]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-cgroup.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-jammy-kernel.git] / block / blk-cgroup.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include "blk.h"
34
35 /*
36 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
37 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
38 * policy [un]register operations including cgroup file additions /
39 * removals. Putting cgroup file registration outside blkcg_pol_mutex
40 * allows grabbing it from cgroup callbacks.
41 */
42 static DEFINE_MUTEX(blkcg_pol_register_mutex);
43 static DEFINE_MUTEX(blkcg_pol_mutex);
44
45 struct blkcg blkcg_root;
46 EXPORT_SYMBOL_GPL(blkcg_root);
47
48 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
49 EXPORT_SYMBOL_GPL(blkcg_root_css);
50
51 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
52
53 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
54
55 bool blkcg_debug_stats = false;
56 static struct workqueue_struct *blkcg_punt_bio_wq;
57
58 static bool blkcg_policy_enabled(struct request_queue *q,
59 const struct blkcg_policy *pol)
60 {
61 return pol && test_bit(pol->plid, q->blkcg_pols);
62 }
63
64 /**
65 * blkg_free - free a blkg
66 * @blkg: blkg to free
67 *
68 * Free @blkg which may be partially allocated.
69 */
70 static void blkg_free(struct blkcg_gq *blkg)
71 {
72 int i;
73
74 if (!blkg)
75 return;
76
77 for (i = 0; i < BLKCG_MAX_POLS; i++)
78 if (blkg->pd[i])
79 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
80
81 free_percpu(blkg->iostat_cpu);
82 percpu_ref_exit(&blkg->refcnt);
83 kfree(blkg);
84 }
85
86 static void __blkg_release(struct rcu_head *rcu)
87 {
88 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
89
90 WARN_ON(!bio_list_empty(&blkg->async_bios));
91
92 /* release the blkcg and parent blkg refs this blkg has been holding */
93 css_put(&blkg->blkcg->css);
94 if (blkg->parent)
95 blkg_put(blkg->parent);
96 blkg_free(blkg);
97 }
98
99 /*
100 * A group is RCU protected, but having an rcu lock does not mean that one
101 * can access all the fields of blkg and assume these are valid. For
102 * example, don't try to follow throtl_data and request queue links.
103 *
104 * Having a reference to blkg under an rcu allows accesses to only values
105 * local to groups like group stats and group rate limits.
106 */
107 static void blkg_release(struct percpu_ref *ref)
108 {
109 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
110
111 call_rcu(&blkg->rcu_head, __blkg_release);
112 }
113
114 static void blkg_async_bio_workfn(struct work_struct *work)
115 {
116 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
117 async_bio_work);
118 struct bio_list bios = BIO_EMPTY_LIST;
119 struct bio *bio;
120 struct blk_plug plug;
121 bool need_plug = false;
122
123 /* as long as there are pending bios, @blkg can't go away */
124 spin_lock_bh(&blkg->async_bio_lock);
125 bio_list_merge(&bios, &blkg->async_bios);
126 bio_list_init(&blkg->async_bios);
127 spin_unlock_bh(&blkg->async_bio_lock);
128
129 /* start plug only when bio_list contains at least 2 bios */
130 if (bios.head && bios.head->bi_next) {
131 need_plug = true;
132 blk_start_plug(&plug);
133 }
134 while ((bio = bio_list_pop(&bios)))
135 submit_bio(bio);
136 if (need_plug)
137 blk_finish_plug(&plug);
138 }
139
140 /**
141 * blkg_alloc - allocate a blkg
142 * @blkcg: block cgroup the new blkg is associated with
143 * @q: request_queue the new blkg is associated with
144 * @gfp_mask: allocation mask to use
145 *
146 * Allocate a new blkg assocating @blkcg and @q.
147 */
148 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
149 gfp_t gfp_mask)
150 {
151 struct blkcg_gq *blkg;
152 int i, cpu;
153
154 /* alloc and init base part */
155 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
156 if (!blkg)
157 return NULL;
158
159 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
160 goto err_free;
161
162 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
163 if (!blkg->iostat_cpu)
164 goto err_free;
165
166 blkg->q = q;
167 INIT_LIST_HEAD(&blkg->q_node);
168 spin_lock_init(&blkg->async_bio_lock);
169 bio_list_init(&blkg->async_bios);
170 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
171 blkg->blkcg = blkcg;
172
173 u64_stats_init(&blkg->iostat.sync);
174 for_each_possible_cpu(cpu)
175 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
176
177 for (i = 0; i < BLKCG_MAX_POLS; i++) {
178 struct blkcg_policy *pol = blkcg_policy[i];
179 struct blkg_policy_data *pd;
180
181 if (!blkcg_policy_enabled(q, pol))
182 continue;
183
184 /* alloc per-policy data and attach it to blkg */
185 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
186 if (!pd)
187 goto err_free;
188
189 blkg->pd[i] = pd;
190 pd->blkg = blkg;
191 pd->plid = i;
192 }
193
194 return blkg;
195
196 err_free:
197 blkg_free(blkg);
198 return NULL;
199 }
200
201 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
202 struct request_queue *q, bool update_hint)
203 {
204 struct blkcg_gq *blkg;
205
206 /*
207 * Hint didn't match. Look up from the radix tree. Note that the
208 * hint can only be updated under queue_lock as otherwise @blkg
209 * could have already been removed from blkg_tree. The caller is
210 * responsible for grabbing queue_lock if @update_hint.
211 */
212 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
213 if (blkg && blkg->q == q) {
214 if (update_hint) {
215 lockdep_assert_held(&q->queue_lock);
216 rcu_assign_pointer(blkcg->blkg_hint, blkg);
217 }
218 return blkg;
219 }
220
221 return NULL;
222 }
223 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
224
225 /*
226 * If @new_blkg is %NULL, this function tries to allocate a new one as
227 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
228 */
229 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
230 struct request_queue *q,
231 struct blkcg_gq *new_blkg)
232 {
233 struct blkcg_gq *blkg;
234 int i, ret;
235
236 WARN_ON_ONCE(!rcu_read_lock_held());
237 lockdep_assert_held(&q->queue_lock);
238
239 /* request_queue is dying, do not create/recreate a blkg */
240 if (blk_queue_dying(q)) {
241 ret = -ENODEV;
242 goto err_free_blkg;
243 }
244
245 /* blkg holds a reference to blkcg */
246 if (!css_tryget_online(&blkcg->css)) {
247 ret = -ENODEV;
248 goto err_free_blkg;
249 }
250
251 /* allocate */
252 if (!new_blkg) {
253 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
254 if (unlikely(!new_blkg)) {
255 ret = -ENOMEM;
256 goto err_put_css;
257 }
258 }
259 blkg = new_blkg;
260
261 /* link parent */
262 if (blkcg_parent(blkcg)) {
263 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
264 if (WARN_ON_ONCE(!blkg->parent)) {
265 ret = -ENODEV;
266 goto err_put_css;
267 }
268 blkg_get(blkg->parent);
269 }
270
271 /* invoke per-policy init */
272 for (i = 0; i < BLKCG_MAX_POLS; i++) {
273 struct blkcg_policy *pol = blkcg_policy[i];
274
275 if (blkg->pd[i] && pol->pd_init_fn)
276 pol->pd_init_fn(blkg->pd[i]);
277 }
278
279 /* insert */
280 spin_lock(&blkcg->lock);
281 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
282 if (likely(!ret)) {
283 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
284 list_add(&blkg->q_node, &q->blkg_list);
285
286 for (i = 0; i < BLKCG_MAX_POLS; i++) {
287 struct blkcg_policy *pol = blkcg_policy[i];
288
289 if (blkg->pd[i] && pol->pd_online_fn)
290 pol->pd_online_fn(blkg->pd[i]);
291 }
292 }
293 blkg->online = true;
294 spin_unlock(&blkcg->lock);
295
296 if (!ret)
297 return blkg;
298
299 /* @blkg failed fully initialized, use the usual release path */
300 blkg_put(blkg);
301 return ERR_PTR(ret);
302
303 err_put_css:
304 css_put(&blkcg->css);
305 err_free_blkg:
306 blkg_free(new_blkg);
307 return ERR_PTR(ret);
308 }
309
310 /**
311 * blkg_lookup_create - lookup blkg, try to create one if not there
312 * @blkcg: blkcg of interest
313 * @q: request_queue of interest
314 *
315 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to
316 * create one. blkg creation is performed recursively from blkcg_root such
317 * that all non-root blkg's have access to the parent blkg. This function
318 * should be called under RCU read lock and takes @q->queue_lock.
