]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-core.c
cgroup/cpuset: Fix a partition bug with hotplug
[mirror_ubuntu-jammy-kernel.git] / block / blk-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/blk-pm.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-rq-qos.h"
54
55 struct dentry *blk_debugfs_root;
56
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
63
64 DEFINE_IDA(blk_queue_ida);
65
66 /*
67 * For queue allocation
68 */
69 struct kmem_cache *blk_requestq_cachep;
70
71 /*
72 * Controlling structure to kblockd
73 */
74 static struct workqueue_struct *kblockd_workqueue;
75
76 /**
77 * blk_queue_flag_set - atomically set a queue flag
78 * @flag: flag to be set
79 * @q: request queue
80 */
81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82 {
83 set_bit(flag, &q->queue_flags);
84 }
85 EXPORT_SYMBOL(blk_queue_flag_set);
86
87 /**
88 * blk_queue_flag_clear - atomically clear a queue flag
89 * @flag: flag to be cleared
90 * @q: request queue
91 */
92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93 {
94 clear_bit(flag, &q->queue_flags);
95 }
96 EXPORT_SYMBOL(blk_queue_flag_clear);
97
98 /**
99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
100 * @flag: flag to be set
101 * @q: request queue
102 *
103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104 * the flag was already set.
105 */
106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107 {
108 return test_and_set_bit(flag, &q->queue_flags);
109 }
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111
112 void blk_rq_init(struct request_queue *q, struct request *rq)
113 {
114 memset(rq, 0, sizeof(*rq));
115
116 INIT_LIST_HEAD(&rq->queuelist);
117 rq->q = q;
118 rq->__sector = (sector_t) -1;
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
121 rq->tag = BLK_MQ_NO_TAG;
122 rq->internal_tag = BLK_MQ_NO_TAG;
123 rq->start_time_ns = ktime_get_ns();
124 rq->part = NULL;
125 refcount_set(&rq->ref, 1);
126 blk_crypto_rq_set_defaults(rq);
127 }
128 EXPORT_SYMBOL(blk_rq_init);
129
130 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
131 static const char *const blk_op_name[] = {
132 REQ_OP_NAME(READ),
133 REQ_OP_NAME(WRITE),
134 REQ_OP_NAME(FLUSH),
135 REQ_OP_NAME(DISCARD),
136 REQ_OP_NAME(SECURE_ERASE),
137 REQ_OP_NAME(ZONE_RESET),
138 REQ_OP_NAME(ZONE_RESET_ALL),
139 REQ_OP_NAME(ZONE_OPEN),
140 REQ_OP_NAME(ZONE_CLOSE),
141 REQ_OP_NAME(ZONE_FINISH),
142 REQ_OP_NAME(ZONE_APPEND),
143 REQ_OP_NAME(WRITE_SAME),
144 REQ_OP_NAME(WRITE_ZEROES),
145 REQ_OP_NAME(DRV_IN),
146 REQ_OP_NAME(DRV_OUT),
147 };
148 #undef REQ_OP_NAME
149
150 /**
151 * blk_op_str - Return string XXX in the REQ_OP_XXX.
152 * @op: REQ_OP_XXX.
153 *
154 * Description: Centralize block layer function to convert REQ_OP_XXX into
155 * string format. Useful in the debugging and tracing bio or request. For
156 * invalid REQ_OP_XXX it returns string "UNKNOWN".
