
1012 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1013 * blkcg_css_free to eventually be called.
1014 *
1015 * This is the blkcg counterpart of ioc_release_fn().
1016 */
1017 void blkcg_destroy_blkgs(struct blkcg *blkcg)
1018 {
1019 spin_lock_irq(&blkcg->lock);
1020
1021 while (!hlist_empty(&blkcg->blkg_list)) {
1022 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1023 struct blkcg_gq, blkcg_node);
1024 struct request_queue *q = blkg->q;
1025
1026 if (spin_trylock(&q->queue_lock)) {
1027 blkg_destroy(blkg);
1028 spin_unlock(&q->queue_lock);
1029 } else {
1030 spin_unlock_irq(&blkcg->lock);
1031 cpu_relax();
1032 spin_lock_irq(&blkcg->lock);
1033 }
1034 }
1035
1036 spin_unlock_irq(&blkcg->lock);
1037 }
1038
1039 static void blkcg_css_free(struct cgroup_subsys_state *css)
1040 {
1041 struct blkcg *blkcg = css_to_blkcg(css);
1042 int i;
1043
1044 mutex_lock(&blkcg_pol_mutex);
1045
1046 list_del(&blkcg->all_blkcgs_node);
1047
1048 for (i = 0; i < BLKCG_MAX_POLS; i++)
1049 if (blkcg->cpd[i])
1050 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1051
1052 mutex_unlock(&blkcg_pol_mutex);
1053
1054 kfree(blkcg);
1055 }
1056
1057 static struct cgroup_subsys_state *
1058 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1059 {
1060 struct blkcg *blkcg;
1061 struct cgroup_subsys_state *ret;
1062 int i;
1063
1064 mutex_lock(&blkcg_pol_mutex);
1065
1066 if (!parent_css) {
1067 blkcg = &blkcg_root;
1068 } else {
1069 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1070 if (!blkcg) {
1071 ret = ERR_PTR(-ENOMEM);
1072 goto unlock;
1073 }
1074 }
1075
1076 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1077 struct blkcg_policy *pol = blkcg_policy[i];
1078 struct blkcg_policy_data *cpd;
1079
1080 /*
1081 * If the policy hasn't been attached yet, wait for it
1082 * to be attached before doing anything else. Otherwise,
1083 * check if the policy requires any specific per-cgroup
1084 * data: if it does, allocate and initialize it.
1085 */
1086 if (!pol || !pol->cpd_alloc_fn)
1087 continue;
1088
1089 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1090 if (!cpd) {
1091 ret = ERR_PTR(-ENOMEM);
1092 goto free_pd_blkcg;
1093 }
1094 blkcg->cpd[i] = cpd;
1095 cpd->blkcg = blkcg;
1096 cpd->plid = i;
1097 if (pol->cpd_init_fn)
1098 pol->cpd_init_fn(cpd);
1099 }
1100
1101 spin_lock_init(&blkcg->lock);
1102 refcount_set(&blkcg->online_pin, 1);
1103 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1104 INIT_HLIST_HEAD(&blkcg->blkg_list);
1105 #ifdef CONFIG_CGROUP_WRITEBACK
1106 INIT_LIST_HEAD(&blkcg->cgwb_list);
1107 #endif
1108 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1109
1110 mutex_unlock(&blkcg_pol_mutex);
1111 return &blkcg->css;
1112
1113 free_pd_blkcg:
1114 for (i--; i >= 0; i--)
1115 if (blkcg->cpd[i])
1116 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1117
1118 if (blkcg != &blkcg_root)
1119 kfree(blkcg);
1120 unlock:
1121 mutex_unlock(&blkcg_pol_mutex);
1122 return ret;
1123 }
1124
1125 static int blkcg_css_online(struct cgroup_subsys_state *css)
1126 {
1127 struct blkcg *blkcg = css_to_blkcg(css);
1128 struct blkcg *parent = blkcg_parent(blkcg);
1129
1130 /*
1131 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1132 * don't go offline while cgwbs are still active on them. Pin the
1133 * parent so that offline always happens towards the root.
1134 */
1135 if (parent)
1136 blkcg_pin_online(parent);
1137 return 0;
1138 }
1139
1140 /**
1141 * blkcg_init_queue - initialize blkcg part of request queue
1142 * @q: request_queue to initialize
1143 *
1144 * Called from blk_alloc_queue(). Responsible for initializing blkcg
1145 * part of new request_queue @q.
