]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-cgroup.c
drm/shmem-helper: Remove errant put in error path
[mirror_ubuntu-jammy-kernel.git] / block / blk-cgroup.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include "blk.h"
34 #include "blk-ioprio.h"
35
36 /*
37 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
38 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
39 * policy [un]register operations including cgroup file additions /
40 * removals. Putting cgroup file registration outside blkcg_pol_mutex
41 * allows grabbing it from cgroup callbacks.
42 */
43 static DEFINE_MUTEX(blkcg_pol_register_mutex);
44 static DEFINE_MUTEX(blkcg_pol_mutex);
45
46 struct blkcg blkcg_root;
47 EXPORT_SYMBOL_GPL(blkcg_root);
48
49 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
50 EXPORT_SYMBOL_GPL(blkcg_root_css);
51
52 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
53
54 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
55
56 bool blkcg_debug_stats = false;
57 static struct workqueue_struct *blkcg_punt_bio_wq;
58
59 #define BLKG_DESTROY_BATCH_SIZE 64
60
61 static bool blkcg_policy_enabled(struct request_queue *q,
62 const struct blkcg_policy *pol)
63 {
64 return pol && test_bit(pol->plid, q->blkcg_pols);
65 }
66
67 /**
68 * blkg_free - free a blkg
69 * @blkg: blkg to free
70 *
71 * Free @blkg which may be partially allocated.
72 */
73 static void blkg_free(struct blkcg_gq *blkg)
74 {
75 int i;
76
77 if (!blkg)
78 return;
79
80 for (i = 0; i < BLKCG_MAX_POLS; i++)
81 if (blkg->pd[i])
82 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
83
84 free_percpu(blkg->iostat_cpu);
85 percpu_ref_exit(&blkg->refcnt);
86 kfree(blkg);
87 }
88
89 static void __blkg_release(struct rcu_head *rcu)
90 {
91 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
92
93 WARN_ON(!bio_list_empty(&blkg->async_bios));
94
95 /* release the blkcg and parent blkg refs this blkg has been holding */
96 css_put(&blkg->blkcg->css);
97 if (blkg->parent)
98 blkg_put(blkg->parent);
99 blkg_free(blkg);
100 }
101
102 /*
103 * A group is RCU protected, but having an rcu lock does not mean that one
104 * can access all the fields of blkg and assume these are valid. For
105 * example, don't try to follow throtl_data and request queue links.
106 *
107 * Having a reference to blkg under an rcu allows accesses to only values
108 * local to groups like group stats and group rate limits.
109 */
110 static void blkg_release(struct percpu_ref *ref)
111 {
112 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
113
114 call_rcu(&blkg->rcu_head, __blkg_release);
115 }
116
117 static void blkg_async_bio_workfn(struct work_struct *work)
118 {
119 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
120 async_bio_work);
121 struct bio_list bios = BIO_EMPTY_LIST;
122 struct bio *bio;
123 struct blk_plug plug;
124 bool need_plug = false;
125
126 /* as long as there are pending bios, @blkg can't go away */
127 spin_lock_bh(&blkg->async_bio_lock);
128 bio_list_merge(&bios, &blkg->async_bios);
129 bio_list_init(&blkg->async_bios);
130 spin_unlock_bh(&blkg->async_bio_lock);
131
132 /* start plug only when bio_list contains at least 2 bios */
133 if (bios.head && bios.head->bi_next) {
134 need_plug = true;
135 blk_start_plug(&plug);
136 }
137 while ((bio = bio_list_pop(&bios)))
138 submit_bio(bio);
139 if (need_plug)
140 blk_finish_plug(&plug);
141 }
142
143 /**
144 * blkg_alloc - allocate a blkg
145 * @blkcg: block cgroup the new blkg is associated with
146 * @q: request_queue the new blkg is associated with
147 * @gfp_mask: allocation mask to use
148 *
149 * Allocate a new blkg assocating @blkcg and @q.
150 */
151 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
152 gfp_t gfp_mask)
153 {
154 struct blkcg_gq *blkg;
155 int i, cpu;
156
157 /* alloc and init base part */
158 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
159 if (!blkg)
160 return NULL;
161
162 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
163 goto err_free;
164
165 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
166 if (!blkg->iostat_cpu)
167 goto err_free;
168
169 blkg->q = q;
170 INIT_LIST_HEAD(&blkg->q_node);
171 spin_lock_init(&blkg->async_bio_lock);
172 bio_list_init(&blkg->async_bios);
173 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
174 blkg->blkcg = blkcg;
175
176 u64_stats_init(&blkg->iostat.sync);
177 for_each_possible_cpu(cpu)
178 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
179
180 for (i = 0; i < BLKCG_MAX_POLS; i++) {
181 struct blkcg_policy *pol = blkcg_policy[i];
182 struct blkg_policy_data *pd;
183
184 if (!blkcg_policy_enabled(q, pol))
185 continue;
186
187 /* alloc per-policy data and attach it to blkg */
188 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
189 if (!pd)
190 goto err_free;
191
192 blkg->pd[i] = pd;
193 pd->blkg = blkg;
194 pd->plid = i;
195 }
196
197 return blkg;
198
199 err_free:
200 blkg_free(blkg);
201 return NULL;
202 }
203
204 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
205 struct request_queue *q, bool update_hint)
206 {
207 struct blkcg_gq *blkg;
208
209 /*
210 * Hint didn't match. Look up from the radix tree. Note that the
211 * hint can only be updated under queue_lock as otherwise @blkg
212 * could have already been removed from blkg_tree. The caller is
213 * responsible for grabbing queue_lock if @update_hint.
214 */
215 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
216 if (blkg && blkg->q == q) {
217 if (update_hint) {
218 lockdep_assert_held(&q->queue_lock);
219 rcu_assign_pointer(blkcg->blkg_hint, blkg);
220 }
221 return blkg;
222 }
223
224 return NULL;
225 }
226 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
227
228 /*
229 * If @new_blkg is %NULL, this function tries to allocate a new one as
230 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
231 */
232 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
233 struct request_queue *q,
234 struct blkcg_gq *new_blkg)
235 {
236 struct blkcg_gq *blkg;
237 int i, ret;
238
239 WARN_ON_ONCE(!rcu_read_lock_held());
240 lockdep_assert_held(&q->queue_lock);
241
242 /* request_queue is dying, do not create/recreate a blkg */
243 if (blk_queue_dying(q)) {
244 ret = -ENODEV;
245 goto err_free_blkg;
246 }
247
248 /* blkg holds a reference to blkcg */
249 if (!css_tryget_online(&blkcg->css)) {
250 ret = -ENODEV;
251 goto err_free_blkg;
252 }
253
254 /* allocate */
255 if (!new_blkg) {
256 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
257 if (unlikely(!new_blkg)) {
258 ret = -ENOMEM;
259 goto err_put_css;
260 }
261 }
262 blkg = new_blkg;
263
264 /* link parent */
265 if (blkcg_parent(blkcg)) {
266 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
267 if (WARN_ON_ONCE(!blkg->parent)) {
268 ret = -ENODEV;
269 goto err_put_css;
270 }
271 blkg_get(blkg->parent);
272 }
273
274 /* invoke per-policy init */
275 for (i = 0; i < BLKCG_MAX_POLS; i++) {
276 struct blkcg_policy *pol = blkcg_policy[i];
277
278 if (blkg->pd[i] && pol->pd_init_fn)
279 pol->pd_init_fn(blkg->pd[i]);
280 }
281
282 /* insert */
283 spin_lock(&blkcg->lock);
284 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
285 if (likely(!ret)) {
286 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
287 list_add(&blkg->q_node, &q->blkg_list);
288
289 for (i = 0; i < BLKCG_MAX_POLS; i++) {
290 struct blkcg_policy *pol = blkcg_policy[i];
291
292 if (blkg->pd[i] && pol->pd_online_fn)
293 pol->pd_online_fn(blkg->pd[i]);
294 }
295 }
296 blkg->online = true;
297 spin_unlock(&blkcg->lock);
298
299 if (!ret)
300 return blkg;
301
302 /* @blkg failed fully initialized, use the usual release path */
303 blkg_put(blkg);
304 return ERR_PTR(ret);
305
306 err_put_css:
307 css_put(&blkcg->css);
308 err_free_blkg:
309 blkg_free(new_blkg);
310 return ERR_PTR(ret);
311 }
312
313 /**
314 * blkg_lookup_create - lookup blkg, try to create one if not there
315 * @blkcg: blkcg of interest
316 * @q: request_queue of interest
317 *
318 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to
319 * create one. blkg creation is performed recursively from blkcg_root such
320 * that all non-root blkg's have access to the parent blkg. This function
321 * should be called under RCU read lock and takes @q->queue_lock.
