]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-core.c
blk-mq: when polling for IO, look for any completion
[mirror_ubuntu-jammy-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-pm.h"
46 #include "blk-rq-qos.h"
47
48 #ifdef CONFIG_DEBUG_FS
49 struct dentry *blk_debugfs_root;
50 #endif
51
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
57
58 DEFINE_IDA(blk_queue_ida);
59
60 /*
61 * For queue allocation
62 */
63 struct kmem_cache *blk_requestq_cachep;
64
65 /*
66 * Controlling structure to kblockd
67 */
68 static struct workqueue_struct *kblockd_workqueue;
69
70 /**
71 * blk_queue_flag_set - atomically set a queue flag
72 * @flag: flag to be set
73 * @q: request queue
74 */
75 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
76 {
77 set_bit(flag, &q->queue_flags);
78 }
79 EXPORT_SYMBOL(blk_queue_flag_set);
80
81 /**
82 * blk_queue_flag_clear - atomically clear a queue flag
83 * @flag: flag to be cleared
84 * @q: request queue
85 */
86 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
87 {
88 clear_bit(flag, &q->queue_flags);
89 }
90 EXPORT_SYMBOL(blk_queue_flag_clear);
91
92 /**
93 * blk_queue_flag_test_and_set - atomically test and set a queue flag
94 * @flag: flag to be set
95 * @q: request queue
96 *
97 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
98 * the flag was already set.
99 */
100 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
101 {
102 return test_and_set_bit(flag, &q->queue_flags);
103 }
104 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
105
106 void blk_rq_init(struct request_queue *q, struct request *rq)
107 {
108 memset(rq, 0, sizeof(*rq));
109
110 INIT_LIST_HEAD(&rq->queuelist);
111 rq->q = q;
112 rq->__sector = (sector_t) -1;
113 INIT_HLIST_NODE(&rq->hash);
114 RB_CLEAR_NODE(&rq->rb_node);
115 rq->tag = -1;
116 rq->internal_tag = -1;
117 rq->start_time_ns = ktime_get_ns();
118 rq->part = NULL;
119 }
120 EXPORT_SYMBOL(blk_rq_init);
121
122 static const struct {
123 int errno;
124 const char *name;
125 } blk_errors[] = {
126 [BLK_STS_OK] = { 0, "" },
127 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
128 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
129 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
130 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
131 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
132 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
133 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
134 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
135 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
136 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
137 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
138
139 /* device mapper special case, should not leak out: */
140 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
141
142 /* everything else not covered above: */
143 [BLK_STS_IOERR] = { -EIO, "I/O" },
144 };
145
146 blk_status_t errno_to_blk_status(int errno)
147 {
148 int i;
149
150 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
151 if (blk_errors[i].errno == errno)
152 return (__force blk_status_t)i;
153 }
154
155 return BLK_STS_IOERR;
156 }
157 EXPORT_SYMBOL_GPL(errno_to_blk_status);
158
159 int blk_status_to_errno(blk_status_t status)
160 {
161 int idx = (__force int)status;
162
163 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
164 return -EIO;
165 return blk_errors[idx].errno;
166 }
167 EXPORT_SYMBOL_GPL(blk_status_to_errno);
168
169 static void print_req_error(struct request *req, blk_status_t status)
170 {
171 int idx = (__force int)status;
172
173 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
174 return;
175
176 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
177 __func__, blk_errors[idx].name, req->rq_disk ?
178 req->rq_disk->disk_name : "?",
179 (unsigned long long)blk_rq_pos(req));
180 }
181
182 static void req_bio_endio(struct request *rq, struct bio *bio,
183 unsigned int nbytes, blk_status_t error)
184 {
185 if (error)
186 bio->bi_status = error;
187
188 if (unlikely(rq->rq_flags & RQF_QUIET))
189 bio_set_flag(bio, BIO_QUIET);
190
191 bio_advance(bio, nbytes);
192
193 /* don't actually finish bio if it's part of flush sequence */
194 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
195 bio_endio(bio);
196 }
197
198 void blk_dump_rq_flags(struct request *rq, char *msg)
199 {
200 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
201 rq->rq_disk ? rq->rq_disk->disk_name : "?",
202 (unsigned long long) rq->cmd_flags);
203
204 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
205 (unsigned long long)blk_rq_pos(rq),
206 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
207 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
208 rq->bio, rq->biotail, blk_rq_bytes(rq));
209 }
210 EXPORT_SYMBOL(blk_dump_rq_flags);
211
212 /**
213 * blk_sync_queue - cancel any pending callbacks on a queue
214 * @q: the queue
215 *
216 * Description:
217 * The block layer may perform asynchronous callback activity
218 * on a queue, such as calling the unplug function after a timeout.
219 * A block device may call blk_sync_queue to ensure that any
220 * such activity is cancelled, thus allowing it to release resources
221 * that the callbacks might use. The caller must already have made sure
222 * that its ->make_request_fn will not re-add plugging prior to calling
223 * this function.
224 *
225 * This function does not cancel any asynchronous activity arising
226 * out of elevator or throttling code. That would require elevator_exit()
227 * and blkcg_exit_queue() to be called with queue lock initialized.
228 *
229 */
230 void blk_sync_queue(struct request_queue *q)
231 {
232 del_timer_sync(&q->timeout);
233 cancel_work_sync(&q->timeout_work);
234
235 if (queue_is_mq(q)) {
236 struct blk_mq_hw_ctx *hctx;
237 int i;
238
239 cancel_delayed_work_sync(&q->requeue_work);
240 queue_for_each_hw_ctx(q, hctx, i)
241 cancel_delayed_work_sync(&hctx->run_work);
242 }
243 }
244 EXPORT_SYMBOL(blk_sync_queue);
245
246 /**
247 * blk_set_pm_only - increment pm_only counter
248 * @q: request queue pointer
249 */
250 void blk_set_pm_only(struct request_queue *q)
251 {
252 atomic_inc(&q->pm_only);
253 }
254 EXPORT_SYMBOL_GPL(blk_set_pm_only);
255
256 void blk_clear_pm_only(struct request_queue *q)
257 {
258 int pm_only;
259
260 pm_only = atomic_dec_return(&q->pm_only);
261 WARN_ON_ONCE(pm_only < 0);
262 if (pm_only == 0)
263 wake_up_all(&q->mq_freeze_wq);
264 }
265 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
266
267 void blk_put_queue(struct request_queue *q)
268 {
269 kobject_put(&q->kobj);
270 }
271 EXPORT_SYMBOL(blk_put_queue);
272
273 void blk_set_queue_dying(struct request_queue *q)
274 {
275 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
276
277 /*
278 * When queue DYING flag is set, we need to block new req
279 * entering queue, so we call blk_freeze_queue_start() to
280 * prevent I/O from crossing blk_queue_enter().