157 */
158 inline const char *blk_op_str(unsigned int op)
159 {
160 const char *op_str = "UNKNOWN";
161
162 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
163 op_str = blk_op_name[op];
164
165 return op_str;
166 }
167 EXPORT_SYMBOL_GPL(blk_op_str);
168
169 static const struct {
170 int errno;
171 const char *name;
172 } blk_errors[] = {
173 [BLK_STS_OK] = { 0, "" },
174 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
175 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
176 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
177 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
178 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
179 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
180 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
181 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
182 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
183 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
184 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
185
186 /* device mapper special case, should not leak out: */
187 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
188
189 /* zone device specific errors */
190 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
191 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
192
193 /* everything else not covered above: */
194 [BLK_STS_IOERR] = { -EIO, "I/O" },
195 };
196
197 blk_status_t errno_to_blk_status(int errno)
198 {
199 int i;
200
201 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
202 if (blk_errors[i].errno == errno)
203 return (__force blk_status_t)i;
204 }
205
206 return BLK_STS_IOERR;
207 }
208 EXPORT_SYMBOL_GPL(errno_to_blk_status);
209
210 int blk_status_to_errno(blk_status_t status)
211 {
212 int idx = (__force int)status;
213
214 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
215 return -EIO;
216 return blk_errors[idx].errno;
217 }
218 EXPORT_SYMBOL_GPL(blk_status_to_errno);
219
220 static void print_req_error(struct request *req, blk_status_t status,
221 const char *caller)
222 {
223 int idx = (__force int)status;
224
225 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
226 return;
227
228 printk_ratelimited(KERN_ERR
229 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
230 "phys_seg %u prio class %u\n",
231 caller, blk_errors[idx].name,
232 req->rq_disk ? req->rq_disk->disk_name : "?",
233 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
234 req->cmd_flags & ~REQ_OP_MASK,
235 req->nr_phys_segments,
236 IOPRIO_PRIO_CLASS(req->ioprio));
237 }
238
239 static void req_bio_endio(struct request *rq, struct bio *bio,
240 unsigned int nbytes, blk_status_t error)
241 {
242 if (error)
243 bio->bi_status = error;
244
245 if (unlikely(rq->rq_flags & RQF_QUIET))
246 bio_set_flag(bio, BIO_QUIET);
247
248 bio_advance(bio, nbytes);
249
250 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
251 /*
252 * Partial zone append completions cannot be supported as the
253 * BIO fragments may end up not being written sequentially.
254 */
255 if (bio->bi_iter.bi_size)
256 bio->bi_status = BLK_STS_IOERR;
257 else
258 bio->bi_iter.bi_sector = rq->__sector;
259 }
260
261 /* don't actually finish bio if it's part of flush sequence */
262 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
263 bio_endio(bio);
264 }
265
266 void blk_dump_rq_flags(struct request *rq, char *msg)
267 {
268 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
269 rq->rq_disk ? rq->rq_disk->disk_name : "?",
270 (unsigned long long) rq->cmd_flags);
271
272 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
273 (unsigned long long)blk_rq_pos(rq),
274 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
275 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
276 rq->bio, rq->biotail, blk_rq_bytes(rq));
277 }
278 EXPORT_SYMBOL(blk_dump_rq_flags);
279
280 /**
281 * blk_sync_queue - cancel any pending callbacks on a queue
282 * @q: the queue
283 *
284 * Description:
285 * The block layer may perform asynchronous callback activity
286 * on a queue, such as calling the unplug function after a timeout.
287 * A block device may call blk_sync_queue to ensure that any
288 * such activity is cancelled, thus allowing it to release resources
289 * that the callbacks might use. The caller must already have made sure
290 * that its ->submit_bio will not re-add plugging prior to calling
291 * this function.
292 *
293 * This function does not cancel any asynchronous activity arising
294 * out of elevator or throttling code. That would require elevator_exit()
295 * and blkcg_exit_queue() to be called with queue lock initialized.
296 *
297 */
298 void blk_sync_queue(struct request_queue *q)
299 {
300 del_timer_sync(&q->timeout);
301 cancel_work_sync(&q->timeout_work);
302 }
303 EXPORT_SYMBOL(blk_sync_queue);
304
305 /**
306 * blk_set_pm_only - increment pm_only counter
307 * @q: request queue pointer
308 */
309 void blk_set_pm_only(struct request_queue *q)
310 {
311 atomic_inc(&q->pm_only);
312 }
313 EXPORT_SYMBOL_GPL(blk_set_pm_only);
314
315 void blk_clear_pm_only(struct request_queue *q)
316 {
317 int pm_only;
318
319 pm_only = atomic_dec_return(&q->pm_only);
320 WARN_ON_ONCE(pm_only < 0);
321 if (pm_only == 0)
322 wake_up_all(&q->mq_freeze_wq);
323 }
324 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
325
326 /**
327 * blk_put_queue - decrement the request_queue refcount
328 * @q: the request_queue structure to decrement the refcount for
329 *
330 * Decrements the refcount of the request_queue kobject. When this reaches 0
331 * we'll have blk_release_queue() called.
