]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-cgroup.c
Merge tag 'sched_urgent_for_v5.15_rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / block / blk-cgroup.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include "blk.h"
34 #include "blk-ioprio.h"
35
36 /*
37 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
38 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
39 * policy [un]register operations including cgroup file additions /
40 * removals. Putting cgroup file registration outside blkcg_pol_mutex
41 * allows grabbing it from cgroup callbacks.
42 */
43 static DEFINE_MUTEX(blkcg_pol_register_mutex);
44 static DEFINE_MUTEX(blkcg_pol_mutex);
45
46 struct blkcg blkcg_root;
47 EXPORT_SYMBOL_GPL(blkcg_root);
48
49 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
50 EXPORT_SYMBOL_GPL(blkcg_root_css);
51
52 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
53
54 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
55
56 bool blkcg_debug_stats = false;
57 static struct workqueue_struct *blkcg_punt_bio_wq;
58
59 #define BLKG_DESTROY_BATCH_SIZE 64
60
61 static bool blkcg_policy_enabled(struct request_queue *q,
62 const struct blkcg_policy *pol)
63 {
64 return pol && test_bit(pol->plid, q->blkcg_pols);
65 }
66
67 /**
68 * blkg_free - free a blkg
69 * @blkg: blkg to free
70 *
71 * Free @blkg which may be partially allocated.
72 */
73 static void blkg_free(struct blkcg_gq *blkg)
74 {
75 int i;
76
77 if (!blkg)
78 return;
79
80 for (i = 0; i < BLKCG_MAX_POLS; i++)
81 if (blkg->pd[i])
82 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
83
84 free_percpu(blkg->iostat_cpu);
85 percpu_ref_exit(&blkg->refcnt);
86 kfree(blkg);
87 }
88
89 static void __blkg_release(struct rcu_head *rcu)
90 {
91 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
92
93 WARN_ON(!bio_list_empty(&blkg->async_bios));
94
95 /* release the blkcg and parent blkg refs this blkg has been holding */
96 css_put(&blkg->blkcg->css);
97 if (blkg->parent)
98 blkg_put(blkg->parent);
99 blkg_free(blkg);
100 }
101
102 /*
103 * A group is RCU protected, but having an rcu lock does not mean that one
104 * can access all the fields of blkg and assume these are valid. For
105 * example, don't try to follow throtl_data and request queue links.
106 *
107 * Having a reference to blkg under an rcu allows accesses to only values
108 * local to groups like group stats and group rate limits.
109 */
110 static void blkg_release(struct percpu_ref *ref)
111 {
112 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
113
114 call_rcu(&blkg->rcu_head, __blkg_release);
115 }
116
117 static void blkg_async_bio_workfn(struct work_struct *work)
118 {
119 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
120 async_bio_work);
121 struct bio_list bios = BIO_EMPTY_LIST;
122 struct bio *bio;
123 struct blk_plug plug;
124 bool need_plug = false;
125
126 /* as long as there are pending bios, @blkg can't go away */
127 spin_lock_bh(&blkg->async_bio_lock);
128 bio_list_merge(&bios, &blkg->async_bios);
129 bio_list_init(&blkg->async_bios);
130 spin_unlock_bh(&blkg->async_bio_lock);
131
132 /* start plug only when bio_list contains at least 2 bios */
133 if (bios.head && bios.head->bi_next) {
134 need_plug = true;
135 blk_start_plug(&plug);
136 }
137 while ((bio = bio_list_pop(&bios)))
138 submit_bio(bio);
139 if (need_plug)
140 blk_finish_plug(&plug);
141 }
142
143 /**
144 * blkg_alloc - allocate a blkg
145 * @blkcg: block cgroup the new blkg is associated with
146 * @q: request_queue the new blkg is associated with
147 * @gfp_mask: allocation mask to use
148 *
149 * Allocate a new blkg assocating @blkcg and @q.
150 */
151 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
152 gfp_t gfp_mask)
153 {
154 struct blkcg_gq *blkg;
155 int i, cpu;
156
157 /* alloc and init base part */
158 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
159 if (!blkg)
160 return NULL;
161
162 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
163 goto err_free;
164
165 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
166 if (!blkg->iostat_cpu)
167 goto err_free;
168
169 blkg->q = q;
170 INIT_LIST_HEAD(&blkg->q_node);
171 spin_lock_init(&blkg->async_bio_lock);
172 bio_list_init(&blkg->async_bios);
173 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
174 blkg->blkcg = blkcg;
175
176 u64_stats_init(&blkg->iostat.sync);
177 for_each_possible_cpu(cpu)
178 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
179
180 for (i = 0; i < BLKCG_MAX_POLS; i++) {
181 struct blkcg_policy *pol = blkcg_policy[i];
182 struct blkg_policy_data *pd;
183
184 if (!blkcg_policy_enabled(q, pol))
185 continue;
186
187 /* alloc per-policy data and attach it to blkg */
188 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
189 if (!pd)
190 goto err_free;
191
192 blkg->pd[i] = pd;
193 pd->blkg = blkg;
194 pd->plid = i;
195 }
196
197 return blkg;
198
199 err_free:
200 blkg_free(blkg);
201 return NULL;
202 }
203
204 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
205 struct request_queue *q, bool update_hint)
206 {
207 struct blkcg_gq *blkg;
208
209 /*
210 * Hint didn't match. Look up from the radix tree. Note that the
211 * hint can only be updated under queue_lock as otherwise @blkg
212 * could have already been removed from blkg_tree. The caller is
213 * responsible for grabbing queue_lock if @update_hint.
214 */
215 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
216 if (blkg && blkg->q == q) {
217 if (update_hint) {
218 lockdep_assert_held(&q->queue_lock);
219 rcu_assign_pointer(blkcg->blkg_hint, blkg);
220 }
221 return blkg;
222 }
223
224 return NULL;
225 }
226 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
227
228 /*
229 * If @new_blkg is %NULL, this function tries to allocate a new one as
230 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
231 */
232 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
233 struct request_queue *q,
234 struct blkcg_gq *new_blkg)
235 {
236 struct blkcg_gq *blkg;
237 int i, ret;
238
239 WARN_ON_ONCE(!rcu_read_lock_held());
240 lockdep_assert_held(&q->queue_lock);
241
242 /* request_queue is dying, do not create/recreate a blkg */
243 if (blk_queue_dying(q)) {
244 ret = -ENODEV;
245 goto err_free_blkg;
246 }
247
248 /* blkg holds a reference to blkcg */
249 if (!css_tryget_online(&blkcg->css)) {
250 ret = -ENODEV;
251 goto err_free_blkg;
252 }
253
254 /* allocate */
255 if (!new_blkg) {
256 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
257 if (unlikely(!new_blkg)) {
258 ret = -ENOMEM;
259 goto err_put_css;
260 }
261 }
262 blkg = new_blkg;
263
264 /* link parent */
265 if (blkcg_parent(blkcg)) {
266 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
267 if (WARN_ON_ONCE(!blkg->parent)) {
268 ret = -ENODEV;
269 goto err_put_css;
270 }
271 blkg_get(blkg->parent);
272 }
273
274 /* invoke per-policy init */
275 for (i = 0; i < BLKCG_MAX_POLS; i++) {
276 struct blkcg_policy *pol = blkcg_policy[i];
277
278 if (blkg->pd[i] && pol->pd_init_fn)
279 pol->pd_init_fn(blkg->pd[i]);
280 }
281
282 /* insert */
283 spin_lock(&blkcg->lock);
284 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
285 if (likely(!ret)) {
286 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
287 list_add(&blkg->q_node, &q->blkg_list);
288
289 for (i = 0; i < BLKCG_MAX_POLS; i++) {
290 struct blkcg_policy *pol = blkcg_policy[i];
291
292 if (blkg->pd[i] && pol->pd_online_fn)
293 pol->pd_online_fn(blkg->pd[i]);
294 }
295 }
296 blkg->online = true;
297 spin_unlock(&blkcg->lock);
298
299 if (!ret)
300 return blkg;
301
302 /* @blkg failed fully initialized, use the usual release path */
303 blkg_put(blkg);
304 return ERR_PTR(ret);
305
306 err_put_css:
307 css_put(&blkcg->css);
308 err_free_blkg:
309 blkg_free(new_blkg);
310 return ERR_PTR(ret);
311 }
312
313 /**
314 * blkg_lookup_create - lookup blkg, try to create one if not there
315 * @blkcg: blkcg of interest
316 * @q: request_queue of interest
317 *
318 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to
319 * create one. blkg creation is performed recursively from blkcg_root such
320 * that all non-root blkg's have access to the parent blkg. This function
321 * should be called under RCU read lock and takes @q->queue_lock.
