]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-cgroup.c
Merge branch 'cpufreq/arm/linux-next' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / block / blk-cgroup.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include "blk.h"
34 #include "blk-ioprio.h"
35
36 /*
37 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
38 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
39 * policy [un]register operations including cgroup file additions /
40 * removals. Putting cgroup file registration outside blkcg_pol_mutex
41 * allows grabbing it from cgroup callbacks.
42 */
43 static DEFINE_MUTEX(blkcg_pol_register_mutex);
44 static DEFINE_MUTEX(blkcg_pol_mutex);
45
46 struct blkcg blkcg_root;
47 EXPORT_SYMBOL_GPL(blkcg_root);
48
49 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
50 EXPORT_SYMBOL_GPL(blkcg_root_css);
51
52 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
53
54 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
55
56 bool blkcg_debug_stats = false;
57 static struct workqueue_struct *blkcg_punt_bio_wq;
58
59 #define BLKG_DESTROY_BATCH_SIZE 64
60
61 static bool blkcg_policy_enabled(struct request_queue *q,
62 const struct blkcg_policy *pol)
63 {
64 return pol && test_bit(pol->plid, q->blkcg_pols);
65 }
66
67 /**
68 * blkg_free - free a blkg
69 * @blkg: blkg to free
70 *
71 * Free @blkg which may be partially allocated.
72 */
73 static void blkg_free(struct blkcg_gq *blkg)
74 {
75 int i;
76
77 if (!blkg)
78 return;
79
80 for (i = 0; i < BLKCG_MAX_POLS; i++)
81 if (blkg->pd[i])
82 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
83
84 free_percpu(blkg->iostat_cpu);
85 percpu_ref_exit(&blkg->refcnt);
86 kfree(blkg);
87 }
88
89 static void __blkg_release(struct rcu_head *rcu)
90 {
91 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
92
93 WARN_ON(!bio_list_empty(&blkg->async_bios));
94
95 /* release the blkcg and parent blkg refs this blkg has been holding */
96 css_put(&blkg->blkcg->css);
97 if (blkg->parent)
98 blkg_put(blkg->parent);
99 blkg_free(blkg);
100 }
101
102 /*
103 * A group is RCU protected, but having an rcu lock does not mean that one
104 * can access all the fields of blkg and assume these are valid. For
105 * example, don't try to follow throtl_data and request queue links.
106 *
107 * Having a reference to blkg under an rcu allows accesses to only values
108 * local to groups like group stats and group rate limits.
109 */
110 static void blkg_release(struct percpu_ref *ref)
111 {
112 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
113
114 call_rcu(&blkg->rcu_head, __blkg_release);
115 }
116
117 static void blkg_async_bio_workfn(struct work_struct *work)
118 {
119 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
120 async_bio_work);
121 struct bio_list bios = BIO_EMPTY_LIST;
122 struct bio *bio;
123 struct blk_plug plug;
124 bool need_plug = false;
125
126 /* as long as there are pending bios, @blkg can't go away */
127 spin_lock_bh(&blkg->async_bio_lock);
128 bio_list_merge(&bios, &blkg->async_bios);
129 bio_list_init(&blkg->async_bios);
130 spin_unlock_bh(&blkg->async_bio_lock);
131
132 /* start plug only when bio_list contains at least 2 bios */
133 if (bios.head && bios.head->bi_next) {
134 need_plug = true;
135 blk_start_plug(&plug);
136 }
137 while ((bio = bio_list_pop(&bios)))
138 submit_bio(bio);
139 if (need_plug)
140 blk_finish_plug(&plug);
141 }
142
143 /**
144 * blkg_alloc - allocate a blkg
145 * @blkcg: block cgroup the new blkg is associated with
146 * @q: request_queue the new blkg is associated with
147 * @gfp_mask: allocation mask to use
148 *
149 * Allocate a new blkg assocating @blkcg and @q.
150 */
151 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
152 gfp_t gfp_mask)
153 {
154 struct blkcg_gq *blkg;
155 int i, cpu;
156
157 /* alloc and init base part */
158 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
159 if (!blkg)
160 return NULL;
161
162 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
163 goto err_free;
164
165 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
166 if (!blkg->iostat_cpu)
167 goto err_free;
168
169 blkg->q = q;
170 INIT_LIST_HEAD(&blkg->q_node);
171 spin_lock_init(&blkg->async_bio_lock);
172 bio_list_init(&blkg->async_bios);
173 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
174 blkg->blkcg = blkcg;
175
176 u64_stats_init(&blkg->iostat.sync);
177 for_each_possible_cpu(cpu)
178 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
179
180 for (i = 0; i < BLKCG_MAX_POLS; i++) {
181 struct blkcg_policy *pol = blkcg_policy[i];
182 struct blkg_policy_data *pd;
183
184 if (!blkcg_policy_enabled(q, pol))
185 continue;
186
187 /* alloc per-policy data and attach it to blkg */
188 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
189 if (!pd)
190 goto err_free;
191
192 blkg->pd[i] = pd;
193 pd->blkg = blkg;
194 pd->plid = i;
195 }
196
197 return blkg;
198
199 err_free:
200 blkg_free(blkg);
201 return NULL;
202 }
203
204 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
205 struct request_queue *q, bool update_hint)
206 {
207 struct blkcg_gq *blkg;
208
209 /*
210 * Hint didn't match. Look up from the radix tree. Note that the
211 * hint can only be updated under queue_lock as otherwise @blkg
212 * could have already been removed from blkg_tree. The caller is
213 * responsible for grabbing queue_lock if @update_hint.
214 */
215 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
216 if (blkg && blkg->q == q) {
217 if (update_hint) {
218 lockdep_assert_held(&q->queue_lock);
219 rcu_assign_pointer(blkcg->blkg_hint, blkg);
220 }
221 return blkg;
222 }
223
224 return NULL;
225 }
226 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
227
228 /*
229 * If @new_blkg is %NULL, this function tries to allocate a new one as
230 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
231 */
232 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
233 struct request_queue *q,
234 struct blkcg_gq *new_blkg)
235 {
236 struct blkcg_gq *blkg;
237 int i, ret;
238
239 WARN_ON_ONCE(!rcu_read_lock_held());
240 lockdep_assert_held(&q->queue_lock);
241
242 /* request_queue is dying, do not create/recreate a blkg */
243 if (blk_queue_dying(q)) {
244 ret = -ENODEV;
245 goto err_free_blkg;
246 }
247
248 /* blkg holds a reference to blkcg */
249 if (!css_tryget_online(&blkcg->css)) {
250 ret = -ENODEV;
251 goto err_free_blkg;
252 }
253
254 /* allocate */
255 if (!new_blkg) {
256 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
257 if (unlikely(!new_blkg)) {
258 ret = -ENOMEM;
259 goto err_put_css;
260 }
261 }
262 blkg = new_blkg;
263
264 /* link parent */
265 if (blkcg_parent(blkcg)) {
266 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
267 if (WARN_ON_ONCE(!blkg->parent)) {
268 ret = -ENODEV;
269 goto err_put_css;
270 }
271 blkg_get(blkg->parent);
272 }
273
274 /* invoke per-policy init */
275 for (i = 0; i < BLKCG_MAX_POLS; i++) {
276 struct blkcg_policy *pol = blkcg_policy[i];
277
278 if (blkg->pd[i] && pol->pd_init_fn)
279 pol->pd_init_fn(blkg->pd[i]);
280 }
281
282 /* insert */
283 spin_lock(&blkcg->lock);
284 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
285 if (likely(!ret)) {
286 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
287 list_add(&blkg->q_node, &q->blkg_list);
288
289 for (i = 0; i < BLKCG_MAX_POLS; i++) {
290 struct blkcg_policy *pol = blkcg_policy[i];
291
292 if (blkg->pd[i] && pol->pd_online_fn)
293 pol->pd_online_fn(blkg->pd[i]);
294 }
295 }
296 blkg->online = true;
297 spin_unlock(&blkcg->lock);
298
299 if (!ret)
300 return blkg;
301
302 /* @blkg failed fully initialized, use the usual release path */
303 blkg_put(blkg);
304 return ERR_PTR(ret);
305
306 err_put_css:
307 css_put(&blkcg->css);
308 err_free_blkg:
309 blkg_free(new_blkg);
310 return ERR_PTR(ret);
311 }
312
313 /**
314 * blkg_lookup_create - lookup blkg, try to create one if not there
315 * @blkcg: blkcg of interest
316 * @q: request_queue of interest
317 *
318 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to
319 * create one. blkg creation is performed recursively from blkcg_root such
320 * that all non-root blkg's have access to the parent blkg. This function
321 * should be called under RCU read lock and takes @q->queue_lock.