319 *
320 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
321 * down from root.
322 */
323 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
324 struct request_queue *q)
325 {
326 struct blkcg_gq *blkg;
327 unsigned long flags;
328
329 WARN_ON_ONCE(!rcu_read_lock_held());
330
331 blkg = blkg_lookup(blkcg, q);
332 if (blkg)
333 return blkg;
334
335 spin_lock_irqsave(&q->queue_lock, flags);
336 blkg = __blkg_lookup(blkcg, q, true);
337 if (blkg)
338 goto found;
339
340 /*
341 * Create blkgs walking down from blkcg_root to @blkcg, so that all
342 * non-root blkgs have access to their parents. Returns the closest
343 * blkg to the intended blkg should blkg_create() fail.
344 */
345 while (true) {
346 struct blkcg *pos = blkcg;
347 struct blkcg *parent = blkcg_parent(blkcg);
348 struct blkcg_gq *ret_blkg = q->root_blkg;
349
350 while (parent) {
351 blkg = __blkg_lookup(parent, q, false);
352 if (blkg) {
353 /* remember closest blkg */
354 ret_blkg = blkg;
355 break;
356 }
357 pos = parent;
358 parent = blkcg_parent(parent);
359 }
360
361 blkg = blkg_create(pos, q, NULL);
362 if (IS_ERR(blkg)) {
363 blkg = ret_blkg;
364 break;
365 }
366 if (pos == blkcg)
367 break;
368 }
369
370 found:
371 spin_unlock_irqrestore(&q->queue_lock, flags);
372 return blkg;
373 }
374
375 static void blkg_destroy(struct blkcg_gq *blkg)
376 {
377 struct blkcg *blkcg = blkg->blkcg;
378 int i;
379
380 lockdep_assert_held(&blkg->q->queue_lock);
381 lockdep_assert_held(&blkcg->lock);
382
383 /* Something wrong if we are trying to remove same group twice */
384 WARN_ON_ONCE(list_empty(&blkg->q_node));
385 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
386
387 for (i = 0; i < BLKCG_MAX_POLS; i++) {
388 struct blkcg_policy *pol = blkcg_policy[i];
389
390 if (blkg->pd[i] && pol->pd_offline_fn)
391 pol->pd_offline_fn(blkg->pd[i]);
392 }
393
394 blkg->online = false;
395
396 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
397 list_del_init(&blkg->q_node);
398 hlist_del_init_rcu(&blkg->blkcg_node);
399
400 /*
401 * Both setting lookup hint to and clearing it from @blkg are done
402 * under queue_lock. If it's not pointing to @blkg now, it never
403 * will. Hint assignment itself can race safely.
404 */
405 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
406 rcu_assign_pointer(blkcg->blkg_hint, NULL);
407
408 /*
409 * Put the reference taken at the time of creation so that when all
410 * queues are gone, group can be destroyed.
411 */
412 percpu_ref_kill(&blkg->refcnt);
413 }
414
415 /**
416 * blkg_destroy_all - destroy all blkgs associated with a request_queue
417 * @q: request_queue of interest
418 *
419 * Destroy all blkgs associated with @q.
420 */
421 static void blkg_destroy_all(struct request_queue *q)
422 {
423 struct blkcg_gq *blkg, *n;
424
425 spin_lock_irq(&q->queue_lock);
426 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
427 struct blkcg *blkcg = blkg->blkcg;
428
429 spin_lock(&blkcg->lock);
430 blkg_destroy(blkg);
431 spin_unlock(&blkcg->lock);
432 }
433
434 q->root_blkg = NULL;
435 spin_unlock_irq(&q->queue_lock);
436 }
437
438 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
439 struct cftype *cftype, u64 val)
440 {
441 struct blkcg *blkcg = css_to_blkcg(css);
442 struct blkcg_gq *blkg;
443 int i, cpu;
444
445 mutex_lock(&blkcg_pol_mutex);
446 spin_lock_irq(&blkcg->lock);
447
448 /*
449 * Note that stat reset is racy - it doesn't synchronize against
450 * stat updates. This is a debug feature which shouldn't exist
451 * anyway. If you get hit by a race, retry.
452 */
453 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
454 for_each_possible_cpu(cpu) {
455 struct blkg_iostat_set *bis =
456 per_cpu_ptr(blkg->iostat_cpu, cpu);
457 memset(bis, 0, sizeof(*bis));
458 }
459 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
460
461 for (i = 0; i < BLKCG_MAX_POLS; i++) {
462 struct blkcg_policy *pol = blkcg_policy[i];
463
464 if (blkg->pd[i] && pol->pd_reset_stats_fn)
465 pol->pd_reset_stats_fn(blkg->pd[i]);
466 }
467 }
468
469 spin_unlock_irq(&blkcg->lock);
470 mutex_unlock(&blkcg_pol_mutex);
471 return 0;
472 }
473
474 const char *blkg_dev_name(struct blkcg_gq *blkg)
475 {
476 /* some drivers (floppy) instantiate a queue w/o disk registered */
477 if (blkg->q->backing_dev_info->dev)
478 return bdi_dev_name(blkg->q->backing_dev_info);
479 return NULL;
480 }
481
482 /**
483 * blkcg_print_blkgs - helper for printing per-blkg data
484 * @sf: seq_file to print to
485 * @blkcg: blkcg of interest
486 * @prfill: fill function to print out a blkg
487 * @pol: policy in question
488 * @data: data to be passed to @prfill
489 * @show_total: to print out sum of prfill return values or not
490 *
491 * This function invokes @prfill on each blkg of @blkcg if pd for the
492 * policy specified by @pol exists. @prfill is invoked with @sf, the
493 * policy data and @data and the matching queue lock held. If @show_total
494 * is %true, the sum of the return values from @prfill is printed with
495 * "Total" label at the end.
496 *
497 * This is to be used to construct print functions for
498 * cftype->read_seq_string method.
499 */
500 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
501 u64 (*prfill)(struct seq_file *,
502 struct blkg_policy_data *, int),
503 const struct blkcg_policy *pol, int data,
504 bool show_total)
505 {
506 struct blkcg_gq *blkg;
507 u64 total = 0;
508
509 rcu_read_lock();
510 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
511 spin_lock_irq(&blkg->q->queue_lock);
512 if (blkcg_policy_enabled(blkg->q, pol))
513 total += prfill(sf, blkg->pd[pol->plid], data);
514 spin_unlock_irq(&blkg->q->queue_lock);
515 }
516 rcu_read_unlock();
517
518 if (show_total)
519 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
520 }
521 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
522
523 /**
524 * __blkg_prfill_u64 - prfill helper for a single u64 value
525 * @sf: seq_file to print to
526 * @pd: policy private data of interest
527 * @v: value to print
528 *
529 * Print @v to @sf for the device assocaited with @pd.
