]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-cgroup.c
Merge branches 'acpi-scan', 'acpi-pnp' and 'acpi-sleep'
[mirror_ubuntu-jammy-kernel.git] / block / blk-cgroup.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include "blk.h"
34
35 #define MAX_KEY_LEN 100
36
37 /*
38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40 * policy [un]register operations including cgroup file additions /
41 * removals. Putting cgroup file registration outside blkcg_pol_mutex
42 * allows grabbing it from cgroup callbacks.
43 */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54
55 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
56
57 bool blkcg_debug_stats = false;
58 static struct workqueue_struct *blkcg_punt_bio_wq;
59
60 static bool blkcg_policy_enabled(struct request_queue *q,
61 const struct blkcg_policy *pol)
62 {
63 return pol && test_bit(pol->plid, q->blkcg_pols);
64 }
65
66 /**
67 * blkg_free - free a blkg
68 * @blkg: blkg to free
69 *
70 * Free @blkg which may be partially allocated.
71 */
72 static void blkg_free(struct blkcg_gq *blkg)
73 {
74 int i;
75
76 if (!blkg)
77 return;
78
79 for (i = 0; i < BLKCG_MAX_POLS; i++)
80 if (blkg->pd[i])
81 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
82
83 free_percpu(blkg->iostat_cpu);
84 percpu_ref_exit(&blkg->refcnt);
85 kfree(blkg);
86 }
87
88 static void __blkg_release(struct rcu_head *rcu)
89 {
90 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
91
92 WARN_ON(!bio_list_empty(&blkg->async_bios));
93
94 /* release the blkcg and parent blkg refs this blkg has been holding */
95 css_put(&blkg->blkcg->css);
96 if (blkg->parent)
97 blkg_put(blkg->parent);
98 blkg_free(blkg);
99 }
100
101 /*
102 * A group is RCU protected, but having an rcu lock does not mean that one
103 * can access all the fields of blkg and assume these are valid. For
104 * example, don't try to follow throtl_data and request queue links.
105 *
106 * Having a reference to blkg under an rcu allows accesses to only values
107 * local to groups like group stats and group rate limits.
108 */
109 static void blkg_release(struct percpu_ref *ref)
110 {
111 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
112
113 call_rcu(&blkg->rcu_head, __blkg_release);
114 }
115
116 static void blkg_async_bio_workfn(struct work_struct *work)
117 {
118 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
119 async_bio_work);
120 struct bio_list bios = BIO_EMPTY_LIST;
121 struct bio *bio;
122 struct blk_plug plug;
123 bool need_plug = false;
124
125 /* as long as there are pending bios, @blkg can't go away */
126 spin_lock_bh(&blkg->async_bio_lock);
127 bio_list_merge(&bios, &blkg->async_bios);
128 bio_list_init(&blkg->async_bios);
129 spin_unlock_bh(&blkg->async_bio_lock);
130
131 /* start plug only when bio_list contains at least 2 bios */
132 if (bios.head && bios.head->bi_next) {
133 need_plug = true;
134 blk_start_plug(&plug);
135 }
136 while ((bio = bio_list_pop(&bios)))
137 submit_bio(bio);
138 if (need_plug)
139 blk_finish_plug(&plug);
140 }
141
142 /**
143 * blkg_alloc - allocate a blkg
144 * @blkcg: block cgroup the new blkg is associated with
145 * @q: request_queue the new blkg is associated with
146 * @gfp_mask: allocation mask to use
147 *
148 * Allocate a new blkg assocating @blkcg and @q.
149 */
150 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
151 gfp_t gfp_mask)
152 {
153 struct blkcg_gq *blkg;
154 int i, cpu;
155
156 /* alloc and init base part */
157 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
158 if (!blkg)
159 return NULL;
160
161 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
162 goto err_free;
163
164 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
165 if (!blkg->iostat_cpu)
166 goto err_free;
167
168 blkg->q = q;
169 INIT_LIST_HEAD(&blkg->q_node);
170 spin_lock_init(&blkg->async_bio_lock);
171 bio_list_init(&blkg->async_bios);
172 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
173 blkg->blkcg = blkcg;
174
175 u64_stats_init(&blkg->iostat.sync);
176 for_each_possible_cpu(cpu)
177 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
178
179 for (i = 0; i < BLKCG_MAX_POLS; i++) {
180 struct blkcg_policy *pol = blkcg_policy[i];
181 struct blkg_policy_data *pd;
182
183 if (!blkcg_policy_enabled(q, pol))
184 continue;
185
186 /* alloc per-policy data and attach it to blkg */
187 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
188 if (!pd)
189 goto err_free;
190
191 blkg->pd[i] = pd;
192 pd->blkg = blkg;
193 pd->plid = i;
194 }
195
196 return blkg;
197
198 err_free:
199 blkg_free(blkg);
200 return NULL;
201 }
202
203 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
204 struct request_queue *q, bool update_hint)
205 {
206 struct blkcg_gq *blkg;
207
208 /*
209 * Hint didn't match. Look up from the radix tree. Note that the
210 * hint can only be updated under queue_lock as otherwise @blkg
211 * could have already been removed from blkg_tree. The caller is
212 * responsible for grabbing queue_lock if @update_hint.
213 */
214 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
215 if (blkg && blkg->q == q) {
216 if (update_hint) {
217 lockdep_assert_held(&q->queue_lock);
218 rcu_assign_pointer(blkcg->blkg_hint, blkg);
219 }
220 return blkg;
221 }
222
223 return NULL;
224 }
225 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
226
227 /*
228 * If @new_blkg is %NULL, this function tries to allocate a new one as
229 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
230 */
231 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
232 struct request_queue *q,
233 struct blkcg_gq *new_blkg)
234 {
235 struct blkcg_gq *blkg;
236 int i, ret;
237
238 WARN_ON_ONCE(!rcu_read_lock_held());
239 lockdep_assert_held(&q->queue_lock);
240
241 /* request_queue is dying, do not create/recreate a blkg */
242 if (blk_queue_dying(q)) {
243 ret = -ENODEV;
244 goto err_free_blkg;
245 }
246
247 /* blkg holds a reference to blkcg */
248 if (!css_tryget_online(&blkcg->css)) {
249 ret = -ENODEV;
250 goto err_free_blkg;
251 }
252
253 /* allocate */
254 if (!new_blkg) {
255 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
256 if (unlikely(!new_blkg)) {
257 ret = -ENOMEM;
258 goto err_put_css;
259 }
260 }
261 blkg = new_blkg;
262
263 /* link parent */
264 if (blkcg_parent(blkcg)) {
265 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
266 if (WARN_ON_ONCE(!blkg->parent)) {
267 ret = -ENODEV;
268 goto err_put_css;
269 }
270 blkg_get(blkg->parent);
271 }
272
273 /* invoke per-policy init */
274 for (i = 0; i < BLKCG_MAX_POLS; i++) {
275 struct blkcg_policy *pol = blkcg_policy[i];
276
277 if (blkg->pd[i] && pol->pd_init_fn)
278 pol->pd_init_fn(blkg->pd[i]);
279 }
280
281 /* insert */
282 spin_lock(&blkcg->lock);
283 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
284 if (likely(!ret)) {
285 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
286 list_add(&blkg->q_node, &q->blkg_list);
287
288 for (i = 0; i < BLKCG_MAX_POLS; i++) {
289 struct blkcg_policy *pol = blkcg_policy[i];
290
291 if (blkg->pd[i] && pol->pd_online_fn)
292 pol->pd_online_fn(blkg->pd[i]);
293 }
294 }
295 blkg->online = true;
296 spin_unlock(&blkcg->lock);
297
298 if (!ret)
299 return blkg;
300
301 /* @blkg failed fully initialized, use the usual release path */
302 blkg_put(blkg);
303 return ERR_PTR(ret);
304
305 err_put_css:
306 css_put(&blkcg->css);
307 err_free_blkg:
308 blkg_free(new_blkg);
309 return ERR_PTR(ret);
310 }
311
312 /**
313 * blkg_lookup_create - lookup blkg, try to create one if not there
314 * @blkcg: blkcg of interest
315 * @q: request_queue of interest
316 *
317 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to
318 * create one. blkg creation is performed recursively from blkcg_root such
319 * that all non-root blkg's have access to the parent blkg. This function
320 * should be called under RCU read lock and takes @q->queue_lock.