1146 *
1147 * RETURNS:
1148 * 0 on success, -errno on failure.
1149 */
1150 int blkcg_init_queue(struct request_queue *q)
1151 {
1152 struct blkcg_gq *new_blkg, *blkg;
1153 bool preloaded;
1154 int ret;
1155
1156 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1157 if (!new_blkg)
1158 return -ENOMEM;
1159
1160 preloaded = !radix_tree_preload(GFP_KERNEL);
1161
1162 /* Make sure the root blkg exists. */
1163 rcu_read_lock();
1164 spin_lock_irq(&q->queue_lock);
1165 blkg = blkg_create(&blkcg_root, q, new_blkg);
1166 if (IS_ERR(blkg))
1167 goto err_unlock;
1168 q->root_blkg = blkg;
1169 spin_unlock_irq(&q->queue_lock);
1170 rcu_read_unlock();
1171
1172 if (preloaded)
1173 radix_tree_preload_end();
1174
1175 ret = blk_throtl_init(q);
1176 if (ret)
1177 goto err_destroy_all;
1178
1179 ret = blk_iolatency_init(q);
1180 if (ret) {
1181 blk_throtl_exit(q);
1182 goto err_destroy_all;
1183 }
1184 return 0;
1185
1186 err_destroy_all:
1187 blkg_destroy_all(q);
1188 return ret;
1189 err_unlock:
1190 spin_unlock_irq(&q->queue_lock);
1191 rcu_read_unlock();
1192 if (preloaded)
1193 radix_tree_preload_end();
1194 return PTR_ERR(blkg);
1195 }
1196
1197 /**
1198 * blkcg_exit_queue - exit and release blkcg part of request_queue
1199 * @q: request_queue being released
1200 *
1201 * Called from blk_exit_queue(). Responsible for exiting blkcg part.
1202 */
1203 void blkcg_exit_queue(struct request_queue *q)
1204 {
1205 blkg_destroy_all(q);
1206 blk_throtl_exit(q);
1207 }
1208
1209 /*
1210 * We cannot support shared io contexts, as we have no mean to support
1211 * two tasks with the same ioc in two different groups without major rework
1212 * of the main cic data structures. For now we allow a task to change
1213 * its cgroup only if it's the only owner of its ioc.
1214 */
1215 static int blkcg_can_attach(struct cgroup_taskset *tset)
1216 {
1217 struct task_struct *task;
1218 struct cgroup_subsys_state *dst_css;
1219 struct io_context *ioc;
1220 int ret = 0;
1221
1222 /* task_lock() is needed to avoid races with exit_io_context() */
1223 cgroup_taskset_for_each(task, dst_css, tset) {
1224 task_lock(task);
1225 ioc = task->io_context;
1226 if (ioc && atomic_read(&ioc->nr_tasks) > 1)
1227 ret = -EINVAL;
1228 task_unlock(task);
1229 if (ret)
1230 break;
1231 }
1232 return ret;
1233 }
1234
1235 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1236 {
1237 int i;
1238
1239 mutex_lock(&blkcg_pol_mutex);
1240
1241 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1242 struct blkcg_policy *pol = blkcg_policy[i];
1243 struct blkcg *blkcg;
1244
1245 if (!pol || !pol->cpd_bind_fn)
1246 continue;
1247
1248 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1249 if (blkcg->cpd[pol->plid])
1250 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1251 }
1252 mutex_unlock(&blkcg_pol_mutex);
1253 }
1254
1255 static void blkcg_exit(struct task_struct *tsk)
1256 {
1257 if (tsk->throttle_queue)
1258 blk_put_queue(tsk->throttle_queue);
1259 tsk->throttle_queue = NULL;
1260 }
1261
1262 struct cgroup_subsys io_cgrp_subsys = {
1263 .css_alloc = blkcg_css_alloc,
1264 .css_online = blkcg_css_online,
1265 .css_offline = blkcg_css_offline,
1266 .css_free = blkcg_css_free,
1267 .can_attach = blkcg_can_attach,
1268 .css_rstat_flush = blkcg_rstat_flush,
1269 .bind = blkcg_bind,
1270 .dfl_cftypes = blkcg_files,
1271 .legacy_cftypes = blkcg_legacy_files,
1272 .legacy_name = "blkio",
1273 .exit = blkcg_exit,
1274 #ifdef CONFIG_MEMCG
1275 /*
1276 * This ensures that, if available, memcg is automatically enabled
1277 * together on the default hierarchy so that the owner cgroup can
1278 * be retrieved from writeback pages.