322 *
323 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
324 * down from root.
325 */
326 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
327 struct request_queue *q)
328 {
329 struct blkcg_gq *blkg;
330 unsigned long flags;
331
332 WARN_ON_ONCE(!rcu_read_lock_held());
333
334 blkg = blkg_lookup(blkcg, q);
335 if (blkg)
336 return blkg;
337
338 spin_lock_irqsave(&q->queue_lock, flags);
339 blkg = __blkg_lookup(blkcg, q, true);
340 if (blkg)
341 goto found;
342
343 /*
344 * Create blkgs walking down from blkcg_root to @blkcg, so that all
345 * non-root blkgs have access to their parents. Returns the closest
346 * blkg to the intended blkg should blkg_create() fail.
347 */
348 while (true) {
349 struct blkcg *pos = blkcg;
350 struct blkcg *parent = blkcg_parent(blkcg);
351 struct blkcg_gq *ret_blkg = q->root_blkg;
352
353 while (parent) {
354 blkg = __blkg_lookup(parent, q, false);
355 if (blkg) {
356 /* remember closest blkg */
357 ret_blkg = blkg;
358 break;
359 }
360 pos = parent;
361 parent = blkcg_parent(parent);
362 }
363
364 blkg = blkg_create(pos, q, NULL);
365 if (IS_ERR(blkg)) {
366 blkg = ret_blkg;
367 break;
368 }
369 if (pos == blkcg)
370 break;
371 }
372
373 found:
374 spin_unlock_irqrestore(&q->queue_lock, flags);
375 return blkg;
376 }
377
378 static void blkg_destroy(struct blkcg_gq *blkg)
379 {
380 struct blkcg *blkcg = blkg->blkcg;
381 int i;
382
383 lockdep_assert_held(&blkg->q->queue_lock);
384 lockdep_assert_held(&blkcg->lock);
385
386 /* Something wrong if we are trying to remove same group twice */
387 WARN_ON_ONCE(list_empty(&blkg->q_node));
388 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
389
390 for (i = 0; i < BLKCG_MAX_POLS; i++) {
391 struct blkcg_policy *pol = blkcg_policy[i];
392
393 if (blkg->pd[i] && pol->pd_offline_fn)
394 pol->pd_offline_fn(blkg->pd[i]);
395 }
396
397 blkg->online = false;
398
399 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
400 list_del_init(&blkg->q_node);
401 hlist_del_init_rcu(&blkg->blkcg_node);
402
403 /*
404 * Both setting lookup hint to and clearing it from @blkg are done
405 * under queue_lock. If it's not pointing to @blkg now, it never
406 * will. Hint assignment itself can race safely.
407 */
408 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
409 rcu_assign_pointer(blkcg->blkg_hint, NULL);
410
411 /*
412 * Put the reference taken at the time of creation so that when all
413 * queues are gone, group can be destroyed.
414 */
415 percpu_ref_kill(&blkg->refcnt);
416 }
417
418 /**
419 * blkg_destroy_all - destroy all blkgs associated with a request_queue
420 * @q: request_queue of interest
421 *
422 * Destroy all blkgs associated with @q.
423 */
424 static void blkg_destroy_all(struct request_queue *q)
425 {
426 struct blkcg_gq *blkg, *n;
427 int count = BLKG_DESTROY_BATCH_SIZE;
428
429 restart:
430 spin_lock_irq(&q->queue_lock);
431 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
432 struct blkcg *blkcg = blkg->blkcg;
433
434 spin_lock(&blkcg->lock);
435 blkg_destroy(blkg);
436 spin_unlock(&blkcg->lock);
437
438 /*
439 * in order to avoid holding the spin lock for too long, release
440 * it when a batch of blkgs are destroyed.
441 */
442 if (!(--count)) {
443 count = BLKG_DESTROY_BATCH_SIZE;
444 spin_unlock_irq(&q->queue_lock);
445 cond_resched();
446 goto restart;
447 }
448 }
449
450 q->root_blkg = NULL;
451 spin_unlock_irq(&q->queue_lock);
452 }
453
454 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
455 struct cftype *cftype, u64 val)
456 {
457 struct blkcg *blkcg = css_to_blkcg(css);
458 struct blkcg_gq *blkg;
459 int i, cpu;
460
461 mutex_lock(&blkcg_pol_mutex);
462 spin_lock_irq(&blkcg->lock);
463
464 /*
465 * Note that stat reset is racy - it doesn't synchronize against
466 * stat updates. This is a debug feature which shouldn't exist
467 * anyway. If you get hit by a race, retry.
468 */
469 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
470 for_each_possible_cpu(cpu) {
471 struct blkg_iostat_set *bis =
472 per_cpu_ptr(blkg->iostat_cpu, cpu);
473 memset(bis, 0, sizeof(*bis));
474 }
475 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
476
477 for (i = 0; i < BLKCG_MAX_POLS; i++) {
478 struct blkcg_policy *pol = blkcg_policy[i];
479
480 if (blkg->pd[i] && pol->pd_reset_stats_fn)
481 pol->pd_reset_stats_fn(blkg->pd[i]);
482 }
483 }
484
485 spin_unlock_irq(&blkcg->lock);
486 mutex_unlock(&blkcg_pol_mutex);
487 return 0;
488 }
489
490 const char *blkg_dev_name(struct blkcg_gq *blkg)
491 {
492 /* some drivers (floppy) instantiate a queue w/o disk registered */
493 if (blkg->q->backing_dev_info->dev)
494 return bdi_dev_name(blkg->q->backing_dev_info);
495 return NULL;
496 }
497
498 /**
499 * blkcg_print_blkgs - helper for printing per-blkg data
500 * @sf: seq_file to print to
501 * @blkcg: blkcg of interest
502 * @prfill: fill function to print out a blkg
503 * @pol: policy in question
504 * @data: data to be passed to @prfill
505 * @show_total: to print out sum of prfill return values or not
506 *
507 * This function invokes @prfill on each blkg of @blkcg if pd for the
508 * policy specified by @pol exists. @prfill is invoked with @sf, the
509 * policy data and @data and the matching queue lock held. If @show_total
510 * is %true, the sum of the return values from @prfill is printed with
511 * "Total" label at the end.
512 *
513 * This is to be used to construct print functions for
514 * cftype->read_seq_string method.