530 */
531 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
532 {
533 const char *dname = blkg_dev_name(pd->blkg);
534
535 if (!dname)
536 return 0;
537
538 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
539 return v;
540 }
541 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
542
543 /* Performs queue bypass and policy enabled checks then looks up blkg. */
544 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
545 const struct blkcg_policy *pol,
546 struct request_queue *q)
547 {
548 WARN_ON_ONCE(!rcu_read_lock_held());
549 lockdep_assert_held(&q->queue_lock);
550
551 if (!blkcg_policy_enabled(q, pol))
552 return ERR_PTR(-EOPNOTSUPP);
553 return __blkg_lookup(blkcg, q, true /* update_hint */);
554 }
555
556 /**
557 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
558 * @inputp: input string pointer
559 *
560 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
561 * from @input and get and return the matching bdev. *@inputp is
562 * updated to point past the device node prefix. Returns an ERR_PTR()
563 * value on error.
564 *
565 * Use this function iff blkg_conf_prep() can't be used for some reason.
566 */
567 struct block_device *blkcg_conf_open_bdev(char **inputp)
568 {
569 char *input = *inputp;
570 unsigned int major, minor;
571 struct block_device *bdev;
572 int key_len;
573
574 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
575 return ERR_PTR(-EINVAL);
576
577 input += key_len;
578 if (!isspace(*input))
579 return ERR_PTR(-EINVAL);
580 input = skip_spaces(input);
581
582 bdev = blkdev_get_no_open(MKDEV(major, minor));
583 if (!bdev)
584 return ERR_PTR(-ENODEV);
585 if (bdev_is_partition(bdev)) {
586 blkdev_put_no_open(bdev);
587 return ERR_PTR(-ENODEV);
588 }
589
590 *inputp = input;
591 return bdev;
592 }
593
594 /**
595 * blkg_conf_prep - parse and prepare for per-blkg config update
596 * @blkcg: target block cgroup
597 * @pol: target policy
598 * @input: input string
599 * @ctx: blkg_conf_ctx to be filled
600 *
601 * Parse per-blkg config update from @input and initialize @ctx with the
602 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
603 * part of @input following MAJ:MIN. This function returns with RCU read
604 * lock and queue lock held and must be paired with blkg_conf_finish().
605 */
606 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
607 char *input, struct blkg_conf_ctx *ctx)
608 __acquires(rcu) __acquires(&bdev->bd_disk->queue->queue_lock)
609 {
610 struct block_device *bdev;
611 struct request_queue *q;
612 struct blkcg_gq *blkg;
613 int ret;
614
615 bdev = blkcg_conf_open_bdev(&input);
616 if (IS_ERR(bdev))
617 return PTR_ERR(bdev);
618
619 q = bdev->bd_disk->queue;
620
621 rcu_read_lock();
622 spin_lock_irq(&q->queue_lock);
623
624 blkg = blkg_lookup_check(blkcg, pol, q);
625 if (IS_ERR(blkg)) {
626 ret = PTR_ERR(blkg);
627 goto fail_unlock;
628 }
629
630 if (blkg)
631 goto success;
632
633 /*
634 * Create blkgs walking down from blkcg_root to @blkcg, so that all
635 * non-root blkgs have access to their parents.
636 */
637 while (true) {
638 struct blkcg *pos = blkcg;
639 struct blkcg *parent;
640 struct blkcg_gq *new_blkg;
641
642 parent = blkcg_parent(blkcg);
643 while (parent && !__blkg_lookup(parent, q, false)) {
644 pos = parent;
645 parent = blkcg_parent(parent);
646 }
647
648 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
649 spin_unlock_irq(&q->queue_lock);
650 rcu_read_unlock();
651
652 new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
653 if (unlikely(!new_blkg)) {
654 ret = -ENOMEM;
655 goto fail;
656 }
657
658 if (radix_tree_preload(GFP_KERNEL)) {
659 blkg_free(new_blkg);
660 ret = -ENOMEM;
661 goto fail;
662 }
663
664 rcu_read_lock();
665 spin_lock_irq(&q->queue_lock);
666
667 blkg = blkg_lookup_check(pos, pol, q);
668 if (IS_ERR(blkg)) {
669 ret = PTR_ERR(blkg);
670 blkg_free(new_blkg);
671 goto fail_preloaded;
672 }
673
674 if (blkg) {
675 blkg_free(new_blkg);
676 } else {
677 blkg = blkg_create(pos, q, new_blkg);
678 if (IS_ERR(blkg)) {
679 ret = PTR_ERR(blkg);
680 goto fail_preloaded;
681 }
682 }
683
684 radix_tree_preload_end();
685
686 if (pos == blkcg)
687 goto success;
688 }
689 success:
690 ctx->bdev = bdev;
691 ctx->blkg = blkg;
692 ctx->body = input;
693 return 0;
694
695 fail_preloaded:
696 radix_tree_preload_end();
697 fail_unlock:
698 spin_unlock_irq(&q->queue_lock);
699 rcu_read_unlock();
700 fail:
701 blkdev_put_no_open(bdev);
702 /*
703 * If queue was bypassing, we should retry. Do so after a
704 * short msleep(). It isn't strictly necessary but queue
705 * can be bypassing for some time and it's always nice to
706 * avoid busy looping.
707 */
708 if (ret == -EBUSY) {
709 msleep(10);
710 ret = restart_syscall();
711 }
712 return ret;
713 }
714 EXPORT_SYMBOL_GPL(blkg_conf_prep);
715
716 /**
717 * blkg_conf_finish - finish up per-blkg config update
718 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
719 *
720 * Finish up after per-blkg config update. This function must be paired
721 * with blkg_conf_prep().
722 */
723 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
724 __releases(&ctx->bdev->bd_disk->queue->queue_lock) __releases(rcu)
725 {
726 spin_unlock_irq(&ctx->bdev->bd_disk->queue->queue_lock);
727 rcu_read_unlock();
728 blkdev_put_no_open(ctx->bdev);
729 }
730 EXPORT_SYMBOL_GPL(blkg_conf_finish);
731
732 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
733 {
734 int i;
735
736 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
737 dst->bytes[i] = src->bytes[i];
738 dst->ios[i] = src->ios[i];
739 }
740 }
741
742 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
743 {
744 int i;
745
746 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
747 dst->bytes[i] += src->bytes[i];
748 dst->ios[i] += src->ios[i];
749 }
750 }
751
752 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
753 {
754 int i;
755
756 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
757 dst->bytes[i] -= src->bytes[i];
758 dst->ios[i] -= src->ios[i];
759 }
760 }
761
762 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
763 {
764 struct blkcg *blkcg = css_to_blkcg(css);
765 struct blkcg_gq *blkg;
766
767 rcu_read_lock();
768
769 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
770 struct blkcg_gq *parent = blkg->parent;
771 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
772 struct blkg_iostat cur, delta;
773 unsigned int seq;
774
775 /* fetch the current per-cpu values */
776 do {
777 seq = u64_stats_fetch_begin(&bisc->sync);
778 blkg_iostat_set(&cur, &bisc->cur);
779 } while (u64_stats_fetch_retry(&bisc->sync, seq));
780
781 /* propagate percpu delta to global */
782 u64_stats_update_begin(&blkg->iostat.sync);
783 blkg_iostat_set(&delta, &cur);
784 blkg_iostat_sub(&delta, &bisc->last);
785 blkg_iostat_add(&blkg->iostat.cur, &delta);
786 blkg_iostat_add(&bisc->last, &delta);
787 u64_stats_update_end(&blkg->iostat.sync);
788
789 /* propagate global delta to parent */
790 if (parent) {
791 u64_stats_update_begin(&parent->iostat.sync);
792 blkg_iostat_set(&delta, &blkg->iostat.cur);
793 blkg_iostat_sub(&delta, &blkg->iostat.last);
794 blkg_iostat_add(&parent->iostat.cur, &delta);
795 blkg_iostat_add(&blkg->iostat.last, &delta);
796 u64_stats_update_end(&parent->iostat.sync);
797 }
798 }
799
800 rcu_read_unlock();
801 }
802
803 /*
804 * The rstat algorithms intentionally don't handle the root cgroup to avoid
805 * incurring overhead when no cgroups are defined. For that reason,
806 * cgroup_rstat_flush in blkcg_print_stat does not actually fill out the
807 * iostat in the root cgroup's blkcg_gq.