1279 */
1280 .depends_on = 1 << memory_cgrp_id,
1281 #endif
1282 };
1283 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1284
1285 /**
1286 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1287 * @q: request_queue of interest
1288 * @pol: blkcg policy to activate
1289 *
1290 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1291 * bypass mode to populate its blkgs with policy_data for @pol.
1292 *
1293 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1294 * from IO path. Update of each blkg is protected by both queue and blkcg
1295 * locks so that holding either lock and testing blkcg_policy_enabled() is
1296 * always enough for dereferencing policy data.
1297 *
1298 * The caller is responsible for synchronizing [de]activations and policy
1299 * [un]registerations. Returns 0 on success, -errno on failure.
1300 */
1301 int blkcg_activate_policy(struct request_queue *q,
1302 const struct blkcg_policy *pol)
1303 {
1304 struct blkg_policy_data *pd_prealloc = NULL;
1305 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1306 int ret;
1307
1308 if (blkcg_policy_enabled(q, pol))
1309 return 0;
1310
1311 if (queue_is_mq(q))
1312 blk_mq_freeze_queue(q);
1313 retry:
1314 spin_lock_irq(&q->queue_lock);
1315
1316 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1317 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1318 struct blkg_policy_data *pd;
1319
1320 if (blkg->pd[pol->plid])
1321 continue;
1322
1323 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1324 if (blkg == pinned_blkg) {
1325 pd = pd_prealloc;
1326 pd_prealloc = NULL;
1327 } else {
1328 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1329 blkg->blkcg);
1330 }
1331
1332 if (!pd) {
1333 /*
1334 * GFP_NOWAIT failed. Free the existing one and
1335 * prealloc for @blkg w/ GFP_KERNEL.
1336 */
1337 if (pinned_blkg)
1338 blkg_put(pinned_blkg);
1339 blkg_get(blkg);
1340 pinned_blkg = blkg;
1341
1342 spin_unlock_irq(&q->queue_lock);
1343
1344 if (pd_prealloc)
1345 pol->pd_free_fn(pd_prealloc);
1346 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1347 blkg->blkcg);
1348 if (pd_prealloc)
1349 goto retry;
1350 else
1351 goto enomem;
1352 }
1353
1354 blkg->pd[pol->plid] = pd;
1355 pd->blkg = blkg;
1356 pd->plid = pol->plid;
1357 }
1358
1359 /* all allocated, init in the same order */
1360 if (pol->pd_init_fn)
1361 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1362 pol->pd_init_fn(blkg->pd[pol->plid]);
1363
1364 __set_bit(pol->plid, q->blkcg_pols);
1365 ret = 0;
1366
1367 spin_unlock_irq(&q->queue_lock);
1368 out:
1369 if (queue_is_mq(q))
1370 blk_mq_unfreeze_queue(q);
1371 if (pinned_blkg)
1372 blkg_put(pinned_blkg);
1373 if (pd_prealloc)
1374 pol->pd_free_fn(pd_prealloc);
1375 return ret;
1376
1377 enomem:
1378 /* alloc failed, nothing's initialized yet, free everything */
1379 spin_lock_irq(&q->queue_lock);
1380 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1381 if (blkg->pd[pol->plid]) {
1382 pol->pd_free_fn(blkg->pd[pol->plid]);
1383 blkg->pd[pol->plid] = NULL;
1384 }
1385 }
1386 spin_unlock_irq(&q->queue_lock);
1387 ret = -ENOMEM;
1388 goto out;
1389 }
1390 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1391
1392 /**
1393 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1394 * @q: request_queue of interest
1395 * @pol: blkcg policy to deactivate
1396 *
1397 * Deactivate @pol on @q. Follows the same synchronization rules as
1398 * blkcg_activate_policy().