322 *
323 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
324 * down from root.
325 */
326 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
327 struct request_queue *q)
328 {
329 struct blkcg_gq *blkg;
330 unsigned long flags;
331
332 WARN_ON_ONCE(!rcu_read_lock_held());
333
334 blkg = blkg_lookup(blkcg, q);
335 if (blkg)
336 return blkg;
337
338 spin_lock_irqsave(&q->queue_lock, flags);
339 blkg = __blkg_lookup(blkcg, q, true);
340 if (blkg)
341 goto found;
342
343 /*
344 * Create blkgs walking down from blkcg_root to @blkcg, so that all
345 * non-root blkgs have access to their parents. Returns the closest
346 * blkg to the intended blkg should blkg_create() fail.
347 */
348 while (true) {
349 struct blkcg *pos = blkcg;
350 struct blkcg *parent = blkcg_parent(blkcg);
351 struct blkcg_gq *ret_blkg = q->root_blkg;
352
353 while (parent) {
354 blkg = __blkg_lookup(parent, q, false);
355 if (blkg) {
356 /* remember closest blkg */
357 ret_blkg = blkg;
358 break;
359 }
360 pos = parent;
361 parent = blkcg_parent(parent);
362 }
363
364 blkg = blkg_create(pos, q, NULL);
365 if (IS_ERR(blkg)) {
366 blkg = ret_blkg;
367 break;
368 }
369 if (pos == blkcg)
370 break;
371 }
372
373 found:
374 spin_unlock_irqrestore(&q->queue_lock, flags);
375 return blkg;
376 }
377
378 static void blkg_destroy(struct blkcg_gq *blkg)
379 {
380 struct blkcg *blkcg = blkg->blkcg;
381 int i;
382
383 lockdep_assert_held(&blkg->q->queue_lock);
384 lockdep_assert_held(&blkcg->lock);
385
386 /* Something wrong if we are trying to remove same group twice */
387 WARN_ON_ONCE(list_empty(&blkg->q_node));
388 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
389
390 for (i = 0; i < BLKCG_MAX_POLS; i++) {
391 struct blkcg_policy *pol = blkcg_policy[i];
392
393 if (blkg->pd[i] && pol->pd_offline_fn)
394 pol->pd_offline_fn(blkg->pd[i]);
395 }
396
397 blkg->online = false;
398
399 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
400 list_del_init(&blkg->q_node);
401 hlist_del_init_rcu(&blkg->blkcg_node);
402
403 /*
404 * Both setting lookup hint to and clearing it from @blkg are done
405 * under queue_lock. If it's not pointing to @blkg now, it never
406 * will. Hint assignment itself can race safely.
407 */
408 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
409 rcu_assign_pointer(blkcg->blkg_hint, NULL);
410
411 /*
412 * Put the reference taken at the time of creation so that when all
413 * queues are gone, group can be destroyed.
414 */
415 percpu_ref_kill(&blkg->refcnt);
416 }
417
418 /**
419 * blkg_destroy_all - destroy all blkgs associated with a request_queue
420 * @q: request_queue of interest
421 *
422 * Destroy all blkgs associated with @q.
423 */
424 static void blkg_destroy_all(struct request_queue *q)
425 {
426 struct blkcg_gq *blkg, *n;
427 int count = BLKG_DESTROY_BATCH_SIZE;
428
429 restart:
430 spin_lock_irq(&q->queue_lock);
431 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
432 struct blkcg *blkcg = blkg->blkcg;
433
434 spin_lock(&blkcg->lock);
435 blkg_destroy(blkg);
436 spin_unlock(&blkcg->lock);
437
438 /*
439 * in order to avoid holding the spin lock for too long, release
440 * it when a batch of blkgs are destroyed.
441 */
442 if (!(--count)) {
443 count = BLKG_DESTROY_BATCH_SIZE;
444 spin_unlock_irq(&q->queue_lock);
445 cond_resched();
446 goto restart;
447 }
448 }
449
450 q->root_blkg = NULL;
451 spin_unlock_irq(&q->queue_lock);
452 }
453
454 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
455 struct cftype *cftype, u64 val)
456 {
457 struct blkcg *blkcg = css_to_blkcg(css);
458 struct blkcg_gq *blkg;
459 int i, cpu;
460
461 mutex_lock(&blkcg_pol_mutex);
462 spin_lock_irq(&blkcg->lock);
463
464 /*
465 * Note that stat reset is racy - it doesn't synchronize against
466 * stat updates. This is a debug feature which shouldn't exist
467 * anyway. If you get hit by a race, retry.
468 */
469 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
470 for_each_possible_cpu(cpu) {
471 struct blkg_iostat_set *bis =
472 per_cpu_ptr(blkg->iostat_cpu, cpu);
473 memset(bis, 0, sizeof(*bis));
474 }
475 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
476
477 for (i = 0; i < BLKCG_MAX_POLS; i++) {
478 struct blkcg_policy *pol = blkcg_policy[i];
479
480 if (blkg->pd[i] && pol->pd_reset_stats_fn)
481 pol->pd_reset_stats_fn(blkg->pd[i]);
482 }
483 }
484
485 spin_unlock_irq(&blkcg->lock);
486 mutex_unlock(&blkcg_pol_mutex);
487 return 0;
488 }
489
490 const char *blkg_dev_name(struct blkcg_gq *blkg)
491 {
492 if (!blkg->q->disk || !blkg->q->disk->bdi->dev)
493 return NULL;
494 return bdi_dev_name(blkg->q->disk->bdi);
495 }
496
497 /**
498 * blkcg_print_blkgs - helper for printing per-blkg data
499 * @sf: seq_file to print to
500 * @blkcg: blkcg of interest
501 * @prfill: fill function to print out a blkg
502 * @pol: policy in question
503 * @data: data to be passed to @prfill
504 * @show_total: to print out sum of prfill return values or not
505 *
506 * This function invokes @prfill on each blkg of @blkcg if pd for the
507 * policy specified by @pol exists. @prfill is invoked with @sf, the
508 * policy data and @data and the matching queue lock held. If @show_total
509 * is %true, the sum of the return values from @prfill is printed with
510 * "Total" label at the end.
511 *
512 * This is to be used to construct print functions for
513 * cftype->read_seq_string method.