321 *
322 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
323 * down from root.
324 */
325 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
326 struct request_queue *q)
327 {
328 struct blkcg_gq *blkg;
329 unsigned long flags;
330
331 WARN_ON_ONCE(!rcu_read_lock_held());
332
333 blkg = blkg_lookup(blkcg, q);
334 if (blkg)
335 return blkg;
336
337 spin_lock_irqsave(&q->queue_lock, flags);
338 blkg = __blkg_lookup(blkcg, q, true);
339 if (blkg)
340 goto found;
341
342 /*
343 * Create blkgs walking down from blkcg_root to @blkcg, so that all
344 * non-root blkgs have access to their parents. Returns the closest
345 * blkg to the intended blkg should blkg_create() fail.
346 */
347 while (true) {
348 struct blkcg *pos = blkcg;
349 struct blkcg *parent = blkcg_parent(blkcg);
350 struct blkcg_gq *ret_blkg = q->root_blkg;
351
352 while (parent) {
353 blkg = __blkg_lookup(parent, q, false);
354 if (blkg) {
355 /* remember closest blkg */
356 ret_blkg = blkg;
357 break;
358 }
359 pos = parent;
360 parent = blkcg_parent(parent);
361 }
362
363 blkg = blkg_create(pos, q, NULL);
364 if (IS_ERR(blkg)) {
365 blkg = ret_blkg;
366 break;
367 }
368 if (pos == blkcg)
369 break;
370 }
371
372 found:
373 spin_unlock_irqrestore(&q->queue_lock, flags);
374 return blkg;
375 }
376
377 static void blkg_destroy(struct blkcg_gq *blkg)
378 {
379 struct blkcg *blkcg = blkg->blkcg;
380 int i;
381
382 lockdep_assert_held(&blkg->q->queue_lock);
383 lockdep_assert_held(&blkcg->lock);
384
385 /* Something wrong if we are trying to remove same group twice */
386 WARN_ON_ONCE(list_empty(&blkg->q_node));
387 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
388
389 for (i = 0; i < BLKCG_MAX_POLS; i++) {
390 struct blkcg_policy *pol = blkcg_policy[i];
391
392 if (blkg->pd[i] && pol->pd_offline_fn)
393 pol->pd_offline_fn(blkg->pd[i]);
394 }
395
396 blkg->online = false;
397
398 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
399 list_del_init(&blkg->q_node);
400 hlist_del_init_rcu(&blkg->blkcg_node);
401
402 /*
403 * Both setting lookup hint to and clearing it from @blkg are done
404 * under queue_lock. If it's not pointing to @blkg now, it never
405 * will. Hint assignment itself can race safely.
406 */
407 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
408 rcu_assign_pointer(blkcg->blkg_hint, NULL);
409
410 /*
411 * Put the reference taken at the time of creation so that when all
412 * queues are gone, group can be destroyed.
413 */
414 percpu_ref_kill(&blkg->refcnt);
415 }
416
417 /**
418 * blkg_destroy_all - destroy all blkgs associated with a request_queue
419 * @q: request_queue of interest
420 *
421 * Destroy all blkgs associated with @q.
422 */
423 static void blkg_destroy_all(struct request_queue *q)
424 {
425 struct blkcg_gq *blkg, *n;
426
427 spin_lock_irq(&q->queue_lock);
428 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
429 struct blkcg *blkcg = blkg->blkcg;
430
431 spin_lock(&blkcg->lock);
432 blkg_destroy(blkg);
433 spin_unlock(&blkcg->lock);
434 }
435
436 q->root_blkg = NULL;
437 spin_unlock_irq(&q->queue_lock);
438 }
439
440 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
441 struct cftype *cftype, u64 val)
442 {
443 struct blkcg *blkcg = css_to_blkcg(css);
444 struct blkcg_gq *blkg;
445 int i, cpu;
446
447 mutex_lock(&blkcg_pol_mutex);
448 spin_lock_irq(&blkcg->lock);
449
450 /*
451 * Note that stat reset is racy - it doesn't synchronize against
452 * stat updates. This is a debug feature which shouldn't exist
453 * anyway. If you get hit by a race, retry.
454 */
455 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
456 for_each_possible_cpu(cpu) {
457 struct blkg_iostat_set *bis =
458 per_cpu_ptr(blkg->iostat_cpu, cpu);
459 memset(bis, 0, sizeof(*bis));
460 }
461 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
462
463 for (i = 0; i < BLKCG_MAX_POLS; i++) {
464 struct blkcg_policy *pol = blkcg_policy[i];
465
466 if (blkg->pd[i] && pol->pd_reset_stats_fn)
467 pol->pd_reset_stats_fn(blkg->pd[i]);
468 }
469 }
470
471 spin_unlock_irq(&blkcg->lock);
472 mutex_unlock(&blkcg_pol_mutex);
473 return 0;
474 }
475
476 const char *blkg_dev_name(struct blkcg_gq *blkg)
477 {
478 /* some drivers (floppy) instantiate a queue w/o disk registered */
479 if (blkg->q->backing_dev_info->dev)
480 return bdi_dev_name(blkg->q->backing_dev_info);
481 return NULL;
482 }
483
484 /**
485 * blkcg_print_blkgs - helper for printing per-blkg data
486 * @sf: seq_file to print to
487 * @blkcg: blkcg of interest
488 * @prfill: fill function to print out a blkg
489 * @pol: policy in question
490 * @data: data to be passed to @prfill
491 * @show_total: to print out sum of prfill return values or not
492 *
493 * This function invokes @prfill on each blkg of @blkcg if pd for the
494 * policy specified by @pol exists. @prfill is invoked with @sf, the
495 * policy data and @data and the matching queue lock held. If @show_total
496 * is %true, the sum of the return values from @prfill is printed with
497 * "Total" label at the end.
498 *
499 * This is to be used to construct print functions for
500 * cftype->read_seq_string method.
501 */
502 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
503 u64 (*prfill)(struct seq_file *,
504 struct blkg_policy_data *, int),
505 const struct blkcg_policy *pol, int data,
506 bool show_total)
507 {
508 struct blkcg_gq *blkg;
509 u64 total = 0;
510
511 rcu_read_lock();
512 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
513 spin_lock_irq(&blkg->q->queue_lock);
514 if (blkcg_policy_enabled(blkg->q, pol))
515 total += prfill(sf, blkg->pd[pol->plid], data);
516 spin_unlock_irq(&blkg->q->queue_lock);
517 }
518 rcu_read_unlock();
519
520 if (show_total)
521 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
522 }
523 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
524
525 /**
526 * __blkg_prfill_u64 - prfill helper for a single u64 value
527 * @sf: seq_file to print to
528 * @pd: policy private data of interest
529 * @v: value to print
530 *
531 * Print @v to @sf for the device assocaited with @pd.