322 *
323 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
324 * down from root.
325 */
326 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
327 struct request_queue *q)
328 {
329 struct blkcg_gq *blkg;
330 unsigned long flags;
331
332 WARN_ON_ONCE(!rcu_read_lock_held());
333
334 blkg = blkg_lookup(blkcg, q);
335 if (blkg)
336 return blkg;
337
338 spin_lock_irqsave(&q->queue_lock, flags);
339 blkg = __blkg_lookup(blkcg, q, true);
340 if (blkg)
341 goto found;
342
343 /*
344 * Create blkgs walking down from blkcg_root to @blkcg, so that all
345 * non-root blkgs have access to their parents. Returns the closest
346 * blkg to the intended blkg should blkg_create() fail.
347 */
348 while (true) {
349 struct blkcg *pos = blkcg;
350 struct blkcg *parent = blkcg_parent(blkcg);
351 struct blkcg_gq *ret_blkg = q->root_blkg;
352
353 while (parent) {
354 blkg = __blkg_lookup(parent, q, false);
355 if (blkg) {
356 /* remember closest blkg */
357 ret_blkg = blkg;
358 break;
359 }
360 pos = parent;
361 parent = blkcg_parent(parent);
362 }
363
364 blkg = blkg_create(pos, q, NULL);
365 if (IS_ERR(blkg)) {
366 blkg = ret_blkg;
367 break;
368 }
369 if (pos == blkcg)
370 break;
371 }
372
373 found:
374 spin_unlock_irqrestore(&q->queue_lock, flags);
375 return blkg;
376 }
377
378 static void blkg_destroy(struct blkcg_gq *blkg)
379 {
380 struct blkcg *blkcg = blkg->blkcg;
381 int i;
382
383 lockdep_assert_held(&blkg->q->queue_lock);
384 lockdep_assert_held(&blkcg->lock);
385
386 /* Something wrong if we are trying to remove same group twice */
387 WARN_ON_ONCE(list_empty(&blkg->q_node));
388 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
389
390 for (i = 0; i < BLKCG_MAX_POLS; i++) {
391 struct blkcg_policy *pol = blkcg_policy[i];
392
393 if (blkg->pd[i] && pol->pd_offline_fn)
394 pol->pd_offline_fn(blkg->pd[i]);
395 }
396
397 blkg->online = false;
398
399 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
400 list_del_init(&blkg->q_node);
401 hlist_del_init_rcu(&blkg->blkcg_node);
402
403 /*
404 * Both setting lookup hint to and clearing it from @blkg are done
405 * under queue_lock. If it's not pointing to @blkg now, it never
406 * will. Hint assignment itself can race safely.
407 */
408 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
409 rcu_assign_pointer(blkcg->blkg_hint, NULL);
410
411 /*
412 * Put the reference taken at the time of creation so that when all
413 * queues are gone, group can be destroyed.
414 */
415 percpu_ref_kill(&blkg->refcnt);
416 }
417
418 /**
419 * blkg_destroy_all - destroy all blkgs associated with a request_queue
420 * @q: request_queue of interest
421 *
422 * Destroy all blkgs associated with @q.
423 */
424 static void blkg_destroy_all(struct request_queue *q)
425 {
426 struct blkcg_gq *blkg, *n;
427 int count = BLKG_DESTROY_BATCH_SIZE;
428
429 restart:
430 spin_lock_irq(&q->queue_lock);
431 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
432 struct blkcg *blkcg = blkg->blkcg;
433
434 spin_lock(&blkcg->lock);
435 blkg_destroy(blkg);
436 spin_unlock(&blkcg->lock);
437
438 /*
439 * in order to avoid holding the spin lock for too long, release
440 * it when a batch of blkgs are destroyed.
441 */
442 if (!(--count)) {
443 count = BLKG_DESTROY_BATCH_SIZE;
444 spin_unlock_irq(&q->queue_lock);
445 cond_resched();
446 goto restart;
447 }
448 }
449
450 q->root_blkg = NULL;
451 spin_unlock_irq(&q->queue_lock);
452 }
453
454 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
455 struct cftype *cftype, u64 val)
456 {
457 struct blkcg *blkcg = css_to_blkcg(css);
458 struct blkcg_gq *blkg;
459 int i, cpu;
460
461 mutex_lock(&blkcg_pol_mutex);
462 spin_lock_irq(&blkcg->lock);
463
464 /*
465 * Note that stat reset is racy - it doesn't synchronize against
466 * stat updates. This is a debug feature which shouldn't exist
467 * anyway. If you get hit by a race, retry.
468 */
469 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
470 for_each_possible_cpu(cpu) {
471 struct blkg_iostat_set *bis =
472 per_cpu_ptr(blkg->iostat_cpu, cpu);
473 memset(bis, 0, sizeof(*bis));
474 }
475 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
476
477 for (i = 0; i < BLKCG_MAX_POLS; i++) {
478 struct blkcg_policy *pol = blkcg_policy[i];
479
480 if (blkg->pd[i] && pol->pd_reset_stats_fn)
481 pol->pd_reset_stats_fn(blkg->pd[i]);
482 }
483 }
484
485 spin_unlock_irq(&blkcg->lock);
486 mutex_unlock(&blkcg_pol_mutex);
487 return 0;
488 }
489
490 const char *blkg_dev_name(struct blkcg_gq *blkg)
491 {
492 if (!blkg->q->disk || !blkg->q->disk->bdi->dev)
493 return NULL;
494 return bdi_dev_name(blkg->q->disk->bdi);
495 }
496
497 /**
498 * blkcg_print_blkgs - helper for printing per-blkg data
499 * @sf: seq_file to print to
500 * @blkcg: blkcg of interest
501 * @prfill: fill function to print out a blkg
502 * @pol: policy in question
503 * @data: data to be passed to @prfill
504 * @show_total: to print out sum of prfill return values or not
505 *
506 * This function invokes @prfill on each blkg of @blkcg if pd for the
507 * policy specified by @pol exists. @prfill is invoked with @sf, the
508 * policy data and @data and the matching queue lock held. If @show_total
509 * is %true, the sum of the return values from @prfill is printed with
510 * "Total" label at the end.
511 *
512 * This is to be used to construct print functions for
513 * cftype->read_seq_string method.