808 *
809 * However, we would like to re-use the printing code between the root and
810 * non-root cgroups to the extent possible. For that reason, we simulate
811 * flushing the root cgroup's stats by explicitly filling in the iostat
812 * with disk level statistics.
813 */
814 static void blkcg_fill_root_iostats(void)
815 {
816 struct class_dev_iter iter;
817 struct device *dev;
818
819 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
820 while ((dev = class_dev_iter_next(&iter))) {
821 struct block_device *bdev = dev_to_bdev(dev);
822 struct blkcg_gq *blkg =
823 blk_queue_root_blkg(bdev->bd_disk->queue);
824 struct blkg_iostat tmp;
825 int cpu;
826
827 memset(&tmp, 0, sizeof(tmp));
828 for_each_possible_cpu(cpu) {
829 struct disk_stats *cpu_dkstats;
830
831 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
832 tmp.ios[BLKG_IOSTAT_READ] +=
833 cpu_dkstats->ios[STAT_READ];
834 tmp.ios[BLKG_IOSTAT_WRITE] +=
835 cpu_dkstats->ios[STAT_WRITE];
836 tmp.ios[BLKG_IOSTAT_DISCARD] +=
837 cpu_dkstats->ios[STAT_DISCARD];
838 // convert sectors to bytes
839 tmp.bytes[BLKG_IOSTAT_READ] +=
840 cpu_dkstats->sectors[STAT_READ] << 9;
841 tmp.bytes[BLKG_IOSTAT_WRITE] +=
842 cpu_dkstats->sectors[STAT_WRITE] << 9;
843 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
844 cpu_dkstats->sectors[STAT_DISCARD] << 9;
845
846 u64_stats_update_begin(&blkg->iostat.sync);
847 blkg_iostat_set(&blkg->iostat.cur, &tmp);
848 u64_stats_update_end(&blkg->iostat.sync);
849 }
850 }
851 }
852
853 static int blkcg_print_stat(struct seq_file *sf, void *v)
854 {
855 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
856 struct blkcg_gq *blkg;
857
858 if (!seq_css(sf)->parent)
859 blkcg_fill_root_iostats();
860 else
861 cgroup_rstat_flush(blkcg->css.cgroup);
862
863 rcu_read_lock();
864
865 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
866 struct blkg_iostat_set *bis = &blkg->iostat;
867 const char *dname;
868 char *buf;
869 u64 rbytes, wbytes, rios, wios, dbytes, dios;
870 size_t size = seq_get_buf(sf, &buf), off = 0;
871 int i;
872 bool has_stats = false;
873 unsigned seq;
874
875 spin_lock_irq(&blkg->q->queue_lock);
876
877 if (!blkg->online)
878 goto skip;
879
880 dname = blkg_dev_name(blkg);
881 if (!dname)
882 goto skip;
883
884 /*
885 * Hooray string manipulation, count is the size written NOT
886 * INCLUDING THE \0, so size is now count+1 less than what we
887 * had before, but we want to start writing the next bit from
888 * the \0 so we only add count to buf.
889 */
890 off += scnprintf(buf+off, size-off, "%s ", dname);
891
892 do {
893 seq = u64_stats_fetch_begin(&bis->sync);
894
895 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
896 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
897 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
898 rios = bis->cur.ios[BLKG_IOSTAT_READ];
899 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
900 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
901 } while (u64_stats_fetch_retry(&bis->sync, seq));
902
903 if (rbytes || wbytes || rios || wios) {
904 has_stats = true;
905 off += scnprintf(buf+off, size-off,
906 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
907 rbytes, wbytes, rios, wios,
908 dbytes, dios);
909 }
910
911 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
912 has_stats = true;
913 off += scnprintf(buf+off, size-off,
914 " use_delay=%d delay_nsec=%llu",
915 atomic_read(&blkg->use_delay),
916 (unsigned long long)atomic64_read(&blkg->delay_nsec));
917 }
918
919 for (i = 0; i < BLKCG_MAX_POLS; i++) {
920 struct blkcg_policy *pol = blkcg_policy[i];
921 size_t written;
922
923 if (!blkg->pd[i] || !pol->pd_stat_fn)
924 continue;
925
926 written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off);
927 if (written)
928 has_stats = true;
929 off += written;
930 }
931
932 if (has_stats) {
933 if (off < size - 1) {
934 off += scnprintf(buf+off, size-off, "\n");
935 seq_commit(sf, off);
936 } else {
937 seq_commit(sf, -1);
938 }
939 }
940 skip:
941 spin_unlock_irq(&blkg->q->queue_lock);
942 }
943
944 rcu_read_unlock();
945 return 0;
946 }
947
948 static struct cftype blkcg_files[] = {
949 {
950 .name = "stat",
951 .seq_show = blkcg_print_stat,
952 },
953 { } /* terminate */
954 };
955
956 static struct cftype blkcg_legacy_files[] = {
957 {
958 .name = "reset_stats",
959 .write_u64 = blkcg_reset_stats,
960 },
961 { } /* terminate */
962 };
963
964 /*
965 * blkcg destruction is a three-stage process.
966 *
967 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
968 * which offlines writeback. Here we tie the next stage of blkg destruction
969 * to the completion of writeback associated with the blkcg. This lets us
970 * avoid punting potentially large amounts of outstanding writeback to root
971 * while maintaining any ongoing policies. The next stage is triggered when
972 * the nr_cgwbs count goes to zero.
973 *
974 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
975 * and handles the destruction of blkgs. Here the css reference held by
976 * the blkg is put back eventually allowing blkcg_css_free() to be called.
977 * This work may occur in cgwb_release_workfn() on the cgwb_release
978 * workqueue. Any submitted ios that fail to get the blkg ref will be
979 * punted to the root_blkg.
980 *
981 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
982 * This finally frees the blkcg.
983 */
984
985 /**
986 * blkcg_css_offline - cgroup css_offline callback
987 * @css: css of interest
988 *
989 * This function is called when @css is about to go away. Here the cgwbs are
990 * offlined first and only once writeback associated with the blkcg has
991 * finished do we start step 2 (see above).
992 */
993 static void blkcg_css_offline(struct cgroup_subsys_state *css)
994 {
995 struct blkcg *blkcg = css_to_blkcg(css);
996
997 /* this prevents anyone from attaching or migrating to this blkcg */
998 wb_blkcg_offline(blkcg);
999
1000 /* put the base online pin allowing step 2 to be triggered */
1001 blkcg_unpin_online(blkcg);
1002 }
1003
1004 /**
1005 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1006 * @blkcg: blkcg of interest
1007 *
1008 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1009 * is nested inside q lock, this function performs reverse double lock dancing.
1010 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1011 * blkcg_css_free to eventually be called.