1399 */
1400 void blkcg_deactivate_policy(struct request_queue *q,
1401 const struct blkcg_policy *pol)
1402 {
1403 struct blkcg_gq *blkg;
1404
1405 if (!blkcg_policy_enabled(q, pol))
1406 return;
1407
1408 if (queue_is_mq(q))
1409 blk_mq_freeze_queue(q);
1410
1411 spin_lock_irq(&q->queue_lock);
1412
1413 __clear_bit(pol->plid, q->blkcg_pols);
1414
1415 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1416 if (blkg->pd[pol->plid]) {
1417 if (pol->pd_offline_fn)
1418 pol->pd_offline_fn(blkg->pd[pol->plid]);
1419 pol->pd_free_fn(blkg->pd[pol->plid]);
1420 blkg->pd[pol->plid] = NULL;
1421 }
1422 }
1423
1424 spin_unlock_irq(&q->queue_lock);
1425
1426 if (queue_is_mq(q))
1427 blk_mq_unfreeze_queue(q);
1428 }
1429 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1430
1431 /**
1432 * blkcg_policy_register - register a blkcg policy
1433 * @pol: blkcg policy to register
1434 *
1435 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1436 * successful registration. Returns 0 on success and -errno on failure.
1437 */
1438 int blkcg_policy_register(struct blkcg_policy *pol)
1439 {
1440 struct blkcg *blkcg;
1441 int i, ret;
1442
1443 mutex_lock(&blkcg_pol_register_mutex);
1444 mutex_lock(&blkcg_pol_mutex);
1445
1446 /* find an empty slot */
1447 ret = -ENOSPC;
1448 for (i = 0; i < BLKCG_MAX_POLS; i++)
1449 if (!blkcg_policy[i])
1450 break;
1451 if (i >= BLKCG_MAX_POLS) {
1452 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1453 goto err_unlock;
1454 }
1455
1456 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1457 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1458 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1459 goto err_unlock;
1460
1461 /* register @pol */
1462 pol->plid = i;
1463 blkcg_policy[pol->plid] = pol;
1464
1465 /* allocate and install cpd's */
1466 if (pol->cpd_alloc_fn) {
1467 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1468 struct blkcg_policy_data *cpd;
1469
1470 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1471 if (!cpd)
1472 goto err_free_cpds;
1473
1474 blkcg->cpd[pol->plid] = cpd;
1475 cpd->blkcg = blkcg;
1476 cpd->plid = pol->plid;
1477 if (pol->cpd_init_fn)
1478 pol->cpd_init_fn(cpd);
1479 }
1480 }
1481
1482 mutex_unlock(&blkcg_pol_mutex);
1483
1484 /* everything is in place, add intf files for the new policy */
1485 if (pol->dfl_cftypes)
1486 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1487 pol->dfl_cftypes));
1488 if (pol->legacy_cftypes)
1489 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1490 pol->legacy_cftypes));
1491 mutex_unlock(&blkcg_pol_register_mutex);
1492 return 0;
1493
1494 err_free_cpds:
1495 if (pol->cpd_free_fn) {
1496 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1497 if (blkcg->cpd[pol->plid]) {
1498 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1499 blkcg->cpd[pol->plid] = NULL;
1500 }
1501 }
1502 }
1503 blkcg_policy[pol->plid] = NULL;
1504 err_unlock:
1505 mutex_unlock(&blkcg_pol_mutex);
1506 mutex_unlock(&blkcg_pol_register_mutex);
1507 return ret;
1508 }
1509 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1510
1511 /**
1512 * blkcg_policy_unregister - unregister a blkcg policy
1513 * @pol: blkcg policy to unregister
1514 *
1515 * Undo blkcg_policy_register(@pol). Might sleep.