514 */
515 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
516 u64 (*prfill)(struct seq_file *,
517 struct blkg_policy_data *, int),
518 const struct blkcg_policy *pol, int data,
519 bool show_total)
520 {
521 struct blkcg_gq *blkg;
522 u64 total = 0;
523
524 rcu_read_lock();
525 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
526 spin_lock_irq(&blkg->q->queue_lock);
527 if (blkcg_policy_enabled(blkg->q, pol))
528 total += prfill(sf, blkg->pd[pol->plid], data);
529 spin_unlock_irq(&blkg->q->queue_lock);
530 }
531 rcu_read_unlock();
532
533 if (show_total)
534 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
535 }
536 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
537
538 /**
539 * __blkg_prfill_u64 - prfill helper for a single u64 value
540 * @sf: seq_file to print to
541 * @pd: policy private data of interest
542 * @v: value to print
543 *
544 * Print @v to @sf for the device assocaited with @pd.
545 */
546 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
547 {
548 const char *dname = blkg_dev_name(pd->blkg);
549
550 if (!dname)
551 return 0;
552
553 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
554 return v;
555 }
556 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
557
558 /* Performs queue bypass and policy enabled checks then looks up blkg. */
559 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
560 const struct blkcg_policy *pol,
561 struct request_queue *q)
562 {
563 WARN_ON_ONCE(!rcu_read_lock_held());
564 lockdep_assert_held(&q->queue_lock);
565
566 if (!blkcg_policy_enabled(q, pol))
567 return ERR_PTR(-EOPNOTSUPP);
568 return __blkg_lookup(blkcg, q, true /* update_hint */);
569 }
570
571 /**
572 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
573 * @inputp: input string pointer
574 *
575 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
576 * from @input and get and return the matching bdev. *@inputp is
577 * updated to point past the device node prefix. Returns an ERR_PTR()
578 * value on error.
579 *
580 * Use this function iff blkg_conf_prep() can't be used for some reason.
581 */
582 struct block_device *blkcg_conf_open_bdev(char **inputp)
583 {
584 char *input = *inputp;
585 unsigned int major, minor;
586 struct block_device *bdev;
587 int key_len;
588
589 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
590 return ERR_PTR(-EINVAL);
591
592 input += key_len;
593 if (!isspace(*input))
594 return ERR_PTR(-EINVAL);
595 input = skip_spaces(input);
596
597 bdev = blkdev_get_no_open(MKDEV(major, minor));
598 if (!bdev)
599 return ERR_PTR(-ENODEV);
600 if (bdev_is_partition(bdev)) {
601 blkdev_put_no_open(bdev);
602 return ERR_PTR(-ENODEV);
603 }
604
605 *inputp = input;
606 return bdev;
607 }
608
609 /**
610 * blkg_conf_prep - parse and prepare for per-blkg config update
611 * @blkcg: target block cgroup
612 * @pol: target policy
613 * @input: input string
614 * @ctx: blkg_conf_ctx to be filled
615 *
616 * Parse per-blkg config update from @input and initialize @ctx with the
617 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
618 * part of @input following MAJ:MIN. This function returns with RCU read
619 * lock and queue lock held and must be paired with blkg_conf_finish().
620 */
621 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
622 char *input, struct blkg_conf_ctx *ctx)
623 __acquires(rcu) __acquires(&bdev->bd_disk->queue->queue_lock)
624 {
625 struct block_device *bdev;
626 struct request_queue *q;
627 struct blkcg_gq *blkg;
628 int ret;
629
630 bdev = blkcg_conf_open_bdev(&input);
631 if (IS_ERR(bdev))
632 return PTR_ERR(bdev);
633
634 q = bdev->bd_disk->queue;
635
636 rcu_read_lock();
637 spin_lock_irq(&q->queue_lock);
638
639 blkg = blkg_lookup_check(blkcg, pol, q);
640 if (IS_ERR(blkg)) {
641 ret = PTR_ERR(blkg);
642 goto fail_unlock;
643 }
644
645 if (blkg)
646 goto success;
647
648 /*
649 * Create blkgs walking down from blkcg_root to @blkcg, so that all
650 * non-root blkgs have access to their parents.
651 */
652 while (true) {
653 struct blkcg *pos = blkcg;
654 struct blkcg *parent;
655 struct blkcg_gq *new_blkg;
656
657 parent = blkcg_parent(blkcg);
658 while (parent && !__blkg_lookup(parent, q, false)) {
659 pos = parent;
660 parent = blkcg_parent(parent);
661 }
662
663 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
664 spin_unlock_irq(&q->queue_lock);
665 rcu_read_unlock();
666
667 new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
668 if (unlikely(!new_blkg)) {
669 ret = -ENOMEM;
670 goto fail;
671 }
672
673 if (radix_tree_preload(GFP_KERNEL)) {
674 blkg_free(new_blkg);
675 ret = -ENOMEM;
676 goto fail;
677 }
678
679 rcu_read_lock();
680 spin_lock_irq(&q->queue_lock);
681
682 blkg = blkg_lookup_check(pos, pol, q);
683 if (IS_ERR(blkg)) {
684 ret = PTR_ERR(blkg);
685 blkg_free(new_blkg);
686 goto fail_preloaded;
687 }
688
689 if (blkg) {
690 blkg_free(new_blkg);
691 } else {
692 blkg = blkg_create(pos, q, new_blkg);
693 if (IS_ERR(blkg)) {
694 ret = PTR_ERR(blkg);
695 goto fail_preloaded;
696 }
697 }
698
699 radix_tree_preload_end();
700
701 if (pos == blkcg)
702 goto success;
703 }
704 success:
705 ctx->bdev = bdev;
706 ctx->blkg = blkg;
707 ctx->body = input;
708 return 0;
709
710 fail_preloaded:
711 radix_tree_preload_end();
712 fail_unlock:
713 spin_unlock_irq(&q->queue_lock);
714 rcu_read_unlock();
715 fail:
716 blkdev_put_no_open(bdev);
717 /*
718 * If queue was bypassing, we should retry. Do so after a
719 * short msleep(). It isn't strictly necessary but queue
720 * can be bypassing for some time and it's always nice to
721 * avoid busy looping.
722 */
723 if (ret == -EBUSY) {
724 msleep(10);
725 ret = restart_syscall();
726 }
727 return ret;
728 }
729 EXPORT_SYMBOL_GPL(blkg_conf_prep);
730
731 /**
732 * blkg_conf_finish - finish up per-blkg config update
733 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
734 *
735 * Finish up after per-blkg config update. This function must be paired
736 * with blkg_conf_prep().