514 */
515 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
516 u64 (*prfill)(struct seq_file *,
517 struct blkg_policy_data *, int),
518 const struct blkcg_policy *pol, int data,
519 bool show_total)
520 {
521 struct blkcg_gq *blkg;
522 u64 total = 0;
523
524 rcu_read_lock();
525 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
526 spin_lock_irq(&blkg->q->queue_lock);
527 if (blkcg_policy_enabled(blkg->q, pol))
528 total += prfill(sf, blkg->pd[pol->plid], data);
529 spin_unlock_irq(&blkg->q->queue_lock);
530 }
531 rcu_read_unlock();
532
533 if (show_total)
534 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
535 }
536 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
537
538 /**
539 * __blkg_prfill_u64 - prfill helper for a single u64 value
540 * @sf: seq_file to print to
541 * @pd: policy private data of interest
542 * @v: value to print
543 *
544 * Print @v to @sf for the device assocaited with @pd.
545 */
546 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
547 {
548 const char *dname = blkg_dev_name(pd->blkg);
549
550 if (!dname)
551 return 0;
552
553 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
554 return v;
555 }
556 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
557
558 /* Performs queue bypass and policy enabled checks then looks up blkg. */
559 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
560 const struct blkcg_policy *pol,
561 struct request_queue *q)
562 {
563 WARN_ON_ONCE(!rcu_read_lock_held());
564 lockdep_assert_held(&q->queue_lock);
565
566 if (!blkcg_policy_enabled(q, pol))
567 return ERR_PTR(-EOPNOTSUPP);
568 return __blkg_lookup(blkcg, q, true /* update_hint */);
569 }
570
571 /**
572 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
573 * @inputp: input string pointer
574 *
575 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
576 * from @input and get and return the matching bdev. *@inputp is
577 * updated to point past the device node prefix. Returns an ERR_PTR()
578 * value on error.
579 *
580 * Use this function iff blkg_conf_prep() can't be used for some reason.
581 */
582 struct block_device *blkcg_conf_open_bdev(char **inputp)
583 {
584 char *input = *inputp;
585 unsigned int major, minor;
586 struct block_device *bdev;
587 int key_len;
588
589 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
590 return ERR_PTR(-EINVAL);
591
592 input += key_len;
593 if (!isspace(*input))
594 return ERR_PTR(-EINVAL);
595 input = skip_spaces(input);
596
597 bdev = blkdev_get_no_open(MKDEV(major, minor));
598 if (!bdev)
599 return ERR_PTR(-ENODEV);
600 if (bdev_is_partition(bdev)) {
601 blkdev_put_no_open(bdev);
602 return ERR_PTR(-ENODEV);
603 }
604
605 *inputp = input;
606 return bdev;
607 }
608
609 /**
610 * blkg_conf_prep - parse and prepare for per-blkg config update
611 * @blkcg: target block cgroup
612 * @pol: target policy
613 * @input: input string
614 * @ctx: blkg_conf_ctx to be filled
615 *
616 * Parse per-blkg config update from @input and initialize @ctx with the
617 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
618 * part of @input following MAJ:MIN. This function returns with RCU read
619 * lock and queue lock held and must be paired with blkg_conf_finish().
620 */
621 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
622 char *input, struct blkg_conf_ctx *ctx)
623 __acquires(rcu) __acquires(&bdev->bd_disk->queue->queue_lock)
624 {
625 struct block_device *bdev;
626 struct request_queue *q;
627 struct blkcg_gq *blkg;
628 int ret;
629
630 bdev = blkcg_conf_open_bdev(&input);
631 if (IS_ERR(bdev))
632 return PTR_ERR(bdev);
633
634 q = bdev->bd_disk->queue;
635
636 /*
637 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
638 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
639 */
640 ret = blk_queue_enter(q, 0);
641 if (ret)
642 goto fail;
643
644 rcu_read_lock();
645 spin_lock_irq(&q->queue_lock);
646
647 blkg = blkg_lookup_check(blkcg, pol, q);
648 if (IS_ERR(blkg)) {
649 ret = PTR_ERR(blkg);
650 goto fail_unlock;
651 }
652
653 if (blkg)
654 goto success;
655
656 /*
657 * Create blkgs walking down from blkcg_root to @blkcg, so that all
658 * non-root blkgs have access to their parents.
659 */
660 while (true) {
661 struct blkcg *pos = blkcg;
662 struct blkcg *parent;
663 struct blkcg_gq *new_blkg;
664
665 parent = blkcg_parent(blkcg);
666 while (parent && !__blkg_lookup(parent, q, false)) {
667 pos = parent;
668 parent = blkcg_parent(parent);
669 }
670
671 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
672 spin_unlock_irq(&q->queue_lock);
673 rcu_read_unlock();
674
675 new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
676 if (unlikely(!new_blkg)) {
677 ret = -ENOMEM;
678 goto fail_exit_queue;
679 }
680
681 if (radix_tree_preload(GFP_KERNEL)) {
682 blkg_free(new_blkg);
683 ret = -ENOMEM;
684 goto fail_exit_queue;
685 }
686
687 rcu_read_lock();
688 spin_lock_irq(&q->queue_lock);
689
690 blkg = blkg_lookup_check(pos, pol, q);
691 if (IS_ERR(blkg)) {
692 ret = PTR_ERR(blkg);
693 blkg_free(new_blkg);
694 goto fail_preloaded;
695 }
696
697 if (blkg) {
698 blkg_free(new_blkg);
699 } else {
700 blkg = blkg_create(pos, q, new_blkg);
701 if (IS_ERR(blkg)) {
702 ret = PTR_ERR(blkg);
703 goto fail_preloaded;
704 }
705 }
706
707 radix_tree_preload_end();
708
709 if (pos == blkcg)
710 goto success;
711 }
712 success:
713 blk_queue_exit(q);
714 ctx->bdev = bdev;
715 ctx->blkg = blkg;
716 ctx->body = input;
717 return 0;
718
719 fail_preloaded:
720 radix_tree_preload_end();
721 fail_unlock:
722 spin_unlock_irq(&q->queue_lock);
723 rcu_read_unlock();
724 fail_exit_queue:
725 blk_queue_exit(q);
726 fail:
727 blkdev_put_no_open(bdev);
728 /*
729 * If queue was bypassing, we should retry. Do so after a
730 * short msleep(). It isn't strictly necessary but queue
731 * can be bypassing for some time and it's always nice to
732 * avoid busy looping.
733 */
734 if (ret == -EBUSY) {
735 msleep(10);
736 ret = restart_syscall();
737 }
738 return ret;
739 }
740 EXPORT_SYMBOL_GPL(blkg_conf_prep);
741
742 /**
743 * blkg_conf_finish - finish up per-blkg config update
744 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
745 *
746 * Finish up after per-blkg config update. This function must be paired
747 * with blkg_conf_prep().