532 */
533 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
534 {
535 const char *dname = blkg_dev_name(pd->blkg);
536
537 if (!dname)
538 return 0;
539
540 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
541 return v;
542 }
543 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
544
545 /* Performs queue bypass and policy enabled checks then looks up blkg. */
546 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
547 const struct blkcg_policy *pol,
548 struct request_queue *q)
549 {
550 WARN_ON_ONCE(!rcu_read_lock_held());
551 lockdep_assert_held(&q->queue_lock);
552
553 if (!blkcg_policy_enabled(q, pol))
554 return ERR_PTR(-EOPNOTSUPP);
555 return __blkg_lookup(blkcg, q, true /* update_hint */);
556 }
557
558 /**
559 * blkg_conf_prep - parse and prepare for per-blkg config update
560 * @inputp: input string pointer
561 *
562 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
563 * from @input and get and return the matching gendisk. *@inputp is
564 * updated to point past the device node prefix. Returns an ERR_PTR()
565 * value on error.
566 *
567 * Use this function iff blkg_conf_prep() can't be used for some reason.
568 */
569 struct gendisk *blkcg_conf_get_disk(char **inputp)
570 {
571 char *input = *inputp;
572 unsigned int major, minor;
573 struct gendisk *disk;
574 int key_len, part;
575
576 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
577 return ERR_PTR(-EINVAL);
578
579 input += key_len;
580 if (!isspace(*input))
581 return ERR_PTR(-EINVAL);
582 input = skip_spaces(input);
583
584 disk = get_gendisk(MKDEV(major, minor), &part);
585 if (!disk)
586 return ERR_PTR(-ENODEV);
587 if (part) {
588 put_disk_and_module(disk);
589 return ERR_PTR(-ENODEV);
590 }
591
592 *inputp = input;
593 return disk;
594 }
595
596 /**
597 * blkg_conf_prep - parse and prepare for per-blkg config update
598 * @blkcg: target block cgroup
599 * @pol: target policy
600 * @input: input string
601 * @ctx: blkg_conf_ctx to be filled
602 *
603 * Parse per-blkg config update from @input and initialize @ctx with the
604 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
605 * part of @input following MAJ:MIN. This function returns with RCU read
606 * lock and queue lock held and must be paired with blkg_conf_finish().
607 */
608 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
609 char *input, struct blkg_conf_ctx *ctx)
610 __acquires(rcu) __acquires(&disk->queue->queue_lock)
611 {
612 struct gendisk *disk;
613 struct request_queue *q;
614 struct blkcg_gq *blkg;
615 int ret;
616
617 disk = blkcg_conf_get_disk(&input);
618 if (IS_ERR(disk))
619 return PTR_ERR(disk);
620
621 q = disk->queue;
622
623 rcu_read_lock();
624 spin_lock_irq(&q->queue_lock);
625
626 blkg = blkg_lookup_check(blkcg, pol, q);
627 if (IS_ERR(blkg)) {
628 ret = PTR_ERR(blkg);
629 goto fail_unlock;
630 }
631
632 if (blkg)
633 goto success;
634
635 /*
636 * Create blkgs walking down from blkcg_root to @blkcg, so that all
637 * non-root blkgs have access to their parents.
638 */
639 while (true) {
640 struct blkcg *pos = blkcg;
641 struct blkcg *parent;
642 struct blkcg_gq *new_blkg;
643
644 parent = blkcg_parent(blkcg);
645 while (parent && !__blkg_lookup(parent, q, false)) {
646 pos = parent;
647 parent = blkcg_parent(parent);
648 }
649
650 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
651 spin_unlock_irq(&q->queue_lock);
652 rcu_read_unlock();
653
654 new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
655 if (unlikely(!new_blkg)) {
656 ret = -ENOMEM;
657 goto fail;
658 }
659
660 if (radix_tree_preload(GFP_KERNEL)) {
661 blkg_free(new_blkg);
662 ret = -ENOMEM;
663 goto fail;
664 }
665
666 rcu_read_lock();
667 spin_lock_irq(&q->queue_lock);
668
669 blkg = blkg_lookup_check(pos, pol, q);
670 if (IS_ERR(blkg)) {
671 ret = PTR_ERR(blkg);
672 blkg_free(new_blkg);
673 goto fail_preloaded;
674 }
675
676 if (blkg) {
677 blkg_free(new_blkg);
678 } else {
679 blkg = blkg_create(pos, q, new_blkg);
680 if (IS_ERR(blkg)) {
681 ret = PTR_ERR(blkg);
682 goto fail_preloaded;
683 }
684 }
685
686 radix_tree_preload_end();
687
688 if (pos == blkcg)
689 goto success;
690 }
691 success:
692 ctx->disk = disk;
693 ctx->blkg = blkg;
694 ctx->body = input;
695 return 0;
696
697 fail_preloaded:
698 radix_tree_preload_end();
699 fail_unlock:
700 spin_unlock_irq(&q->queue_lock);
701 rcu_read_unlock();
702 fail:
703 put_disk_and_module(disk);
704 /*
705 * If queue was bypassing, we should retry. Do so after a
706 * short msleep(). It isn't strictly necessary but queue
707 * can be bypassing for some time and it's always nice to
708 * avoid busy looping.
709 */
710 if (ret == -EBUSY) {
711 msleep(10);
712 ret = restart_syscall();
713 }
714 return ret;
715 }
716 EXPORT_SYMBOL_GPL(blkg_conf_prep);
717
718 /**
719 * blkg_conf_finish - finish up per-blkg config update
720 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
721 *
722 * Finish up after per-blkg config update. This function must be paired
723 * with blkg_conf_prep().
724 */
725 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
726 __releases(&ctx->disk->queue->queue_lock) __releases(rcu)
727 {
728 spin_unlock_irq(&ctx->disk->queue->queue_lock);
729 rcu_read_unlock();
730 put_disk_and_module(ctx->disk);
731 }
732 EXPORT_SYMBOL_GPL(blkg_conf_finish);
733
734 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
735 {
736 int i;
737
738 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
739 dst->bytes[i] = src->bytes[i];
740 dst->ios[i] = src->ios[i];
741 }
742 }
743
744 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
745 {
746 int i;
747
748 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
749 dst->bytes[i] += src->bytes[i];
750 dst->ios[i] += src->ios[i];
751 }
752 }
753
754 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
755 {
756 int i;
757
758 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
759 dst->bytes[i] -= src->bytes[i];
760 dst->ios[i] -= src->ios[i];
761 }
762 }
763
764 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
765 {
766 struct blkcg *blkcg = css_to_blkcg(css);
767 struct blkcg_gq *blkg;
768
769 rcu_read_lock();
770
771 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
772 struct blkcg_gq *parent = blkg->parent;
773 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
774 struct blkg_iostat cur, delta;
775 unsigned int seq;
776
777 /* fetch the current per-cpu values */
778 do {
779 seq = u64_stats_fetch_begin(&bisc->sync);
780 blkg_iostat_set(&cur, &bisc->cur);
781 } while (u64_stats_fetch_retry(&bisc->sync, seq));
782
783 /* propagate percpu delta to global */
784 u64_stats_update_begin(&blkg->iostat.sync);
785 blkg_iostat_set(&delta, &cur);
786 blkg_iostat_sub(&delta, &bisc->last);
787 blkg_iostat_add(&blkg->iostat.cur, &delta);
788 blkg_iostat_add(&bisc->last, &delta);
789 u64_stats_update_end(&blkg->iostat.sync);
790
791 /* propagate global delta to parent */
792 if (parent) {
793 u64_stats_update_begin(&parent->iostat.sync);
794 blkg_iostat_set(&delta, &blkg->iostat.cur);
795 blkg_iostat_sub(&delta, &blkg->iostat.last);
796 blkg_iostat_add(&parent->iostat.cur, &delta);
797 blkg_iostat_add(&blkg->iostat.last, &delta);
798 u64_stats_update_end(&parent->iostat.sync);
799 }
800 }
801
802 rcu_read_unlock();
803 }
804
805 /*
806 * The rstat algorithms intentionally don't handle the root cgroup to avoid
807 * incurring overhead when no cgroups are defined. For that reason,
808 * cgroup_rstat_flush in blkcg_print_stat does not actually fill out the
809 * iostat in the root cgroup's blkcg_gq.