515 */
516 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
517 u64 (*prfill)(struct seq_file *,
518 struct blkg_policy_data *, int),
519 const struct blkcg_policy *pol, int data,
520 bool show_total)
521 {
522 struct blkcg_gq *blkg;
523 u64 total = 0;
524
525 rcu_read_lock();
526 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
527 spin_lock_irq(&blkg->q->queue_lock);
528 if (blkcg_policy_enabled(blkg->q, pol))
529 total += prfill(sf, blkg->pd[pol->plid], data);
530 spin_unlock_irq(&blkg->q->queue_lock);
531 }
532 rcu_read_unlock();
533
534 if (show_total)
535 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
536 }
537 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
538
539 /**
540 * __blkg_prfill_u64 - prfill helper for a single u64 value
541 * @sf: seq_file to print to
542 * @pd: policy private data of interest
543 * @v: value to print
544 *
545 * Print @v to @sf for the device assocaited with @pd.
546 */
547 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
548 {
549 const char *dname = blkg_dev_name(pd->blkg);
550
551 if (!dname)
552 return 0;
553
554 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
555 return v;
556 }
557 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
558
559 /* Performs queue bypass and policy enabled checks then looks up blkg. */
560 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
561 const struct blkcg_policy *pol,
562 struct request_queue *q)
563 {
564 WARN_ON_ONCE(!rcu_read_lock_held());
565 lockdep_assert_held(&q->queue_lock);
566
567 if (!blkcg_policy_enabled(q, pol))
568 return ERR_PTR(-EOPNOTSUPP);
569 return __blkg_lookup(blkcg, q, true /* update_hint */);
570 }
571
572 /**
573 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
574 * @inputp: input string pointer
575 *
576 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
577 * from @input and get and return the matching bdev. *@inputp is
578 * updated to point past the device node prefix. Returns an ERR_PTR()
579 * value on error.
580 *
581 * Use this function iff blkg_conf_prep() can't be used for some reason.
582 */
583 struct block_device *blkcg_conf_open_bdev(char **inputp)
584 {
585 char *input = *inputp;
586 unsigned int major, minor;
587 struct block_device *bdev;
588 int key_len;
589
590 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
591 return ERR_PTR(-EINVAL);
592
593 input += key_len;
594 if (!isspace(*input))
595 return ERR_PTR(-EINVAL);
596 input = skip_spaces(input);
597
598 bdev = blkdev_get_no_open(MKDEV(major, minor));
599 if (!bdev)
600 return ERR_PTR(-ENODEV);
601 if (bdev_is_partition(bdev)) {
602 blkdev_put_no_open(bdev);
603 return ERR_PTR(-ENODEV);
604 }
605
606 *inputp = input;
607 return bdev;
608 }
609
610 /**
611 * blkg_conf_prep - parse and prepare for per-blkg config update
612 * @blkcg: target block cgroup
613 * @pol: target policy
614 * @input: input string
615 * @ctx: blkg_conf_ctx to be filled
616 *
617 * Parse per-blkg config update from @input and initialize @ctx with the
618 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
619 * part of @input following MAJ:MIN. This function returns with RCU read
620 * lock and queue lock held and must be paired with blkg_conf_finish().
621 */
622 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
623 char *input, struct blkg_conf_ctx *ctx)
624 __acquires(rcu) __acquires(&bdev->bd_disk->queue->queue_lock)
625 {
626 struct block_device *bdev;
627 struct request_queue *q;
628 struct blkcg_gq *blkg;
629 int ret;
630
631 bdev = blkcg_conf_open_bdev(&input);
632 if (IS_ERR(bdev))
633 return PTR_ERR(bdev);
634
635 q = bdev->bd_disk->queue;
636
637 rcu_read_lock();
638 spin_lock_irq(&q->queue_lock);
639
640 blkg = blkg_lookup_check(blkcg, pol, q);
641 if (IS_ERR(blkg)) {
642 ret = PTR_ERR(blkg);
643 goto fail_unlock;
644 }
645
646 if (blkg)
647 goto success;
648
649 /*
650 * Create blkgs walking down from blkcg_root to @blkcg, so that all
651 * non-root blkgs have access to their parents.
652 */
653 while (true) {
654 struct blkcg *pos = blkcg;
655 struct blkcg *parent;
656 struct blkcg_gq *new_blkg;
657
658 parent = blkcg_parent(blkcg);
659 while (parent && !__blkg_lookup(parent, q, false)) {
660 pos = parent;
661 parent = blkcg_parent(parent);
662 }
663
664 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
665 spin_unlock_irq(&q->queue_lock);
666 rcu_read_unlock();
667
668 new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
669 if (unlikely(!new_blkg)) {
670 ret = -ENOMEM;
671 goto fail;
672 }
673
674 if (radix_tree_preload(GFP_KERNEL)) {
675 blkg_free(new_blkg);
676 ret = -ENOMEM;
677 goto fail;
678 }
679
680 rcu_read_lock();
681 spin_lock_irq(&q->queue_lock);
682
683 blkg = blkg_lookup_check(pos, pol, q);
684 if (IS_ERR(blkg)) {
685 ret = PTR_ERR(blkg);
686 blkg_free(new_blkg);
687 goto fail_preloaded;
688 }
689
690 if (blkg) {
691 blkg_free(new_blkg);
692 } else {
693 blkg = blkg_create(pos, q, new_blkg);
694 if (IS_ERR(blkg)) {
695 ret = PTR_ERR(blkg);
696 goto fail_preloaded;
697 }
698 }
699
700 radix_tree_preload_end();
701
702 if (pos == blkcg)
703 goto success;
704 }
705 success:
706 ctx->bdev = bdev;
707 ctx->blkg = blkg;
708 ctx->body = input;
709 return 0;
710
711 fail_preloaded:
712 radix_tree_preload_end();
713 fail_unlock:
714 spin_unlock_irq(&q->queue_lock);
715 rcu_read_unlock();
716 fail:
717 blkdev_put_no_open(bdev);
718 /*
719 * If queue was bypassing, we should retry. Do so after a
720 * short msleep(). It isn't strictly necessary but queue
721 * can be bypassing for some time and it's always nice to
722 * avoid busy looping.
723 */
724 if (ret == -EBUSY) {
725 msleep(10);
726 ret = restart_syscall();
727 }
728 return ret;
729 }
730 EXPORT_SYMBOL_GPL(blkg_conf_prep);
731
732 /**
733 * blkg_conf_finish - finish up per-blkg config update
734 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
735 *
736 * Finish up after per-blkg config update. This function must be paired
737 * with blkg_conf_prep().