748 */
749 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
750 __releases(&ctx->bdev->bd_disk->queue->queue_lock) __releases(rcu)
751 {
752 spin_unlock_irq(&ctx->bdev->bd_disk->queue->queue_lock);
753 rcu_read_unlock();
754 blkdev_put_no_open(ctx->bdev);
755 }
756 EXPORT_SYMBOL_GPL(blkg_conf_finish);
757
758 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
759 {
760 int i;
761
762 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
763 dst->bytes[i] = src->bytes[i];
764 dst->ios[i] = src->ios[i];
765 }
766 }
767
768 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
769 {
770 int i;
771
772 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
773 dst->bytes[i] += src->bytes[i];
774 dst->ios[i] += src->ios[i];
775 }
776 }
777
778 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
779 {
780 int i;
781
782 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
783 dst->bytes[i] -= src->bytes[i];
784 dst->ios[i] -= src->ios[i];
785 }
786 }
787
788 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
789 {
790 struct blkcg *blkcg = css_to_blkcg(css);
791 struct blkcg_gq *blkg;
792
793 /* Root-level stats are sourced from system-wide IO stats */
794 if (!cgroup_parent(css->cgroup))
795 return;
796
797 rcu_read_lock();
798
799 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
800 struct blkcg_gq *parent = blkg->parent;
801 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
802 struct blkg_iostat cur, delta;
803 unsigned long flags;
804 unsigned int seq;
805
806 /* fetch the current per-cpu values */
807 do {
808 seq = u64_stats_fetch_begin(&bisc->sync);
809 blkg_iostat_set(&cur, &bisc->cur);
810 } while (u64_stats_fetch_retry(&bisc->sync, seq));
811
812 /* propagate percpu delta to global */
813 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
814 blkg_iostat_set(&delta, &cur);
815 blkg_iostat_sub(&delta, &bisc->last);
816 blkg_iostat_add(&blkg->iostat.cur, &delta);
817 blkg_iostat_add(&bisc->last, &delta);
818 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
819
820 /* propagate global delta to parent (unless that's root) */
821 if (parent && parent->parent) {
822 flags = u64_stats_update_begin_irqsave(&parent->iostat.sync);
823 blkg_iostat_set(&delta, &blkg->iostat.cur);
824 blkg_iostat_sub(&delta, &blkg->iostat.last);
825 blkg_iostat_add(&parent->iostat.cur, &delta);
826 blkg_iostat_add(&blkg->iostat.last, &delta);
827 u64_stats_update_end_irqrestore(&parent->iostat.sync, flags);
828 }
829 }
830
831 rcu_read_unlock();
832 }
833
834 /*
835 * We source root cgroup stats from the system-wide stats to avoid
836 * tracking the same information twice and incurring overhead when no
837 * cgroups are defined. For that reason, cgroup_rstat_flush in
838 * blkcg_print_stat does not actually fill out the iostat in the root
839 * cgroup's blkcg_gq.
840 *
841 * However, we would like to re-use the printing code between the root and
842 * non-root cgroups to the extent possible. For that reason, we simulate
843 * flushing the root cgroup's stats by explicitly filling in the iostat
844 * with disk level statistics.
845 */
846 static void blkcg_fill_root_iostats(void)
847 {
848 struct class_dev_iter iter;
849 struct device *dev;
850
851 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
852 while ((dev = class_dev_iter_next(&iter))) {
853 struct block_device *bdev = dev_to_bdev(dev);
854 struct blkcg_gq *blkg =
855 blk_queue_root_blkg(bdev->bd_disk->queue);
856 struct blkg_iostat tmp;
857 int cpu;
858 unsigned long flags;
859
860 memset(&tmp, 0, sizeof(tmp));
861 for_each_possible_cpu(cpu) {
862 struct disk_stats *cpu_dkstats;
863
864 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
865 tmp.ios[BLKG_IOSTAT_READ] +=
866 cpu_dkstats->ios[STAT_READ];
867 tmp.ios[BLKG_IOSTAT_WRITE] +=
868 cpu_dkstats->ios[STAT_WRITE];
869 tmp.ios[BLKG_IOSTAT_DISCARD] +=
870 cpu_dkstats->ios[STAT_DISCARD];
871 // convert sectors to bytes
872 tmp.bytes[BLKG_IOSTAT_READ] +=
873 cpu_dkstats->sectors[STAT_READ] << 9;
874 tmp.bytes[BLKG_IOSTAT_WRITE] +=
875 cpu_dkstats->sectors[STAT_WRITE] << 9;
876 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
877 cpu_dkstats->sectors[STAT_DISCARD] << 9;
878 }
879
880 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
881 blkg_iostat_set(&blkg->iostat.cur, &tmp);
882 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
883 }
884 }
885
886 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
887 {
888 struct blkg_iostat_set *bis = &blkg->iostat;
889 u64 rbytes, wbytes, rios, wios, dbytes, dios;
890 bool has_stats = false;
891 const char *dname;
892 unsigned seq;
893 int i;
894
895 if (!blkg->online)
896 return;
897
898 dname = blkg_dev_name(blkg);
899 if (!dname)
900 return;
901
902 seq_printf(s, "%s ", dname);
903
904 do {
905 seq = u64_stats_fetch_begin(&bis->sync);
906
907 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
908 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
909 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
910 rios = bis->cur.ios[BLKG_IOSTAT_READ];
911 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
912 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
913 } while (u64_stats_fetch_retry(&bis->sync, seq));
914
915 if (rbytes || wbytes || rios || wios) {
916 has_stats = true;
917 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
918 rbytes, wbytes, rios, wios,
919 dbytes, dios);
920 }
921
922 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
923 has_stats = true;
924 seq_printf(s, " use_delay=%d delay_nsec=%llu",
925 atomic_read(&blkg->use_delay),
926 atomic64_read(&blkg->delay_nsec));
927 }
928
929 for (i = 0; i < BLKCG_MAX_POLS; i++) {
930 struct blkcg_policy *pol = blkcg_policy[i];
931
932 if (!blkg->pd[i] || !pol->pd_stat_fn)
933 continue;
934
935 if (pol->pd_stat_fn(blkg->pd[i], s))
936 has_stats = true;
937 }
938
939 if (has_stats)
940 seq_printf(s, "\n");
941 }
942
943 static int blkcg_print_stat(struct seq_file *sf, void *v)
944 {
945 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
946 struct blkcg_gq *blkg;
947
948 if (!seq_css(sf)->parent)
949 blkcg_fill_root_iostats();
950 else
951 cgroup_rstat_flush(blkcg->css.cgroup);
952
953 rcu_read_lock();
954 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
955 spin_lock_irq(&blkg->q->queue_lock);
956 blkcg_print_one_stat(blkg, sf);
957 spin_unlock_irq(&blkg->q->queue_lock);
958 }
959 rcu_read_unlock();
960 return 0;
961 }
962
963 static struct cftype blkcg_files[] = {
964 {
965 .name = "stat",
966 .seq_show = blkcg_print_stat,
967 },
968 { } /* terminate */
969 };
970
971 static struct cftype blkcg_legacy_files[] = {
972 {
973 .name = "reset_stats",
974 .write_u64 = blkcg_reset_stats,
975 },
976 { } /* terminate */
977 };
978
979 /*
980 * blkcg destruction is a three-stage process.
981 *
982 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
983 * which offlines writeback. Here we tie the next stage of blkg destruction
984 * to the completion of writeback associated with the blkcg. This lets us
985 * avoid punting potentially large amounts of outstanding writeback to root
986 * while maintaining any ongoing policies. The next stage is triggered when
987 * the nr_cgwbs count goes to zero.
988 *
989 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
990 * and handles the destruction of blkgs. Here the css reference held by
991 * the blkg is put back eventually allowing blkcg_css_free() to be called.
992 * This work may occur in cgwb_release_workfn() on the cgwb_release
993 * workqueue. Any submitted ios that fail to get the blkg ref will be
994 * punted to the root_blkg.
995 *
996 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
997 * This finally frees the blkcg.
998 */
999
1000 /**
1001 * blkcg_css_offline - cgroup css_offline callback
1002 * @css: css of interest
1003 *
1004 * This function is called when @css is about to go away. Here the cgwbs are
1005 * offlined first and only once writeback associated with the blkcg has
1006 * finished do we start step 2 (see above).