281 */
282 blk_freeze_queue_start(q);
283
284 if (queue_is_mq(q))
285 blk_mq_wake_waiters(q);
286
287 /* Make blk_queue_enter() reexamine the DYING flag. */
288 wake_up_all(&q->mq_freeze_wq);
289 }
290 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
291
292 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
293 void blk_exit_queue(struct request_queue *q)
294 {
295 /*
296 * Since the I/O scheduler exit code may access cgroup information,
297 * perform I/O scheduler exit before disassociating from the block
298 * cgroup controller.
299 */
300 if (q->elevator) {
301 ioc_clear_queue(q);
302 elevator_exit(q, q->elevator);
303 q->elevator = NULL;
304 }
305
306 /*
307 * Remove all references to @q from the block cgroup controller before
308 * restoring @q->queue_lock to avoid that restoring this pointer causes
309 * e.g. blkcg_print_blkgs() to crash.
310 */
311 blkcg_exit_queue(q);
312
313 /*
314 * Since the cgroup code may dereference the @q->backing_dev_info
315 * pointer, only decrease its reference count after having removed the
316 * association with the block cgroup controller.
317 */
318 bdi_put(q->backing_dev_info);
319 }
320
321 /**
322 * blk_cleanup_queue - shutdown a request queue
323 * @q: request queue to shutdown
324 *
325 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
326 * put it. All future requests will be failed immediately with -ENODEV.
327 */
328 void blk_cleanup_queue(struct request_queue *q)
329 {
330 /* mark @q DYING, no new request or merges will be allowed afterwards */
331 mutex_lock(&q->sysfs_lock);
332 blk_set_queue_dying(q);
333
334 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
335 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
336 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
337 mutex_unlock(&q->sysfs_lock);
338
339 /*
340 * Drain all requests queued before DYING marking. Set DEAD flag to
341 * prevent that q->request_fn() gets invoked after draining finished.
342 */
343 blk_freeze_queue(q);
344
345 rq_qos_exit(q);
346
347 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
348
349 /*
350 * make sure all in-progress dispatch are completed because
351 * blk_freeze_queue() can only complete all requests, and
352 * dispatch may still be in-progress since we dispatch requests
353 * from more than one contexts.
354 *
355 * We rely on driver to deal with the race in case that queue
356 * initialization isn't done.
357 */
358 if (queue_is_mq(q) && blk_queue_init_done(q))
359 blk_mq_quiesce_queue(q);
360
361 /* for synchronous bio-based driver finish in-flight integrity i/o */
362 blk_flush_integrity();
363
364 /* @q won't process any more request, flush async actions */
365 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
366 blk_sync_queue(q);
367
368 /*
369 * I/O scheduler exit is only safe after the sysfs scheduler attribute
370 * has been removed.
371 */
372 WARN_ON_ONCE(q->kobj.state_in_sysfs);
373
374 blk_exit_queue(q);
375
376 if (queue_is_mq(q))
377 blk_mq_free_queue(q);
378
379 percpu_ref_exit(&q->q_usage_counter);
380
381 /* @q is and will stay empty, shutdown and put */
382 blk_put_queue(q);
383 }
384 EXPORT_SYMBOL(blk_cleanup_queue);
385
386 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
387 {
388 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
389 }
390 EXPORT_SYMBOL(blk_alloc_queue);
391
392 /**
393 * blk_queue_enter() - try to increase q->q_usage_counter
394 * @q: request queue pointer
395 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
396 */
397 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
398 {
399 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
400
401 while (true) {
402 bool success = false;
403
404 rcu_read_lock();
405 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
406 /*
407 * The code that increments the pm_only counter is
408 * responsible for ensuring that that counter is
409 * globally visible before the queue is unfrozen.
410 */
411 if (pm || !blk_queue_pm_only(q)) {
412 success = true;
413 } else {
414 percpu_ref_put(&q->q_usage_counter);
415 }
416 }
417 rcu_read_unlock();
418
419 if (success)
420 return 0;
421
422 if (flags & BLK_MQ_REQ_NOWAIT)
423 return -EBUSY;
424
425 /*
426 * read pair of barrier in blk_freeze_queue_start(),
427 * we need to order reading __PERCPU_REF_DEAD flag of
428 * .q_usage_counter and reading .mq_freeze_depth or
429 * queue dying flag, otherwise the following wait may
430 * never return if the two reads are reordered.
431 */
432 smp_rmb();
433
434 wait_event(q->mq_freeze_wq,
435 (atomic_read(&q->mq_freeze_depth) == 0 &&
436 (pm || (blk_pm_request_resume(q),
437 !blk_queue_pm_only(q)))) ||
438 blk_queue_dying(q));
439 if (blk_queue_dying(q))
440 return -ENODEV;
441 }
442 }
443
444 void blk_queue_exit(struct request_queue *q)
445 {
446 percpu_ref_put(&q->q_usage_counter);
447 }
448
449 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
450 {
451 struct request_queue *q =
452 container_of(ref, struct request_queue, q_usage_counter);
453
454 wake_up_all(&q->mq_freeze_wq);
455 }
456
457 static void blk_rq_timed_out_timer(struct timer_list *t)
458 {
459 struct request_queue *q = from_timer(q, t, timeout);
460
461 kblockd_schedule_work(&q->timeout_work);
462 }
463
464 /**
465 * blk_alloc_queue_node - allocate a request queue
466 * @gfp_mask: memory allocation flags
467 * @node_id: NUMA node to allocate memory from
468 */
469 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
470 {
471 struct request_queue *q;
472 int ret;
473
474 q = kmem_cache_alloc_node(blk_requestq_cachep,
475 gfp_mask | __GFP_ZERO, node_id);
476 if (!q)
477 return NULL;
478
479 INIT_LIST_HEAD(&q->queue_head);
480 q->last_merge = NULL;
481
482 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
483 if (q->id < 0)
484 goto fail_q;
485
486 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
487 if (ret)
488 goto fail_id;
489
490 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
491 if (!q->backing_dev_info)
492 goto fail_split;
493
494 q->stats = blk_alloc_queue_stats();
495 if (!q->stats)
496 goto fail_stats;
497
498 q->backing_dev_info->ra_pages =
499 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
500 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
501 q->backing_dev_info->name = "block";
502 q->node = node_id;
503
504 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
505 laptop_mode_timer_fn, 0);
506 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
507 INIT_WORK(&q->timeout_work, NULL);
508 INIT_LIST_HEAD(&q->icq_list);
509 #ifdef CONFIG_BLK_CGROUP
510 INIT_LIST_HEAD(&q->blkg_list);
511 #endif
512
513 kobject_init(&q->kobj, &blk_queue_ktype);
514
515 #ifdef CONFIG_BLK_DEV_IO_TRACE
516 mutex_init(&q->blk_trace_mutex);
517 #endif
518 mutex_init(&q->sysfs_lock);
519 spin_lock_init(&q->queue_lock);
520
521 init_waitqueue_head(&q->mq_freeze_wq);
522
523 /*
524 * Init percpu_ref in atomic mode so that it's faster to shutdown.
525 * See blk_register_queue() for details.