737 */
738 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
739 __releases(&ctx->bdev->bd_disk->queue->queue_lock) __releases(rcu)
740 {
741 spin_unlock_irq(&ctx->bdev->bd_disk->queue->queue_lock);
742 rcu_read_unlock();
743 blkdev_put_no_open(ctx->bdev);
744 }
745 EXPORT_SYMBOL_GPL(blkg_conf_finish);
746
747 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
748 {
749 int i;
750
751 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
752 dst->bytes[i] = src->bytes[i];
753 dst->ios[i] = src->ios[i];
754 }
755 }
756
757 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
758 {
759 int i;
760
761 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
762 dst->bytes[i] += src->bytes[i];
763 dst->ios[i] += src->ios[i];
764 }
765 }
766
767 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
768 {
769 int i;
770
771 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
772 dst->bytes[i] -= src->bytes[i];
773 dst->ios[i] -= src->ios[i];
774 }
775 }
776
777 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
778 {
779 struct blkcg *blkcg = css_to_blkcg(css);
780 struct blkcg_gq *blkg;
781
782 /* Root-level stats are sourced from system-wide IO stats */
783 if (!cgroup_parent(css->cgroup))
784 return;
785
786 rcu_read_lock();
787
788 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
789 struct blkcg_gq *parent = blkg->parent;
790 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
791 struct blkg_iostat cur, delta;
792 unsigned long flags;
793 unsigned int seq;
794
795 /* fetch the current per-cpu values */
796 do {
797 seq = u64_stats_fetch_begin(&bisc->sync);
798 blkg_iostat_set(&cur, &bisc->cur);
799 } while (u64_stats_fetch_retry(&bisc->sync, seq));
800
801 /* propagate percpu delta to global */
802 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
803 blkg_iostat_set(&delta, &cur);
804 blkg_iostat_sub(&delta, &bisc->last);
805 blkg_iostat_add(&blkg->iostat.cur, &delta);
806 blkg_iostat_add(&bisc->last, &delta);
807 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
808
809 /* propagate global delta to parent (unless that's root) */
810 if (parent && parent->parent) {
811 flags = u64_stats_update_begin_irqsave(&parent->iostat.sync);
812 blkg_iostat_set(&delta, &blkg->iostat.cur);
813 blkg_iostat_sub(&delta, &blkg->iostat.last);
814 blkg_iostat_add(&parent->iostat.cur, &delta);
815 blkg_iostat_add(&blkg->iostat.last, &delta);
816 u64_stats_update_end_irqrestore(&parent->iostat.sync, flags);
817 }
818 }
819
820 rcu_read_unlock();
821 }
822
823 /*
824 * We source root cgroup stats from the system-wide stats to avoid
825 * tracking the same information twice and incurring overhead when no
826 * cgroups are defined. For that reason, cgroup_rstat_flush in
827 * blkcg_print_stat does not actually fill out the iostat in the root
828 * cgroup's blkcg_gq.
829 *
830 * However, we would like to re-use the printing code between the root and
831 * non-root cgroups to the extent possible. For that reason, we simulate
832 * flushing the root cgroup's stats by explicitly filling in the iostat
833 * with disk level statistics.
834 */
835 static void blkcg_fill_root_iostats(void)
836 {
837 struct class_dev_iter iter;
838 struct device *dev;
839
840 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
841 while ((dev = class_dev_iter_next(&iter))) {
842 struct block_device *bdev = dev_to_bdev(dev);
843 struct blkcg_gq *blkg =
844 blk_queue_root_blkg(bdev->bd_disk->queue);
845 struct blkg_iostat tmp;
846 int cpu;
847
848 memset(&tmp, 0, sizeof(tmp));
849 for_each_possible_cpu(cpu) {
850 struct disk_stats *cpu_dkstats;
851 unsigned long flags;
852
853 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
854 tmp.ios[BLKG_IOSTAT_READ] +=
855 cpu_dkstats->ios[STAT_READ];
856 tmp.ios[BLKG_IOSTAT_WRITE] +=
857 cpu_dkstats->ios[STAT_WRITE];
858 tmp.ios[BLKG_IOSTAT_DISCARD] +=
859 cpu_dkstats->ios[STAT_DISCARD];
860 // convert sectors to bytes
861 tmp.bytes[BLKG_IOSTAT_READ] +=
862 cpu_dkstats->sectors[STAT_READ] << 9;
863 tmp.bytes[BLKG_IOSTAT_WRITE] +=
864 cpu_dkstats->sectors[STAT_WRITE] << 9;
865 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
866 cpu_dkstats->sectors[STAT_DISCARD] << 9;
867
868 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
869 blkg_iostat_set(&blkg->iostat.cur, &tmp);
870 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
871 }
872 }
873 }
874
875 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
876 {
877 struct blkg_iostat_set *bis = &blkg->iostat;
878 u64 rbytes, wbytes, rios, wios, dbytes, dios;
879 bool has_stats = false;
880 const char *dname;
881 unsigned seq;
882 int i;
883
884 if (!blkg->online)
885 return;
886
887 dname = blkg_dev_name(blkg);
888 if (!dname)
889 return;
890
891 seq_printf(s, "%s ", dname);
892
893 do {
894 seq = u64_stats_fetch_begin(&bis->sync);
895
896 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
897 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
898 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
899 rios = bis->cur.ios[BLKG_IOSTAT_READ];
900 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
901 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
902 } while (u64_stats_fetch_retry(&bis->sync, seq));
903
904 if (rbytes || wbytes || rios || wios) {
905 has_stats = true;
906 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
907 rbytes, wbytes, rios, wios,
908 dbytes, dios);
909 }
910
911 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
912 has_stats = true;
913 seq_printf(s, " use_delay=%d delay_nsec=%llu",
914 atomic_read(&blkg->use_delay),
915 atomic64_read(&blkg->delay_nsec));
916 }
917
918 for (i = 0; i < BLKCG_MAX_POLS; i++) {
919 struct blkcg_policy *pol = blkcg_policy[i];
920
921 if (!blkg->pd[i] || !pol->pd_stat_fn)
922 continue;
923
924 if (pol->pd_stat_fn(blkg->pd[i], s))
925 has_stats = true;
926 }
927
928 if (has_stats)
929 seq_printf(s, "\n");
930 }
931
932 static int blkcg_print_stat(struct seq_file *sf, void *v)
933 {
934 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
935 struct blkcg_gq *blkg;
936
937 if (!seq_css(sf)->parent)
938 blkcg_fill_root_iostats();
939 else
940 cgroup_rstat_flush(blkcg->css.cgroup);
941
942 rcu_read_lock();
943 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
944 spin_lock_irq(&blkg->q->queue_lock);
945 blkcg_print_one_stat(blkg, sf);
946 spin_unlock_irq(&blkg->q->queue_lock);
947 }
948 rcu_read_unlock();
949 return 0;
950 }
951
952 static struct cftype blkcg_files[] = {
953 {
954 .name = "stat",
955 .seq_show = blkcg_print_stat,
956 },
957 { } /* terminate */
958 };
959
960 static struct cftype blkcg_legacy_files[] = {
961 {
962 .name = "reset_stats",
963 .write_u64 = blkcg_reset_stats,
964 },
965 { } /* terminate */
966 };
967
968 /*
969 * blkcg destruction is a three-stage process.
970 *
971 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
972 * which offlines writeback. Here we tie the next stage of blkg destruction
973 * to the completion of writeback associated with the blkcg. This lets us
974 * avoid punting potentially large amounts of outstanding writeback to root
975 * while maintaining any ongoing policies. The next stage is triggered when
976 * the nr_cgwbs count goes to zero.
977 *
978 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
979 * and handles the destruction of blkgs. Here the css reference held by
980 * the blkg is put back eventually allowing blkcg_css_free() to be called.
981 * This work may occur in cgwb_release_workfn() on the cgwb_release
982 * workqueue. Any submitted ios that fail to get the blkg ref will be
983 * punted to the root_blkg.
984 *
985 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
986 * This finally frees the blkcg.
987 */
988
989 /**
990 * blkcg_css_offline - cgroup css_offline callback
991 * @css: css of interest
992 *
993 * This function is called when @css is about to go away. Here the cgwbs are
994 * offlined first and only once writeback associated with the blkcg has
995 * finished do we start step 2 (see above).