1007 */
1008 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1009 {
1010 struct blkcg *blkcg = css_to_blkcg(css);
1011
1012 /* this prevents anyone from attaching or migrating to this blkcg */
1013 wb_blkcg_offline(blkcg);
1014
1015 /* put the base online pin allowing step 2 to be triggered */
1016 blkcg_unpin_online(blkcg);
1017 }
1018
1019 /**
1020 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1021 * @blkcg: blkcg of interest
1022 *
1023 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1024 * is nested inside q lock, this function performs reverse double lock dancing.
1025 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1026 * blkcg_css_free to eventually be called.
1027 *
1028 * This is the blkcg counterpart of ioc_release_fn().
1029 */
1030 void blkcg_destroy_blkgs(struct blkcg *blkcg)
1031 {
1032 might_sleep();
1033
1034 spin_lock_irq(&blkcg->lock);
1035
1036 while (!hlist_empty(&blkcg->blkg_list)) {
1037 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1038 struct blkcg_gq, blkcg_node);
1039 struct request_queue *q = blkg->q;
1040
1041 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1042 /*
1043 * Given that the system can accumulate a huge number
1044 * of blkgs in pathological cases, check to see if we
1045 * need to rescheduling to avoid softlockup.
1046 */
1047 spin_unlock_irq(&blkcg->lock);
1048 cond_resched();
1049 spin_lock_irq(&blkcg->lock);
1050 continue;
1051 }
1052
1053 blkg_destroy(blkg);
1054 spin_unlock(&q->queue_lock);
1055 }
1056
1057 spin_unlock_irq(&blkcg->lock);
1058 }
1059
1060 static void blkcg_css_free(struct cgroup_subsys_state *css)
1061 {
1062 struct blkcg *blkcg = css_to_blkcg(css);
1063 int i;
1064
1065 mutex_lock(&blkcg_pol_mutex);
1066
1067 list_del(&blkcg->all_blkcgs_node);
1068
1069 for (i = 0; i < BLKCG_MAX_POLS; i++)
1070 if (blkcg->cpd[i])
1071 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1072
1073 mutex_unlock(&blkcg_pol_mutex);
1074
1075 kfree(blkcg);
1076 }
1077
1078 static struct cgroup_subsys_state *
1079 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1080 {
1081 struct blkcg *blkcg;
1082 struct cgroup_subsys_state *ret;
1083 int i;
1084
1085 mutex_lock(&blkcg_pol_mutex);
1086
1087 if (!parent_css) {
1088 blkcg = &blkcg_root;
1089 } else {
1090 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1091 if (!blkcg) {
1092 ret = ERR_PTR(-ENOMEM);
1093 goto unlock;
1094 }
1095 }
1096
1097 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1098 struct blkcg_policy *pol = blkcg_policy[i];
1099 struct blkcg_policy_data *cpd;
1100
1101 /*
1102 * If the policy hasn't been attached yet, wait for it
1103 * to be attached before doing anything else. Otherwise,
1104 * check if the policy requires any specific per-cgroup
1105 * data: if it does, allocate and initialize it.
1106 */
1107 if (!pol || !pol->cpd_alloc_fn)
1108 continue;
1109
1110 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1111 if (!cpd) {
1112 ret = ERR_PTR(-ENOMEM);
1113 goto free_pd_blkcg;
1114 }
1115 blkcg->cpd[i] = cpd;
1116 cpd->blkcg = blkcg;
1117 cpd->plid = i;
1118 if (pol->cpd_init_fn)
1119 pol->cpd_init_fn(cpd);
1120 }
1121
1122 spin_lock_init(&blkcg->lock);
1123 refcount_set(&blkcg->online_pin, 1);
1124 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1125 INIT_HLIST_HEAD(&blkcg->blkg_list);
1126 #ifdef CONFIG_CGROUP_WRITEBACK
1127 INIT_LIST_HEAD(&blkcg->cgwb_list);
1128 #endif
1129 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1130
1131 mutex_unlock(&blkcg_pol_mutex);
1132 return &blkcg->css;
1133
1134 free_pd_blkcg:
1135 for (i--; i >= 0; i--)
1136 if (blkcg->cpd[i])
1137 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1138
1139 if (blkcg != &blkcg_root)
1140 kfree(blkcg);
1141 unlock:
1142 mutex_unlock(&blkcg_pol_mutex);
1143 return ret;
1144 }
1145
1146 static int blkcg_css_online(struct cgroup_subsys_state *css)
1147 {
1148 struct blkcg *blkcg = css_to_blkcg(css);
1149 struct blkcg *parent = blkcg_parent(blkcg);
1150
1151 /*
1152 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1153 * don't go offline while cgwbs are still active on them. Pin the
1154 * parent so that offline always happens towards the root.
1155 */
1156 if (parent)
1157 blkcg_pin_online(parent);
1158 return 0;
1159 }
1160
1161 /**
1162 * blkcg_init_queue - initialize blkcg part of request queue
1163 * @q: request_queue to initialize
1164 *
1165 * Called from blk_alloc_queue(). Responsible for initializing blkcg
1166 * part of new request_queue @q.
1167 *
1168 * RETURNS:
1169 * 0 on success, -errno on failure.
1170 */
1171 int blkcg_init_queue(struct request_queue *q)
1172 {
1173 struct blkcg_gq *new_blkg, *blkg;
1174 bool preloaded;
1175 int ret;
1176
1177 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1178 if (!new_blkg)
1179 return -ENOMEM;
1180
1181 preloaded = !radix_tree_preload(GFP_KERNEL);
1182
1183 /* Make sure the root blkg exists. */
1184 rcu_read_lock();
1185 spin_lock_irq(&q->queue_lock);
1186 blkg = blkg_create(&blkcg_root, q, new_blkg);
1187 if (IS_ERR(blkg))
1188 goto err_unlock;
1189 q->root_blkg = blkg;
1190 spin_unlock_irq(&q->queue_lock);
1191 rcu_read_unlock();
1192
1193 if (preloaded)
1194 radix_tree_preload_end();
1195
1196 ret = blk_ioprio_init(q);
1197 if (ret)
1198 goto err_destroy_all;
1199
1200 ret = blk_throtl_init(q);
1201 if (ret)
1202 goto err_destroy_all;
1203
1204 ret = blk_iolatency_init(q);
1205 if (ret) {
1206 blk_throtl_exit(q);
1207 goto err_destroy_all;
1208 }
1209
1210 return 0;
1211
1212 err_destroy_all:
1213 blkg_destroy_all(q);
1214 return ret;
1215 err_unlock:
1216 spin_unlock_irq(&q->queue_lock);
1217 rcu_read_unlock();
1218 if (preloaded)
1219 radix_tree_preload_end();
1220 return PTR_ERR(blkg);
1221 }
1222
1223 /**
1224 * blkcg_exit_queue - exit and release blkcg part of request_queue
1225 * @q: request_queue being released
1226 *
1227 * Called from blk_exit_queue(). Responsible for exiting blkcg part.