1012 *
1013 * This is the blkcg counterpart of ioc_release_fn().
1014 */
1015 void blkcg_destroy_blkgs(struct blkcg *blkcg)
1016 {
1017 might_sleep();
1018
1019 spin_lock_irq(&blkcg->lock);
1020
1021 while (!hlist_empty(&blkcg->blkg_list)) {
1022 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1023 struct blkcg_gq, blkcg_node);
1024 struct request_queue *q = blkg->q;
1025
1026 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1027 /*
1028 * Given that the system can accumulate a huge number
1029 * of blkgs in pathological cases, check to see if we
1030 * need to rescheduling to avoid softlockup.
1031 */
1032 spin_unlock_irq(&blkcg->lock);
1033 cond_resched();
1034 spin_lock_irq(&blkcg->lock);
1035 continue;
1036 }
1037
1038 blkg_destroy(blkg);
1039 spin_unlock(&q->queue_lock);
1040 }
1041
1042 spin_unlock_irq(&blkcg->lock);
1043 }
1044
1045 static void blkcg_css_free(struct cgroup_subsys_state *css)
1046 {
1047 struct blkcg *blkcg = css_to_blkcg(css);
1048 int i;
1049
1050 mutex_lock(&blkcg_pol_mutex);
1051
1052 list_del(&blkcg->all_blkcgs_node);
1053
1054 for (i = 0; i < BLKCG_MAX_POLS; i++)
1055 if (blkcg->cpd[i])
1056 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1057
1058 mutex_unlock(&blkcg_pol_mutex);
1059
1060 kfree(blkcg);
1061 }
1062
1063 static struct cgroup_subsys_state *
1064 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1065 {
1066 struct blkcg *blkcg;
1067 struct cgroup_subsys_state *ret;
1068 int i;
1069
1070 mutex_lock(&blkcg_pol_mutex);
1071
1072 if (!parent_css) {
1073 blkcg = &blkcg_root;
1074 } else {
1075 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1076 if (!blkcg) {
1077 ret = ERR_PTR(-ENOMEM);
1078 goto unlock;
1079 }
1080 }
1081
1082 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1083 struct blkcg_policy *pol = blkcg_policy[i];
1084 struct blkcg_policy_data *cpd;
1085
1086 /*
1087 * If the policy hasn't been attached yet, wait for it
1088 * to be attached before doing anything else. Otherwise,
1089 * check if the policy requires any specific per-cgroup
1090 * data: if it does, allocate and initialize it.
1091 */
1092 if (!pol || !pol->cpd_alloc_fn)
1093 continue;
1094
1095 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1096 if (!cpd) {
1097 ret = ERR_PTR(-ENOMEM);
1098 goto free_pd_blkcg;
1099 }
1100 blkcg->cpd[i] = cpd;
1101 cpd->blkcg = blkcg;
1102 cpd->plid = i;
1103 if (pol->cpd_init_fn)
1104 pol->cpd_init_fn(cpd);
1105 }
1106
1107 spin_lock_init(&blkcg->lock);
1108 refcount_set(&blkcg->online_pin, 1);
1109 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1110 INIT_HLIST_HEAD(&blkcg->blkg_list);
1111 #ifdef CONFIG_CGROUP_WRITEBACK
1112 INIT_LIST_HEAD(&blkcg->cgwb_list);
1113 #endif
1114 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1115
1116 mutex_unlock(&blkcg_pol_mutex);
1117 return &blkcg->css;
1118
1119 free_pd_blkcg:
1120 for (i--; i >= 0; i--)
1121 if (blkcg->cpd[i])
1122 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1123
1124 if (blkcg != &blkcg_root)
1125 kfree(blkcg);
1126 unlock:
1127 mutex_unlock(&blkcg_pol_mutex);
1128 return ret;
1129 }
1130
1131 static int blkcg_css_online(struct cgroup_subsys_state *css)
1132 {
1133 struct blkcg *blkcg = css_to_blkcg(css);
1134 struct blkcg *parent = blkcg_parent(blkcg);
1135
1136 /*
1137 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1138 * don't go offline while cgwbs are still active on them. Pin the
1139 * parent so that offline always happens towards the root.
1140 */
1141 if (parent)
1142 blkcg_pin_online(parent);
1143 return 0;
1144 }
1145
1146 /**
1147 * blkcg_init_queue - initialize blkcg part of request queue
1148 * @q: request_queue to initialize
1149 *
1150 * Called from blk_alloc_queue(). Responsible for initializing blkcg
1151 * part of new request_queue @q.
1152 *
1153 * RETURNS:
1154 * 0 on success, -errno on failure.
1155 */
1156 int blkcg_init_queue(struct request_queue *q)
1157 {
1158 struct blkcg_gq *new_blkg, *blkg;
1159 bool preloaded;
1160 int ret;
1161
1162 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1163 if (!new_blkg)
1164 return -ENOMEM;
1165
1166 preloaded = !radix_tree_preload(GFP_KERNEL);
1167
1168 /* Make sure the root blkg exists. */
1169 rcu_read_lock();
1170 spin_lock_irq(&q->queue_lock);
1171 blkg = blkg_create(&blkcg_root, q, new_blkg);
1172 if (IS_ERR(blkg))
1173 goto err_unlock;
1174 q->root_blkg = blkg;
1175 spin_unlock_irq(&q->queue_lock);
1176 rcu_read_unlock();
1177
1178 if (preloaded)
1179 radix_tree_preload_end();
1180
1181 ret = blk_throtl_init(q);
1182 if (ret)
1183 goto err_destroy_all;
1184
1185 ret = blk_iolatency_init(q);
1186 if (ret) {
1187 blk_throtl_exit(q);
1188 goto err_destroy_all;
1189 }
1190 return 0;
1191
1192 err_destroy_all:
1193 blkg_destroy_all(q);
1194 return ret;
1195 err_unlock:
1196 spin_unlock_irq(&q->queue_lock);
1197 rcu_read_unlock();
1198 if (preloaded)
1199 radix_tree_preload_end();
1200 return PTR_ERR(blkg);
1201 }
1202
1203 /**
1204 * blkcg_exit_queue - exit and release blkcg part of request_queue
1205 * @q: request_queue being released
1206 *
1207 * Called from blk_exit_queue(). Responsible for exiting blkcg part.
1208 */
1209 void blkcg_exit_queue(struct request_queue *q)
1210 {
1211 blkg_destroy_all(q);
1212 blk_throtl_exit(q);
1213 }
1214
1215 /*
1216 * We cannot support shared io contexts, as we have no mean to support
1217 * two tasks with the same ioc in two different groups without major rework
1218 * of the main cic data structures. For now we allow a task to change
1219 * its cgroup only if it's the only owner of its ioc.