738 */
739 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
740 __releases(&ctx->bdev->bd_disk->queue->queue_lock) __releases(rcu)
741 {
742 spin_unlock_irq(&ctx->bdev->bd_disk->queue->queue_lock);
743 rcu_read_unlock();
744 blkdev_put_no_open(ctx->bdev);
745 }
746 EXPORT_SYMBOL_GPL(blkg_conf_finish);
747
748 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
749 {
750 int i;
751
752 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
753 dst->bytes[i] = src->bytes[i];
754 dst->ios[i] = src->ios[i];
755 }
756 }
757
758 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
759 {
760 int i;
761
762 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
763 dst->bytes[i] += src->bytes[i];
764 dst->ios[i] += src->ios[i];
765 }
766 }
767
768 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
769 {
770 int i;
771
772 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
773 dst->bytes[i] -= src->bytes[i];
774 dst->ios[i] -= src->ios[i];
775 }
776 }
777
778 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
779 {
780 struct blkcg *blkcg = css_to_blkcg(css);
781 struct blkcg_gq *blkg;
782
783 /* Root-level stats are sourced from system-wide IO stats */
784 if (!cgroup_parent(css->cgroup))
785 return;
786
787 rcu_read_lock();
788
789 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
790 struct blkcg_gq *parent = blkg->parent;
791 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
792 struct blkg_iostat cur, delta;
793 unsigned long flags;
794 unsigned int seq;
795
796 /* fetch the current per-cpu values */
797 do {
798 seq = u64_stats_fetch_begin(&bisc->sync);
799 blkg_iostat_set(&cur, &bisc->cur);
800 } while (u64_stats_fetch_retry(&bisc->sync, seq));
801
802 /* propagate percpu delta to global */
803 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
804 blkg_iostat_set(&delta, &cur);
805 blkg_iostat_sub(&delta, &bisc->last);
806 blkg_iostat_add(&blkg->iostat.cur, &delta);
807 blkg_iostat_add(&bisc->last, &delta);
808 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
809
810 /* propagate global delta to parent (unless that's root) */
811 if (parent && parent->parent) {
812 flags = u64_stats_update_begin_irqsave(&parent->iostat.sync);
813 blkg_iostat_set(&delta, &blkg->iostat.cur);
814 blkg_iostat_sub(&delta, &blkg->iostat.last);
815 blkg_iostat_add(&parent->iostat.cur, &delta);
816 blkg_iostat_add(&blkg->iostat.last, &delta);
817 u64_stats_update_end_irqrestore(&parent->iostat.sync, flags);
818 }
819 }
820
821 rcu_read_unlock();
822 }
823
824 /*
825 * We source root cgroup stats from the system-wide stats to avoid
826 * tracking the same information twice and incurring overhead when no
827 * cgroups are defined. For that reason, cgroup_rstat_flush in
828 * blkcg_print_stat does not actually fill out the iostat in the root
829 * cgroup's blkcg_gq.
830 *
831 * However, we would like to re-use the printing code between the root and
832 * non-root cgroups to the extent possible. For that reason, we simulate
833 * flushing the root cgroup's stats by explicitly filling in the iostat
834 * with disk level statistics.
835 */
836 static void blkcg_fill_root_iostats(void)
837 {
838 struct class_dev_iter iter;
839 struct device *dev;
840
841 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
842 while ((dev = class_dev_iter_next(&iter))) {
843 struct block_device *bdev = dev_to_bdev(dev);
844 struct blkcg_gq *blkg =
845 blk_queue_root_blkg(bdev->bd_disk->queue);
846 struct blkg_iostat tmp;
847 int cpu;
848
849 memset(&tmp, 0, sizeof(tmp));
850 for_each_possible_cpu(cpu) {
851 struct disk_stats *cpu_dkstats;
852 unsigned long flags;
853
854 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
855 tmp.ios[BLKG_IOSTAT_READ] +=
856 cpu_dkstats->ios[STAT_READ];
857 tmp.ios[BLKG_IOSTAT_WRITE] +=
858 cpu_dkstats->ios[STAT_WRITE];
859 tmp.ios[BLKG_IOSTAT_DISCARD] +=
860 cpu_dkstats->ios[STAT_DISCARD];
861 // convert sectors to bytes
862 tmp.bytes[BLKG_IOSTAT_READ] +=
863 cpu_dkstats->sectors[STAT_READ] << 9;
864 tmp.bytes[BLKG_IOSTAT_WRITE] +=
865 cpu_dkstats->sectors[STAT_WRITE] << 9;
866 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
867 cpu_dkstats->sectors[STAT_DISCARD] << 9;
868
869 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
870 blkg_iostat_set(&blkg->iostat.cur, &tmp);
871 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
872 }
873 }
874 }
875
876 static int blkcg_print_stat(struct seq_file *sf, void *v)
877 {
878 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
879 struct blkcg_gq *blkg;
880
881 if (!seq_css(sf)->parent)
882 blkcg_fill_root_iostats();
883 else
884 cgroup_rstat_flush(blkcg->css.cgroup);
885
886 rcu_read_lock();
887
888 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
889 struct blkg_iostat_set *bis = &blkg->iostat;
890 const char *dname;
891 char *buf;
892 u64 rbytes, wbytes, rios, wios, dbytes, dios;
893 size_t size = seq_get_buf(sf, &buf), off = 0;
894 int i;
895 bool has_stats = false;
896 unsigned seq;
897
898 spin_lock_irq(&blkg->q->queue_lock);
899
900 if (!blkg->online)
901 goto skip;
902
903 dname = blkg_dev_name(blkg);
904 if (!dname)
905 goto skip;
906
907 /*
908 * Hooray string manipulation, count is the size written NOT
909 * INCLUDING THE \0, so size is now count+1 less than what we
910 * had before, but we want to start writing the next bit from
911 * the \0 so we only add count to buf.
912 */
913 off += scnprintf(buf+off, size-off, "%s ", dname);
914
915 do {
916 seq = u64_stats_fetch_begin(&bis->sync);
917
918 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
919 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
920 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
921 rios = bis->cur.ios[BLKG_IOSTAT_READ];
922 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
923 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
924 } while (u64_stats_fetch_retry(&bis->sync, seq));
925
926 if (rbytes || wbytes || rios || wios) {
927 has_stats = true;
928 off += scnprintf(buf+off, size-off,
929 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
930 rbytes, wbytes, rios, wios,
931 dbytes, dios);
932 }
933
934 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
935 has_stats = true;
936 off += scnprintf(buf+off, size-off,
937 " use_delay=%d delay_nsec=%llu",
938 atomic_read(&blkg->use_delay),
939 (unsigned long long)atomic64_read(&blkg->delay_nsec));
940 }
941
942 for (i = 0; i < BLKCG_MAX_POLS; i++) {
943 struct blkcg_policy *pol = blkcg_policy[i];
944 size_t written;
945
946 if (!blkg->pd[i] || !pol->pd_stat_fn)
947 continue;
948
949 written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off);
950 if (written)
951 has_stats = true;
952 off += written;
953 }
954
955 if (has_stats) {
956 if (off < size - 1) {
957 off += scnprintf(buf+off, size-off, "\n");
958 seq_commit(sf, off);
959 } else {
960 seq_commit(sf, -1);
961 }
962 }
963 skip:
964 spin_unlock_irq(&blkg->q->queue_lock);
965 }
966
967 rcu_read_unlock();
968 return 0;
969 }
970
971 static struct cftype blkcg_files[] = {
972 {
973 .name = "stat",
974 .seq_show = blkcg_print_stat,
975 },
976 { } /* terminate */
977 };
978
979 static struct cftype blkcg_legacy_files[] = {
980 {
981 .name = "reset_stats",
982 .write_u64 = blkcg_reset_stats,
983 },
984 { } /* terminate */
985 };
986
987 /*
988 * blkcg destruction is a three-stage process.
989 *
990 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
991 * which offlines writeback. Here we tie the next stage of blkg destruction
992 * to the completion of writeback associated with the blkcg. This lets us
993 * avoid punting potentially large amounts of outstanding writeback to root
994 * while maintaining any ongoing policies. The next stage is triggered when
995 * the nr_cgwbs count goes to zero.
996 *
997 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
998 * and handles the destruction of blkgs. Here the css reference held by
999 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1000 * This work may occur in cgwb_release_workfn() on the cgwb_release
1001 * workqueue. Any submitted ios that fail to get the blkg ref will be
1002 * punted to the root_blkg.
1003 *
1004 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1005 * This finally frees the blkcg.