996 */
997 static void blkcg_css_offline(struct cgroup_subsys_state *css)
998 {
999 struct blkcg *blkcg = css_to_blkcg(css);
1000
1001 /* this prevents anyone from attaching or migrating to this blkcg */
1002 wb_blkcg_offline(blkcg);
1003
1004 /* put the base online pin allowing step 2 to be triggered */
1005 blkcg_unpin_online(blkcg);
1006 }
1007
1008 /**
1009 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1010 * @blkcg: blkcg of interest
1011 *
1012 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1013 * is nested inside q lock, this function performs reverse double lock dancing.
1014 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1015 * blkcg_css_free to eventually be called.
1016 *
1017 * This is the blkcg counterpart of ioc_release_fn().
1018 */
1019 void blkcg_destroy_blkgs(struct blkcg *blkcg)
1020 {
1021 might_sleep();
1022
1023 spin_lock_irq(&blkcg->lock);
1024
1025 while (!hlist_empty(&blkcg->blkg_list)) {
1026 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1027 struct blkcg_gq, blkcg_node);
1028 struct request_queue *q = blkg->q;
1029
1030 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1031 /*
1032 * Given that the system can accumulate a huge number
1033 * of blkgs in pathological cases, check to see if we
1034 * need to rescheduling to avoid softlockup.
1035 */
1036 spin_unlock_irq(&blkcg->lock);
1037 cond_resched();
1038 spin_lock_irq(&blkcg->lock);
1039 continue;
1040 }
1041
1042 blkg_destroy(blkg);
1043 spin_unlock(&q->queue_lock);
1044 }
1045
1046 spin_unlock_irq(&blkcg->lock);
1047 }
1048
1049 static void blkcg_css_free(struct cgroup_subsys_state *css)
1050 {
1051 struct blkcg *blkcg = css_to_blkcg(css);
1052 int i;
1053
1054 mutex_lock(&blkcg_pol_mutex);
1055
1056 list_del(&blkcg->all_blkcgs_node);
1057
1058 for (i = 0; i < BLKCG_MAX_POLS; i++)
1059 if (blkcg->cpd[i])
1060 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1061
1062 mutex_unlock(&blkcg_pol_mutex);
1063
1064 kfree(blkcg);
1065 }
1066
1067 static struct cgroup_subsys_state *
1068 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1069 {
1070 struct blkcg *blkcg;
1071 struct cgroup_subsys_state *ret;
1072 int i;
1073
1074 mutex_lock(&blkcg_pol_mutex);
1075
1076 if (!parent_css) {
1077 blkcg = &blkcg_root;
1078 } else {
1079 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1080 if (!blkcg) {
1081 ret = ERR_PTR(-ENOMEM);
1082 goto unlock;
1083 }
1084 }
1085
1086 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1087 struct blkcg_policy *pol = blkcg_policy[i];
1088 struct blkcg_policy_data *cpd;
1089
1090 /*
1091 * If the policy hasn't been attached yet, wait for it
1092 * to be attached before doing anything else. Otherwise,
1093 * check if the policy requires any specific per-cgroup
1094 * data: if it does, allocate and initialize it.
1095 */
1096 if (!pol || !pol->cpd_alloc_fn)
1097 continue;
1098
1099 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1100 if (!cpd) {
1101 ret = ERR_PTR(-ENOMEM);
1102 goto free_pd_blkcg;
1103 }
1104 blkcg->cpd[i] = cpd;
1105 cpd->blkcg = blkcg;
1106 cpd->plid = i;
1107 if (pol->cpd_init_fn)
1108 pol->cpd_init_fn(cpd);
1109 }
1110
1111 spin_lock_init(&blkcg->lock);
1112 refcount_set(&blkcg->online_pin, 1);
1113 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1114 INIT_HLIST_HEAD(&blkcg->blkg_list);
1115 #ifdef CONFIG_CGROUP_WRITEBACK
1116 INIT_LIST_HEAD(&blkcg->cgwb_list);
1117 #endif
1118 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1119
1120 mutex_unlock(&blkcg_pol_mutex);
1121 return &blkcg->css;
1122
1123 free_pd_blkcg:
1124 for (i--; i >= 0; i--)
1125 if (blkcg->cpd[i])
1126 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1127
1128 if (blkcg != &blkcg_root)
1129 kfree(blkcg);
1130 unlock:
1131 mutex_unlock(&blkcg_pol_mutex);
1132 return ret;
1133 }
1134
1135 static int blkcg_css_online(struct cgroup_subsys_state *css)
1136 {
1137 struct blkcg *blkcg = css_to_blkcg(css);
1138 struct blkcg *parent = blkcg_parent(blkcg);
1139
1140 /*
1141 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1142 * don't go offline while cgwbs are still active on them. Pin the
1143 * parent so that offline always happens towards the root.
1144 */
1145 if (parent)
1146 blkcg_pin_online(parent);
1147 return 0;
1148 }
1149
1150 /**
1151 * blkcg_init_queue - initialize blkcg part of request queue
1152 * @q: request_queue to initialize
1153 *
1154 * Called from blk_alloc_queue(). Responsible for initializing blkcg
1155 * part of new request_queue @q.
1156 *
1157 * RETURNS:
1158 * 0 on success, -errno on failure.
1159 */
1160 int blkcg_init_queue(struct request_queue *q)
1161 {
1162 struct blkcg_gq *new_blkg, *blkg;
1163 bool preloaded;
1164 int ret;
1165
1166 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1167 if (!new_blkg)
1168 return -ENOMEM;
1169
1170 preloaded = !radix_tree_preload(GFP_KERNEL);
1171
1172 /* Make sure the root blkg exists. */
1173 rcu_read_lock();
1174 spin_lock_irq(&q->queue_lock);
1175 blkg = blkg_create(&blkcg_root, q, new_blkg);
1176 if (IS_ERR(blkg))
1177 goto err_unlock;
1178 q->root_blkg = blkg;
1179 spin_unlock_irq(&q->queue_lock);
1180 rcu_read_unlock();
1181
1182 if (preloaded)
1183 radix_tree_preload_end();
1184
1185 ret = blk_iolatency_init(q);
1186 if (ret)
1187 goto err_destroy_all;
1188
1189 ret = blk_ioprio_init(q);
1190 if (ret)
1191 goto err_destroy_all;
1192
1193 ret = blk_throtl_init(q);
1194 if (ret)
1195 goto err_destroy_all;
1196
1197 return 0;
1198
1199 err_destroy_all:
1200 blkg_destroy_all(q);
1201 return ret;
1202 err_unlock:
1203 spin_unlock_irq(&q->queue_lock);
1204 rcu_read_unlock();
1205 if (preloaded)
1206 radix_tree_preload_end();
1207 return PTR_ERR(blkg);
1208 }
1209
1210 /**
1211 * blkcg_exit_queue - exit and release blkcg part of request_queue
1212 * @q: request_queue being released
1213 *
1214 * Called from blk_exit_queue(). Responsible for exiting blkcg part.