1220 */
1221 static int blkcg_can_attach(struct cgroup_taskset *tset)
1222 {
1223 struct task_struct *task;
1224 struct cgroup_subsys_state *dst_css;
1225 struct io_context *ioc;
1226 int ret = 0;
1227
1228 /* task_lock() is needed to avoid races with exit_io_context() */
1229 cgroup_taskset_for_each(task, dst_css, tset) {
1230 task_lock(task);
1231 ioc = task->io_context;
1232 if (ioc && atomic_read(&ioc->nr_tasks) > 1)
1233 ret = -EINVAL;
1234 task_unlock(task);
1235 if (ret)
1236 break;
1237 }
1238 return ret;
1239 }
1240
1241 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1242 {
1243 int i;
1244
1245 mutex_lock(&blkcg_pol_mutex);
1246
1247 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1248 struct blkcg_policy *pol = blkcg_policy[i];
1249 struct blkcg *blkcg;
1250
1251 if (!pol || !pol->cpd_bind_fn)
1252 continue;
1253
1254 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1255 if (blkcg->cpd[pol->plid])
1256 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1257 }
1258 mutex_unlock(&blkcg_pol_mutex);
1259 }
1260
1261 static void blkcg_exit(struct task_struct *tsk)
1262 {
1263 if (tsk->throttle_queue)
1264 blk_put_queue(tsk->throttle_queue);
1265 tsk->throttle_queue = NULL;
1266 }
1267
1268 struct cgroup_subsys io_cgrp_subsys = {
1269 .css_alloc = blkcg_css_alloc,
1270 .css_online = blkcg_css_online,
1271 .css_offline = blkcg_css_offline,
1272 .css_free = blkcg_css_free,
1273 .can_attach = blkcg_can_attach,
1274 .css_rstat_flush = blkcg_rstat_flush,
1275 .bind = blkcg_bind,
1276 .dfl_cftypes = blkcg_files,
1277 .legacy_cftypes = blkcg_legacy_files,
1278 .legacy_name = "blkio",
1279 .exit = blkcg_exit,
1280 #ifdef CONFIG_MEMCG
1281 /*
1282 * This ensures that, if available, memcg is automatically enabled
1283 * together on the default hierarchy so that the owner cgroup can
1284 * be retrieved from writeback pages.
1285 */
1286 .depends_on = 1 << memory_cgrp_id,
1287 #endif
1288 };
1289 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1290
1291 /**
1292 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1293 * @q: request_queue of interest
1294 * @pol: blkcg policy to activate
1295 *
1296 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1297 * bypass mode to populate its blkgs with policy_data for @pol.
1298 *
1299 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1300 * from IO path. Update of each blkg is protected by both queue and blkcg
1301 * locks so that holding either lock and testing blkcg_policy_enabled() is
1302 * always enough for dereferencing policy data.
1303 *
1304 * The caller is responsible for synchronizing [de]activations and policy
1305 * [un]registerations. Returns 0 on success, -errno on failure.
1306 */
1307 int blkcg_activate_policy(struct request_queue *q,
1308 const struct blkcg_policy *pol)
1309 {
1310 struct blkg_policy_data *pd_prealloc = NULL;
1311 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1312 int ret;
1313
1314 if (blkcg_policy_enabled(q, pol))
1315 return 0;
1316
1317 if (queue_is_mq(q))
1318 blk_mq_freeze_queue(q);
1319 retry:
1320 spin_lock_irq(&q->queue_lock);
1321
1322 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1323 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1324 struct blkg_policy_data *pd;
1325
1326 if (blkg->pd[pol->plid])
1327 continue;
1328
1329 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1330 if (blkg == pinned_blkg) {
1331 pd = pd_prealloc;
1332 pd_prealloc = NULL;
1333 } else {
1334 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1335 blkg->blkcg);
1336 }
1337
1338 if (!pd) {
1339 /*
1340 * GFP_NOWAIT failed. Free the existing one and
1341 * prealloc for @blkg w/ GFP_KERNEL.
1342 */
1343 if (pinned_blkg)
1344 blkg_put(pinned_blkg);
1345 blkg_get(blkg);
1346 pinned_blkg = blkg;
1347
1348 spin_unlock_irq(&q->queue_lock);
1349
1350 if (pd_prealloc)
1351 pol->pd_free_fn(pd_prealloc);
1352 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1353 blkg->blkcg);
1354 if (pd_prealloc)
1355 goto retry;
1356 else
1357 goto enomem;
1358 }
1359
1360 blkg->pd[pol->plid] = pd;
1361 pd->blkg = blkg;
1362 pd->plid = pol->plid;
1363 }
1364
1365 /* all allocated, init in the same order */
1366 if (pol->pd_init_fn)
1367 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1368 pol->pd_init_fn(blkg->pd[pol->plid]);
1369
1370 __set_bit(pol->plid, q->blkcg_pols);
1371 ret = 0;
1372
1373 spin_unlock_irq(&q->queue_lock);
1374 out:
1375 if (queue_is_mq(q))
1376 blk_mq_unfreeze_queue(q);
1377 if (pinned_blkg)
1378 blkg_put(pinned_blkg);
1379 if (pd_prealloc)
1380 pol->pd_free_fn(pd_prealloc);
1381 return ret;
1382
1383 enomem:
1384 /* alloc failed, nothing's initialized yet, free everything */
1385 spin_lock_irq(&q->queue_lock);
1386 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1387 if (blkg->pd[pol->plid]) {
1388 pol->pd_free_fn(blkg->pd[pol->plid]);
1389 blkg->pd[pol->plid] = NULL;
1390 }
1391 }
1392 spin_unlock_irq(&q->queue_lock);
1393 ret = -ENOMEM;
1394 goto out;
1395 }
1396 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1397
1398 /**
1399 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1400 * @q: request_queue of interest
1401 * @pol: blkcg policy to deactivate
1402 *
1403 * Deactivate @pol on @q. Follows the same synchronization rules as
1404 * blkcg_activate_policy().
1405 */
1406 void blkcg_deactivate_policy(struct request_queue *q,
1407 const struct blkcg_policy *pol)
1408 {
1409 struct blkcg_gq *blkg;
1410
1411 if (!blkcg_policy_enabled(q, pol))
1412 return;
1413
1414 if (queue_is_mq(q))
1415 blk_mq_freeze_queue(q);
1416
1417 spin_lock_irq(&q->queue_lock);
1418
1419 __clear_bit(pol->plid, q->blkcg_pols);
1420
1421 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1422 if (blkg->pd[pol->plid]) {
1423 if (pol->pd_offline_fn)
1424 pol->pd_offline_fn(blkg->pd[pol->plid]);
1425 pol->pd_free_fn(blkg->pd[pol->plid]);
1426 blkg->pd[pol->plid] = NULL;
1427 }
1428 }
1429
1430 spin_unlock_irq(&q->queue_lock);
1431
1432 if (queue_is_mq(q))
1433 blk_mq_unfreeze_queue(q);
1434 }
1435 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1436
1437 /**
1438 * blkcg_policy_register - register a blkcg policy
1439 * @pol: blkcg policy to register
1440 *
1441 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1442 * successful registration. Returns 0 on success and -errno on failure.
1443 */
1444 int blkcg_policy_register(struct blkcg_policy *pol)
1445 {
1446 struct blkcg *blkcg;
1447 int i, ret;
1448
1449 mutex_lock(&blkcg_pol_register_mutex);
1450 mutex_lock(&blkcg_pol_mutex);
1451
1452 /* find an empty slot */
1453 ret = -ENOSPC;
1454 for (i = 0; i < BLKCG_MAX_POLS; i++)
1455 if (!blkcg_policy[i])
1456 break;
1457 if (i >= BLKCG_MAX_POLS) {
1458 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1459 goto err_unlock;
1460 }
1461
1462 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1463 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1464 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1465 goto err_unlock;
1466
1467 /* register @pol */
1468 pol->plid = i;
1469 blkcg_policy[pol->plid] = pol;
1470
1471 /* allocate and install cpd's */
1472 if (pol->cpd_alloc_fn) {
1473 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1474 struct blkcg_policy_data *cpd;
1475
1476 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1477 if (!cpd)
1478 goto err_free_cpds;
1479
1480 blkcg->cpd[pol->plid] = cpd;
1481 cpd->blkcg = blkcg;
1482 cpd->plid = pol->plid;
1483 if (pol->cpd_init_fn)
1484 pol->cpd_init_fn(cpd);
1485 }
1486 }
1487
1488 mutex_unlock(&blkcg_pol_mutex);
1489
1490 /* everything is in place, add intf files for the new policy */
1491 if (pol->dfl_cftypes)
1492 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1493 pol->dfl_cftypes));
1494 if (pol->legacy_cftypes)
1495 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1496 pol->legacy_cftypes));
1497 mutex_unlock(&blkcg_pol_register_mutex);
1498 return 0;
1499
1500 err_free_cpds:
1501 if (pol->cpd_free_fn) {
1502 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1503 if (blkcg->cpd[pol->plid]) {
1504 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1505 blkcg->cpd[pol->plid] = NULL;
1506 }
1507 }
1508 }
1509 blkcg_policy[pol->plid] = NULL;
1510 err_unlock:
1511 mutex_unlock(&blkcg_pol_mutex);
1512 mutex_unlock(&blkcg_pol_register_mutex);
1513 return ret;
1514 }
1515 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1516
1517 /**
1518 * blkcg_policy_unregister - unregister a blkcg policy
1519 * @pol: blkcg policy to unregister
1520 *
1521 * Undo blkcg_policy_register(@pol). Might sleep.