1516 */
1517 void blkcg_policy_unregister(struct blkcg_policy *pol)
1518 {
1519 struct blkcg *blkcg;
1520
1521 mutex_lock(&blkcg_pol_register_mutex);
1522
1523 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1524 goto out_unlock;
1525
1526 /* kill the intf files first */
1527 if (pol->dfl_cftypes)
1528 cgroup_rm_cftypes(pol->dfl_cftypes);
1529 if (pol->legacy_cftypes)
1530 cgroup_rm_cftypes(pol->legacy_cftypes);
1531
1532 /* remove cpds and unregister */
1533 mutex_lock(&blkcg_pol_mutex);
1534
1535 if (pol->cpd_free_fn) {
1536 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1537 if (blkcg->cpd[pol->plid]) {
1538 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1539 blkcg->cpd[pol->plid] = NULL;
1540 }
1541 }
1542 }
1543 blkcg_policy[pol->plid] = NULL;
1544
1545 mutex_unlock(&blkcg_pol_mutex);
1546 out_unlock:
1547 mutex_unlock(&blkcg_pol_register_mutex);
1548 }
1549 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1550
1551 bool __blkcg_punt_bio_submit(struct bio *bio)
1552 {
1553 struct blkcg_gq *blkg = bio->bi_blkg;
1554
1555 /* consume the flag first */
1556 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1557
1558 /* never bounce for the root cgroup */
1559 if (!blkg->parent)
1560 return false;
1561
1562 spin_lock_bh(&blkg->async_bio_lock);
1563 bio_list_add(&blkg->async_bios, bio);
1564 spin_unlock_bh(&blkg->async_bio_lock);
1565
1566 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1567 return true;
1568 }
1569
1570 /*
1571 * Scale the accumulated delay based on how long it has been since we updated
1572 * the delay. We only call this when we are adding delay, in case it's been a
1573 * while since we added delay, and when we are checking to see if we need to
1574 * delay a task, to account for any delays that may have occurred.
1575 */
1576 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1577 {
1578 u64 old = atomic64_read(&blkg->delay_start);
1579
1580 /* negative use_delay means no scaling, see blkcg_set_delay() */
1581 if (atomic_read(&blkg->use_delay) < 0)
1582 return;
1583
1584 /*
1585 * We only want to scale down every second. The idea here is that we
1586 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1587 * time window. We only want to throttle tasks for recent delay that
1588 * has occurred, in 1 second time windows since that's the maximum
1589 * things can be throttled. We save the current delay window in
1590 * blkg->last_delay so we know what amount is still left to be charged
1591 * to the blkg from this point onward. blkg->last_use keeps track of
1592 * the use_delay counter. The idea is if we're unthrottling the blkg we
1593 * are ok with whatever is happening now, and we can take away more of
1594 * the accumulated delay as we've already throttled enough that
1595 * everybody is happy with their IO latencies.
1596 */
1597 if (time_before64(old + NSEC_PER_SEC, now) &&
1598 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1599 u64 cur = atomic64_read(&blkg->delay_nsec);
1600 u64 sub = min_t(u64, blkg->last_delay, now - old);
1601 int cur_use = atomic_read(&blkg->use_delay);
1602
1603 /*
1604 * We've been unthrottled, subtract a larger chunk of our
1605 * accumulated delay.
1606 */
1607 if (cur_use < blkg->last_use)
1608 sub = max_t(u64, sub, blkg->last_delay >> 1);
1609
1610 /*
1611 * This shouldn't happen, but handle it anyway. Our delay_nsec
1612 * should only ever be growing except here where we subtract out
1613 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1614 * rather not end up with negative numbers.
1615 */
1616 if (unlikely(cur < sub)) {
1617 atomic64_set(&blkg->delay_nsec, 0);
1618 blkg->last_delay = 0;
1619 } else {
1620 atomic64_sub(sub, &blkg->delay_nsec);
1621 blkg->last_delay = cur - sub;
1622 }
1623 blkg->last_use = cur_use;
1624 }
1625 }
1626
1627 /*
1628 * This is called when we want to actually walk up the hierarchy and check to
1629 * see if we need to throttle, and then actually throttle if there is some
1630 * accumulated delay. This should only be called upon return to user space so
1631 * we're not holding some lock that would induce a priority inversion.
1632 */
1633 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1634 {
1635 unsigned long pflags;
1636 bool clamp;
1637 u64 now = ktime_to_ns(ktime_get());
1638 u64 exp;
1639 u64 delay_nsec = 0;
1640 int tok;
1641
1642 while (blkg->parent) {
1643 int use_delay = atomic_read(&blkg->use_delay);
1644
1645 if (use_delay) {
1646 u64 this_delay;
1647
1648 blkcg_scale_delay(blkg, now);
1649 this_delay = atomic64_read(&blkg->delay_nsec);
1650 if (this_delay > delay_nsec) {
1651 delay_nsec = this_delay;
1652 clamp = use_delay > 0;
1653 }
1654 }
1655 blkg = blkg->parent;
1656 }
1657
1658 if (!delay_nsec)
1659 return;
1660
1661 /*
1662 * Let's not sleep for all eternity if we've amassed a huge delay.