810 *
811 * However, we would like to re-use the printing code between the root and
812 * non-root cgroups to the extent possible. For that reason, we simulate
813 * flushing the root cgroup's stats by explicitly filling in the iostat
814 * with disk level statistics.
815 */
816 static void blkcg_fill_root_iostats(void)
817 {
818 struct class_dev_iter iter;
819 struct device *dev;
820
821 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
822 while ((dev = class_dev_iter_next(&iter))) {
823 struct gendisk *disk = dev_to_disk(dev);
824 struct hd_struct *part = disk_get_part(disk, 0);
825 struct blkcg_gq *blkg = blk_queue_root_blkg(disk->queue);
826 struct blkg_iostat tmp;
827 int cpu;
828
829 memset(&tmp, 0, sizeof(tmp));
830 for_each_possible_cpu(cpu) {
831 struct disk_stats *cpu_dkstats;
832
833 cpu_dkstats = per_cpu_ptr(part->dkstats, cpu);
834 tmp.ios[BLKG_IOSTAT_READ] +=
835 cpu_dkstats->ios[STAT_READ];
836 tmp.ios[BLKG_IOSTAT_WRITE] +=
837 cpu_dkstats->ios[STAT_WRITE];
838 tmp.ios[BLKG_IOSTAT_DISCARD] +=
839 cpu_dkstats->ios[STAT_DISCARD];
840 // convert sectors to bytes
841 tmp.bytes[BLKG_IOSTAT_READ] +=
842 cpu_dkstats->sectors[STAT_READ] << 9;
843 tmp.bytes[BLKG_IOSTAT_WRITE] +=
844 cpu_dkstats->sectors[STAT_WRITE] << 9;
845 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
846 cpu_dkstats->sectors[STAT_DISCARD] << 9;
847
848 u64_stats_update_begin(&blkg->iostat.sync);
849 blkg_iostat_set(&blkg->iostat.cur, &tmp);
850 u64_stats_update_end(&blkg->iostat.sync);
851 }
852 disk_put_part(part);
853 }
854 }
855
856 static int blkcg_print_stat(struct seq_file *sf, void *v)
857 {
858 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
859 struct blkcg_gq *blkg;
860
861 if (!seq_css(sf)->parent)
862 blkcg_fill_root_iostats();
863 else
864 cgroup_rstat_flush(blkcg->css.cgroup);
865
866 rcu_read_lock();
867
868 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
869 struct blkg_iostat_set *bis = &blkg->iostat;
870 const char *dname;
871 char *buf;
872 u64 rbytes, wbytes, rios, wios, dbytes, dios;
873 size_t size = seq_get_buf(sf, &buf), off = 0;
874 int i;
875 bool has_stats = false;
876 unsigned seq;
877
878 spin_lock_irq(&blkg->q->queue_lock);
879
880 if (!blkg->online)
881 goto skip;
882
883 dname = blkg_dev_name(blkg);
884 if (!dname)
885 goto skip;
886
887 /*
888 * Hooray string manipulation, count is the size written NOT
889 * INCLUDING THE \0, so size is now count+1 less than what we
890 * had before, but we want to start writing the next bit from
891 * the \0 so we only add count to buf.
892 */
893 off += scnprintf(buf+off, size-off, "%s ", dname);
894
895 do {
896 seq = u64_stats_fetch_begin(&bis->sync);
897
898 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
899 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
900 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
901 rios = bis->cur.ios[BLKG_IOSTAT_READ];
902 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
903 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
904 } while (u64_stats_fetch_retry(&bis->sync, seq));
905
906 if (rbytes || wbytes || rios || wios) {
907 has_stats = true;
908 off += scnprintf(buf+off, size-off,
909 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
910 rbytes, wbytes, rios, wios,
911 dbytes, dios);
912 }
913
914 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
915 has_stats = true;
916 off += scnprintf(buf+off, size-off,
917 " use_delay=%d delay_nsec=%llu",
918 atomic_read(&blkg->use_delay),
919 (unsigned long long)atomic64_read(&blkg->delay_nsec));
920 }
921
922 for (i = 0; i < BLKCG_MAX_POLS; i++) {
923 struct blkcg_policy *pol = blkcg_policy[i];
924 size_t written;
925
926 if (!blkg->pd[i] || !pol->pd_stat_fn)
927 continue;
928
929 written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off);
930 if (written)
931 has_stats = true;
932 off += written;
933 }
934
935 if (has_stats) {
936 if (off < size - 1) {
937 off += scnprintf(buf+off, size-off, "\n");
938 seq_commit(sf, off);
939 } else {
940 seq_commit(sf, -1);
941 }
942 }
943 skip:
944 spin_unlock_irq(&blkg->q->queue_lock);
945 }
946
947 rcu_read_unlock();
948 return 0;
949 }
950
951 static struct cftype blkcg_files[] = {
952 {
953 .name = "stat",
954 .seq_show = blkcg_print_stat,
955 },
956 { } /* terminate */
957 };
958
959 static struct cftype blkcg_legacy_files[] = {
960 {
961 .name = "reset_stats",
962 .write_u64 = blkcg_reset_stats,
963 },
964 { } /* terminate */
965 };
966
967 /*
968 * blkcg destruction is a three-stage process.
969 *
970 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
971 * which offlines writeback. Here we tie the next stage of blkg destruction
972 * to the completion of writeback associated with the blkcg. This lets us
973 * avoid punting potentially large amounts of outstanding writeback to root
974 * while maintaining any ongoing policies. The next stage is triggered when
975 * the nr_cgwbs count goes to zero.
976 *
977 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
978 * and handles the destruction of blkgs. Here the css reference held by
979 * the blkg is put back eventually allowing blkcg_css_free() to be called.
980 * This work may occur in cgwb_release_workfn() on the cgwb_release
981 * workqueue. Any submitted ios that fail to get the blkg ref will be
982 * punted to the root_blkg.
983 *
984 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
985 * This finally frees the blkcg.
986 */
987
988 /**
989 * blkcg_css_offline - cgroup css_offline callback
990 * @css: css of interest
991 *
992 * This function is called when @css is about to go away. Here the cgwbs are
993 * offlined first and only once writeback associated with the blkcg has
994 * finished do we start step 2 (see above).
995 */
996 static void blkcg_css_offline(struct cgroup_subsys_state *css)
997 {
998 struct blkcg *blkcg = css_to_blkcg(css);
999
1000 /* this prevents anyone from attaching or migrating to this blkcg */
1001 wb_blkcg_offline(blkcg);
1002
1003 /* put the base online pin allowing step 2 to be triggered */
1004 blkcg_unpin_online(blkcg);
1005 }
1006
1007 /**
1008 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1009 * @blkcg: blkcg of interest
1010 *
1011 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1012 * is nested inside q lock, this function performs reverse double lock dancing.