1006 */
1007
1008 /**
1009 * blkcg_css_offline - cgroup css_offline callback
1010 * @css: css of interest
1011 *
1012 * This function is called when @css is about to go away. Here the cgwbs are
1013 * offlined first and only once writeback associated with the blkcg has
1014 * finished do we start step 2 (see above).
1015 */
1016 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1017 {
1018 struct blkcg *blkcg = css_to_blkcg(css);
1019
1020 /* this prevents anyone from attaching or migrating to this blkcg */
1021 wb_blkcg_offline(blkcg);
1022
1023 /* put the base online pin allowing step 2 to be triggered */
1024 blkcg_unpin_online(blkcg);
1025 }
1026
1027 /**
1028 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1029 * @blkcg: blkcg of interest
1030 *
1031 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1032 * is nested inside q lock, this function performs reverse double lock dancing.
1033 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1034 * blkcg_css_free to eventually be called.
1035 *
1036 * This is the blkcg counterpart of ioc_release_fn().
1037 */
1038 void blkcg_destroy_blkgs(struct blkcg *blkcg)
1039 {
1040 might_sleep();
1041
1042 spin_lock_irq(&blkcg->lock);
1043
1044 while (!hlist_empty(&blkcg->blkg_list)) {
1045 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1046 struct blkcg_gq, blkcg_node);
1047 struct request_queue *q = blkg->q;
1048
1049 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1050 /*
1051 * Given that the system can accumulate a huge number
1052 * of blkgs in pathological cases, check to see if we
1053 * need to rescheduling to avoid softlockup.
1054 */
1055 spin_unlock_irq(&blkcg->lock);
1056 cond_resched();
1057 spin_lock_irq(&blkcg->lock);
1058 continue;
1059 }
1060
1061 blkg_destroy(blkg);
1062 spin_unlock(&q->queue_lock);
1063 }
1064
1065 spin_unlock_irq(&blkcg->lock);
1066 }
1067
1068 static void blkcg_css_free(struct cgroup_subsys_state *css)
1069 {
1070 struct blkcg *blkcg = css_to_blkcg(css);
1071 int i;
1072
1073 mutex_lock(&blkcg_pol_mutex);
1074
1075 list_del(&blkcg->all_blkcgs_node);
1076
1077 for (i = 0; i < BLKCG_MAX_POLS; i++)
1078 if (blkcg->cpd[i])
1079 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1080
1081 mutex_unlock(&blkcg_pol_mutex);
1082
1083 kfree(blkcg);
1084 }
1085
1086 static struct cgroup_subsys_state *
1087 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1088 {
1089 struct blkcg *blkcg;
1090 struct cgroup_subsys_state *ret;
1091 int i;
1092
1093 mutex_lock(&blkcg_pol_mutex);
1094
1095 if (!parent_css) {
1096 blkcg = &blkcg_root;
1097 } else {
1098 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1099 if (!blkcg) {
1100 ret = ERR_PTR(-ENOMEM);
1101 goto unlock;
1102 }
1103 }
1104
1105 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1106 struct blkcg_policy *pol = blkcg_policy[i];
1107 struct blkcg_policy_data *cpd;
1108
1109 /*
1110 * If the policy hasn't been attached yet, wait for it
1111 * to be attached before doing anything else. Otherwise,
1112 * check if the policy requires any specific per-cgroup
1113 * data: if it does, allocate and initialize it.
1114 */
1115 if (!pol || !pol->cpd_alloc_fn)
1116 continue;
1117
1118 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1119 if (!cpd) {
1120 ret = ERR_PTR(-ENOMEM);
1121 goto free_pd_blkcg;
1122 }
1123 blkcg->cpd[i] = cpd;
1124 cpd->blkcg = blkcg;
1125 cpd->plid = i;
1126 if (pol->cpd_init_fn)
1127 pol->cpd_init_fn(cpd);
1128 }
1129
1130 spin_lock_init(&blkcg->lock);
1131 refcount_set(&blkcg->online_pin, 1);
1132 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1133 INIT_HLIST_HEAD(&blkcg->blkg_list);
1134 #ifdef CONFIG_CGROUP_WRITEBACK
1135 INIT_LIST_HEAD(&blkcg->cgwb_list);
1136 #endif
1137 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1138
1139 mutex_unlock(&blkcg_pol_mutex);
1140 return &blkcg->css;
1141
1142 free_pd_blkcg:
1143 for (i--; i >= 0; i--)
1144 if (blkcg->cpd[i])
1145 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1146
1147 if (blkcg != &blkcg_root)
1148 kfree(blkcg);
1149 unlock:
1150 mutex_unlock(&blkcg_pol_mutex);
1151 return ret;
1152 }
1153
1154 static int blkcg_css_online(struct cgroup_subsys_state *css)
1155 {
1156 struct blkcg *blkcg = css_to_blkcg(css);
1157 struct blkcg *parent = blkcg_parent(blkcg);
1158
1159 /*
1160 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1161 * don't go offline while cgwbs are still active on them. Pin the
1162 * parent so that offline always happens towards the root.
1163 */
1164 if (parent)
1165 blkcg_pin_online(parent);
1166 return 0;
1167 }
1168
1169 /**
1170 * blkcg_init_queue - initialize blkcg part of request queue
1171 * @q: request_queue to initialize
1172 *
1173 * Called from blk_alloc_queue(). Responsible for initializing blkcg
1174 * part of new request_queue @q.
1175 *
1176 * RETURNS:
1177 * 0 on success, -errno on failure.
1178 */
1179 int blkcg_init_queue(struct request_queue *q)
1180 {
1181 struct blkcg_gq *new_blkg, *blkg;
1182 bool preloaded;
1183 int ret;
1184
1185 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1186 if (!new_blkg)
1187 return -ENOMEM;
1188
1189 preloaded = !radix_tree_preload(GFP_KERNEL);
1190
1191 /* Make sure the root blkg exists. */
1192 rcu_read_lock();
1193 spin_lock_irq(&q->queue_lock);
1194 blkg = blkg_create(&blkcg_root, q, new_blkg);
1195 if (IS_ERR(blkg))
1196 goto err_unlock;
1197 q->root_blkg = blkg;
1198 spin_unlock_irq(&q->queue_lock);
1199 rcu_read_unlock();
1200
1201 if (preloaded)
1202 radix_tree_preload_end();
1203
1204 ret = blk_iolatency_init(q);
1205 if (ret)
1206 goto err_destroy_all;
1207
1208 ret = blk_ioprio_init(q);
1209 if (ret)
1210 goto err_destroy_all;
1211
1212 ret = blk_throtl_init(q);
1213 if (ret)
1214 goto err_destroy_all;
1215
1216 return 0;
1217
1218 err_destroy_all:
1219 blkg_destroy_all(q);
1220 return ret;
1221 err_unlock:
1222 spin_unlock_irq(&q->queue_lock);
1223 rcu_read_unlock();
1224 if (preloaded)
1225 radix_tree_preload_end();
1226 return PTR_ERR(blkg);
1227 }
1228
1229 /**
1230 * blkcg_exit_queue - exit and release blkcg part of request_queue
1231 * @q: request_queue being released
1232 *
1233 * Called from blk_exit_queue(). Responsible for exiting blkcg part.