332 *
333 * Context: Any context, but the last reference must not be dropped from
334 * atomic context.
335 */
336 void blk_put_queue(struct request_queue *q)
337 {
338 kobject_put(&q->kobj);
339 }
340 EXPORT_SYMBOL(blk_put_queue);
341
342 void blk_set_queue_dying(struct request_queue *q)
343 {
344 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
345
346 /*
347 * When queue DYING flag is set, we need to block new req
348 * entering queue, so we call blk_freeze_queue_start() to
349 * prevent I/O from crossing blk_queue_enter().
350 */
351 blk_freeze_queue_start(q);
352
353 if (queue_is_mq(q))
354 blk_mq_wake_waiters(q);
355
356 /* Make blk_queue_enter() reexamine the DYING flag. */
357 wake_up_all(&q->mq_freeze_wq);
358 }
359 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
360
361 /**
362 * blk_cleanup_queue - shutdown a request queue
363 * @q: request queue to shutdown
364 *
365 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
366 * put it. All future requests will be failed immediately with -ENODEV.
367 *
368 * Context: can sleep
369 */
370 void blk_cleanup_queue(struct request_queue *q)
371 {
372 /* cannot be called from atomic context */
373 might_sleep();
374
375 WARN_ON_ONCE(blk_queue_registered(q));
376
377 /* mark @q DYING, no new request or merges will be allowed afterwards */
378 blk_set_queue_dying(q);
379
380 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
381 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
382
383 /*
384 * Drain all requests queued before DYING marking. Set DEAD flag to
385 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
386 * after draining finished.
387 */
388 blk_freeze_queue(q);
389
390 rq_qos_exit(q);
391
392 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
393
394 /* for synchronous bio-based driver finish in-flight integrity i/o */
395 blk_flush_integrity();
396
397 /* @q won't process any more request, flush async actions */
398 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
399 blk_sync_queue(q);
400
401 if (queue_is_mq(q))
402 blk_mq_exit_queue(q);
403
404 /*
405 * In theory, request pool of sched_tags belongs to request queue.
406 * However, the current implementation requires tag_set for freeing
407 * requests, so free the pool now.
408 *
409 * Queue has become frozen, there can't be any in-queue requests, so
410 * it is safe to free requests now.
411 */
412 mutex_lock(&q->sysfs_lock);
413 if (q->elevator)
414 blk_mq_sched_free_requests(q);
415 mutex_unlock(&q->sysfs_lock);
416
417 percpu_ref_exit(&q->q_usage_counter);
418
419 /* @q is and will stay empty, shutdown and put */
420 blk_put_queue(q);
421 }
422 EXPORT_SYMBOL(blk_cleanup_queue);
423
424 /**
425 * blk_queue_enter() - try to increase q->q_usage_counter
426 * @q: request queue pointer
427 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
428 */
429 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
430 {
431 const bool pm = flags & BLK_MQ_REQ_PM;
432
433 while (true) {
434 bool success = false;
435
436 rcu_read_lock();
437 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
438 /*
439 * The code that increments the pm_only counter is
440 * responsible for ensuring that that counter is
441 * globally visible before the queue is unfrozen.
442 */
443 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
444 !blk_queue_pm_only(q)) {
445 success = true;
446 } else {
447 percpu_ref_put(&q->q_usage_counter);
448 }
449 }
450 rcu_read_unlock();
451
452 if (success)
453 return 0;
454
455 if (flags & BLK_MQ_REQ_NOWAIT)
456 return -EBUSY;
457
458 /*
459 * read pair of barrier in blk_freeze_queue_start(),
460 * we need to order reading __PERCPU_REF_DEAD flag of
461 * .q_usage_counter and reading .mq_freeze_depth or
462 * queue dying flag, otherwise the following wait may
463 * never return if the two reads are reordered.