526 */
527 if (percpu_ref_init(&q->q_usage_counter,
528 blk_queue_usage_counter_release,
529 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
530 goto fail_bdi;
531
532 if (blkcg_init_queue(q))
533 goto fail_ref;
534
535 return q;
536
537 fail_ref:
538 percpu_ref_exit(&q->q_usage_counter);
539 fail_bdi:
540 blk_free_queue_stats(q->stats);
541 fail_stats:
542 bdi_put(q->backing_dev_info);
543 fail_split:
544 bioset_exit(&q->bio_split);
545 fail_id:
546 ida_simple_remove(&blk_queue_ida, q->id);
547 fail_q:
548 kmem_cache_free(blk_requestq_cachep, q);
549 return NULL;
550 }
551 EXPORT_SYMBOL(blk_alloc_queue_node);
552
553 bool blk_get_queue(struct request_queue *q)
554 {
555 if (likely(!blk_queue_dying(q))) {
556 __blk_get_queue(q);
557 return true;
558 }
559
560 return false;
561 }
562 EXPORT_SYMBOL(blk_get_queue);
563
564 /**
565 * blk_get_request - allocate a request
566 * @q: request queue to allocate a request for
567 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
568 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
569 */
570 struct request *blk_get_request(struct request_queue *q, unsigned int op,
571 blk_mq_req_flags_t flags)
572 {
573 struct request *req;
574
575 WARN_ON_ONCE(op & REQ_NOWAIT);
576 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
577
578 req = blk_mq_alloc_request(q, op, flags);
579 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
580 q->mq_ops->initialize_rq_fn(req);
581
582 return req;
583 }
584 EXPORT_SYMBOL(blk_get_request);
585
586 static void part_round_stats_single(struct request_queue *q, int cpu,
587 struct hd_struct *part, unsigned long now,
588 unsigned int inflight)
589 {
590 if (inflight) {
591 __part_stat_add(cpu, part, time_in_queue,
592 inflight * (now - part->stamp));
593 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
594 }
595 part->stamp = now;
596 }
597
598 /**
599 * part_round_stats() - Round off the performance stats on a struct disk_stats.
600 * @q: target block queue
601 * @cpu: cpu number for stats access
602 * @part: target partition
603 *
604 * The average IO queue length and utilisation statistics are maintained
605 * by observing the current state of the queue length and the amount of
606 * time it has been in this state for.
607 *
608 * Normally, that accounting is done on IO completion, but that can result
609 * in more than a second's worth of IO being accounted for within any one
610 * second, leading to >100% utilisation. To deal with that, we call this
611 * function to do a round-off before returning the results when reading
612 * /proc/diskstats. This accounts immediately for all queue usage up to
613 * the current jiffies and restarts the counters again.
614 */
615 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
616 {
617 struct hd_struct *part2 = NULL;
618 unsigned long now = jiffies;
619 unsigned int inflight[2];
620 int stats = 0;
621
622 if (part->stamp != now)
623 stats |= 1;
624
625 if (part->partno) {
626 part2 = &part_to_disk(part)->part0;
627 if (part2->stamp != now)
628 stats |= 2;
629 }
630
631 if (!stats)
632 return;
633
634 part_in_flight(q, part, inflight);
635
636 if (stats & 2)
637 part_round_stats_single(q, cpu, part2, now, inflight[1]);
638 if (stats & 1)
639 part_round_stats_single(q, cpu, part, now, inflight[0]);
640 }
641 EXPORT_SYMBOL_GPL(part_round_stats);
642
643 void blk_put_request(struct request *req)
644 {
645 blk_mq_free_request(req);
646 }
647 EXPORT_SYMBOL(blk_put_request);
648
649 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
650 struct bio *bio)
651 {
652 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
653
654 if (!ll_back_merge_fn(q, req, bio))
655 return false;
656
657 trace_block_bio_backmerge(q, req, bio);
658
659 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
660 blk_rq_set_mixed_merge(req);
661
662 req->biotail->bi_next = bio;
663 req->biotail = bio;
664 req->__data_len += bio->bi_iter.bi_size;
665
666 blk_account_io_start(req, false);
667 return true;
668 }
669
670 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
671 struct bio *bio)
672 {
673 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
674
675 if (!ll_front_merge_fn(q, req, bio))
676 return false;
677
678 trace_block_bio_frontmerge(q, req, bio);
679
680 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
681 blk_rq_set_mixed_merge(req);
682
683 bio->bi_next = req->bio;
684 req->bio = bio;
685
686 req->__sector = bio->bi_iter.bi_sector;
687 req->__data_len += bio->bi_iter.bi_size;
688
689 blk_account_io_start(req, false);
690 return true;
691 }
692
693 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
694 struct bio *bio)
695 {
696 unsigned short segments = blk_rq_nr_discard_segments(req);
697
698 if (segments >= queue_max_discard_segments(q))
699 goto no_merge;
700 if (blk_rq_sectors(req) + bio_sectors(bio) >
701 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
702 goto no_merge;
703
704 req->biotail->bi_next = bio;
705 req->biotail = bio;
706 req->__data_len += bio->bi_iter.bi_size;
707 req->nr_phys_segments = segments + 1;
708
709 blk_account_io_start(req, false);
710 return true;
711 no_merge:
712 req_set_nomerge(q, req);
713 return false;
714 }
715
716 /**
717 * blk_attempt_plug_merge - try to merge with %current's plugged list
718 * @q: request_queue new bio is being queued at
719 * @bio: new bio being queued
720 * @request_count: out parameter for number of traversed plugged requests
721 * @same_queue_rq: pointer to &struct request that gets filled in when
722 * another request associated with @q is found on the plug list
723 * (optional, may be %NULL)
724 *
725 * Determine whether @bio being queued on @q can be merged with a request
726 * on %current's plugged list. Returns %true if merge was successful,
727 * otherwise %false.
728 *
729 * Plugging coalesces IOs from the same issuer for the same purpose without
730 * going through @q->queue_lock. As such it's more of an issuing mechanism
731 * than scheduling, and the request, while may have elvpriv data, is not
732 * added on the elevator at this point. In addition, we don't have
733 * reliable access to the elevator outside queue lock. Only check basic
734 * merging parameters without querying the elevator.
735 *
736 * Caller must ensure !blk_queue_nomerges(q) beforehand.