1663 * Swapping or metadata IO can accumulate 10's of seconds worth of
1664 * delay, and we want userspace to be able to do _something_ so cap the
1665 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1666 * tasks will be delayed for 0.25 second for every syscall. If
1667 * blkcg_set_delay() was used as indicated by negative use_delay, the
1668 * caller is responsible for regulating the range.
1669 */
1670 if (clamp)
1671 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1672
1673 if (use_memdelay)
1674 psi_memstall_enter(&pflags);
1675
1676 exp = ktime_add_ns(now, delay_nsec);
1677 tok = io_schedule_prepare();
1678 do {
1679 __set_current_state(TASK_KILLABLE);
1680 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1681 break;
1682 } while (!fatal_signal_pending(current));
1683 io_schedule_finish(tok);
1684
1685 if (use_memdelay)
1686 psi_memstall_leave(&pflags);
1687 }
1688
1689 /**
1690 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1691 *
1692 * This is only called if we've been marked with set_notify_resume(). Obviously
1693 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1694 * check to see if current->throttle_queue is set and if not this doesn't do
1695 * anything. This should only ever be called by the resume code, it's not meant
1696 * to be called by people willy-nilly as it will actually do the work to
1697 * throttle the task if it is setup for throttling.
1698 */
1699 void blkcg_maybe_throttle_current(void)
1700 {
1701 struct request_queue *q = current->throttle_queue;
1702 struct cgroup_subsys_state *css;
1703 struct blkcg *blkcg;
1704 struct blkcg_gq *blkg;
1705 bool use_memdelay = current->use_memdelay;
1706
1707 if (!q)
1708 return;
1709
1710 current->throttle_queue = NULL;
1711 current->use_memdelay = false;
1712
1713 rcu_read_lock();
1714 css = kthread_blkcg();
1715 if (css)
1716 blkcg = css_to_blkcg(css);
1717 else
1718 blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1719
1720 if (!blkcg)
1721 goto out;
1722 blkg = blkg_lookup(blkcg, q);
1723 if (!blkg)
1724 goto out;
1725 if (!blkg_tryget(blkg))
1726 goto out;
1727 rcu_read_unlock();
1728
1729 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1730 blkg_put(blkg);
1731 blk_put_queue(q);
1732 return;
1733 out:
1734 rcu_read_unlock();
1735 blk_put_queue(q);
1736 }
1737
1738 /**
1739 * blkcg_schedule_throttle - this task needs to check for throttling
1740 * @q: the request queue IO was submitted on
1741 * @use_memdelay: do we charge this to memory delay for PSI
1742 *
1743 * This is called by the IO controller when we know there's delay accumulated
1744 * for the blkg for this task. We do not pass the blkg because there are places
1745 * we call this that may not have that information, the swapping code for
1746 * instance will only have a request_queue at that point. This set's the
1747 * notify_resume for the task to check and see if it requires throttling before
1748 * returning to user space.
1749 *
1750 * We will only schedule once per syscall. You can call this over and over
1751 * again and it will only do the check once upon return to user space, and only
1752 * throttle once. If the task needs to be throttled again it'll need to be
1753 * re-set at the next time we see the task.
1754 */
1755 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1756 {
1757 if (unlikely(current->flags & PF_KTHREAD))
1758 return;
1759
1760 if (!blk_get_queue(q))
1761 return;
1762
1763 if (current->throttle_queue)
1764 blk_put_queue(current->throttle_queue);
1765 current->throttle_queue = q;
1766 if (use_memdelay)
1767 current->use_memdelay = use_memdelay;
1768 set_notify_resume(current);
1769 }
1770
1771 /**
1772 * blkcg_add_delay - add delay to this blkg
1773 * @blkg: blkg of interest
1774 * @now: the current time in nanoseconds
1775 * @delta: how many nanoseconds of delay to add
1776 *
1777 * Charge @delta to the blkg's current delay accumulation. This is used to
1778 * throttle tasks if an IO controller thinks we need more throttling.
1779 */
1780 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1781 {
1782 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1783 return;
1784 blkcg_scale_delay(blkg, now);
1785 atomic64_add(delta, &blkg->delay_nsec);
1786 }
1787
1788 /**
1789 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1790 * @bio: target bio
1791 * @css: target css
1792 *
1793 * As the failure mode here is to walk up the blkg tree, this ensure that the
1794 * blkg->parent pointers are always valid. This returns the blkg that it ended
1795 * up taking a reference on or %NULL if no reference was taken.