464 */
465 smp_rmb();
466
467 wait_event(q->mq_freeze_wq,
468 (!q->mq_freeze_depth &&
469 blk_pm_resume_queue(pm, q)) ||
470 blk_queue_dying(q));
471 if (blk_queue_dying(q))
472 return -ENODEV;
473 }
474 }
475
476 static inline int bio_queue_enter(struct bio *bio)
477 {
478 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
479 bool nowait = bio->bi_opf & REQ_NOWAIT;
480 int ret;
481
482 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
483 if (unlikely(ret)) {
484 if (nowait && !blk_queue_dying(q))
485 bio_wouldblock_error(bio);
486 else
487 bio_io_error(bio);
488 }
489
490 return ret;
491 }
492
493 void blk_queue_exit(struct request_queue *q)
494 {
495 percpu_ref_put(&q->q_usage_counter);
496 }
497
498 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
499 {
500 struct request_queue *q =
501 container_of(ref, struct request_queue, q_usage_counter);
502
503 wake_up_all(&q->mq_freeze_wq);
504 }
505
506 static void blk_rq_timed_out_timer(struct timer_list *t)
507 {
508 struct request_queue *q = from_timer(q, t, timeout);
509
510 kblockd_schedule_work(&q->timeout_work);
511 }
512
513 static void blk_timeout_work(struct work_struct *work)
514 {
515 }
516
517 struct request_queue *blk_alloc_queue(int node_id)
518 {
519 struct request_queue *q;
520 int ret;
521
522 q = kmem_cache_alloc_node(blk_requestq_cachep,
523 GFP_KERNEL | __GFP_ZERO, node_id);
524 if (!q)
525 return NULL;
526
527 q->last_merge = NULL;
528
529 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
530 if (q->id < 0)
531 goto fail_q;
532
533 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
534 if (ret)
535 goto fail_id;
536
537 q->backing_dev_info = bdi_alloc(node_id);
538 if (!q->backing_dev_info)
539 goto fail_split;
540
541 q->stats = blk_alloc_queue_stats();
542 if (!q->stats)
543 goto fail_stats;
544
545 q->node = node_id;
546
547 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
548
549 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
550 laptop_mode_timer_fn, 0);
551 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
552 INIT_WORK(&q->timeout_work, blk_timeout_work);
553 INIT_LIST_HEAD(&q->icq_list);
554 #ifdef CONFIG_BLK_CGROUP
555 INIT_LIST_HEAD(&q->blkg_list);
556 #endif
557
558 kobject_init(&q->kobj, &blk_queue_ktype);
559
560 mutex_init(&q->debugfs_mutex);
561 mutex_init(&q->sysfs_lock);
562 mutex_init(&q->sysfs_dir_lock);
563 spin_lock_init(&q->queue_lock);
564
565 init_waitqueue_head(&q->mq_freeze_wq);
566 mutex_init(&q->mq_freeze_lock);
567
568 /*
569 * Init percpu_ref in atomic mode so that it's faster to shutdown.
570 * See blk_register_queue() for details.
571 */
572 if (percpu_ref_init(&q->q_usage_counter,
573 blk_queue_usage_counter_release,
574 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
575 goto fail_bdi;
576
577 if (blkcg_init_queue(q))
578 goto fail_ref;
579
580 blk_queue_dma_alignment(q, 511);
581 blk_set_default_limits(&q->limits);
582 q->nr_requests = BLKDEV_MAX_RQ;
583
584 return q;
585
586 fail_ref:
587 percpu_ref_exit(&q->q_usage_counter);
588 fail_bdi:
589 blk_free_queue_stats(q->stats);
590 fail_stats:
591 bdi_put(q->backing_dev_info);
592 fail_split:
593 bioset_exit(&q->bio_split);
594 fail_id:
595 ida_simple_remove(&blk_queue_ida, q->id);
596 fail_q:
597 kmem_cache_free(blk_requestq_cachep, q);
598 return NULL;
599 }
600
601 /**
602 * blk_get_queue - increment the request_queue refcount
603 * @q: the request_queue structure to increment the refcount for
604 *
605 * Increment the refcount of the request_queue kobject.