1522 */
1523 void blkcg_policy_unregister(struct blkcg_policy *pol)
1524 {
1525 struct blkcg *blkcg;
1526
1527 mutex_lock(&blkcg_pol_register_mutex);
1528
1529 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1530 goto out_unlock;
1531
1532 /* kill the intf files first */
1533 if (pol->dfl_cftypes)
1534 cgroup_rm_cftypes(pol->dfl_cftypes);
1535 if (pol->legacy_cftypes)
1536 cgroup_rm_cftypes(pol->legacy_cftypes);
1537
1538 /* remove cpds and unregister */
1539 mutex_lock(&blkcg_pol_mutex);
1540
1541 if (pol->cpd_free_fn) {
1542 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1543 if (blkcg->cpd[pol->plid]) {
1544 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1545 blkcg->cpd[pol->plid] = NULL;
1546 }
1547 }
1548 }
1549 blkcg_policy[pol->plid] = NULL;
1550
1551 mutex_unlock(&blkcg_pol_mutex);
1552 out_unlock:
1553 mutex_unlock(&blkcg_pol_register_mutex);
1554 }
1555 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1556
1557 bool __blkcg_punt_bio_submit(struct bio *bio)
1558 {
1559 struct blkcg_gq *blkg = bio->bi_blkg;
1560
1561 /* consume the flag first */
1562 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1563
1564 /* never bounce for the root cgroup */
1565 if (!blkg->parent)
1566 return false;
1567
1568 spin_lock_bh(&blkg->async_bio_lock);
1569 bio_list_add(&blkg->async_bios, bio);
1570 spin_unlock_bh(&blkg->async_bio_lock);
1571
1572 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1573 return true;
1574 }
1575
1576 /*
1577 * Scale the accumulated delay based on how long it has been since we updated
1578 * the delay. We only call this when we are adding delay, in case it's been a
1579 * while since we added delay, and when we are checking to see if we need to
1580 * delay a task, to account for any delays that may have occurred.
1581 */
1582 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1583 {
1584 u64 old = atomic64_read(&blkg->delay_start);
1585
1586 /* negative use_delay means no scaling, see blkcg_set_delay() */
1587 if (atomic_read(&blkg->use_delay) < 0)
1588 return;
1589
1590 /*
1591 * We only want to scale down every second. The idea here is that we
1592 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1593 * time window. We only want to throttle tasks for recent delay that
1594 * has occurred, in 1 second time windows since that's the maximum
1595 * things can be throttled. We save the current delay window in
1596 * blkg->last_delay so we know what amount is still left to be charged
1597 * to the blkg from this point onward. blkg->last_use keeps track of
1598 * the use_delay counter. The idea is if we're unthrottling the blkg we
1599 * are ok with whatever is happening now, and we can take away more of
1600 * the accumulated delay as we've already throttled enough that
1601 * everybody is happy with their IO latencies.
1602 */
1603 if (time_before64(old + NSEC_PER_SEC, now) &&
1604 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1605 u64 cur = atomic64_read(&blkg->delay_nsec);
1606 u64 sub = min_t(u64, blkg->last_delay, now - old);
1607 int cur_use = atomic_read(&blkg->use_delay);
1608
1609 /*
1610 * We've been unthrottled, subtract a larger chunk of our
1611 * accumulated delay.
1612 */
1613 if (cur_use < blkg->last_use)
1614 sub = max_t(u64, sub, blkg->last_delay >> 1);
1615
1616 /*
1617 * This shouldn't happen, but handle it anyway. Our delay_nsec
1618 * should only ever be growing except here where we subtract out
1619 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1620 * rather not end up with negative numbers.
1621 */
1622 if (unlikely(cur < sub)) {
1623 atomic64_set(&blkg->delay_nsec, 0);
1624 blkg->last_delay = 0;
1625 } else {
1626 atomic64_sub(sub, &blkg->delay_nsec);
1627 blkg->last_delay = cur - sub;
1628 }
1629 blkg->last_use = cur_use;
1630 }
1631 }
1632
1633 /*
1634 * This is called when we want to actually walk up the hierarchy and check to
1635 * see if we need to throttle, and then actually throttle if there is some
1636 * accumulated delay. This should only be called upon return to user space so
1637 * we're not holding some lock that would induce a priority inversion.
1638 */
1639 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1640 {
1641 unsigned long pflags;
1642 bool clamp;
1643 u64 now = ktime_to_ns(ktime_get());
1644 u64 exp;
1645 u64 delay_nsec = 0;
1646 int tok;
1647
1648 while (blkg->parent) {
1649 int use_delay = atomic_read(&blkg->use_delay);
1650
1651 if (use_delay) {
1652 u64 this_delay;
1653
1654 blkcg_scale_delay(blkg, now);
1655 this_delay = atomic64_read(&blkg->delay_nsec);
1656 if (this_delay > delay_nsec) {
1657 delay_nsec = this_delay;
1658 clamp = use_delay > 0;
1659 }
1660 }
1661 blkg = blkg->parent;
1662 }
1663
1664 if (!delay_nsec)
1665 return;
1666
1667 /*
1668 * Let's not sleep for all eternity if we've amassed a huge delay.
1669 * Swapping or metadata IO can accumulate 10's of seconds worth of
1670 * delay, and we want userspace to be able to do _something_ so cap the
1671 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1672 * tasks will be delayed for 0.25 second for every syscall. If
1673 * blkcg_set_delay() was used as indicated by negative use_delay, the
1674 * caller is responsible for regulating the range.
1675 */
1676 if (clamp)
1677 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1678
1679 if (use_memdelay)
1680 psi_memstall_enter(&pflags);
1681
1682 exp = ktime_add_ns(now, delay_nsec);
1683 tok = io_schedule_prepare();
1684 do {
1685 __set_current_state(TASK_KILLABLE);
1686 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1687 break;
1688 } while (!fatal_signal_pending(current));
1689 io_schedule_finish(tok);
1690
1691 if (use_memdelay)
1692 psi_memstall_leave(&pflags);
1693 }
1694
1695 /**
1696 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1697 *
1698 * This is only called if we've been marked with set_notify_resume(). Obviously
1699 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1700 * check to see if current->throttle_queue is set and if not this doesn't do
1701 * anything. This should only ever be called by the resume code, it's not meant
1702 * to be called by people willy-nilly as it will actually do the work to
1703 * throttle the task if it is setup for throttling.