1228 */
1229 void blkcg_exit_queue(struct request_queue *q)
1230 {
1231 blkg_destroy_all(q);
1232 blk_throtl_exit(q);
1233 }
1234
1235 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1236 {
1237 int i;
1238
1239 mutex_lock(&blkcg_pol_mutex);
1240
1241 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1242 struct blkcg_policy *pol = blkcg_policy[i];
1243 struct blkcg *blkcg;
1244
1245 if (!pol || !pol->cpd_bind_fn)
1246 continue;
1247
1248 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1249 if (blkcg->cpd[pol->plid])
1250 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1251 }
1252 mutex_unlock(&blkcg_pol_mutex);
1253 }
1254
1255 static void blkcg_exit(struct task_struct *tsk)
1256 {
1257 if (tsk->throttle_queue)
1258 blk_put_queue(tsk->throttle_queue);
1259 tsk->throttle_queue = NULL;
1260 }
1261
1262 struct cgroup_subsys io_cgrp_subsys = {
1263 .css_alloc = blkcg_css_alloc,
1264 .css_online = blkcg_css_online,
1265 .css_offline = blkcg_css_offline,
1266 .css_free = blkcg_css_free,
1267 .css_rstat_flush = blkcg_rstat_flush,
1268 .bind = blkcg_bind,
1269 .dfl_cftypes = blkcg_files,
1270 .legacy_cftypes = blkcg_legacy_files,
1271 .legacy_name = "blkio",
1272 .exit = blkcg_exit,
1273 #ifdef CONFIG_MEMCG
1274 /*
1275 * This ensures that, if available, memcg is automatically enabled
1276 * together on the default hierarchy so that the owner cgroup can
1277 * be retrieved from writeback pages.
1278 */
1279 .depends_on = 1 << memory_cgrp_id,
1280 #endif
1281 };
1282 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1283
1284 /**
1285 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1286 * @q: request_queue of interest
1287 * @pol: blkcg policy to activate
1288 *
1289 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1290 * bypass mode to populate its blkgs with policy_data for @pol.
1291 *
1292 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1293 * from IO path. Update of each blkg is protected by both queue and blkcg
1294 * locks so that holding either lock and testing blkcg_policy_enabled() is
1295 * always enough for dereferencing policy data.
1296 *
1297 * The caller is responsible for synchronizing [de]activations and policy
1298 * [un]registerations. Returns 0 on success, -errno on failure.
1299 */
1300 int blkcg_activate_policy(struct request_queue *q,
1301 const struct blkcg_policy *pol)
1302 {
1303 struct blkg_policy_data *pd_prealloc = NULL;
1304 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1305 int ret;
1306
1307 if (blkcg_policy_enabled(q, pol))
1308 return 0;
1309
1310 if (queue_is_mq(q))
1311 blk_mq_freeze_queue(q);
1312 retry:
1313 spin_lock_irq(&q->queue_lock);
1314
1315 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1316 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1317 struct blkg_policy_data *pd;
1318
1319 if (blkg->pd[pol->plid])
1320 continue;
1321
1322 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1323 if (blkg == pinned_blkg) {
1324 pd = pd_prealloc;
1325 pd_prealloc = NULL;
1326 } else {
1327 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1328 blkg->blkcg);
1329 }
1330
1331 if (!pd) {
1332 /*
1333 * GFP_NOWAIT failed. Free the existing one and
1334 * prealloc for @blkg w/ GFP_KERNEL.
1335 */
1336 if (pinned_blkg)
1337 blkg_put(pinned_blkg);
1338 blkg_get(blkg);
1339 pinned_blkg = blkg;
1340
1341 spin_unlock_irq(&q->queue_lock);
1342
1343 if (pd_prealloc)
1344 pol->pd_free_fn(pd_prealloc);
1345 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1346 blkg->blkcg);
1347 if (pd_prealloc)
1348 goto retry;
1349 else
1350 goto enomem;
1351 }
1352
1353 blkg->pd[pol->plid] = pd;
1354 pd->blkg = blkg;
1355 pd->plid = pol->plid;
1356 }
1357
1358 /* all allocated, init in the same order */
1359 if (pol->pd_init_fn)
1360 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1361 pol->pd_init_fn(blkg->pd[pol->plid]);
1362
1363 __set_bit(pol->plid, q->blkcg_pols);
1364 ret = 0;
1365
1366 spin_unlock_irq(&q->queue_lock);
1367 out:
1368 if (queue_is_mq(q))
1369 blk_mq_unfreeze_queue(q);
1370 if (pinned_blkg)
1371 blkg_put(pinned_blkg);
1372 if (pd_prealloc)
1373 pol->pd_free_fn(pd_prealloc);
1374 return ret;
1375
1376 enomem:
1377 /* alloc failed, nothing's initialized yet, free everything */
1378 spin_lock_irq(&q->queue_lock);
1379 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1380 struct blkcg *blkcg = blkg->blkcg;
1381
1382 spin_lock(&blkcg->lock);
1383 if (blkg->pd[pol->plid]) {
1384 pol->pd_free_fn(blkg->pd[pol->plid]);
1385 blkg->pd[pol->plid] = NULL;
1386 }
1387 spin_unlock(&blkcg->lock);
1388 }
1389 spin_unlock_irq(&q->queue_lock);
1390 ret = -ENOMEM;
1391 goto out;
1392 }
1393 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1394
1395 /**
1396 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1397 * @q: request_queue of interest
1398 * @pol: blkcg policy to deactivate
1399 *
1400 * Deactivate @pol on @q. Follows the same synchronization rules as
1401 * blkcg_activate_policy().
1402 */
1403 void blkcg_deactivate_policy(struct request_queue *q,
1404 const struct blkcg_policy *pol)
1405 {
1406 struct blkcg_gq *blkg;
1407
1408 if (!blkcg_policy_enabled(q, pol))
1409 return;
1410
1411 if (queue_is_mq(q))
1412 blk_mq_freeze_queue(q);
1413
1414 spin_lock_irq(&q->queue_lock);
1415
1416 __clear_bit(pol->plid, q->blkcg_pols);
1417
1418 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1419 struct blkcg *blkcg = blkg->blkcg;
1420
1421 spin_lock(&blkcg->lock);
1422 if (blkg->pd[pol->plid]) {
1423 if (pol->pd_offline_fn)
1424 pol->pd_offline_fn(blkg->pd[pol->plid]);
1425 pol->pd_free_fn(blkg->pd[pol->plid]);
1426 blkg->pd[pol->plid] = NULL;
1427 }
1428 spin_unlock(&blkcg->lock);
1429 }
1430
1431 spin_unlock_irq(&q->queue_lock);
1432
1433 if (queue_is_mq(q))
1434 blk_mq_unfreeze_queue(q);
1435 }
1436 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1437
1438 /**
1439 * blkcg_policy_register - register a blkcg policy
1440 * @pol: blkcg policy to register
1441 *
1442 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1443 * successful registration. Returns 0 on success and -errno on failure.
1444 */
1445 int blkcg_policy_register(struct blkcg_policy *pol)
1446 {
1447 struct blkcg *blkcg;
1448 int i, ret;
1449
1450 mutex_lock(&blkcg_pol_register_mutex);
1451 mutex_lock(&blkcg_pol_mutex);
1452
1453 /* find an empty slot */
1454 ret = -ENOSPC;
1455 for (i = 0; i < BLKCG_MAX_POLS; i++)
1456 if (!blkcg_policy[i])
1457 break;
1458 if (i >= BLKCG_MAX_POLS) {
1459 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1460 goto err_unlock;
1461 }
1462
1463 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1464 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1465 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1466 goto err_unlock;
1467
1468 /* register @pol */
1469 pol->plid = i;
1470 blkcg_policy[pol->plid] = pol;
1471
1472 /* allocate and install cpd's */
1473 if (pol->cpd_alloc_fn) {
1474 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1475 struct blkcg_policy_data *cpd;
1476
1477 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1478 if (!cpd)
1479 goto err_free_cpds;
1480
1481 blkcg->cpd[pol->plid] = cpd;
1482 cpd->blkcg = blkcg;
1483 cpd->plid = pol->plid;
1484 if (pol->cpd_init_fn)
1485 pol->cpd_init_fn(cpd);
1486 }
1487 }
1488
1489 mutex_unlock(&blkcg_pol_mutex);
1490
1491 /* everything is in place, add intf files for the new policy */
1492 if (pol->dfl_cftypes)
1493 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1494 pol->dfl_cftypes));
1495 if (pol->legacy_cftypes)
1496 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1497 pol->legacy_cftypes));
1498 mutex_unlock(&blkcg_pol_register_mutex);
1499 return 0;
1500
1501 err_free_cpds:
1502 if (pol->cpd_free_fn) {
1503 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1504 if (blkcg->cpd[pol->plid]) {
1505 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1506 blkcg->cpd[pol->plid] = NULL;
1507 }
1508 }
1509 }
1510 blkcg_policy[pol->plid] = NULL;
1511 err_unlock:
1512 mutex_unlock(&blkcg_pol_mutex);
1513 mutex_unlock(&blkcg_pol_register_mutex);
1514 return ret;
1515 }
1516 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1517
1518 /**
1519 * blkcg_policy_unregister - unregister a blkcg policy
1520 * @pol: blkcg policy to unregister
1521 *
1522 * Undo blkcg_policy_register(@pol). Might sleep.