606 *
607 * Context: Any context.
608 */
609 bool blk_get_queue(struct request_queue *q)
610 {
611 if (likely(!blk_queue_dying(q))) {
612 __blk_get_queue(q);
613 return true;
614 }
615
616 return false;
617 }
618 EXPORT_SYMBOL(blk_get_queue);
619
620 /**
621 * blk_get_request - allocate a request
622 * @q: request queue to allocate a request for
623 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
624 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
625 */
626 struct request *blk_get_request(struct request_queue *q, unsigned int op,
627 blk_mq_req_flags_t flags)
628 {
629 struct request *req;
630
631 WARN_ON_ONCE(op & REQ_NOWAIT);
632 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
633
634 req = blk_mq_alloc_request(q, op, flags);
635 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
636 q->mq_ops->initialize_rq_fn(req);
637
638 return req;
639 }
640 EXPORT_SYMBOL(blk_get_request);
641
642 void blk_put_request(struct request *req)
643 {
644 blk_mq_free_request(req);
645 }
646 EXPORT_SYMBOL(blk_put_request);
647
648 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
649 {
650 char b[BDEVNAME_SIZE];
651
652 pr_info_ratelimited("attempt to access beyond end of device\n"
653 "%s: rw=%d, want=%llu, limit=%llu\n",
654 bio_devname(bio, b), bio->bi_opf,
655 bio_end_sector(bio), maxsector);
656 }
657
658 #ifdef CONFIG_FAIL_MAKE_REQUEST
659
660 static DECLARE_FAULT_ATTR(fail_make_request);
661
662 static int __init setup_fail_make_request(char *str)
663 {
664 return setup_fault_attr(&fail_make_request, str);
665 }
666 __setup("fail_make_request=", setup_fail_make_request);
667
668 static bool should_fail_request(struct block_device *part, unsigned int bytes)
669 {
670 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
671 }
672
673 static int __init fail_make_request_debugfs(void)
674 {
675 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
676 NULL, &fail_make_request);
677
678 return PTR_ERR_OR_ZERO(dir);
679 }
680
681 late_initcall(fail_make_request_debugfs);
682
683 #else /* CONFIG_FAIL_MAKE_REQUEST */
684
685 static inline bool should_fail_request(struct block_device *part,
686 unsigned int bytes)
687 {
688 return false;
689 }
690
691 #endif /* CONFIG_FAIL_MAKE_REQUEST */
692
693 static inline bool bio_check_ro(struct bio *bio)
694 {
695 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
696 char b[BDEVNAME_SIZE];
697
698 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
699 return false;
700
701 WARN_ONCE(1,
702 "Trying to write to read-only block-device %s (partno %d)\n",
703 bio_devname(bio, b), bio->bi_bdev->bd_partno);
704 /* Older lvm-tools actually trigger this */
705 return false;
706 }
707
708 return false;
709 }
710
711 static noinline int should_fail_bio(struct bio *bio)
712 {
713 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
714 return -EIO;
715 return 0;
716 }
717 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
718
719 /*
720 * Check whether this bio extends beyond the end of the device or partition.
721 * This may well happen - the kernel calls bread() without checking the size of
722 * the device, e.g., when mounting a file system.
723 */
724 static inline int bio_check_eod(struct bio *bio)
725 {
726 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
727 unsigned int nr_sectors = bio_sectors(bio);
728
729 if (nr_sectors && maxsector &&
730 (nr_sectors > maxsector ||
731 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
732 handle_bad_sector(bio, maxsector);
733 return -EIO;
734 }
735 return 0;
736 }
737
738 /*
739 * Remap block n of partition p to block n+start(p) of the disk.