1013 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1014 * blkcg_css_free to eventually be called.
1015 *
1016 * This is the blkcg counterpart of ioc_release_fn().
1017 */
1018 void blkcg_destroy_blkgs(struct blkcg *blkcg)
1019 {
1020 spin_lock_irq(&blkcg->lock);
1021
1022 while (!hlist_empty(&blkcg->blkg_list)) {
1023 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1024 struct blkcg_gq, blkcg_node);
1025 struct request_queue *q = blkg->q;
1026
1027 if (spin_trylock(&q->queue_lock)) {
1028 blkg_destroy(blkg);
1029 spin_unlock(&q->queue_lock);
1030 } else {
1031 spin_unlock_irq(&blkcg->lock);
1032 cpu_relax();
1033 spin_lock_irq(&blkcg->lock);
1034 }
1035 }
1036
1037 spin_unlock_irq(&blkcg->lock);
1038 }
1039
1040 static void blkcg_css_free(struct cgroup_subsys_state *css)
1041 {
1042 struct blkcg *blkcg = css_to_blkcg(css);
1043 int i;
1044
1045 mutex_lock(&blkcg_pol_mutex);
1046
1047 list_del(&blkcg->all_blkcgs_node);
1048
1049 for (i = 0; i < BLKCG_MAX_POLS; i++)
1050 if (blkcg->cpd[i])
1051 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1052
1053 mutex_unlock(&blkcg_pol_mutex);
1054
1055 kfree(blkcg);
1056 }
1057
1058 static struct cgroup_subsys_state *
1059 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1060 {
1061 struct blkcg *blkcg;
1062 struct cgroup_subsys_state *ret;
1063 int i;
1064
1065 mutex_lock(&blkcg_pol_mutex);
1066
1067 if (!parent_css) {
1068 blkcg = &blkcg_root;
1069 } else {
1070 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1071 if (!blkcg) {
1072 ret = ERR_PTR(-ENOMEM);
1073 goto unlock;
1074 }
1075 }
1076
1077 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1078 struct blkcg_policy *pol = blkcg_policy[i];
1079 struct blkcg_policy_data *cpd;
1080
1081 /*
1082 * If the policy hasn't been attached yet, wait for it
1083 * to be attached before doing anything else. Otherwise,
1084 * check if the policy requires any specific per-cgroup
1085 * data: if it does, allocate and initialize it.
1086 */
1087 if (!pol || !pol->cpd_alloc_fn)
1088 continue;
1089
1090 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1091 if (!cpd) {
1092 ret = ERR_PTR(-ENOMEM);
1093 goto free_pd_blkcg;
1094 }
1095 blkcg->cpd[i] = cpd;
1096 cpd->blkcg = blkcg;
1097 cpd->plid = i;
1098 if (pol->cpd_init_fn)
1099 pol->cpd_init_fn(cpd);
1100 }
1101
1102 spin_lock_init(&blkcg->lock);
1103 refcount_set(&blkcg->online_pin, 1);
1104 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1105 INIT_HLIST_HEAD(&blkcg->blkg_list);
1106 #ifdef CONFIG_CGROUP_WRITEBACK
1107 INIT_LIST_HEAD(&blkcg->cgwb_list);
1108 #endif
1109 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1110
1111 mutex_unlock(&blkcg_pol_mutex);
1112 return &blkcg->css;
1113
1114 free_pd_blkcg:
1115 for (i--; i >= 0; i--)
1116 if (blkcg->cpd[i])
1117 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1118
1119 if (blkcg != &blkcg_root)
1120 kfree(blkcg);
1121 unlock:
1122 mutex_unlock(&blkcg_pol_mutex);
1123 return ret;
1124 }
1125
1126 static int blkcg_css_online(struct cgroup_subsys_state *css)
1127 {
1128 struct blkcg *blkcg = css_to_blkcg(css);
1129 struct blkcg *parent = blkcg_parent(blkcg);
1130
1131 /*
1132 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1133 * don't go offline while cgwbs are still active on them. Pin the
1134 * parent so that offline always happens towards the root.
1135 */
1136 if (parent)
1137 blkcg_pin_online(parent);
1138 return 0;
1139 }
1140
1141 /**
1142 * blkcg_init_queue - initialize blkcg part of request queue
1143 * @q: request_queue to initialize
1144 *
1145 * Called from blk_alloc_queue(). Responsible for initializing blkcg
1146 * part of new request_queue @q.
1147 *
1148 * RETURNS:
1149 * 0 on success, -errno on failure.
1150 */
1151 int blkcg_init_queue(struct request_queue *q)
1152 {
1153 struct blkcg_gq *new_blkg, *blkg;
1154 bool preloaded;
1155 int ret;
1156
1157 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1158 if (!new_blkg)
1159 return -ENOMEM;
1160
1161 preloaded = !radix_tree_preload(GFP_KERNEL);
1162
1163 /* Make sure the root blkg exists. */
1164 rcu_read_lock();
1165 spin_lock_irq(&q->queue_lock);
1166 blkg = blkg_create(&blkcg_root, q, new_blkg);
1167 if (IS_ERR(blkg))
1168 goto err_unlock;
1169 q->root_blkg = blkg;
1170 spin_unlock_irq(&q->queue_lock);
1171 rcu_read_unlock();
1172
1173 if (preloaded)
1174 radix_tree_preload_end();
1175
1176 ret = blk_throtl_init(q);
1177 if (ret)
1178 goto err_destroy_all;
1179
1180 ret = blk_iolatency_init(q);
1181 if (ret) {
1182 blk_throtl_exit(q);
1183 goto err_destroy_all;
1184 }
1185 return 0;
1186
1187 err_destroy_all:
1188 blkg_destroy_all(q);
1189 return ret;
1190 err_unlock:
1191 spin_unlock_irq(&q->queue_lock);
1192 rcu_read_unlock();
1193 if (preloaded)
1194 radix_tree_preload_end();
1195 return PTR_ERR(blkg);
1196 }
1197
1198 /**
1199 * blkcg_exit_queue - exit and release blkcg part of request_queue
1200 * @q: request_queue being released
1201 *
1202 * Called from blk_exit_queue(). Responsible for exiting blkcg part.
1203 */
1204 void blkcg_exit_queue(struct request_queue *q)
1205 {
1206 blkg_destroy_all(q);
1207 blk_throtl_exit(q);
1208 }
1209
1210 /*
1211 * We cannot support shared io contexts, as we have no mean to support
1212 * two tasks with the same ioc in two different groups without major rework
1213 * of the main cic data structures. For now we allow a task to change
1214 * its cgroup only if it's the only owner of its ioc.