1523 */
1524 void blkcg_policy_unregister(struct blkcg_policy *pol)
1525 {
1526 struct blkcg *blkcg;
1527
1528 mutex_lock(&blkcg_pol_register_mutex);
1529
1530 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1531 goto out_unlock;
1532
1533 /* kill the intf files first */
1534 if (pol->dfl_cftypes)
1535 cgroup_rm_cftypes(pol->dfl_cftypes);
1536 if (pol->legacy_cftypes)
1537 cgroup_rm_cftypes(pol->legacy_cftypes);
1538
1539 /* remove cpds and unregister */
1540 mutex_lock(&blkcg_pol_mutex);
1541
1542 if (pol->cpd_free_fn) {
1543 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1544 if (blkcg->cpd[pol->plid]) {
1545 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1546 blkcg->cpd[pol->plid] = NULL;
1547 }
1548 }
1549 }
1550 blkcg_policy[pol->plid] = NULL;
1551
1552 mutex_unlock(&blkcg_pol_mutex);
1553 out_unlock:
1554 mutex_unlock(&blkcg_pol_register_mutex);
1555 }
1556 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1557
1558 bool __blkcg_punt_bio_submit(struct bio *bio)
1559 {
1560 struct blkcg_gq *blkg = bio->bi_blkg;
1561
1562 /* consume the flag first */
1563 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1564
1565 /* never bounce for the root cgroup */
1566 if (!blkg->parent)
1567 return false;
1568
1569 spin_lock_bh(&blkg->async_bio_lock);
1570 bio_list_add(&blkg->async_bios, bio);
1571 spin_unlock_bh(&blkg->async_bio_lock);
1572
1573 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1574 return true;
1575 }
1576
1577 /*
1578 * Scale the accumulated delay based on how long it has been since we updated
1579 * the delay. We only call this when we are adding delay, in case it's been a
1580 * while since we added delay, and when we are checking to see if we need to
1581 * delay a task, to account for any delays that may have occurred.
1582 */
1583 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1584 {
1585 u64 old = atomic64_read(&blkg->delay_start);
1586
1587 /* negative use_delay means no scaling, see blkcg_set_delay() */
1588 if (atomic_read(&blkg->use_delay) < 0)
1589 return;
1590
1591 /*
1592 * We only want to scale down every second. The idea here is that we
1593 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1594 * time window. We only want to throttle tasks for recent delay that
1595 * has occurred, in 1 second time windows since that's the maximum
1596 * things can be throttled. We save the current delay window in
1597 * blkg->last_delay so we know what amount is still left to be charged
1598 * to the blkg from this point onward. blkg->last_use keeps track of
1599 * the use_delay counter. The idea is if we're unthrottling the blkg we
1600 * are ok with whatever is happening now, and we can take away more of
1601 * the accumulated delay as we've already throttled enough that
1602 * everybody is happy with their IO latencies.
1603 */
1604 if (time_before64(old + NSEC_PER_SEC, now) &&
1605 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1606 u64 cur = atomic64_read(&blkg->delay_nsec);
1607 u64 sub = min_t(u64, blkg->last_delay, now - old);
1608 int cur_use = atomic_read(&blkg->use_delay);
1609
1610 /*
1611 * We've been unthrottled, subtract a larger chunk of our
1612 * accumulated delay.
1613 */
1614 if (cur_use < blkg->last_use)
1615 sub = max_t(u64, sub, blkg->last_delay >> 1);
1616
1617 /*
1618 * This shouldn't happen, but handle it anyway. Our delay_nsec
1619 * should only ever be growing except here where we subtract out
1620 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1621 * rather not end up with negative numbers.
1622 */
1623 if (unlikely(cur < sub)) {
1624 atomic64_set(&blkg->delay_nsec, 0);
1625 blkg->last_delay = 0;
1626 } else {
1627 atomic64_sub(sub, &blkg->delay_nsec);
1628 blkg->last_delay = cur - sub;
1629 }
1630 blkg->last_use = cur_use;
1631 }
1632 }
1633
1634 /*
1635 * This is called when we want to actually walk up the hierarchy and check to
1636 * see if we need to throttle, and then actually throttle if there is some
1637 * accumulated delay. This should only be called upon return to user space so
1638 * we're not holding some lock that would induce a priority inversion.
1639 */
1640 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1641 {
1642 unsigned long pflags;
1643 bool clamp;
1644 u64 now = ktime_to_ns(ktime_get());
1645 u64 exp;
1646 u64 delay_nsec = 0;
1647 int tok;
1648
1649 while (blkg->parent) {
1650 int use_delay = atomic_read(&blkg->use_delay);
1651
1652 if (use_delay) {
1653 u64 this_delay;
1654
1655 blkcg_scale_delay(blkg, now);
1656 this_delay = atomic64_read(&blkg->delay_nsec);
1657 if (this_delay > delay_nsec) {
1658 delay_nsec = this_delay;
1659 clamp = use_delay > 0;
1660 }
1661 }
1662 blkg = blkg->parent;
1663 }
1664
1665 if (!delay_nsec)
1666 return;
1667
1668 /*
1669 * Let's not sleep for all eternity if we've amassed a huge delay.
1670 * Swapping or metadata IO can accumulate 10's of seconds worth of
1671 * delay, and we want userspace to be able to do _something_ so cap the
1672 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1673 * tasks will be delayed for 0.25 second for every syscall. If
1674 * blkcg_set_delay() was used as indicated by negative use_delay, the
1675 * caller is responsible for regulating the range.
1676 */
1677 if (clamp)
1678 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1679
1680 if (use_memdelay)
1681 psi_memstall_enter(&pflags);
1682
1683 exp = ktime_add_ns(now, delay_nsec);
1684 tok = io_schedule_prepare();
1685 do {
1686 __set_current_state(TASK_KILLABLE);
1687 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1688 break;
1689 } while (!fatal_signal_pending(current));
1690 io_schedule_finish(tok);
1691
1692 if (use_memdelay)
1693 psi_memstall_leave(&pflags);
1694 }
1695
1696 /**
1697 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1698 *
1699 * This is only called if we've been marked with set_notify_resume(). Obviously
1700 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1701 * check to see if current->throttle_queue is set and if not this doesn't do
1702 * anything. This should only ever be called by the resume code, it's not meant
1703 * to be called by people willy-nilly as it will actually do the work to
1704 * throttle the task if it is setup for throttling.