1234 */
1235 void blkcg_exit_queue(struct request_queue *q)
1236 {
1237 blkg_destroy_all(q);
1238 blk_throtl_exit(q);
1239 }
1240
1241 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1242 {
1243 int i;
1244
1245 mutex_lock(&blkcg_pol_mutex);
1246
1247 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1248 struct blkcg_policy *pol = blkcg_policy[i];
1249 struct blkcg *blkcg;
1250
1251 if (!pol || !pol->cpd_bind_fn)
1252 continue;
1253
1254 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1255 if (blkcg->cpd[pol->plid])
1256 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1257 }
1258 mutex_unlock(&blkcg_pol_mutex);
1259 }
1260
1261 static void blkcg_exit(struct task_struct *tsk)
1262 {
1263 if (tsk->throttle_queue)
1264 blk_put_queue(tsk->throttle_queue);
1265 tsk->throttle_queue = NULL;
1266 }
1267
1268 struct cgroup_subsys io_cgrp_subsys = {
1269 .css_alloc = blkcg_css_alloc,
1270 .css_online = blkcg_css_online,
1271 .css_offline = blkcg_css_offline,
1272 .css_free = blkcg_css_free,
1273 .css_rstat_flush = blkcg_rstat_flush,
1274 .bind = blkcg_bind,
1275 .dfl_cftypes = blkcg_files,
1276 .legacy_cftypes = blkcg_legacy_files,
1277 .legacy_name = "blkio",
1278 .exit = blkcg_exit,
1279 #ifdef CONFIG_MEMCG
1280 /*
1281 * This ensures that, if available, memcg is automatically enabled
1282 * together on the default hierarchy so that the owner cgroup can
1283 * be retrieved from writeback pages.
1284 */
1285 .depends_on = 1 << memory_cgrp_id,
1286 #endif
1287 };
1288 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1289
1290 /**
1291 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1292 * @q: request_queue of interest
1293 * @pol: blkcg policy to activate
1294 *
1295 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1296 * bypass mode to populate its blkgs with policy_data for @pol.
1297 *
1298 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1299 * from IO path. Update of each blkg is protected by both queue and blkcg
1300 * locks so that holding either lock and testing blkcg_policy_enabled() is
1301 * always enough for dereferencing policy data.
1302 *
1303 * The caller is responsible for synchronizing [de]activations and policy
1304 * [un]registerations. Returns 0 on success, -errno on failure.
1305 */
1306 int blkcg_activate_policy(struct request_queue *q,
1307 const struct blkcg_policy *pol)
1308 {
1309 struct blkg_policy_data *pd_prealloc = NULL;
1310 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1311 int ret;
1312
1313 if (blkcg_policy_enabled(q, pol))
1314 return 0;
1315
1316 if (queue_is_mq(q))
1317 blk_mq_freeze_queue(q);
1318 retry:
1319 spin_lock_irq(&q->queue_lock);
1320
1321 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1322 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1323 struct blkg_policy_data *pd;
1324
1325 if (blkg->pd[pol->plid])
1326 continue;
1327
1328 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1329 if (blkg == pinned_blkg) {
1330 pd = pd_prealloc;
1331 pd_prealloc = NULL;
1332 } else {
1333 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1334 blkg->blkcg);
1335 }
1336
1337 if (!pd) {
1338 /*
1339 * GFP_NOWAIT failed. Free the existing one and
1340 * prealloc for @blkg w/ GFP_KERNEL.
1341 */
1342 if (pinned_blkg)
1343 blkg_put(pinned_blkg);
1344 blkg_get(blkg);
1345 pinned_blkg = blkg;
1346
1347 spin_unlock_irq(&q->queue_lock);
1348
1349 if (pd_prealloc)
1350 pol->pd_free_fn(pd_prealloc);
1351 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1352 blkg->blkcg);
1353 if (pd_prealloc)
1354 goto retry;
1355 else
1356 goto enomem;
1357 }
1358
1359 blkg->pd[pol->plid] = pd;
1360 pd->blkg = blkg;
1361 pd->plid = pol->plid;
1362 }
1363
1364 /* all allocated, init in the same order */
1365 if (pol->pd_init_fn)
1366 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1367 pol->pd_init_fn(blkg->pd[pol->plid]);
1368
1369 __set_bit(pol->plid, q->blkcg_pols);
1370 ret = 0;
1371
1372 spin_unlock_irq(&q->queue_lock);
1373 out:
1374 if (queue_is_mq(q))
1375 blk_mq_unfreeze_queue(q);
1376 if (pinned_blkg)
1377 blkg_put(pinned_blkg);
1378 if (pd_prealloc)
1379 pol->pd_free_fn(pd_prealloc);
1380 return ret;
1381
1382 enomem:
1383 /* alloc failed, nothing's initialized yet, free everything */
1384 spin_lock_irq(&q->queue_lock);
1385 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1386 if (blkg->pd[pol->plid]) {
1387 pol->pd_free_fn(blkg->pd[pol->plid]);
1388 blkg->pd[pol->plid] = NULL;
1389 }
1390 }
1391 spin_unlock_irq(&q->queue_lock);
1392 ret = -ENOMEM;
1393 goto out;
1394 }
1395 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1396
1397 /**
1398 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1399 * @q: request_queue of interest
1400 * @pol: blkcg policy to deactivate
1401 *
1402 * Deactivate @pol on @q. Follows the same synchronization rules as
1403 * blkcg_activate_policy().
1404 */
1405 void blkcg_deactivate_policy(struct request_queue *q,
1406 const struct blkcg_policy *pol)
1407 {
1408 struct blkcg_gq *blkg;
1409
1410 if (!blkcg_policy_enabled(q, pol))
1411 return;
1412
1413 if (queue_is_mq(q))
1414 blk_mq_freeze_queue(q);
1415
1416 spin_lock_irq(&q->queue_lock);
1417
1418 __clear_bit(pol->plid, q->blkcg_pols);
1419
1420 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1421 if (blkg->pd[pol->plid]) {
1422 if (pol->pd_offline_fn)
1423 pol->pd_offline_fn(blkg->pd[pol->plid]);
1424 pol->pd_free_fn(blkg->pd[pol->plid]);
1425 blkg->pd[pol->plid] = NULL;
1426 }
1427 }
1428
1429 spin_unlock_irq(&q->queue_lock);
1430
1431 if (queue_is_mq(q))
1432 blk_mq_unfreeze_queue(q);
1433 }
1434 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1435
1436 /**
1437 * blkcg_policy_register - register a blkcg policy
1438 * @pol: blkcg policy to register
1439 *
1440 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1441 * successful registration. Returns 0 on success and -errno on failure.
1442 */
1443 int blkcg_policy_register(struct blkcg_policy *pol)
1444 {
1445 struct blkcg *blkcg;
1446 int i, ret;
1447
1448 mutex_lock(&blkcg_pol_register_mutex);
1449 mutex_lock(&blkcg_pol_mutex);
1450
1451 /* find an empty slot */
1452 ret = -ENOSPC;
1453 for (i = 0; i < BLKCG_MAX_POLS; i++)
1454 if (!blkcg_policy[i])
1455 break;
1456 if (i >= BLKCG_MAX_POLS) {
1457 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1458 goto err_unlock;
1459 }
1460
1461 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1462 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1463 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1464 goto err_unlock;
1465
1466 /* register @pol */
1467 pol->plid = i;
1468 blkcg_policy[pol->plid] = pol;
1469
1470 /* allocate and install cpd's */
1471 if (pol->cpd_alloc_fn) {
1472 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1473 struct blkcg_policy_data *cpd;
1474
1475 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1476 if (!cpd)
1477 goto err_free_cpds;
1478
1479 blkcg->cpd[pol->plid] = cpd;
1480 cpd->blkcg = blkcg;
1481 cpd->plid = pol->plid;
1482 if (pol->cpd_init_fn)
1483 pol->cpd_init_fn(cpd);
1484 }
1485 }
1486
1487 mutex_unlock(&blkcg_pol_mutex);
1488
1489 /* everything is in place, add intf files for the new policy */
1490 if (pol->dfl_cftypes)
1491 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1492 pol->dfl_cftypes));
1493 if (pol->legacy_cftypes)
1494 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1495 pol->legacy_cftypes));
1496 mutex_unlock(&blkcg_pol_register_mutex);
1497 return 0;
1498
1499 err_free_cpds:
1500 if (pol->cpd_free_fn) {
1501 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1502 if (blkcg->cpd[pol->plid]) {
1503 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1504 blkcg->cpd[pol->plid] = NULL;
1505 }
1506 }
1507 }
1508 blkcg_policy[pol->plid] = NULL;
1509 err_unlock:
1510 mutex_unlock(&blkcg_pol_mutex);
1511 mutex_unlock(&blkcg_pol_register_mutex);
1512 return ret;
1513 }
1514 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1515
1516 /**
1517 * blkcg_policy_unregister - unregister a blkcg policy
1518 * @pol: blkcg policy to unregister
1519 *
1520 * Undo blkcg_policy_register(@pol). Might sleep.