737 */
738 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
739 unsigned int *request_count,
740 struct request **same_queue_rq)
741 {
742 struct blk_plug *plug;
743 struct request *rq;
744 struct list_head *plug_list;
745
746 plug = current->plug;
747 if (!plug)
748 return false;
749 *request_count = 0;
750
751 plug_list = &plug->mq_list;
752
753 list_for_each_entry_reverse(rq, plug_list, queuelist) {
754 bool merged = false;
755
756 if (rq->q == q) {
757 (*request_count)++;
758 /*
759 * Only blk-mq multiple hardware queues case checks the
760 * rq in the same queue, there should be only one such
761 * rq in a queue
762 **/
763 if (same_queue_rq)
764 *same_queue_rq = rq;
765 }
766
767 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
768 continue;
769
770 switch (blk_try_merge(rq, bio)) {
771 case ELEVATOR_BACK_MERGE:
772 merged = bio_attempt_back_merge(q, rq, bio);
773 break;
774 case ELEVATOR_FRONT_MERGE:
775 merged = bio_attempt_front_merge(q, rq, bio);
776 break;
777 case ELEVATOR_DISCARD_MERGE:
778 merged = bio_attempt_discard_merge(q, rq, bio);
779 break;
780 default:
781 break;
782 }
783
784 if (merged)
785 return true;
786 }
787
788 return false;
789 }
790
791 unsigned int blk_plug_queued_count(struct request_queue *q)
792 {
793 struct blk_plug *plug;
794 struct request *rq;
795 struct list_head *plug_list;
796 unsigned int ret = 0;
797
798 plug = current->plug;
799 if (!plug)
800 goto out;
801
802 plug_list = &plug->mq_list;
803 list_for_each_entry(rq, plug_list, queuelist) {
804 if (rq->q == q)
805 ret++;
806 }
807 out:
808 return ret;
809 }
810
811 void blk_init_request_from_bio(struct request *req, struct bio *bio)
812 {
813 if (bio->bi_opf & REQ_RAHEAD)
814 req->cmd_flags |= REQ_FAILFAST_MASK;
815
816 req->__sector = bio->bi_iter.bi_sector;
817 req->ioprio = bio_prio(bio);
818 req->write_hint = bio->bi_write_hint;
819 blk_rq_bio_prep(req->q, req, bio);
820 }
821 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
822
823 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
824 {
825 char b[BDEVNAME_SIZE];
826
827 printk(KERN_INFO "attempt to access beyond end of device\n");
828 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
829 bio_devname(bio, b), bio->bi_opf,
830 (unsigned long long)bio_end_sector(bio),
831 (long long)maxsector);
832 }
833
834 #ifdef CONFIG_FAIL_MAKE_REQUEST
835
836 static DECLARE_FAULT_ATTR(fail_make_request);
837
838 static int __init setup_fail_make_request(char *str)
839 {
840 return setup_fault_attr(&fail_make_request, str);
841 }
842 __setup("fail_make_request=", setup_fail_make_request);
843
844 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
845 {
846 return part->make_it_fail && should_fail(&fail_make_request, bytes);
847 }
848
849 static int __init fail_make_request_debugfs(void)
850 {
851 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
852 NULL, &fail_make_request);
853
854 return PTR_ERR_OR_ZERO(dir);
855 }
856
857 late_initcall(fail_make_request_debugfs);
858
859 #else /* CONFIG_FAIL_MAKE_REQUEST */
860
861 static inline bool should_fail_request(struct hd_struct *part,
862 unsigned int bytes)
863 {
864 return false;
865 }
866
867 #endif /* CONFIG_FAIL_MAKE_REQUEST */
868
869 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
870 {
871 const int op = bio_op(bio);
872
873 if (part->policy && op_is_write(op)) {
874 char b[BDEVNAME_SIZE];
875
876 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
877 return false;
878
879 WARN_ONCE(1,
880 "generic_make_request: Trying to write "
881 "to read-only block-device %s (partno %d)\n",
882 bio_devname(bio, b), part->partno);
883 /* Older lvm-tools actually trigger this */
884 return false;
885 }
886
887 return false;
888 }
889
890 static noinline int should_fail_bio(struct bio *bio)
891 {
892 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
893 return -EIO;
894 return 0;
895 }
896 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
897
898 /*
899 * Check whether this bio extends beyond the end of the device or partition.
900 * This may well happen - the kernel calls bread() without checking the size of
901 * the device, e.g., when mounting a file system.
902 */
903 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
904 {
905 unsigned int nr_sectors = bio_sectors(bio);
906
907 if (nr_sectors && maxsector &&
908 (nr_sectors > maxsector ||
909 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
910 handle_bad_sector(bio, maxsector);
911 return -EIO;
912 }
913 return 0;
914 }
915
916 /*
917 * Remap block n of partition p to block n+start(p) of the disk.
918 */
919 static inline int blk_partition_remap(struct bio *bio)
920 {
921 struct hd_struct *p;
922 int ret = -EIO;
923
924 rcu_read_lock();
925 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
926 if (unlikely(!p))
927 goto out;
928 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
929 goto out;
930 if (unlikely(bio_check_ro(bio, p)))
931 goto out;
932
933 /*
934 * Zone reset does not include bi_size so bio_sectors() is always 0.
935 * Include a test for the reset op code and perform the remap if needed.
936 */
937 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
938 if (bio_check_eod(bio, part_nr_sects_read(p)))
939 goto out;
940 bio->bi_iter.bi_sector += p->start_sect;
941 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
942 bio->bi_iter.bi_sector - p->start_sect);
943 }
944 bio->bi_partno = 0;
945 ret = 0;
946 out:
947 rcu_read_unlock();
948 return ret;
949 }
950
951 static noinline_for_stack bool
952 generic_make_request_checks(struct bio *bio)
953 {
954 struct request_queue *q;
955 int nr_sectors = bio_sectors(bio);
956 blk_status_t status = BLK_STS_IOERR;
957 char b[BDEVNAME_SIZE];
958
959 might_sleep();
960
961 q = bio->bi_disk->queue;
962 if (unlikely(!q)) {
963 printk(KERN_ERR
964 "generic_make_request: Trying to access "
965 "nonexistent block-device %s (%Lu)\n",
966 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
967 goto end_io;
968 }
969
970 /*
971 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
972 * if queue is not a request based queue.
973 */
974 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
975 goto not_supported;
976
977 if (should_fail_bio(bio))
978 goto end_io;
979
980 if (bio->bi_partno) {
981 if (unlikely(blk_partition_remap(bio)))
982 goto end_io;
983 } else {
984 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
985 goto end_io;
986 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
987 goto end_io;
988 }
989
990 /*
991 * Filter flush bio's early so that make_request based
992 * drivers without flush support don't have to worry
993 * about them.
994 */
995 if (op_is_flush(bio->bi_opf) &&
996 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
997 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
998 if (!nr_sectors) {
999 status = BLK_STS_OK;
1000 goto end_io;
1001 }
1002 }
1003
1004 switch (bio_op(bio)) {
1005 case REQ_OP_DISCARD:
1006 if (!blk_queue_discard(q))
1007 goto not_supported;
1008 break;
1009 case REQ_OP_SECURE_ERASE:
1010 if (!blk_queue_secure_erase(q))
1011 goto not_supported;
1012 break;
1013 case REQ_OP_WRITE_SAME:
1014 if (!q->limits.max_write_same_sectors)
1015 goto not_supported;
1016 break;
1017 case REQ_OP_ZONE_RESET:
1018 if (!blk_queue_is_zoned(q))
1019 goto not_supported;
1020 break;
1021 case REQ_OP_WRITE_ZEROES:
1022 if (!q->limits.max_write_zeroes_sectors)
1023 goto not_supported;
1024 break;
1025 default:
1026 break;
1027 }
1028
1029 /*
1030 * Various block parts want %current->io_context and lazy ioc
1031 * allocation ends up trading a lot of pain for a small amount of
1032 * memory. Just allocate it upfront. This may fail and block
1033 * layer knows how to live with it.