1705 */
1706 void blkcg_maybe_throttle_current(void)
1707 {
1708 struct request_queue *q = current->throttle_queue;
1709 struct cgroup_subsys_state *css;
1710 struct blkcg *blkcg;
1711 struct blkcg_gq *blkg;
1712 bool use_memdelay = current->use_memdelay;
1713
1714 if (!q)
1715 return;
1716
1717 current->throttle_queue = NULL;
1718 current->use_memdelay = false;
1719
1720 rcu_read_lock();
1721 css = kthread_blkcg();
1722 if (css)
1723 blkcg = css_to_blkcg(css);
1724 else
1725 blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1726
1727 if (!blkcg)
1728 goto out;
1729 blkg = blkg_lookup(blkcg, q);
1730 if (!blkg)
1731 goto out;
1732 if (!blkg_tryget(blkg))
1733 goto out;
1734 rcu_read_unlock();
1735
1736 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1737 blkg_put(blkg);
1738 blk_put_queue(q);
1739 return;
1740 out:
1741 rcu_read_unlock();
1742 blk_put_queue(q);
1743 }
1744
1745 /**
1746 * blkcg_schedule_throttle - this task needs to check for throttling
1747 * @q: the request queue IO was submitted on
1748 * @use_memdelay: do we charge this to memory delay for PSI
1749 *
1750 * This is called by the IO controller when we know there's delay accumulated
1751 * for the blkg for this task. We do not pass the blkg because there are places
1752 * we call this that may not have that information, the swapping code for
1753 * instance will only have a request_queue at that point. This set's the
1754 * notify_resume for the task to check and see if it requires throttling before
1755 * returning to user space.
1756 *
1757 * We will only schedule once per syscall. You can call this over and over
1758 * again and it will only do the check once upon return to user space, and only
1759 * throttle once. If the task needs to be throttled again it'll need to be
1760 * re-set at the next time we see the task.
1761 */
1762 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1763 {
1764 if (unlikely(current->flags & PF_KTHREAD))
1765 return;
1766
1767 if (current->throttle_queue != q) {
1768 if (!blk_get_queue(q))
1769 return;
1770
1771 if (current->throttle_queue)
1772 blk_put_queue(current->throttle_queue);
1773 current->throttle_queue = q;
1774 }
1775
1776 if (use_memdelay)
1777 current->use_memdelay = use_memdelay;
1778 set_notify_resume(current);
1779 }
1780
1781 /**
1782 * blkcg_add_delay - add delay to this blkg
1783 * @blkg: blkg of interest
1784 * @now: the current time in nanoseconds
1785 * @delta: how many nanoseconds of delay to add
1786 *
1787 * Charge @delta to the blkg's current delay accumulation. This is used to
1788 * throttle tasks if an IO controller thinks we need more throttling.
1789 */
1790 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1791 {
1792 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1793 return;
1794 blkcg_scale_delay(blkg, now);
1795 atomic64_add(delta, &blkg->delay_nsec);
1796 }
1797
1798 /**
1799 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1800 * @bio: target bio
1801 * @css: target css
1802 *
1803 * As the failure mode here is to walk up the blkg tree, this ensure that the
1804 * blkg->parent pointers are always valid. This returns the blkg that it ended
1805 * up taking a reference on or %NULL if no reference was taken.
1806 */
1807 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1808 struct cgroup_subsys_state *css)
1809 {
1810 struct blkcg_gq *blkg, *ret_blkg = NULL;
1811
1812 rcu_read_lock();
1813 blkg = blkg_lookup_create(css_to_blkcg(css),
1814 bio->bi_bdev->bd_disk->queue);
1815 while (blkg) {
1816 if (blkg_tryget(blkg)) {
1817 ret_blkg = blkg;
1818 break;
1819 }
1820 blkg = blkg->parent;
1821 }
1822 rcu_read_unlock();
1823
1824 return ret_blkg;
1825 }
1826
1827 /**
1828 * bio_associate_blkg_from_css - associate a bio with a specified css
1829 * @bio: target bio
1830 * @css: target css
1831 *
1832 * Associate @bio with the blkg found by combining the css's blkg and the
1833 * request_queue of the @bio. An association failure is handled by walking up
1834 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1835 * and q->root_blkg. This situation only happens when a cgroup is dying and
1836 * then the remaining bios will spill to the closest alive blkg.
1837 *
1838 * A reference will be taken on the blkg and will be released when @bio is
1839 * freed.
1840 */
1841 void bio_associate_blkg_from_css(struct bio *bio,
1842 struct cgroup_subsys_state *css)
1843 {
1844 if (bio->bi_blkg)
1845 blkg_put(bio->bi_blkg);
1846
1847 if (css && css->parent) {
1848 bio->bi_blkg = blkg_tryget_closest(bio, css);
1849 } else {
1850 blkg_get(bio->bi_bdev->bd_disk->queue->root_blkg);
1851 bio->bi_blkg = bio->bi_bdev->bd_disk->queue->root_blkg;
1852 }
1853 }
1854 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1855
1856 /**
1857 * bio_associate_blkg - associate a bio with a blkg
1858 * @bio: target bio
1859 *
1860 * Associate @bio with the blkg found from the bio's css and request_queue.
1861 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1862 * already associated, the css is reused and association redone as the
1863 * request_queue may have changed.
1864 */
1865 void bio_associate_blkg(struct bio *bio)
1866 {
1867 struct cgroup_subsys_state *css;
1868
1869 rcu_read_lock();
1870
1871 if (bio->bi_blkg)
1872 css = &bio_blkcg(bio)->css;
1873 else
1874 css = blkcg_css();
1875
1876 bio_associate_blkg_from_css(bio, css);
1877
1878 rcu_read_unlock();
1879 }
1880 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1881
1882 /**
1883 * bio_clone_blkg_association - clone blkg association from src to dst bio
1884 * @dst: destination bio
1885 * @src: source bio
1886 */
1887 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1888 {
1889 if (src->bi_blkg)
1890 bio_associate_blkg_from_css(dst, &bio_blkcg(src)->css);
1891 }
1892 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1893
1894 static int blk_cgroup_io_type(struct bio *bio)
1895 {
1896 if (op_is_discard(bio->bi_opf))
1897 return BLKG_IOSTAT_DISCARD;
1898 if (op_is_write(bio->bi_opf))
1899 return BLKG_IOSTAT_WRITE;
1900 return BLKG_IOSTAT_READ;
1901 }
1902
1903 void blk_cgroup_bio_start(struct bio *bio)
1904 {
1905 int rwd = blk_cgroup_io_type(bio), cpu;
1906 struct blkg_iostat_set *bis;
1907 unsigned long flags;
1908
1909 cpu = get_cpu();
1910 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1911 flags = u64_stats_update_begin_irqsave(&bis->sync);
1912
1913 /*
1914 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1915 * bio and we would have already accounted for the size of the bio.
1916 */
1917 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1918 bio_set_flag(bio, BIO_CGROUP_ACCT);
1919 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1920 }
1921 bis->cur.ios[rwd]++;
1922
1923 u64_stats_update_end_irqrestore(&bis->sync, flags);
1924 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1925 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1926 put_cpu();
1927 }
1928
1929 static int __init blkcg_init(void)
1930 {
1931 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1932 WQ_MEM_RECLAIM | WQ_FREEZABLE |
1933 WQ_UNBOUND | WQ_SYSFS, 0);
1934 if (!blkcg_punt_bio_wq)
1935 return -ENOMEM;
1936 return 0;
1937 }
1938 subsys_initcall(blkcg_init);
1939
1940 module_param(blkcg_debug_stats, bool, 0644);
1941 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");