1215 */
1216 void blkcg_exit_queue(struct request_queue *q)
1217 {
1218 blkg_destroy_all(q);
1219 blk_throtl_exit(q);
1220 }
1221
1222 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1223 {
1224 int i;
1225
1226 mutex_lock(&blkcg_pol_mutex);
1227
1228 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1229 struct blkcg_policy *pol = blkcg_policy[i];
1230 struct blkcg *blkcg;
1231
1232 if (!pol || !pol->cpd_bind_fn)
1233 continue;
1234
1235 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1236 if (blkcg->cpd[pol->plid])
1237 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1238 }
1239 mutex_unlock(&blkcg_pol_mutex);
1240 }
1241
1242 static void blkcg_exit(struct task_struct *tsk)
1243 {
1244 if (tsk->throttle_queue)
1245 blk_put_queue(tsk->throttle_queue);
1246 tsk->throttle_queue = NULL;
1247 }
1248
1249 struct cgroup_subsys io_cgrp_subsys = {
1250 .css_alloc = blkcg_css_alloc,
1251 .css_online = blkcg_css_online,
1252 .css_offline = blkcg_css_offline,
1253 .css_free = blkcg_css_free,
1254 .css_rstat_flush = blkcg_rstat_flush,
1255 .bind = blkcg_bind,
1256 .dfl_cftypes = blkcg_files,
1257 .legacy_cftypes = blkcg_legacy_files,
1258 .legacy_name = "blkio",
1259 .exit = blkcg_exit,
1260 #ifdef CONFIG_MEMCG
1261 /*
1262 * This ensures that, if available, memcg is automatically enabled
1263 * together on the default hierarchy so that the owner cgroup can
1264 * be retrieved from writeback pages.
1265 */
1266 .depends_on = 1 << memory_cgrp_id,
1267 #endif
1268 };
1269 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1270
1271 /**
1272 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1273 * @q: request_queue of interest
1274 * @pol: blkcg policy to activate
1275 *
1276 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1277 * bypass mode to populate its blkgs with policy_data for @pol.
1278 *
1279 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1280 * from IO path. Update of each blkg is protected by both queue and blkcg
1281 * locks so that holding either lock and testing blkcg_policy_enabled() is
1282 * always enough for dereferencing policy data.
1283 *
1284 * The caller is responsible for synchronizing [de]activations and policy
1285 * [un]registerations. Returns 0 on success, -errno on failure.
1286 */
1287 int blkcg_activate_policy(struct request_queue *q,
1288 const struct blkcg_policy *pol)
1289 {
1290 struct blkg_policy_data *pd_prealloc = NULL;
1291 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1292 int ret;
1293
1294 if (blkcg_policy_enabled(q, pol))
1295 return 0;
1296
1297 if (queue_is_mq(q))
1298 blk_mq_freeze_queue(q);
1299 retry:
1300 spin_lock_irq(&q->queue_lock);
1301
1302 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1303 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1304 struct blkg_policy_data *pd;
1305
1306 if (blkg->pd[pol->plid])
1307 continue;
1308
1309 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1310 if (blkg == pinned_blkg) {
1311 pd = pd_prealloc;
1312 pd_prealloc = NULL;
1313 } else {
1314 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1315 blkg->blkcg);
1316 }
1317
1318 if (!pd) {
1319 /*
1320 * GFP_NOWAIT failed. Free the existing one and
1321 * prealloc for @blkg w/ GFP_KERNEL.
1322 */
1323 if (pinned_blkg)
1324 blkg_put(pinned_blkg);
1325 blkg_get(blkg);
1326 pinned_blkg = blkg;
1327
1328 spin_unlock_irq(&q->queue_lock);
1329
1330 if (pd_prealloc)
1331 pol->pd_free_fn(pd_prealloc);
1332 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1333 blkg->blkcg);
1334 if (pd_prealloc)
1335 goto retry;
1336 else
1337 goto enomem;
1338 }
1339
1340 blkg->pd[pol->plid] = pd;
1341 pd->blkg = blkg;
1342 pd->plid = pol->plid;
1343 }
1344
1345 /* all allocated, init in the same order */
1346 if (pol->pd_init_fn)
1347 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1348 pol->pd_init_fn(blkg->pd[pol->plid]);
1349
1350 __set_bit(pol->plid, q->blkcg_pols);
1351 ret = 0;
1352
1353 spin_unlock_irq(&q->queue_lock);
1354 out:
1355 if (queue_is_mq(q))
1356 blk_mq_unfreeze_queue(q);
1357 if (pinned_blkg)
1358 blkg_put(pinned_blkg);
1359 if (pd_prealloc)
1360 pol->pd_free_fn(pd_prealloc);
1361 return ret;
1362
1363 enomem:
1364 /* alloc failed, nothing's initialized yet, free everything */
1365 spin_lock_irq(&q->queue_lock);
1366 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1367 if (blkg->pd[pol->plid]) {
1368 pol->pd_free_fn(blkg->pd[pol->plid]);
1369 blkg->pd[pol->plid] = NULL;
1370 }
1371 }
1372 spin_unlock_irq(&q->queue_lock);
1373 ret = -ENOMEM;
1374 goto out;
1375 }
1376 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1377
1378 /**
1379 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1380 * @q: request_queue of interest
1381 * @pol: blkcg policy to deactivate
1382 *
1383 * Deactivate @pol on @q. Follows the same synchronization rules as
1384 * blkcg_activate_policy().
1385 */
1386 void blkcg_deactivate_policy(struct request_queue *q,
1387 const struct blkcg_policy *pol)
1388 {
1389 struct blkcg_gq *blkg;
1390
1391 if (!blkcg_policy_enabled(q, pol))
1392 return;
1393
1394 if (queue_is_mq(q))
1395 blk_mq_freeze_queue(q);
1396
1397 spin_lock_irq(&q->queue_lock);
1398
1399 __clear_bit(pol->plid, q->blkcg_pols);
1400
1401 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1402 if (blkg->pd[pol->plid]) {
1403 if (pol->pd_offline_fn)
1404 pol->pd_offline_fn(blkg->pd[pol->plid]);
1405 pol->pd_free_fn(blkg->pd[pol->plid]);
1406 blkg->pd[pol->plid] = NULL;
1407 }
1408 }
1409
1410 spin_unlock_irq(&q->queue_lock);
1411
1412 if (queue_is_mq(q))
1413 blk_mq_unfreeze_queue(q);
1414 }
1415 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1416
1417 /**
1418 * blkcg_policy_register - register a blkcg policy
1419 * @pol: blkcg policy to register
1420 *
1421 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1422 * successful registration. Returns 0 on success and -errno on failure.
1423 */
1424 int blkcg_policy_register(struct blkcg_policy *pol)
1425 {
1426 struct blkcg *blkcg;
1427 int i, ret;
1428
1429 mutex_lock(&blkcg_pol_register_mutex);
1430 mutex_lock(&blkcg_pol_mutex);
1431
1432 /* find an empty slot */
1433 ret = -ENOSPC;
1434 for (i = 0; i < BLKCG_MAX_POLS; i++)
1435 if (!blkcg_policy[i])
1436 break;
1437 if (i >= BLKCG_MAX_POLS) {
1438 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1439 goto err_unlock;
1440 }
1441
1442 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1443 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1444 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1445 goto err_unlock;
1446
1447 /* register @pol */
1448 pol->plid = i;
1449 blkcg_policy[pol->plid] = pol;
1450
1451 /* allocate and install cpd's */
1452 if (pol->cpd_alloc_fn) {
1453 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1454 struct blkcg_policy_data *cpd;
1455
1456 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1457 if (!cpd)
1458 goto err_free_cpds;
1459
1460 blkcg->cpd[pol->plid] = cpd;
1461 cpd->blkcg = blkcg;
1462 cpd->plid = pol->plid;
1463 if (pol->cpd_init_fn)
1464 pol->cpd_init_fn(cpd);
1465 }
1466 }
1467
1468 mutex_unlock(&blkcg_pol_mutex);
1469
1470 /* everything is in place, add intf files for the new policy */
1471 if (pol->dfl_cftypes)
1472 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1473 pol->dfl_cftypes));
1474 if (pol->legacy_cftypes)
1475 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1476 pol->legacy_cftypes));
1477 mutex_unlock(&blkcg_pol_register_mutex);
1478 return 0;
1479
1480 err_free_cpds:
1481 if (pol->cpd_free_fn) {
1482 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1483 if (blkcg->cpd[pol->plid]) {
1484 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1485 blkcg->cpd[pol->plid] = NULL;
1486 }
1487 }
1488 }
1489 blkcg_policy[pol->plid] = NULL;
1490 err_unlock:
1491 mutex_unlock(&blkcg_pol_mutex);
1492 mutex_unlock(&blkcg_pol_register_mutex);
1493 return ret;
1494 }
1495 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1496
1497 /**
1498 * blkcg_policy_unregister - unregister a blkcg policy
1499 * @pol: blkcg policy to unregister
1500 *
1501 * Undo blkcg_policy_register(@pol). Might sleep.