1521 */
1522 void blkcg_policy_unregister(struct blkcg_policy *pol)
1523 {
1524 struct blkcg *blkcg;
1525
1526 mutex_lock(&blkcg_pol_register_mutex);
1527
1528 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1529 goto out_unlock;
1530
1531 /* kill the intf files first */
1532 if (pol->dfl_cftypes)
1533 cgroup_rm_cftypes(pol->dfl_cftypes);
1534 if (pol->legacy_cftypes)
1535 cgroup_rm_cftypes(pol->legacy_cftypes);
1536
1537 /* remove cpds and unregister */
1538 mutex_lock(&blkcg_pol_mutex);
1539
1540 if (pol->cpd_free_fn) {
1541 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1542 if (blkcg->cpd[pol->plid]) {
1543 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1544 blkcg->cpd[pol->plid] = NULL;
1545 }
1546 }
1547 }
1548 blkcg_policy[pol->plid] = NULL;
1549
1550 mutex_unlock(&blkcg_pol_mutex);
1551 out_unlock:
1552 mutex_unlock(&blkcg_pol_register_mutex);
1553 }
1554 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1555
1556 bool __blkcg_punt_bio_submit(struct bio *bio)
1557 {
1558 struct blkcg_gq *blkg = bio->bi_blkg;
1559
1560 /* consume the flag first */
1561 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1562
1563 /* never bounce for the root cgroup */
1564 if (!blkg->parent)
1565 return false;
1566
1567 spin_lock_bh(&blkg->async_bio_lock);
1568 bio_list_add(&blkg->async_bios, bio);
1569 spin_unlock_bh(&blkg->async_bio_lock);
1570
1571 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1572 return true;
1573 }
1574
1575 /*
1576 * Scale the accumulated delay based on how long it has been since we updated
1577 * the delay. We only call this when we are adding delay, in case it's been a
1578 * while since we added delay, and when we are checking to see if we need to
1579 * delay a task, to account for any delays that may have occurred.
1580 */
1581 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1582 {
1583 u64 old = atomic64_read(&blkg->delay_start);
1584
1585 /* negative use_delay means no scaling, see blkcg_set_delay() */
1586 if (atomic_read(&blkg->use_delay) < 0)
1587 return;
1588
1589 /*
1590 * We only want to scale down every second. The idea here is that we
1591 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1592 * time window. We only want to throttle tasks for recent delay that
1593 * has occurred, in 1 second time windows since that's the maximum
1594 * things can be throttled. We save the current delay window in
1595 * blkg->last_delay so we know what amount is still left to be charged
1596 * to the blkg from this point onward. blkg->last_use keeps track of
1597 * the use_delay counter. The idea is if we're unthrottling the blkg we
1598 * are ok with whatever is happening now, and we can take away more of
1599 * the accumulated delay as we've already throttled enough that
1600 * everybody is happy with their IO latencies.
1601 */
1602 if (time_before64(old + NSEC_PER_SEC, now) &&
1603 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1604 u64 cur = atomic64_read(&blkg->delay_nsec);
1605 u64 sub = min_t(u64, blkg->last_delay, now - old);
1606 int cur_use = atomic_read(&blkg->use_delay);
1607
1608 /*
1609 * We've been unthrottled, subtract a larger chunk of our
1610 * accumulated delay.
1611 */
1612 if (cur_use < blkg->last_use)
1613 sub = max_t(u64, sub, blkg->last_delay >> 1);
1614
1615 /*
1616 * This shouldn't happen, but handle it anyway. Our delay_nsec
1617 * should only ever be growing except here where we subtract out
1618 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1619 * rather not end up with negative numbers.
1620 */
1621 if (unlikely(cur < sub)) {
1622 atomic64_set(&blkg->delay_nsec, 0);
1623 blkg->last_delay = 0;
1624 } else {
1625 atomic64_sub(sub, &blkg->delay_nsec);
1626 blkg->last_delay = cur - sub;
1627 }
1628 blkg->last_use = cur_use;
1629 }
1630 }
1631
1632 /*
1633 * This is called when we want to actually walk up the hierarchy and check to
1634 * see if we need to throttle, and then actually throttle if there is some
1635 * accumulated delay. This should only be called upon return to user space so
1636 * we're not holding some lock that would induce a priority inversion.
1637 */
1638 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1639 {
1640 unsigned long pflags;
1641 bool clamp;
1642 u64 now = ktime_to_ns(ktime_get());
1643 u64 exp;
1644 u64 delay_nsec = 0;
1645 int tok;
1646
1647 while (blkg->parent) {
1648 int use_delay = atomic_read(&blkg->use_delay);
1649
1650 if (use_delay) {
1651 u64 this_delay;
1652
1653 blkcg_scale_delay(blkg, now);
1654 this_delay = atomic64_read(&blkg->delay_nsec);
1655 if (this_delay > delay_nsec) {
1656 delay_nsec = this_delay;
1657 clamp = use_delay > 0;
1658 }
1659 }
1660 blkg = blkg->parent;
1661 }
1662
1663 if (!delay_nsec)
1664 return;
1665
1666 /*
1667 * Let's not sleep for all eternity if we've amassed a huge delay.
1668 * Swapping or metadata IO can accumulate 10's of seconds worth of
1669 * delay, and we want userspace to be able to do _something_ so cap the
1670 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1671 * tasks will be delayed for 0.25 second for every syscall. If
1672 * blkcg_set_delay() was used as indicated by negative use_delay, the
1673 * caller is responsible for regulating the range.
1674 */
1675 if (clamp)
1676 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1677
1678 if (use_memdelay)
1679 psi_memstall_enter(&pflags);
1680
1681 exp = ktime_add_ns(now, delay_nsec);
1682 tok = io_schedule_prepare();
1683 do {
1684 __set_current_state(TASK_KILLABLE);
1685 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1686 break;
1687 } while (!fatal_signal_pending(current));
1688 io_schedule_finish(tok);
1689
1690 if (use_memdelay)
1691 psi_memstall_leave(&pflags);
1692 }
1693
1694 /**
1695 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1696 *
1697 * This is only called if we've been marked with set_notify_resume(). Obviously
1698 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1699 * check to see if current->throttle_queue is set and if not this doesn't do
1700 * anything. This should only ever be called by the resume code, it's not meant
1701 * to be called by people willy-nilly as it will actually do the work to
1702 * throttle the task if it is setup for throttling.