1034 */
1035 create_io_context(GFP_ATOMIC, q->node);
1036
1037 if (!blkcg_bio_issue_check(q, bio))
1038 return false;
1039
1040 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1041 trace_block_bio_queue(q, bio);
1042 /* Now that enqueuing has been traced, we need to trace
1043 * completion as well.
1044 */
1045 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1046 }
1047 return true;
1048
1049 not_supported:
1050 status = BLK_STS_NOTSUPP;
1051 end_io:
1052 bio->bi_status = status;
1053 bio_endio(bio);
1054 return false;
1055 }
1056
1057 /**
1058 * generic_make_request - hand a buffer to its device driver for I/O
1059 * @bio: The bio describing the location in memory and on the device.
1060 *
1061 * generic_make_request() is used to make I/O requests of block
1062 * devices. It is passed a &struct bio, which describes the I/O that needs
1063 * to be done.
1064 *
1065 * generic_make_request() does not return any status. The
1066 * success/failure status of the request, along with notification of
1067 * completion, is delivered asynchronously through the bio->bi_end_io
1068 * function described (one day) else where.
1069 *
1070 * The caller of generic_make_request must make sure that bi_io_vec
1071 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1072 * set to describe the device address, and the
1073 * bi_end_io and optionally bi_private are set to describe how
1074 * completion notification should be signaled.
1075 *
1076 * generic_make_request and the drivers it calls may use bi_next if this
1077 * bio happens to be merged with someone else, and may resubmit the bio to
1078 * a lower device by calling into generic_make_request recursively, which
1079 * means the bio should NOT be touched after the call to ->make_request_fn.
1080 */
1081 blk_qc_t generic_make_request(struct bio *bio)
1082 {
1083 /*
1084 * bio_list_on_stack[0] contains bios submitted by the current
1085 * make_request_fn.
1086 * bio_list_on_stack[1] contains bios that were submitted before
1087 * the current make_request_fn, but that haven't been processed
1088 * yet.
1089 */
1090 struct bio_list bio_list_on_stack[2];
1091 blk_mq_req_flags_t flags = 0;
1092 struct request_queue *q = bio->bi_disk->queue;
1093 blk_qc_t ret = BLK_QC_T_NONE;
1094
1095 if (bio->bi_opf & REQ_NOWAIT)
1096 flags = BLK_MQ_REQ_NOWAIT;
1097 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
1098 blk_queue_enter_live(q);
1099 else if (blk_queue_enter(q, flags) < 0) {
1100 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
1101 bio_wouldblock_error(bio);
1102 else
1103 bio_io_error(bio);
1104 return ret;
1105 }
1106
1107 if (!generic_make_request_checks(bio))
1108 goto out;
1109
1110 /*
1111 * We only want one ->make_request_fn to be active at a time, else
1112 * stack usage with stacked devices could be a problem. So use
1113 * current->bio_list to keep a list of requests submited by a
1114 * make_request_fn function. current->bio_list is also used as a
1115 * flag to say if generic_make_request is currently active in this
1116 * task or not. If it is NULL, then no make_request is active. If
1117 * it is non-NULL, then a make_request is active, and new requests
1118 * should be added at the tail
1119 */
1120 if (current->bio_list) {
1121 bio_list_add(&current->bio_list[0], bio);
1122 goto out;
1123 }
1124
1125 /* following loop may be a bit non-obvious, and so deserves some
1126 * explanation.
1127 * Before entering the loop, bio->bi_next is NULL (as all callers
1128 * ensure that) so we have a list with a single bio.
1129 * We pretend that we have just taken it off a longer list, so
1130 * we assign bio_list to a pointer to the bio_list_on_stack,
1131 * thus initialising the bio_list of new bios to be
1132 * added. ->make_request() may indeed add some more bios
1133 * through a recursive call to generic_make_request. If it
1134 * did, we find a non-NULL value in bio_list and re-enter the loop
1135 * from the top. In this case we really did just take the bio
1136 * of the top of the list (no pretending) and so remove it from
1137 * bio_list, and call into ->make_request() again.
1138 */
1139 BUG_ON(bio->bi_next);
1140 bio_list_init(&bio_list_on_stack[0]);
1141 current->bio_list = bio_list_on_stack;
1142 do {
1143 bool enter_succeeded = true;
1144
1145 if (unlikely(q != bio->bi_disk->queue)) {
1146 if (q)
1147 blk_queue_exit(q);
1148 q = bio->bi_disk->queue;
1149 flags = 0;
1150 if (bio->bi_opf & REQ_NOWAIT)
1151 flags = BLK_MQ_REQ_NOWAIT;
1152 if (blk_queue_enter(q, flags) < 0) {
1153 enter_succeeded = false;
1154 q = NULL;
1155 }
1156 }
1157
1158 if (enter_succeeded) {
1159 struct bio_list lower, same;
1160
1161 /* Create a fresh bio_list for all subordinate requests */
1162 bio_list_on_stack[1] = bio_list_on_stack[0];
1163 bio_list_init(&bio_list_on_stack[0]);
1164 ret = q->make_request_fn(q, bio);
1165
1166 /* sort new bios into those for a lower level
1167 * and those for the same level
1168 */
1169 bio_list_init(&lower);
1170 bio_list_init(&same);
1171 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1172 if (q == bio->bi_disk->queue)
1173 bio_list_add(&same, bio);
1174 else
1175 bio_list_add(&lower, bio);
1176 /* now assemble so we handle the lowest level first */
1177 bio_list_merge(&bio_list_on_stack[0], &lower);
1178 bio_list_merge(&bio_list_on_stack[0], &same);
1179 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1180 } else {
1181 if (unlikely(!blk_queue_dying(q) &&
1182 (bio->bi_opf & REQ_NOWAIT)))
1183 bio_wouldblock_error(bio);
1184 else
1185 bio_io_error(bio);
1186 }
1187 bio = bio_list_pop(&bio_list_on_stack[0]);
1188 } while (bio);
1189 current->bio_list = NULL; /* deactivate */
1190
1191 out:
1192 if (q)
1193 blk_queue_exit(q);
1194 return ret;
1195 }
1196 EXPORT_SYMBOL(generic_make_request);
1197
1198 /**
1199 * direct_make_request - hand a buffer directly to its device driver for I/O
1200 * @bio: The bio describing the location in memory and on the device.
1201 *
1202 * This function behaves like generic_make_request(), but does not protect
1203 * against recursion. Must only be used if the called driver is known
1204 * to not call generic_make_request (or direct_make_request) again from
1205 * its make_request function. (Calling direct_make_request again from
1206 * a workqueue is perfectly fine as that doesn't recurse).