1215 */
1216 static int blkcg_can_attach(struct cgroup_taskset *tset)
1217 {
1218 struct task_struct *task;
1219 struct cgroup_subsys_state *dst_css;
1220 struct io_context *ioc;
1221 int ret = 0;
1222
1223 /* task_lock() is needed to avoid races with exit_io_context() */
1224 cgroup_taskset_for_each(task, dst_css, tset) {
1225 task_lock(task);
1226 ioc = task->io_context;
1227 if (ioc && atomic_read(&ioc->nr_tasks) > 1)
1228 ret = -EINVAL;
1229 task_unlock(task);
1230 if (ret)
1231 break;
1232 }
1233 return ret;
1234 }
1235
1236 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1237 {
1238 int i;
1239
1240 mutex_lock(&blkcg_pol_mutex);
1241
1242 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1243 struct blkcg_policy *pol = blkcg_policy[i];
1244 struct blkcg *blkcg;
1245
1246 if (!pol || !pol->cpd_bind_fn)
1247 continue;
1248
1249 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1250 if (blkcg->cpd[pol->plid])
1251 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1252 }
1253 mutex_unlock(&blkcg_pol_mutex);
1254 }
1255
1256 static void blkcg_exit(struct task_struct *tsk)
1257 {
1258 if (tsk->throttle_queue)
1259 blk_put_queue(tsk->throttle_queue);
1260 tsk->throttle_queue = NULL;
1261 }
1262
1263 struct cgroup_subsys io_cgrp_subsys = {
1264 .css_alloc = blkcg_css_alloc,
1265 .css_online = blkcg_css_online,
1266 .css_offline = blkcg_css_offline,
1267 .css_free = blkcg_css_free,
1268 .can_attach = blkcg_can_attach,
1269 .css_rstat_flush = blkcg_rstat_flush,
1270 .bind = blkcg_bind,
1271 .dfl_cftypes = blkcg_files,
1272 .legacy_cftypes = blkcg_legacy_files,
1273 .legacy_name = "blkio",
1274 .exit = blkcg_exit,
1275 #ifdef CONFIG_MEMCG
1276 /*
1277 * This ensures that, if available, memcg is automatically enabled
1278 * together on the default hierarchy so that the owner cgroup can
1279 * be retrieved from writeback pages.
1280 */
1281 .depends_on = 1 << memory_cgrp_id,
1282 #endif
1283 };
1284 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1285
1286 /**
1287 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1288 * @q: request_queue of interest
1289 * @pol: blkcg policy to activate
1290 *
1291 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1292 * bypass mode to populate its blkgs with policy_data for @pol.
1293 *
1294 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1295 * from IO path. Update of each blkg is protected by both queue and blkcg
1296 * locks so that holding either lock and testing blkcg_policy_enabled() is
1297 * always enough for dereferencing policy data.
1298 *
1299 * The caller is responsible for synchronizing [de]activations and policy
1300 * [un]registerations. Returns 0 on success, -errno on failure.
1301 */
1302 int blkcg_activate_policy(struct request_queue *q,
1303 const struct blkcg_policy *pol)
1304 {
1305 struct blkg_policy_data *pd_prealloc = NULL;
1306 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1307 int ret;
1308
1309 if (blkcg_policy_enabled(q, pol))
1310 return 0;
1311
1312 if (queue_is_mq(q))
1313 blk_mq_freeze_queue(q);
1314 retry:
1315 spin_lock_irq(&q->queue_lock);
1316
1317 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1318 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1319 struct blkg_policy_data *pd;
1320
1321 if (blkg->pd[pol->plid])
1322 continue;
1323
1324 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1325 if (blkg == pinned_blkg) {
1326 pd = pd_prealloc;
1327 pd_prealloc = NULL;
1328 } else {
1329 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1330 blkg->blkcg);
1331 }
1332
1333 if (!pd) {
1334 /*
1335 * GFP_NOWAIT failed. Free the existing one and
1336 * prealloc for @blkg w/ GFP_KERNEL.
1337 */
1338 if (pinned_blkg)
1339 blkg_put(pinned_blkg);
1340 blkg_get(blkg);
1341 pinned_blkg = blkg;
1342
1343 spin_unlock_irq(&q->queue_lock);
1344
1345 if (pd_prealloc)
1346 pol->pd_free_fn(pd_prealloc);
1347 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1348 blkg->blkcg);
1349 if (pd_prealloc)
1350 goto retry;
1351 else
1352 goto enomem;
1353 }
1354
1355 blkg->pd[pol->plid] = pd;
1356 pd->blkg = blkg;
1357 pd->plid = pol->plid;
1358 }
1359
1360 /* all allocated, init in the same order */
1361 if (pol->pd_init_fn)
1362 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1363 pol->pd_init_fn(blkg->pd[pol->plid]);
1364
1365 __set_bit(pol->plid, q->blkcg_pols);
1366 ret = 0;
1367
1368 spin_unlock_irq(&q->queue_lock);
1369 out:
1370 if (queue_is_mq(q))
1371 blk_mq_unfreeze_queue(q);
1372 if (pinned_blkg)
1373 blkg_put(pinned_blkg);
1374 if (pd_prealloc)
1375 pol->pd_free_fn(pd_prealloc);
1376 return ret;
1377
1378 enomem:
1379 /* alloc failed, nothing's initialized yet, free everything */
1380 spin_lock_irq(&q->queue_lock);
1381 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1382 if (blkg->pd[pol->plid]) {
1383 pol->pd_free_fn(blkg->pd[pol->plid]);
1384 blkg->pd[pol->plid] = NULL;
1385 }
1386 }
1387 spin_unlock_irq(&q->queue_lock);
1388 ret = -ENOMEM;
1389 goto out;
1390 }
1391 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1392
1393 /**
1394 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1395 * @q: request_queue of interest
1396 * @pol: blkcg policy to deactivate
1397 *
1398 * Deactivate @pol on @q. Follows the same synchronization rules as
1399 * blkcg_activate_policy().
1400 */
1401 void blkcg_deactivate_policy(struct request_queue *q,
1402 const struct blkcg_policy *pol)
1403 {
1404 struct blkcg_gq *blkg;
1405
1406 if (!blkcg_policy_enabled(q, pol))
1407 return;
1408
1409 if (queue_is_mq(q))
1410 blk_mq_freeze_queue(q);
1411
1412 spin_lock_irq(&q->queue_lock);
1413
1414 __clear_bit(pol->plid, q->blkcg_pols);
1415
1416 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1417 if (blkg->pd[pol->plid]) {
1418 if (pol->pd_offline_fn)
1419 pol->pd_offline_fn(blkg->pd[pol->plid]);
1420 pol->pd_free_fn(blkg->pd[pol->plid]);
1421 blkg->pd[pol->plid] = NULL;
1422 }
1423 }
1424
1425 spin_unlock_irq(&q->queue_lock);
1426
1427 if (queue_is_mq(q))
1428 blk_mq_unfreeze_queue(q);
1429 }
1430 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1431
1432 /**
1433 * blkcg_policy_register - register a blkcg policy
1434 * @pol: blkcg policy to register
1435 *
1436 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1437 * successful registration. Returns 0 on success and -errno on failure.