740 */
741 static int blk_partition_remap(struct bio *bio)
742 {
743 struct block_device *p = bio->bi_bdev;
744
745 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
746 return -EIO;
747 if (bio_sectors(bio)) {
748 bio->bi_iter.bi_sector += p->bd_start_sect;
749 trace_block_bio_remap(bio, p->bd_dev,
750 bio->bi_iter.bi_sector -
751 p->bd_start_sect);
752 }
753 bio_set_flag(bio, BIO_REMAPPED);
754 return 0;
755 }
756
757 /*
758 * Check write append to a zoned block device.
759 */
760 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
761 struct bio *bio)
762 {
763 sector_t pos = bio->bi_iter.bi_sector;
764 int nr_sectors = bio_sectors(bio);
765
766 /* Only applicable to zoned block devices */
767 if (!blk_queue_is_zoned(q))
768 return BLK_STS_NOTSUPP;
769
770 /* The bio sector must point to the start of a sequential zone */
771 if (pos & (blk_queue_zone_sectors(q) - 1) ||
772 !blk_queue_zone_is_seq(q, pos))
773 return BLK_STS_IOERR;
774
775 /*
776 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
777 * split and could result in non-contiguous sectors being written in
778 * different zones.
779 */
780 if (nr_sectors > q->limits.chunk_sectors)
781 return BLK_STS_IOERR;
782
783 /* Make sure the BIO is small enough and will not get split */
784 if (nr_sectors > q->limits.max_zone_append_sectors)
785 return BLK_STS_IOERR;
786
787 bio->bi_opf |= REQ_NOMERGE;
788
789 return BLK_STS_OK;
790 }
791
792 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
793 {
794 struct block_device *bdev = bio->bi_bdev;
795 struct request_queue *q = bdev->bd_disk->queue;
796 blk_status_t status = BLK_STS_IOERR;
797 struct blk_plug *plug;
798
799 might_sleep();
800
801 plug = blk_mq_plug(q, bio);
802 if (plug && plug->nowait)
803 bio->bi_opf |= REQ_NOWAIT;
804
805 /*
806 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
807 * if queue does not support NOWAIT.
808 */
809 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
810 goto not_supported;
811
812 if (should_fail_bio(bio))
813 goto end_io;
814 if (unlikely(bio_check_ro(bio)))
815 goto end_io;
816 if (!bio_flagged(bio, BIO_REMAPPED)) {
817 if (unlikely(bio_check_eod(bio)))
818 goto end_io;
819 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
820 goto end_io;
821 }
822
823 /*
824 * Filter flush bio's early so that bio based drivers without flush
825 * support don't have to worry about them.
826 */
827 if (op_is_flush(bio->bi_opf) &&
828 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
829 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
830 if (!bio_sectors(bio)) {
831 status = BLK_STS_OK;
832 goto end_io;
833 }
834 }
835
836 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
837 bio->bi_opf &= ~REQ_HIPRI;
838
839 switch (bio_op(bio)) {
840 case REQ_OP_DISCARD:
841 if (!blk_queue_discard(q))
842 goto not_supported;
843 break;
844 case REQ_OP_SECURE_ERASE:
845 if (!blk_queue_secure_erase(q))
846 goto not_supported;
847 break;
848 case REQ_OP_WRITE_SAME:
849 if (!q->limits.max_write_same_sectors)
850 goto not_supported;
851 break;
852 case REQ_OP_ZONE_APPEND:
853 status = blk_check_zone_append(q, bio);
854 if (status != BLK_STS_OK)
855 goto end_io;
856 break;
857 case REQ_OP_ZONE_RESET:
858 case REQ_OP_ZONE_OPEN:
859 case REQ_OP_ZONE_CLOSE:
860 case REQ_OP_ZONE_FINISH:
861 if (!blk_queue_is_zoned(q))
862 goto not_supported;
863 break;
864 case REQ_OP_ZONE_RESET_ALL:
865 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
866 goto not_supported;
867 break;
868 case REQ_OP_WRITE_ZEROES:
869 if (!q->limits.max_write_zeroes_sectors)
870 goto not_supported;
871 break;
872 default:
873 break;
874 }
875
876 /*
877 * Various block parts want %current->io_context, so allocate it up
878 * front rather than dealing with lots of pain to allocate it only
879 * where needed. This may fail and the block layer knows how to live
880 * with it.