1207 */
1208 blk_qc_t direct_make_request(struct bio *bio)
1209 {
1210 struct request_queue *q = bio->bi_disk->queue;
1211 bool nowait = bio->bi_opf & REQ_NOWAIT;
1212 blk_qc_t ret;
1213
1214 if (!generic_make_request_checks(bio))
1215 return BLK_QC_T_NONE;
1216
1217 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1218 if (nowait && !blk_queue_dying(q))
1219 bio->bi_status = BLK_STS_AGAIN;
1220 else
1221 bio->bi_status = BLK_STS_IOERR;
1222 bio_endio(bio);
1223 return BLK_QC_T_NONE;
1224 }
1225
1226 ret = q->make_request_fn(q, bio);
1227 blk_queue_exit(q);
1228 return ret;
1229 }
1230 EXPORT_SYMBOL_GPL(direct_make_request);
1231
1232 /**
1233 * submit_bio - submit a bio to the block device layer for I/O
1234 * @bio: The &struct bio which describes the I/O
1235 *
1236 * submit_bio() is very similar in purpose to generic_make_request(), and
1237 * uses that function to do most of the work. Both are fairly rough
1238 * interfaces; @bio must be presetup and ready for I/O.
1239 *
1240 */
1241 blk_qc_t submit_bio(struct bio *bio)
1242 {
1243 /*
1244 * If it's a regular read/write or a barrier with data attached,
1245 * go through the normal accounting stuff before submission.
1246 */
1247 if (bio_has_data(bio)) {
1248 unsigned int count;
1249
1250 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1251 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1252 else
1253 count = bio_sectors(bio);
1254
1255 if (op_is_write(bio_op(bio))) {
1256 count_vm_events(PGPGOUT, count);
1257 } else {
1258 task_io_account_read(bio->bi_iter.bi_size);
1259 count_vm_events(PGPGIN, count);
1260 }
1261
1262 if (unlikely(block_dump)) {
1263 char b[BDEVNAME_SIZE];
1264 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1265 current->comm, task_pid_nr(current),
1266 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1267 (unsigned long long)bio->bi_iter.bi_sector,
1268 bio_devname(bio, b), count);
1269 }
1270 }
1271
1272 return generic_make_request(bio);
1273 }
1274 EXPORT_SYMBOL(submit_bio);
1275
1276 /**
1277 * blk_poll - poll for IO completions
1278 * @q: the queue
1279 * @cookie: cookie passed back at IO submission time
1280 *
1281 * Description:
1282 * Poll for completions on the passed in queue. Returns number of
1283 * completed entries found.
1284 */
1285 int blk_poll(struct request_queue *q, blk_qc_t cookie)
1286 {
1287 if (!q->poll_fn || !blk_qc_t_valid(cookie))
1288 return 0;
1289
1290 if (current->plug)
1291 blk_flush_plug_list(current->plug, false);
1292 return q->poll_fn(q, cookie);
1293 }
1294 EXPORT_SYMBOL_GPL(blk_poll);
1295
1296 /**
1297 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1298 * for new the queue limits
1299 * @q: the queue
1300 * @rq: the request being checked
1301 *
1302 * Description:
1303 * @rq may have been made based on weaker limitations of upper-level queues
1304 * in request stacking drivers, and it may violate the limitation of @q.
1305 * Since the block layer and the underlying device driver trust @rq
1306 * after it is inserted to @q, it should be checked against @q before
1307 * the insertion using this generic function.
1308 *
1309 * Request stacking drivers like request-based dm may change the queue
1310 * limits when retrying requests on other queues. Those requests need
1311 * to be checked against the new queue limits again during dispatch.
1312 */
1313 static int blk_cloned_rq_check_limits(struct request_queue *q,
1314 struct request *rq)
1315 {
1316 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1317 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1318 return -EIO;
1319 }
1320
1321 /*
1322 * queue's settings related to segment counting like q->bounce_pfn
1323 * may differ from that of other stacking queues.
1324 * Recalculate it to check the request correctly on this queue's
1325 * limitation.
1326 */
1327 blk_recalc_rq_segments(rq);
1328 if (rq->nr_phys_segments > queue_max_segments(q)) {
1329 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1330 return -EIO;
1331 }
1332
1333 return 0;
1334 }
1335
1336 /**
1337 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1338 * @q: the queue to submit the request
1339 * @rq: the request being queued
1340 */
1341 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1342 {
1343 if (blk_cloned_rq_check_limits(q, rq))
1344 return BLK_STS_IOERR;
1345
1346 if (rq->rq_disk &&
1347 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1348 return BLK_STS_IOERR;
1349
1350 if (blk_queue_io_stat(q))
1351 blk_account_io_start(rq, true);
1352
1353 /*
1354 * Since we have a scheduler attached on the top device,
1355 * bypass a potential scheduler on the bottom device for
1356 * insert.
1357 */
1358 return blk_mq_request_issue_directly(rq);
1359 }
1360 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1361
1362 /**
1363 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1364 * @rq: request to examine
1365 *
1366 * Description:
1367 * A request could be merge of IOs which require different failure
1368 * handling. This function determines the number of bytes which
1369 * can be failed from the beginning of the request without
1370 * crossing into area which need to be retried further.
1371 *
1372 * Return:
1373 * The number of bytes to fail.
1374 */
1375 unsigned int blk_rq_err_bytes(const struct request *rq)
1376 {
1377 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1378 unsigned int bytes = 0;
1379 struct bio *bio;
1380
1381 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1382 return blk_rq_bytes(rq);
1383
1384 /*
1385 * Currently the only 'mixing' which can happen is between
1386 * different fastfail types. We can safely fail portions
1387 * which have all the failfast bits that the first one has -
1388 * the ones which are at least as eager to fail as the first
1389 * one.
1390 */
1391 for (bio = rq->bio; bio; bio = bio->bi_next) {
1392 if ((bio->bi_opf & ff) != ff)
1393 break;
1394 bytes += bio->bi_iter.bi_size;
1395 }
1396
1397 /* this could lead to infinite loop */
1398 BUG_ON(blk_rq_bytes(rq) && !bytes);
1399 return bytes;
1400 }
1401 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1402
1403 void blk_account_io_completion(struct request *req, unsigned int bytes)
1404 {
1405 if (blk_do_io_stat(req)) {
1406 const int sgrp = op_stat_group(req_op(req));
1407 struct hd_struct *part;
1408 int cpu;
1409
1410 cpu = part_stat_lock();
1411 part = req->part;
1412 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
1413 part_stat_unlock();
1414 }
1415 }
1416
1417 void blk_account_io_done(struct request *req, u64 now)
1418 {
1419 /*
1420 * Account IO completion. flush_rq isn't accounted as a
1421 * normal IO on queueing nor completion. Accounting the
1422 * containing request is enough.