1502 */
1503 void blkcg_policy_unregister(struct blkcg_policy *pol)
1504 {
1505 struct blkcg *blkcg;
1506
1507 mutex_lock(&blkcg_pol_register_mutex);
1508
1509 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1510 goto out_unlock;
1511
1512 /* kill the intf files first */
1513 if (pol->dfl_cftypes)
1514 cgroup_rm_cftypes(pol->dfl_cftypes);
1515 if (pol->legacy_cftypes)
1516 cgroup_rm_cftypes(pol->legacy_cftypes);
1517
1518 /* remove cpds and unregister */
1519 mutex_lock(&blkcg_pol_mutex);
1520
1521 if (pol->cpd_free_fn) {
1522 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1523 if (blkcg->cpd[pol->plid]) {
1524 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1525 blkcg->cpd[pol->plid] = NULL;
1526 }
1527 }
1528 }
1529 blkcg_policy[pol->plid] = NULL;
1530
1531 mutex_unlock(&blkcg_pol_mutex);
1532 out_unlock:
1533 mutex_unlock(&blkcg_pol_register_mutex);
1534 }
1535 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1536
1537 bool __blkcg_punt_bio_submit(struct bio *bio)
1538 {
1539 struct blkcg_gq *blkg = bio->bi_blkg;
1540
1541 /* consume the flag first */
1542 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1543
1544 /* never bounce for the root cgroup */
1545 if (!blkg->parent)
1546 return false;
1547
1548 spin_lock_bh(&blkg->async_bio_lock);
1549 bio_list_add(&blkg->async_bios, bio);
1550 spin_unlock_bh(&blkg->async_bio_lock);
1551
1552 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1553 return true;
1554 }
1555
1556 /*
1557 * Scale the accumulated delay based on how long it has been since we updated
1558 * the delay. We only call this when we are adding delay, in case it's been a
1559 * while since we added delay, and when we are checking to see if we need to
1560 * delay a task, to account for any delays that may have occurred.
1561 */
1562 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1563 {
1564 u64 old = atomic64_read(&blkg->delay_start);
1565
1566 /* negative use_delay means no scaling, see blkcg_set_delay() */
1567 if (atomic_read(&blkg->use_delay) < 0)
1568 return;
1569
1570 /*
1571 * We only want to scale down every second. The idea here is that we
1572 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1573 * time window. We only want to throttle tasks for recent delay that
1574 * has occurred, in 1 second time windows since that's the maximum
1575 * things can be throttled. We save the current delay window in
1576 * blkg->last_delay so we know what amount is still left to be charged
1577 * to the blkg from this point onward. blkg->last_use keeps track of
1578 * the use_delay counter. The idea is if we're unthrottling the blkg we
1579 * are ok with whatever is happening now, and we can take away more of
1580 * the accumulated delay as we've already throttled enough that
1581 * everybody is happy with their IO latencies.
1582 */
1583 if (time_before64(old + NSEC_PER_SEC, now) &&
1584 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1585 u64 cur = atomic64_read(&blkg->delay_nsec);
1586 u64 sub = min_t(u64, blkg->last_delay, now - old);
1587 int cur_use = atomic_read(&blkg->use_delay);
1588
1589 /*
1590 * We've been unthrottled, subtract a larger chunk of our
1591 * accumulated delay.
1592 */
1593 if (cur_use < blkg->last_use)
1594 sub = max_t(u64, sub, blkg->last_delay >> 1);
1595
1596 /*
1597 * This shouldn't happen, but handle it anyway. Our delay_nsec
1598 * should only ever be growing except here where we subtract out
1599 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1600 * rather not end up with negative numbers.
1601 */
1602 if (unlikely(cur < sub)) {
1603 atomic64_set(&blkg->delay_nsec, 0);
1604 blkg->last_delay = 0;
1605 } else {
1606 atomic64_sub(sub, &blkg->delay_nsec);
1607 blkg->last_delay = cur - sub;
1608 }
1609 blkg->last_use = cur_use;
1610 }
1611 }
1612
1613 /*
1614 * This is called when we want to actually walk up the hierarchy and check to
1615 * see if we need to throttle, and then actually throttle if there is some
1616 * accumulated delay. This should only be called upon return to user space so
1617 * we're not holding some lock that would induce a priority inversion.
1618 */
1619 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1620 {
1621 unsigned long pflags;
1622 bool clamp;
1623 u64 now = ktime_to_ns(ktime_get());
1624 u64 exp;
1625 u64 delay_nsec = 0;
1626 int tok;
1627
1628 while (blkg->parent) {
1629 int use_delay = atomic_read(&blkg->use_delay);
1630
1631 if (use_delay) {
1632 u64 this_delay;
1633
1634 blkcg_scale_delay(blkg, now);
1635 this_delay = atomic64_read(&blkg->delay_nsec);
1636 if (this_delay > delay_nsec) {
1637 delay_nsec = this_delay;
1638 clamp = use_delay > 0;
1639 }
1640 }
1641 blkg = blkg->parent;
1642 }
1643
1644 if (!delay_nsec)
1645 return;
1646
1647 /*
1648 * Let's not sleep for all eternity if we've amassed a huge delay.
1649 * Swapping or metadata IO can accumulate 10's of seconds worth of
1650 * delay, and we want userspace to be able to do _something_ so cap the
1651 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1652 * tasks will be delayed for 0.25 second for every syscall. If
1653 * blkcg_set_delay() was used as indicated by negative use_delay, the
1654 * caller is responsible for regulating the range.
1655 */
1656 if (clamp)
1657 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1658
1659 if (use_memdelay)
1660 psi_memstall_enter(&pflags);
1661
1662 exp = ktime_add_ns(now, delay_nsec);
1663 tok = io_schedule_prepare();
1664 do {
1665 __set_current_state(TASK_KILLABLE);
1666 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1667 break;
1668 } while (!fatal_signal_pending(current));
1669 io_schedule_finish(tok);
1670
1671 if (use_memdelay)
1672 psi_memstall_leave(&pflags);
1673 }
1674
1675 /**
1676 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1677 *
1678 * This is only called if we've been marked with set_notify_resume(). Obviously
1679 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1680 * check to see if current->throttle_queue is set and if not this doesn't do
1681 * anything. This should only ever be called by the resume code, it's not meant
1682 * to be called by people willy-nilly as it will actually do the work to
1683 * throttle the task if it is setup for throttling.