881 */
882 if (unlikely(!current->io_context))
883 create_task_io_context(current, GFP_ATOMIC, q->node);
884
885 if (blk_throtl_bio(bio)) {
886 blkcg_bio_issue_init(bio);
887 return false;
888 }
889
890 blk_cgroup_bio_start(bio);
891 blkcg_bio_issue_init(bio);
892
893 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
894 trace_block_bio_queue(bio);
895 /* Now that enqueuing has been traced, we need to trace
896 * completion as well.
897 */
898 bio_set_flag(bio, BIO_TRACE_COMPLETION);
899 }
900 return true;
901
902 not_supported:
903 status = BLK_STS_NOTSUPP;
904 end_io:
905 bio->bi_status = status;
906 bio_endio(bio);
907 return false;
908 }
909
910 static blk_qc_t __submit_bio(struct bio *bio)
911 {
912 struct gendisk *disk = bio->bi_bdev->bd_disk;
913 blk_qc_t ret = BLK_QC_T_NONE;
914
915 if (blk_crypto_bio_prep(&bio)) {
916 if (!disk->fops->submit_bio)
917 return blk_mq_submit_bio(bio);
918 ret = disk->fops->submit_bio(bio);
919 }
920 blk_queue_exit(disk->queue);
921 return ret;
922 }
923
924 /*
925 * The loop in this function may be a bit non-obvious, and so deserves some
926 * explanation:
927 *
928 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
929 * that), so we have a list with a single bio.
930 * - We pretend that we have just taken it off a longer list, so we assign
931 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
932 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
933 * bios through a recursive call to submit_bio_noacct. If it did, we find a
934 * non-NULL value in bio_list and re-enter the loop from the top.
935 * - In this case we really did just take the bio of the top of the list (no
936 * pretending) and so remove it from bio_list, and call into ->submit_bio()
937 * again.
938 *
939 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
940 * bio_list_on_stack[1] contains bios that were submitted before the current
941 * ->submit_bio_bio, but that haven't been processed yet.
942 */
943 static blk_qc_t __submit_bio_noacct(struct bio *bio)
944 {
945 struct bio_list bio_list_on_stack[2];
946 blk_qc_t ret = BLK_QC_T_NONE;
947
948 BUG_ON(bio->bi_next);
949
950 bio_list_init(&bio_list_on_stack[0]);
951 current->bio_list = bio_list_on_stack;
952
953 do {
954 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
955 struct bio_list lower, same;
956
957 if (unlikely(bio_queue_enter(bio) != 0))
958 continue;
959
960 /*
961 * Create a fresh bio_list for all subordinate requests.
962 */
963 bio_list_on_stack[1] = bio_list_on_stack[0];
964 bio_list_init(&bio_list_on_stack[0]);
965
966 ret = __submit_bio(bio);
967
968 /*
969 * Sort new bios into those for a lower level and those for the
970 * same level.
971 */
972 bio_list_init(&lower);
973 bio_list_init(&same);
974 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
975 if (q == bio->bi_bdev->bd_disk->queue)
976 bio_list_add(&same, bio);
977 else
978 bio_list_add(&lower, bio);
979
980 /*
981 * Now assemble so we handle the lowest level first.