1438 */
1439 int blkcg_policy_register(struct blkcg_policy *pol)
1440 {
1441 struct blkcg *blkcg;
1442 int i, ret;
1443
1444 mutex_lock(&blkcg_pol_register_mutex);
1445 mutex_lock(&blkcg_pol_mutex);
1446
1447 /* find an empty slot */
1448 ret = -ENOSPC;
1449 for (i = 0; i < BLKCG_MAX_POLS; i++)
1450 if (!blkcg_policy[i])
1451 break;
1452 if (i >= BLKCG_MAX_POLS) {
1453 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1454 goto err_unlock;
1455 }
1456
1457 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1458 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1459 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1460 goto err_unlock;
1461
1462 /* register @pol */
1463 pol->plid = i;
1464 blkcg_policy[pol->plid] = pol;
1465
1466 /* allocate and install cpd's */
1467 if (pol->cpd_alloc_fn) {
1468 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1469 struct blkcg_policy_data *cpd;
1470
1471 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1472 if (!cpd)
1473 goto err_free_cpds;
1474
1475 blkcg->cpd[pol->plid] = cpd;
1476 cpd->blkcg = blkcg;
1477 cpd->plid = pol->plid;
1478 if (pol->cpd_init_fn)
1479 pol->cpd_init_fn(cpd);
1480 }
1481 }
1482
1483 mutex_unlock(&blkcg_pol_mutex);
1484
1485 /* everything is in place, add intf files for the new policy */
1486 if (pol->dfl_cftypes)
1487 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1488 pol->dfl_cftypes));
1489 if (pol->legacy_cftypes)
1490 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1491 pol->legacy_cftypes));
1492 mutex_unlock(&blkcg_pol_register_mutex);
1493 return 0;
1494
1495 err_free_cpds:
1496 if (pol->cpd_free_fn) {
1497 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1498 if (blkcg->cpd[pol->plid]) {
1499 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1500 blkcg->cpd[pol->plid] = NULL;
1501 }
1502 }
1503 }
1504 blkcg_policy[pol->plid] = NULL;
1505 err_unlock:
1506 mutex_unlock(&blkcg_pol_mutex);
1507 mutex_unlock(&blkcg_pol_register_mutex);
1508 return ret;
1509 }
1510 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1511
1512 /**
1513 * blkcg_policy_unregister - unregister a blkcg policy
1514 * @pol: blkcg policy to unregister
1515 *
1516 * Undo blkcg_policy_register(@pol). Might sleep.
1517 */
1518 void blkcg_policy_unregister(struct blkcg_policy *pol)
1519 {
1520 struct blkcg *blkcg;
1521
1522 mutex_lock(&blkcg_pol_register_mutex);
1523
1524 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1525 goto out_unlock;
1526
1527 /* kill the intf files first */
1528 if (pol->dfl_cftypes)
1529 cgroup_rm_cftypes(pol->dfl_cftypes);
1530 if (pol->legacy_cftypes)
1531 cgroup_rm_cftypes(pol->legacy_cftypes);
1532
1533 /* remove cpds and unregister */
1534 mutex_lock(&blkcg_pol_mutex);
1535
1536 if (pol->cpd_free_fn) {
1537 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1538 if (blkcg->cpd[pol->plid]) {
1539 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1540 blkcg->cpd[pol->plid] = NULL;
1541 }
1542 }
1543 }
1544 blkcg_policy[pol->plid] = NULL;
1545
1546 mutex_unlock(&blkcg_pol_mutex);
1547 out_unlock:
1548 mutex_unlock(&blkcg_pol_register_mutex);
1549 }
1550 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1551
1552 bool __blkcg_punt_bio_submit(struct bio *bio)
1553 {
1554 struct blkcg_gq *blkg = bio->bi_blkg;
1555
1556 /* consume the flag first */
1557 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1558
1559 /* never bounce for the root cgroup */
1560 if (!blkg->parent)
1561 return false;
1562
1563 spin_lock_bh(&blkg->async_bio_lock);
1564 bio_list_add(&blkg->async_bios, bio);
1565 spin_unlock_bh(&blkg->async_bio_lock);
1566
1567 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1568 return true;
1569 }
1570
1571 /*
1572 * Scale the accumulated delay based on how long it has been since we updated
1573 * the delay. We only call this when we are adding delay, in case it's been a
1574 * while since we added delay, and when we are checking to see if we need to
1575 * delay a task, to account for any delays that may have occurred.
1576 */
1577 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1578 {
1579 u64 old = atomic64_read(&blkg->delay_start);
1580
1581 /* negative use_delay means no scaling, see blkcg_set_delay() */
1582 if (atomic_read(&blkg->use_delay) < 0)
1583 return;
1584
1585 /*
1586 * We only want to scale down every second. The idea here is that we
1587 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1588 * time window. We only want to throttle tasks for recent delay that
1589 * has occurred, in 1 second time windows since that's the maximum
1590 * things can be throttled. We save the current delay window in
1591 * blkg->last_delay so we know what amount is still left to be charged
1592 * to the blkg from this point onward. blkg->last_use keeps track of
1593 * the use_delay counter. The idea is if we're unthrottling the blkg we
1594 * are ok with whatever is happening now, and we can take away more of
1595 * the accumulated delay as we've already throttled enough that
1596 * everybody is happy with their IO latencies.
1597 */
1598 if (time_before64(old + NSEC_PER_SEC, now) &&
1599 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1600 u64 cur = atomic64_read(&blkg->delay_nsec);
1601 u64 sub = min_t(u64, blkg->last_delay, now - old);
1602 int cur_use = atomic_read(&blkg->use_delay);
1603
1604 /*
1605 * We've been unthrottled, subtract a larger chunk of our
1606 * accumulated delay.
1607 */
1608 if (cur_use < blkg->last_use)
1609 sub = max_t(u64, sub, blkg->last_delay >> 1);
1610
1611 /*
1612 * This shouldn't happen, but handle it anyway. Our delay_nsec
1613 * should only ever be growing except here where we subtract out
1614 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1615 * rather not end up with negative numbers.
1616 */
1617 if (unlikely(cur < sub)) {
1618 atomic64_set(&blkg->delay_nsec, 0);
1619 blkg->last_delay = 0;
1620 } else {
1621 atomic64_sub(sub, &blkg->delay_nsec);
1622 blkg->last_delay = cur - sub;
1623 }
1624 blkg->last_use = cur_use;
1625 }
1626 }
1627
1628 /*
1629 * This is called when we want to actually walk up the hierarchy and check to
1630 * see if we need to throttle, and then actually throttle if there is some
1631 * accumulated delay. This should only be called upon return to user space so
1632 * we're not holding some lock that would induce a priority inversion.
1633 */
1634 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1635 {
1636 unsigned long pflags;
1637 bool clamp;
1638 u64 now = ktime_to_ns(ktime_get());
1639 u64 exp;
1640 u64 delay_nsec = 0;
1641 int tok;
1642
1643 while (blkg->parent) {
1644 int use_delay = atomic_read(&blkg->use_delay);
1645
1646 if (use_delay) {
1647 u64 this_delay;
1648
1649 blkcg_scale_delay(blkg, now);
1650 this_delay = atomic64_read(&blkg->delay_nsec);
1651 if (this_delay > delay_nsec) {
1652 delay_nsec = this_delay;
1653 clamp = use_delay > 0;
1654 }
1655 }
1656 blkg = blkg->parent;
1657 }
1658
1659 if (!delay_nsec)
1660 return;
1661
1662 /*
1663 * Let's not sleep for all eternity if we've amassed a huge delay.
1664 * Swapping or metadata IO can accumulate 10's of seconds worth of
1665 * delay, and we want userspace to be able to do _something_ so cap the
1666 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1667 * tasks will be delayed for 0.25 second for every syscall. If
1668 * blkcg_set_delay() was used as indicated by negative use_delay, the
1669 * caller is responsible for regulating the range.
1670 */
1671 if (clamp)
1672 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1673
1674 if (use_memdelay)
1675 psi_memstall_enter(&pflags);
1676
1677 exp = ktime_add_ns(now, delay_nsec);
1678 tok = io_schedule_prepare();
1679 do {
1680 __set_current_state(TASK_KILLABLE);
1681 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1682 break;
1683 } while (!fatal_signal_pending(current));
1684 io_schedule_finish(tok);
1685
1686 if (use_memdelay)
1687 psi_memstall_leave(&pflags);
1688 }
1689
1690 /**
1691 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1692 *
1693 * This is only called if we've been marked with set_notify_resume(). Obviously
1694 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1695 * check to see if current->throttle_queue is set and if not this doesn't do
1696 * anything. This should only ever be called by the resume code, it's not meant
1697 * to be called by people willy-nilly as it will actually do the work to
1698 * throttle the task if it is setup for throttling.