1704 */
1705 void blkcg_maybe_throttle_current(void)
1706 {
1707 struct request_queue *q = current->throttle_queue;
1708 struct cgroup_subsys_state *css;
1709 struct blkcg *blkcg;
1710 struct blkcg_gq *blkg;
1711 bool use_memdelay = current->use_memdelay;
1712
1713 if (!q)
1714 return;
1715
1716 current->throttle_queue = NULL;
1717 current->use_memdelay = false;
1718
1719 rcu_read_lock();
1720 css = kthread_blkcg();
1721 if (css)
1722 blkcg = css_to_blkcg(css);
1723 else
1724 blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1725
1726 if (!blkcg)
1727 goto out;
1728 blkg = blkg_lookup(blkcg, q);
1729 if (!blkg)
1730 goto out;
1731 if (!blkg_tryget(blkg))
1732 goto out;
1733 rcu_read_unlock();
1734
1735 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1736 blkg_put(blkg);
1737 blk_put_queue(q);
1738 return;
1739 out:
1740 rcu_read_unlock();
1741 blk_put_queue(q);
1742 }
1743
1744 /**
1745 * blkcg_schedule_throttle - this task needs to check for throttling
1746 * @q: the request queue IO was submitted on
1747 * @use_memdelay: do we charge this to memory delay for PSI
1748 *
1749 * This is called by the IO controller when we know there's delay accumulated
1750 * for the blkg for this task. We do not pass the blkg because there are places
1751 * we call this that may not have that information, the swapping code for
1752 * instance will only have a request_queue at that point. This set's the
1753 * notify_resume for the task to check and see if it requires throttling before
1754 * returning to user space.
1755 *
1756 * We will only schedule once per syscall. You can call this over and over
1757 * again and it will only do the check once upon return to user space, and only
1758 * throttle once. If the task needs to be throttled again it'll need to be
1759 * re-set at the next time we see the task.
1760 */
1761 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1762 {
1763 if (unlikely(current->flags & PF_KTHREAD))
1764 return;
1765
1766 if (current->throttle_queue != q) {
1767 if (!blk_get_queue(q))
1768 return;
1769
1770 if (current->throttle_queue)
1771 blk_put_queue(current->throttle_queue);
1772 current->throttle_queue = q;
1773 }
1774
1775 if (use_memdelay)
1776 current->use_memdelay = use_memdelay;
1777 set_notify_resume(current);
1778 }
1779
1780 /**
1781 * blkcg_add_delay - add delay to this blkg
1782 * @blkg: blkg of interest
1783 * @now: the current time in nanoseconds
1784 * @delta: how many nanoseconds of delay to add
1785 *
1786 * Charge @delta to the blkg's current delay accumulation. This is used to
1787 * throttle tasks if an IO controller thinks we need more throttling.
1788 */
1789 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1790 {
1791 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1792 return;
1793 blkcg_scale_delay(blkg, now);
1794 atomic64_add(delta, &blkg->delay_nsec);
1795 }
1796
1797 /**
1798 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1799 * @bio: target bio
1800 * @css: target css
1801 *
1802 * As the failure mode here is to walk up the blkg tree, this ensure that the
1803 * blkg->parent pointers are always valid. This returns the blkg that it ended
1804 * up taking a reference on or %NULL if no reference was taken.
1805 */
1806 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1807 struct cgroup_subsys_state *css)
1808 {
1809 struct blkcg_gq *blkg, *ret_blkg = NULL;
1810
1811 rcu_read_lock();
1812 blkg = blkg_lookup_create(css_to_blkcg(css),
1813 bio->bi_bdev->bd_disk->queue);
1814 while (blkg) {
1815 if (blkg_tryget(blkg)) {
1816 ret_blkg = blkg;
1817 break;
1818 }
1819 blkg = blkg->parent;
1820 }
1821 rcu_read_unlock();
1822
1823 return ret_blkg;
1824 }
1825
1826 /**
1827 * bio_associate_blkg_from_css - associate a bio with a specified css
1828 * @bio: target bio
1829 * @css: target css
1830 *
1831 * Associate @bio with the blkg found by combining the css's blkg and the
1832 * request_queue of the @bio. An association failure is handled by walking up
1833 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1834 * and q->root_blkg. This situation only happens when a cgroup is dying and
1835 * then the remaining bios will spill to the closest alive blkg.
1836 *
1837 * A reference will be taken on the blkg and will be released when @bio is
1838 * freed.
1839 */
1840 void bio_associate_blkg_from_css(struct bio *bio,
1841 struct cgroup_subsys_state *css)
1842 {
1843 if (bio->bi_blkg)
1844 blkg_put(bio->bi_blkg);
1845
1846 if (css && css->parent) {
1847 bio->bi_blkg = blkg_tryget_closest(bio, css);
1848 } else {
1849 blkg_get(bio->bi_bdev->bd_disk->queue->root_blkg);
1850 bio->bi_blkg = bio->bi_bdev->bd_disk->queue->root_blkg;
1851 }
1852 }
1853 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1854
1855 /**
1856 * bio_associate_blkg - associate a bio with a blkg
1857 * @bio: target bio
1858 *
1859 * Associate @bio with the blkg found from the bio's css and request_queue.
1860 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1861 * already associated, the css is reused and association redone as the
1862 * request_queue may have changed.
1863 */
1864 void bio_associate_blkg(struct bio *bio)
1865 {
1866 struct cgroup_subsys_state *css;
1867
1868 rcu_read_lock();
1869
1870 if (bio->bi_blkg)
1871 css = &bio_blkcg(bio)->css;
1872 else
1873 css = blkcg_css();
1874
1875 bio_associate_blkg_from_css(bio, css);
1876
1877 rcu_read_unlock();
1878 }
1879 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1880
1881 /**
1882 * bio_clone_blkg_association - clone blkg association from src to dst bio
1883 * @dst: destination bio
1884 * @src: source bio
1885 */
1886 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1887 {
1888 if (src->bi_blkg) {
1889 if (dst->bi_blkg)
1890 blkg_put(dst->bi_blkg);
1891 blkg_get(src->bi_blkg);
1892 dst->bi_blkg = src->bi_blkg;
1893 }
1894 }
1895 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1896
1897 static int blk_cgroup_io_type(struct bio *bio)
1898 {
1899 if (op_is_discard(bio->bi_opf))
1900 return BLKG_IOSTAT_DISCARD;
1901 if (op_is_write(bio->bi_opf))
1902 return BLKG_IOSTAT_WRITE;
1903 return BLKG_IOSTAT_READ;
1904 }
1905
1906 void blk_cgroup_bio_start(struct bio *bio)
1907 {
1908 int rwd = blk_cgroup_io_type(bio), cpu;
1909 struct blkg_iostat_set *bis;
1910
1911 cpu = get_cpu();
1912 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1913 u64_stats_update_begin(&bis->sync);
1914
1915 /*
1916 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1917 * bio and we would have already accounted for the size of the bio.
1918 */
1919 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1920 bio_set_flag(bio, BIO_CGROUP_ACCT);
1921 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1922 }
1923 bis->cur.ios[rwd]++;
1924
1925 u64_stats_update_end(&bis->sync);
1926 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1927 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1928 put_cpu();
1929 }
1930
1931 static int __init blkcg_init(void)
1932 {
1933 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1934 WQ_MEM_RECLAIM | WQ_FREEZABLE |
1935 WQ_UNBOUND | WQ_SYSFS, 0);
1936 if (!blkcg_punt_bio_wq)
1937 return -ENOMEM;
1938 return 0;
1939 }
1940 subsys_initcall(blkcg_init);
1941
1942 module_param(blkcg_debug_stats, bool, 0644);
1943 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");