1684 */
1685 void blkcg_maybe_throttle_current(void)
1686 {
1687 struct request_queue *q = current->throttle_queue;
1688 struct cgroup_subsys_state *css;
1689 struct blkcg *blkcg;
1690 struct blkcg_gq *blkg;
1691 bool use_memdelay = current->use_memdelay;
1692
1693 if (!q)
1694 return;
1695
1696 current->throttle_queue = NULL;
1697 current->use_memdelay = false;
1698
1699 rcu_read_lock();
1700 css = kthread_blkcg();
1701 if (css)
1702 blkcg = css_to_blkcg(css);
1703 else
1704 blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1705
1706 if (!blkcg)
1707 goto out;
1708 blkg = blkg_lookup(blkcg, q);
1709 if (!blkg)
1710 goto out;
1711 if (!blkg_tryget(blkg))
1712 goto out;
1713 rcu_read_unlock();
1714
1715 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1716 blkg_put(blkg);
1717 blk_put_queue(q);
1718 return;
1719 out:
1720 rcu_read_unlock();
1721 blk_put_queue(q);
1722 }
1723
1724 /**
1725 * blkcg_schedule_throttle - this task needs to check for throttling
1726 * @q: the request queue IO was submitted on
1727 * @use_memdelay: do we charge this to memory delay for PSI
1728 *
1729 * This is called by the IO controller when we know there's delay accumulated
1730 * for the blkg for this task. We do not pass the blkg because there are places
1731 * we call this that may not have that information, the swapping code for
1732 * instance will only have a request_queue at that point. This set's the
1733 * notify_resume for the task to check and see if it requires throttling before
1734 * returning to user space.
1735 *
1736 * We will only schedule once per syscall. You can call this over and over
1737 * again and it will only do the check once upon return to user space, and only
1738 * throttle once. If the task needs to be throttled again it'll need to be
1739 * re-set at the next time we see the task.
1740 */
1741 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1742 {
1743 if (unlikely(current->flags & PF_KTHREAD))
1744 return;
1745
1746 if (current->throttle_queue != q) {
1747 if (!blk_get_queue(q))
1748 return;
1749
1750 if (current->throttle_queue)
1751 blk_put_queue(current->throttle_queue);
1752 current->throttle_queue = q;
1753 }
1754
1755 if (use_memdelay)
1756 current->use_memdelay = use_memdelay;
1757 set_notify_resume(current);
1758 }
1759
1760 /**
1761 * blkcg_add_delay - add delay to this blkg
1762 * @blkg: blkg of interest
1763 * @now: the current time in nanoseconds
1764 * @delta: how many nanoseconds of delay to add
1765 *
1766 * Charge @delta to the blkg's current delay accumulation. This is used to
1767 * throttle tasks if an IO controller thinks we need more throttling.
1768 */
1769 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1770 {
1771 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1772 return;
1773 blkcg_scale_delay(blkg, now);
1774 atomic64_add(delta, &blkg->delay_nsec);
1775 }
1776
1777 /**
1778 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1779 * @bio: target bio
1780 * @css: target css
1781 *
1782 * As the failure mode here is to walk up the blkg tree, this ensure that the
1783 * blkg->parent pointers are always valid. This returns the blkg that it ended
1784 * up taking a reference on or %NULL if no reference was taken.
1785 */
1786 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1787 struct cgroup_subsys_state *css)
1788 {
1789 struct blkcg_gq *blkg, *ret_blkg = NULL;
1790
1791 rcu_read_lock();
1792 blkg = blkg_lookup_create(css_to_blkcg(css),
1793 bio->bi_bdev->bd_disk->queue);
1794 while (blkg) {
1795 if (blkg_tryget(blkg)) {
1796 ret_blkg = blkg;
1797 break;
1798 }
1799 blkg = blkg->parent;
1800 }
1801 rcu_read_unlock();
1802
1803 return ret_blkg;
1804 }
1805
1806 /**
1807 * bio_associate_blkg_from_css - associate a bio with a specified css
1808 * @bio: target bio
1809 * @css: target css
1810 *
1811 * Associate @bio with the blkg found by combining the css's blkg and the
1812 * request_queue of the @bio. An association failure is handled by walking up
1813 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1814 * and q->root_blkg. This situation only happens when a cgroup is dying and
1815 * then the remaining bios will spill to the closest alive blkg.
1816 *
1817 * A reference will be taken on the blkg and will be released when @bio is
1818 * freed.
1819 */
1820 void bio_associate_blkg_from_css(struct bio *bio,
1821 struct cgroup_subsys_state *css)
1822 {
1823 if (bio->bi_blkg)
1824 blkg_put(bio->bi_blkg);
1825
1826 if (css && css->parent) {
1827 bio->bi_blkg = blkg_tryget_closest(bio, css);
1828 } else {
1829 blkg_get(bio->bi_bdev->bd_disk->queue->root_blkg);
1830 bio->bi_blkg = bio->bi_bdev->bd_disk->queue->root_blkg;
1831 }
1832 }
1833 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1834
1835 /**
1836 * bio_associate_blkg - associate a bio with a blkg
1837 * @bio: target bio
1838 *
1839 * Associate @bio with the blkg found from the bio's css and request_queue.
1840 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1841 * already associated, the css is reused and association redone as the
1842 * request_queue may have changed.
1843 */
1844 void bio_associate_blkg(struct bio *bio)
1845 {
1846 struct cgroup_subsys_state *css;
1847
1848 rcu_read_lock();
1849
1850 if (bio->bi_blkg)
1851 css = &bio_blkcg(bio)->css;
1852 else
1853 css = blkcg_css();
1854
1855 bio_associate_blkg_from_css(bio, css);
1856
1857 rcu_read_unlock();
1858 }
1859 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1860
1861 /**
1862 * bio_clone_blkg_association - clone blkg association from src to dst bio
1863 * @dst: destination bio
1864 * @src: source bio
1865 */
1866 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1867 {
1868 if (src->bi_blkg) {
1869 if (dst->bi_blkg)
1870 blkg_put(dst->bi_blkg);
1871 blkg_get(src->bi_blkg);
1872 dst->bi_blkg = src->bi_blkg;
1873 }
1874 }
1875 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1876
1877 static int blk_cgroup_io_type(struct bio *bio)
1878 {
1879 if (op_is_discard(bio->bi_opf))
1880 return BLKG_IOSTAT_DISCARD;
1881 if (op_is_write(bio->bi_opf))
1882 return BLKG_IOSTAT_WRITE;
1883 return BLKG_IOSTAT_READ;
1884 }
1885
1886 void blk_cgroup_bio_start(struct bio *bio)
1887 {
1888 int rwd = blk_cgroup_io_type(bio), cpu;
1889 struct blkg_iostat_set *bis;
1890
1891 cpu = get_cpu();
1892 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1893 u64_stats_update_begin(&bis->sync);
1894
1895 /*
1896 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1897 * bio and we would have already accounted for the size of the bio.
1898 */
1899 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1900 bio_set_flag(bio, BIO_CGROUP_ACCT);
1901 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1902 }
1903 bis->cur.ios[rwd]++;
1904
1905 u64_stats_update_end(&bis->sync);
1906 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1907 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1908 put_cpu();
1909 }
1910
1911 static int __init blkcg_init(void)
1912 {
1913 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1914 WQ_MEM_RECLAIM | WQ_FREEZABLE |
1915 WQ_UNBOUND | WQ_SYSFS, 0);
1916 if (!blkcg_punt_bio_wq)
1917 return -ENOMEM;
1918 return 0;
1919 }
1920 subsys_initcall(blkcg_init);
1921
1922 module_param(blkcg_debug_stats, bool, 0644);
1923 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");