1699 */
1700 void blkcg_maybe_throttle_current(void)
1701 {
1702 struct request_queue *q = current->throttle_queue;
1703 struct cgroup_subsys_state *css;
1704 struct blkcg *blkcg;
1705 struct blkcg_gq *blkg;
1706 bool use_memdelay = current->use_memdelay;
1707
1708 if (!q)
1709 return;
1710
1711 current->throttle_queue = NULL;
1712 current->use_memdelay = false;
1713
1714 rcu_read_lock();
1715 css = kthread_blkcg();
1716 if (css)
1717 blkcg = css_to_blkcg(css);
1718 else
1719 blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1720
1721 if (!blkcg)
1722 goto out;
1723 blkg = blkg_lookup(blkcg, q);
1724 if (!blkg)
1725 goto out;
1726 if (!blkg_tryget(blkg))
1727 goto out;
1728 rcu_read_unlock();
1729
1730 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1731 blkg_put(blkg);
1732 blk_put_queue(q);
1733 return;
1734 out:
1735 rcu_read_unlock();
1736 blk_put_queue(q);
1737 }
1738
1739 /**
1740 * blkcg_schedule_throttle - this task needs to check for throttling
1741 * @q: the request queue IO was submitted on
1742 * @use_memdelay: do we charge this to memory delay for PSI
1743 *
1744 * This is called by the IO controller when we know there's delay accumulated
1745 * for the blkg for this task. We do not pass the blkg because there are places
1746 * we call this that may not have that information, the swapping code for
1747 * instance will only have a request_queue at that point. This set's the
1748 * notify_resume for the task to check and see if it requires throttling before
1749 * returning to user space.
1750 *
1751 * We will only schedule once per syscall. You can call this over and over
1752 * again and it will only do the check once upon return to user space, and only
1753 * throttle once. If the task needs to be throttled again it'll need to be
1754 * re-set at the next time we see the task.
1755 */
1756 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1757 {
1758 if (unlikely(current->flags & PF_KTHREAD))
1759 return;
1760
1761 if (!blk_get_queue(q))
1762 return;
1763
1764 if (current->throttle_queue)
1765 blk_put_queue(current->throttle_queue);
1766 current->throttle_queue = q;
1767 if (use_memdelay)
1768 current->use_memdelay = use_memdelay;
1769 set_notify_resume(current);
1770 }
1771
1772 /**
1773 * blkcg_add_delay - add delay to this blkg
1774 * @blkg: blkg of interest
1775 * @now: the current time in nanoseconds
1776 * @delta: how many nanoseconds of delay to add
1777 *
1778 * Charge @delta to the blkg's current delay accumulation. This is used to
1779 * throttle tasks if an IO controller thinks we need more throttling.
1780 */
1781 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1782 {
1783 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1784 return;
1785 blkcg_scale_delay(blkg, now);
1786 atomic64_add(delta, &blkg->delay_nsec);
1787 }
1788
1789 /**
1790 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1791 * @bio: target bio
1792 * @css: target css
1793 *
1794 * As the failure mode here is to walk up the blkg tree, this ensure that the
1795 * blkg->parent pointers are always valid. This returns the blkg that it ended
1796 * up taking a reference on or %NULL if no reference was taken.
1797 */
1798 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1799 struct cgroup_subsys_state *css)
1800 {
1801 struct blkcg_gq *blkg, *ret_blkg = NULL;
1802
1803 rcu_read_lock();
1804 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_disk->queue);
1805 while (blkg) {
1806 if (blkg_tryget(blkg)) {
1807 ret_blkg = blkg;
1808 break;
1809 }
1810 blkg = blkg->parent;
1811 }
1812 rcu_read_unlock();
1813
1814 return ret_blkg;
1815 }
1816
1817 /**
1818 * bio_associate_blkg_from_css - associate a bio with a specified css
1819 * @bio: target bio
1820 * @css: target css
1821 *
1822 * Associate @bio with the blkg found by combining the css's blkg and the
1823 * request_queue of the @bio. An association failure is handled by walking up
1824 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1825 * and q->root_blkg. This situation only happens when a cgroup is dying and
1826 * then the remaining bios will spill to the closest alive blkg.
1827 *
1828 * A reference will be taken on the blkg and will be released when @bio is
1829 * freed.
1830 */
1831 void bio_associate_blkg_from_css(struct bio *bio,
1832 struct cgroup_subsys_state *css)
1833 {
1834 if (bio->bi_blkg)
1835 blkg_put(bio->bi_blkg);
1836
1837 if (css && css->parent) {
1838 bio->bi_blkg = blkg_tryget_closest(bio, css);
1839 } else {
1840 blkg_get(bio->bi_disk->queue->root_blkg);
1841 bio->bi_blkg = bio->bi_disk->queue->root_blkg;
1842 }
1843 }
1844 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1845
1846 /**
1847 * bio_associate_blkg - associate a bio with a blkg
1848 * @bio: target bio
1849 *
1850 * Associate @bio with the blkg found from the bio's css and request_queue.
1851 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1852 * already associated, the css is reused and association redone as the
1853 * request_queue may have changed.
1854 */
1855 void bio_associate_blkg(struct bio *bio)
1856 {
1857 struct cgroup_subsys_state *css;
1858
1859 rcu_read_lock();
1860
1861 if (bio->bi_blkg)
1862 css = &bio_blkcg(bio)->css;
1863 else
1864 css = blkcg_css();
1865
1866 bio_associate_blkg_from_css(bio, css);
1867
1868 rcu_read_unlock();
1869 }
1870 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1871
1872 /**
1873 * bio_clone_blkg_association - clone blkg association from src to dst bio
1874 * @dst: destination bio
1875 * @src: source bio
1876 */
1877 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1878 {
1879 if (src->bi_blkg) {
1880 if (dst->bi_blkg)
1881 blkg_put(dst->bi_blkg);
1882 blkg_get(src->bi_blkg);
1883 dst->bi_blkg = src->bi_blkg;
1884 }
1885 }
1886 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1887
1888 static int blk_cgroup_io_type(struct bio *bio)
1889 {
1890 if (op_is_discard(bio->bi_opf))
1891 return BLKG_IOSTAT_DISCARD;
1892 if (op_is_write(bio->bi_opf))
1893 return BLKG_IOSTAT_WRITE;
1894 return BLKG_IOSTAT_READ;
1895 }
1896
1897 void blk_cgroup_bio_start(struct bio *bio)
1898 {
1899 int rwd = blk_cgroup_io_type(bio), cpu;
1900 struct blkg_iostat_set *bis;
1901
1902 cpu = get_cpu();
1903 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1904 u64_stats_update_begin(&bis->sync);
1905
1906 /*
1907 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1908 * bio and we would have already accounted for the size of the bio.
1909 */
1910 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1911 bio_set_flag(bio, BIO_CGROUP_ACCT);
1912 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1913 }
1914 bis->cur.ios[rwd]++;
1915
1916 u64_stats_update_end(&bis->sync);
1917 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1918 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1919 put_cpu();
1920 }
1921
1922 static int __init blkcg_init(void)
1923 {
1924 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1925 WQ_MEM_RECLAIM | WQ_FREEZABLE |
1926 WQ_UNBOUND | WQ_SYSFS, 0);
1927 if (!blkcg_punt_bio_wq)
1928 return -ENOMEM;
1929 return 0;
1930 }
1931 subsys_initcall(blkcg_init);
1932
1933 module_param(blkcg_debug_stats, bool, 0644);
1934 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");