1423 */
1424 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1425 const int sgrp = op_stat_group(req_op(req));
1426 struct hd_struct *part;
1427 int cpu;
1428
1429 cpu = part_stat_lock();
1430 part = req->part;
1431
1432 part_stat_inc(cpu, part, ios[sgrp]);
1433 part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
1434 part_round_stats(req->q, cpu, part);
1435 part_dec_in_flight(req->q, part, rq_data_dir(req));
1436
1437 hd_struct_put(part);
1438 part_stat_unlock();
1439 }
1440 }
1441
1442 void blk_account_io_start(struct request *rq, bool new_io)
1443 {
1444 struct hd_struct *part;
1445 int rw = rq_data_dir(rq);
1446 int cpu;
1447
1448 if (!blk_do_io_stat(rq))
1449 return;
1450
1451 cpu = part_stat_lock();
1452
1453 if (!new_io) {
1454 part = rq->part;
1455 part_stat_inc(cpu, part, merges[rw]);
1456 } else {
1457 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1458 if (!hd_struct_try_get(part)) {
1459 /*
1460 * The partition is already being removed,
1461 * the request will be accounted on the disk only
1462 *
1463 * We take a reference on disk->part0 although that
1464 * partition will never be deleted, so we can treat
1465 * it as any other partition.
1466 */
1467 part = &rq->rq_disk->part0;
1468 hd_struct_get(part);
1469 }
1470 part_round_stats(rq->q, cpu, part);
1471 part_inc_in_flight(rq->q, part, rw);
1472 rq->part = part;
1473 }
1474
1475 part_stat_unlock();
1476 }
1477
1478 /*
1479 * Steal bios from a request and add them to a bio list.
1480 * The request must not have been partially completed before.
1481 */
1482 void blk_steal_bios(struct bio_list *list, struct request *rq)
1483 {
1484 if (rq->bio) {
1485 if (list->tail)
1486 list->tail->bi_next = rq->bio;
1487 else
1488 list->head = rq->bio;
1489 list->tail = rq->biotail;
1490
1491 rq->bio = NULL;
1492 rq->biotail = NULL;
1493 }
1494
1495 rq->__data_len = 0;
1496 }
1497 EXPORT_SYMBOL_GPL(blk_steal_bios);
1498
1499 /**
1500 * blk_update_request - Special helper function for request stacking drivers
1501 * @req: the request being processed
1502 * @error: block status code
1503 * @nr_bytes: number of bytes to complete @req
1504 *
1505 * Description:
1506 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1507 * the request structure even if @req doesn't have leftover.
1508 * If @req has leftover, sets it up for the next range of segments.
1509 *
1510 * This special helper function is only for request stacking drivers
1511 * (e.g. request-based dm) so that they can handle partial completion.
1512 * Actual device drivers should use blk_end_request instead.
1513 *
1514 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1515 * %false return from this function.
1516 *
1517 * Note:
1518 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1519 * blk_rq_bytes() and in blk_update_request().
1520 *
1521 * Return:
1522 * %false - this request doesn't have any more data
1523 * %true - this request has more data
1524 **/
1525 bool blk_update_request(struct request *req, blk_status_t error,
1526 unsigned int nr_bytes)
1527 {
1528 int total_bytes;
1529
1530 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1531
1532 if (!req->bio)
1533 return false;
1534
1535 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1536 !(req->rq_flags & RQF_QUIET)))
1537 print_req_error(req, error);
1538
1539 blk_account_io_completion(req, nr_bytes);
1540
1541 total_bytes = 0;
1542 while (req->bio) {
1543 struct bio *bio = req->bio;
1544 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1545
1546 if (bio_bytes == bio->bi_iter.bi_size)
1547 req->bio = bio->bi_next;
1548
1549 /* Completion has already been traced */
1550 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1551 req_bio_endio(req, bio, bio_bytes, error);
1552
1553 total_bytes += bio_bytes;
1554 nr_bytes -= bio_bytes;
1555
1556 if (!nr_bytes)
1557 break;
1558 }
1559
1560 /*
1561 * completely done
1562 */
1563 if (!req->bio) {
1564 /*
1565 * Reset counters so that the request stacking driver
1566 * can find how many bytes remain in the request
1567 * later.
1568 */
1569 req->__data_len = 0;
1570 return false;
1571 }
1572
1573 req->__data_len -= total_bytes;
1574
1575 /* update sector only for requests with clear definition of sector */
1576 if (!blk_rq_is_passthrough(req))
1577 req->__sector += total_bytes >> 9;
1578
1579 /* mixed attributes always follow the first bio */
1580 if (req->rq_flags & RQF_MIXED_MERGE) {
1581 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1582 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1583 }
1584
1585 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1586 /*
1587 * If total number of sectors is less than the first segment
1588 * size, something has gone terribly wrong.
1589 */
1590 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1591 blk_dump_rq_flags(req, "request botched");
1592 req->__data_len = blk_rq_cur_bytes(req);
1593 }
1594
1595 /* recalculate the number of segments */
1596 blk_recalc_rq_segments(req);
1597 }
1598
1599 return true;
1600 }
1601 EXPORT_SYMBOL_GPL(blk_update_request);
1602
1603 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1604 struct bio *bio)
1605 {
1606 if (bio_has_data(bio))
1607 rq->nr_phys_segments = bio_phys_segments(q, bio);
1608 else if (bio_op(bio) == REQ_OP_DISCARD)
1609 rq->nr_phys_segments = 1;
1610
1611 rq->__data_len = bio->bi_iter.bi_size;
1612 rq->bio = rq->biotail = bio;
1613
1614 if (bio->bi_disk)
1615 rq->rq_disk = bio->bi_disk;
1616 }
1617
1618 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1619 /**
1620 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1621 * @rq: the request to be flushed
1622 *
1623 * Description:
1624 * Flush all pages in @rq.
1625 */
1626 void rq_flush_dcache_pages(struct request *rq)
1627 {
1628 struct req_iterator iter;
1629 struct bio_vec bvec;
1630
1631 rq_for_each_segment(bvec, rq, iter)
1632 flush_dcache_page(bvec.bv_page);
1633 }
1634 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1635 #endif
1636
1637 /**
1638 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1639 * @q : the queue of the device being checked
1640 *
1641 * Description:
1642 * Check if underlying low-level drivers of a device are busy.
1643 * If the drivers want to export their busy state, they must set own
1644 * exporting function using blk_queue_lld_busy() first.
1645 *
1646 * Basically, this function is used only by request stacking drivers
1647 * to stop dispatching requests to underlying devices when underlying
1648 * devices are busy. This behavior helps more I/O merging on the queue
1649 * of the request stacking driver and prevents I/O throughput regression
1650 * on burst I/O load.
1651 *
1652 * Return:
1653 * 0 - Not busy (The request stacking driver should dispatch request)
1654 * 1 - Busy (The request stacking driver should stop dispatching request)
1655 */
1656 int blk_lld_busy(struct request_queue *q)
1657 {
1658 if (queue_is_mq(q) && q->mq_ops->busy)
1659 return q->mq_ops->busy(q);
1660
1661 return 0;
1662 }
1663 EXPORT_SYMBOL_GPL(blk_lld_busy);
1664
1665 /**
1666 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1667 * @rq: the clone request to be cleaned up
1668 *
1669 * Description:
1670 * Free all bios in @rq for a cloned request.