1703 */
1704 void blkcg_maybe_throttle_current(void)
1705 {
1706 struct request_queue *q = current->throttle_queue;
1707 struct cgroup_subsys_state *css;
1708 struct blkcg *blkcg;
1709 struct blkcg_gq *blkg;
1710 bool use_memdelay = current->use_memdelay;
1711
1712 if (!q)
1713 return;
1714
1715 current->throttle_queue = NULL;
1716 current->use_memdelay = false;
1717
1718 rcu_read_lock();
1719 css = kthread_blkcg();
1720 if (css)
1721 blkcg = css_to_blkcg(css);
1722 else
1723 blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1724
1725 if (!blkcg)
1726 goto out;
1727 blkg = blkg_lookup(blkcg, q);
1728 if (!blkg)
1729 goto out;
1730 if (!blkg_tryget(blkg))
1731 goto out;
1732 rcu_read_unlock();
1733
1734 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1735 blkg_put(blkg);
1736 blk_put_queue(q);
1737 return;
1738 out:
1739 rcu_read_unlock();
1740 blk_put_queue(q);
1741 }
1742
1743 /**
1744 * blkcg_schedule_throttle - this task needs to check for throttling
1745 * @q: the request queue IO was submitted on
1746 * @use_memdelay: do we charge this to memory delay for PSI
1747 *
1748 * This is called by the IO controller when we know there's delay accumulated
1749 * for the blkg for this task. We do not pass the blkg because there are places
1750 * we call this that may not have that information, the swapping code for
1751 * instance will only have a request_queue at that point. This set's the
1752 * notify_resume for the task to check and see if it requires throttling before
1753 * returning to user space.
1754 *
1755 * We will only schedule once per syscall. You can call this over and over
1756 * again and it will only do the check once upon return to user space, and only
1757 * throttle once. If the task needs to be throttled again it'll need to be
1758 * re-set at the next time we see the task.
1759 */
1760 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1761 {
1762 if (unlikely(current->flags & PF_KTHREAD))
1763 return;
1764
1765 if (current->throttle_queue != q) {
1766 if (!blk_get_queue(q))
1767 return;
1768
1769 if (current->throttle_queue)
1770 blk_put_queue(current->throttle_queue);
1771 current->throttle_queue = q;
1772 }
1773
1774 if (use_memdelay)
1775 current->use_memdelay = use_memdelay;
1776 set_notify_resume(current);
1777 }
1778
1779 /**
1780 * blkcg_add_delay - add delay to this blkg
1781 * @blkg: blkg of interest
1782 * @now: the current time in nanoseconds
1783 * @delta: how many nanoseconds of delay to add
1784 *
1785 * Charge @delta to the blkg's current delay accumulation. This is used to
1786 * throttle tasks if an IO controller thinks we need more throttling.
1787 */
1788 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1789 {
1790 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1791 return;
1792 blkcg_scale_delay(blkg, now);
1793 atomic64_add(delta, &blkg->delay_nsec);
1794 }
1795
1796 /**
1797 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1798 * @bio: target bio
1799 * @css: target css
1800 *
1801 * As the failure mode here is to walk up the blkg tree, this ensure that the
1802 * blkg->parent pointers are always valid. This returns the blkg that it ended
1803 * up taking a reference on or %NULL if no reference was taken.
1804 */
1805 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1806 struct cgroup_subsys_state *css)
1807 {
1808 struct blkcg_gq *blkg, *ret_blkg = NULL;
1809
1810 rcu_read_lock();
1811 blkg = blkg_lookup_create(css_to_blkcg(css),
1812 bio->bi_bdev->bd_disk->queue);
1813 while (blkg) {
1814 if (blkg_tryget(blkg)) {
1815 ret_blkg = blkg;
1816 break;
1817 }
1818 blkg = blkg->parent;
1819 }
1820 rcu_read_unlock();
1821
1822 return ret_blkg;
1823 }
1824
1825 /**
1826 * bio_associate_blkg_from_css - associate a bio with a specified css
1827 * @bio: target bio
1828 * @css: target css
1829 *
1830 * Associate @bio with the blkg found by combining the css's blkg and the
1831 * request_queue of the @bio. An association failure is handled by walking up
1832 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1833 * and q->root_blkg. This situation only happens when a cgroup is dying and
1834 * then the remaining bios will spill to the closest alive blkg.
1835 *
1836 * A reference will be taken on the blkg and will be released when @bio is
1837 * freed.
1838 */
1839 void bio_associate_blkg_from_css(struct bio *bio,
1840 struct cgroup_subsys_state *css)
1841 {
1842 if (bio->bi_blkg)
1843 blkg_put(bio->bi_blkg);
1844
1845 if (css && css->parent) {
1846 bio->bi_blkg = blkg_tryget_closest(bio, css);
1847 } else {
1848 blkg_get(bio->bi_bdev->bd_disk->queue->root_blkg);
1849 bio->bi_blkg = bio->bi_bdev->bd_disk->queue->root_blkg;
1850 }
1851 }
1852 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1853
1854 /**
1855 * bio_associate_blkg - associate a bio with a blkg
1856 * @bio: target bio
1857 *
1858 * Associate @bio with the blkg found from the bio's css and request_queue.
1859 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1860 * already associated, the css is reused and association redone as the
1861 * request_queue may have changed.
1862 */
1863 void bio_associate_blkg(struct bio *bio)
1864 {
1865 struct cgroup_subsys_state *css;
1866
1867 rcu_read_lock();
1868
1869 if (bio->bi_blkg)
1870 css = &bio_blkcg(bio)->css;
1871 else
1872 css = blkcg_css();
1873
1874 bio_associate_blkg_from_css(bio, css);
1875
1876 rcu_read_unlock();
1877 }
1878 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1879
1880 /**
1881 * bio_clone_blkg_association - clone blkg association from src to dst bio
1882 * @dst: destination bio
1883 * @src: source bio
1884 */
1885 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1886 {
1887 if (src->bi_blkg) {
1888 if (dst->bi_blkg)
1889 blkg_put(dst->bi_blkg);
1890 blkg_get(src->bi_blkg);
1891 dst->bi_blkg = src->bi_blkg;
1892 }
1893 }
1894 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1895
1896 static int blk_cgroup_io_type(struct bio *bio)
1897 {
1898 if (op_is_discard(bio->bi_opf))
1899 return BLKG_IOSTAT_DISCARD;
1900 if (op_is_write(bio->bi_opf))
1901 return BLKG_IOSTAT_WRITE;
1902 return BLKG_IOSTAT_READ;
1903 }
1904
1905 void blk_cgroup_bio_start(struct bio *bio)
1906 {
1907 int rwd = blk_cgroup_io_type(bio), cpu;
1908 struct blkg_iostat_set *bis;
1909
1910 cpu = get_cpu();
1911 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1912 u64_stats_update_begin(&bis->sync);
1913
1914 /*
1915 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1916 * bio and we would have already accounted for the size of the bio.
1917 */
1918 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1919 bio_set_flag(bio, BIO_CGROUP_ACCT);
1920 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1921 }
1922 bis->cur.ios[rwd]++;
1923
1924 u64_stats_update_end(&bis->sync);
1925 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1926 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1927 put_cpu();
1928 }
1929
1930 static int __init blkcg_init(void)
1931 {
1932 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1933 WQ_MEM_RECLAIM | WQ_FREEZABLE |
1934 WQ_UNBOUND | WQ_SYSFS, 0);
1935 if (!blkcg_punt_bio_wq)
1936 return -ENOMEM;
1937 return 0;
1938 }
1939 subsys_initcall(blkcg_init);
1940
1941 module_param(blkcg_debug_stats, bool, 0644);
1942 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");