1796 */
1797 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1798 struct cgroup_subsys_state *css)
1799 {
1800 struct blkcg_gq *blkg, *ret_blkg = NULL;
1801
1802 rcu_read_lock();
1803 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_disk->queue);
1804 while (blkg) {
1805 if (blkg_tryget(blkg)) {
1806 ret_blkg = blkg;
1807 break;
1808 }
1809 blkg = blkg->parent;
1810 }
1811 rcu_read_unlock();
1812
1813 return ret_blkg;
1814 }
1815
1816 /**
1817 * bio_associate_blkg_from_css - associate a bio with a specified css
1818 * @bio: target bio
1819 * @css: target css
1820 *
1821 * Associate @bio with the blkg found by combining the css's blkg and the
1822 * request_queue of the @bio. An association failure is handled by walking up
1823 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1824 * and q->root_blkg. This situation only happens when a cgroup is dying and
1825 * then the remaining bios will spill to the closest alive blkg.
1826 *
1827 * A reference will be taken on the blkg and will be released when @bio is
1828 * freed.
1829 */
1830 void bio_associate_blkg_from_css(struct bio *bio,
1831 struct cgroup_subsys_state *css)
1832 {
1833 if (bio->bi_blkg)
1834 blkg_put(bio->bi_blkg);
1835
1836 if (css && css->parent) {
1837 bio->bi_blkg = blkg_tryget_closest(bio, css);
1838 } else {
1839 blkg_get(bio->bi_disk->queue->root_blkg);
1840 bio->bi_blkg = bio->bi_disk->queue->root_blkg;
1841 }
1842 }
1843 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1844
1845 /**
1846 * bio_associate_blkg - associate a bio with a blkg
1847 * @bio: target bio
1848 *
1849 * Associate @bio with the blkg found from the bio's css and request_queue.
1850 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1851 * already associated, the css is reused and association redone as the
1852 * request_queue may have changed.
1853 */
1854 void bio_associate_blkg(struct bio *bio)
1855 {
1856 struct cgroup_subsys_state *css;
1857
1858 rcu_read_lock();
1859
1860 if (bio->bi_blkg)
1861 css = &bio_blkcg(bio)->css;
1862 else
1863 css = blkcg_css();
1864
1865 bio_associate_blkg_from_css(bio, css);
1866
1867 rcu_read_unlock();
1868 }
1869 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1870
1871 /**
1872 * bio_clone_blkg_association - clone blkg association from src to dst bio
1873 * @dst: destination bio
1874 * @src: source bio
1875 */
1876 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1877 {
1878 if (src->bi_blkg) {
1879 if (dst->bi_blkg)
1880 blkg_put(dst->bi_blkg);
1881 blkg_get(src->bi_blkg);
1882 dst->bi_blkg = src->bi_blkg;
1883 }
1884 }
1885 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1886
1887 static int blk_cgroup_io_type(struct bio *bio)
1888 {
1889 if (op_is_discard(bio->bi_opf))
1890 return BLKG_IOSTAT_DISCARD;
1891 if (op_is_write(bio->bi_opf))
1892 return BLKG_IOSTAT_WRITE;
1893 return BLKG_IOSTAT_READ;
1894 }
1895
1896 void blk_cgroup_bio_start(struct bio *bio)
1897 {
1898 int rwd = blk_cgroup_io_type(bio), cpu;
1899 struct blkg_iostat_set *bis;
1900
1901 cpu = get_cpu();
1902 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1903 u64_stats_update_begin(&bis->sync);
1904
1905 /*
1906 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1907 * bio and we would have already accounted for the size of the bio.
1908 */
1909 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1910 bio_set_flag(bio, BIO_CGROUP_ACCT);
1911 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1912 }
1913 bis->cur.ios[rwd]++;
1914
1915 u64_stats_update_end(&bis->sync);
1916 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1917 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1918 put_cpu();
1919 }
1920
1921 static int __init blkcg_init(void)
1922 {
1923 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1924 WQ_MEM_RECLAIM | WQ_FREEZABLE |
1925 WQ_UNBOUND | WQ_SYSFS, 0);
1926 if (!blkcg_punt_bio_wq)
1927 return -ENOMEM;
1928 return 0;
1929 }
1930 subsys_initcall(blkcg_init);
1931
1932 module_param(blkcg_debug_stats, bool, 0644);
1933 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");