1671 */
1672 void blk_rq_unprep_clone(struct request *rq)
1673 {
1674 struct bio *bio;
1675
1676 while ((bio = rq->bio) != NULL) {
1677 rq->bio = bio->bi_next;
1678
1679 bio_put(bio);
1680 }
1681 }
1682 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1683
1684 /*
1685 * Copy attributes of the original request to the clone request.
1686 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1687 */
1688 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1689 {
1690 dst->__sector = blk_rq_pos(src);
1691 dst->__data_len = blk_rq_bytes(src);
1692 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1693 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1694 dst->special_vec = src->special_vec;
1695 }
1696 dst->nr_phys_segments = src->nr_phys_segments;
1697 dst->ioprio = src->ioprio;
1698 dst->extra_len = src->extra_len;
1699 }
1700
1701 /**
1702 * blk_rq_prep_clone - Helper function to setup clone request
1703 * @rq: the request to be setup
1704 * @rq_src: original request to be cloned
1705 * @bs: bio_set that bios for clone are allocated from
1706 * @gfp_mask: memory allocation mask for bio
1707 * @bio_ctr: setup function to be called for each clone bio.
1708 * Returns %0 for success, non %0 for failure.
1709 * @data: private data to be passed to @bio_ctr
1710 *
1711 * Description:
1712 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1713 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1714 * are not copied, and copying such parts is the caller's responsibility.
1715 * Also, pages which the original bios are pointing to are not copied
1716 * and the cloned bios just point same pages.
1717 * So cloned bios must be completed before original bios, which means
1718 * the caller must complete @rq before @rq_src.
1719 */
1720 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1721 struct bio_set *bs, gfp_t gfp_mask,
1722 int (*bio_ctr)(struct bio *, struct bio *, void *),
1723 void *data)
1724 {
1725 struct bio *bio, *bio_src;
1726
1727 if (!bs)
1728 bs = &fs_bio_set;
1729
1730 __rq_for_each_bio(bio_src, rq_src) {
1731 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1732 if (!bio)
1733 goto free_and_out;
1734
1735 if (bio_ctr && bio_ctr(bio, bio_src, data))
1736 goto free_and_out;
1737
1738 if (rq->bio) {
1739 rq->biotail->bi_next = bio;
1740 rq->biotail = bio;
1741 } else
1742 rq->bio = rq->biotail = bio;
1743 }
1744
1745 __blk_rq_prep_clone(rq, rq_src);
1746
1747 return 0;
1748
1749 free_and_out:
1750 if (bio)
1751 bio_put(bio);
1752 blk_rq_unprep_clone(rq);
1753
1754 return -ENOMEM;
1755 }
1756 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1757
1758 int kblockd_schedule_work(struct work_struct *work)
1759 {
1760 return queue_work(kblockd_workqueue, work);
1761 }
1762 EXPORT_SYMBOL(kblockd_schedule_work);
1763
1764 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1765 {
1766 return queue_work_on(cpu, kblockd_workqueue, work);
1767 }
1768 EXPORT_SYMBOL(kblockd_schedule_work_on);
1769
1770 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1771 unsigned long delay)
1772 {
1773 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1774 }
1775 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1776
1777 /**
1778 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1779 * @plug: The &struct blk_plug that needs to be initialized
1780 *
1781 * Description:
1782 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1783 * pending I/O should the task end up blocking between blk_start_plug() and
1784 * blk_finish_plug(). This is important from a performance perspective, but
1785 * also ensures that we don't deadlock. For instance, if the task is blocking
1786 * for a memory allocation, memory reclaim could end up wanting to free a
1787 * page belonging to that request that is currently residing in our private
1788 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1789 * this kind of deadlock.
1790 */
1791 void blk_start_plug(struct blk_plug *plug)
1792 {
1793 struct task_struct *tsk = current;
1794
1795 /*
1796 * If this is a nested plug, don't actually assign it.
1797 */
1798 if (tsk->plug)
1799 return;
1800
1801 INIT_LIST_HEAD(&plug->mq_list);
1802 INIT_LIST_HEAD(&plug->cb_list);
1803 /*
1804 * Store ordering should not be needed here, since a potential
1805 * preempt will imply a full memory barrier
1806 */
1807 tsk->plug = plug;
1808 }
1809 EXPORT_SYMBOL(blk_start_plug);
1810
1811 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1812 {
1813 LIST_HEAD(callbacks);
1814
1815 while (!list_empty(&plug->cb_list)) {
1816 list_splice_init(&plug->cb_list, &callbacks);
1817
1818 while (!list_empty(&callbacks)) {
1819 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1820 struct blk_plug_cb,
1821 list);
1822 list_del(&cb->list);
1823 cb->callback(cb, from_schedule);
1824 }
1825 }
1826 }
1827
1828 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1829 int size)
1830 {
1831 struct blk_plug *plug = current->plug;
1832 struct blk_plug_cb *cb;
1833
1834 if (!plug)
1835 return NULL;
1836
1837 list_for_each_entry(cb, &plug->cb_list, list)
1838 if (cb->callback == unplug && cb->data == data)
1839 return cb;
1840
1841 /* Not currently on the callback list */
1842 BUG_ON(size < sizeof(*cb));
1843 cb = kzalloc(size, GFP_ATOMIC);
1844 if (cb) {
1845 cb->data = data;
1846 cb->callback = unplug;
1847 list_add(&cb->list, &plug->cb_list);
1848 }
1849 return cb;
1850 }
1851 EXPORT_SYMBOL(blk_check_plugged);
1852
1853 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1854 {
1855 flush_plug_callbacks(plug, from_schedule);
1856
1857 if (!list_empty(&plug->mq_list))
1858 blk_mq_flush_plug_list(plug, from_schedule);
1859 }
1860
1861 void blk_finish_plug(struct blk_plug *plug)
1862 {
1863 if (plug != current->plug)
1864 return;
1865 blk_flush_plug_list(plug, false);
1866
1867 current->plug = NULL;
1868 }
1869 EXPORT_SYMBOL(blk_finish_plug);
1870
1871 int __init blk_dev_init(void)
1872 {
1873 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1874 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1875 FIELD_SIZEOF(struct request, cmd_flags));
1876 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1877 FIELD_SIZEOF(struct bio, bi_opf));
1878
1879 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1880 kblockd_workqueue = alloc_workqueue("kblockd",
1881 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1882 if (!kblockd_workqueue)
1883 panic("Failed to create kblockd\n");
1884
1885 blk_requestq_cachep = kmem_cache_create("request_queue",
1886 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1887
1888 #ifdef CONFIG_DEBUG_FS
1889 blk_debugfs_root = debugfs_create_dir("block", NULL);
1890 #endif
1891
1892 return 0;
1893 }