982 */
983 bio_list_merge(&bio_list_on_stack[0], &lower);
984 bio_list_merge(&bio_list_on_stack[0], &same);
985 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
986 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
987
988 current->bio_list = NULL;
989 return ret;
990 }
991
992 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
993 {
994 struct bio_list bio_list[2] = { };
995 blk_qc_t ret = BLK_QC_T_NONE;
996
997 current->bio_list = bio_list;
998
999 do {
1000 struct gendisk *disk = bio->bi_bdev->bd_disk;
1001
1002 if (unlikely(bio_queue_enter(bio) != 0))
1003 continue;
1004
1005 if (!blk_crypto_bio_prep(&bio)) {
1006 blk_queue_exit(disk->queue);
1007 ret = BLK_QC_T_NONE;
1008 continue;
1009 }
1010
1011 ret = blk_mq_submit_bio(bio);
1012 } while ((bio = bio_list_pop(&bio_list[0])));
1013
1014 current->bio_list = NULL;
1015 return ret;
1016 }
1017
1018 /**
1019 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1020 * @bio: The bio describing the location in memory and on the device.
1021 *
1022 * This is a version of submit_bio() that shall only be used for I/O that is
1023 * resubmitted to lower level drivers by stacking block drivers. All file
1024 * systems and other upper level users of the block layer should use
1025 * submit_bio() instead.
1026 */
1027 blk_qc_t submit_bio_noacct(struct bio *bio)
1028 {
1029 if (!submit_bio_checks(bio))
1030 return BLK_QC_T_NONE;
1031
1032 /*
1033 * We only want one ->submit_bio to be active at a time, else stack
1034 * usage with stacked devices could be a problem. Use current->bio_list
1035 * to collect a list of requests submited by a ->submit_bio method while
1036 * it is active, and then process them after it returned.
1037 */
1038 if (current->bio_list) {
1039 bio_list_add(&current->bio_list[0], bio);
1040 return BLK_QC_T_NONE;
1041 }
1042
1043 if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1044 return __submit_bio_noacct_mq(bio);
1045 return __submit_bio_noacct(bio);
1046 }
1047 EXPORT_SYMBOL(submit_bio_noacct);
1048
1049 /**
1050 * submit_bio - submit a bio to the block device layer for I/O
1051 * @bio: The &struct bio which describes the I/O
1052 *
1053 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1054 * fully set up &struct bio that describes the I/O that needs to be done. The
1055 * bio will be send to the device described by the bi_bdev field.
1056 *
1057 * The success/failure status of the request, along with notification of
1058 * completion, is delivered asynchronously through the ->bi_end_io() callback
1059 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1060 * been called.
1061 */
1062 blk_qc_t submit_bio(struct bio *bio)
1063 {
1064 if (blkcg_punt_bio_submit(bio))
1065 return BLK_QC_T_NONE;
1066
1067 /*
1068 * If it's a regular read/write or a barrier with data attached,
1069 * go through the normal accounting stuff before submission.
1070 */
1071 if (bio_has_data(bio)) {
1072 unsigned int count;
1073
1074 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1075 count = queue_logical_block_size(
1076 bio->bi_bdev->bd_disk->queue) >> 9;
1077 else
1078 count = bio_sectors(bio);
1079
1080 if (op_is_write(bio_op(bio))) {
1081 count_vm_events(PGPGOUT, count);
1082 } else {
1083 task_io_account_read(bio->bi_iter.bi_size);
1084 count_vm_events(PGPGIN, count);
1085 }
1086 }
1087
1088 /*
1089 * If we're reading data that is part of the userspace workingset, count
1090 * submission time as memory stall. When the device is congested, or
1091 * the submitting cgroup IO-throttled, submission can be a significant
1092 * part of overall IO time.
1093 */
1094 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1095 bio_flagged(bio, BIO_WORKINGSET))) {
1096 unsigned long pflags;
1097 blk_qc_t ret;
1098
1099 psi_memstall_enter(&pflags);
1100 ret = submit_bio_noacct(bio);
1101 psi_memstall_leave(&pflags);
1102
1103 return ret;
1104 }
1105
1106 return submit_bio_noacct(bio);
1107 }
1108 EXPORT_SYMBOL(submit_bio);
1109
1110 /**
1111 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1112 * for the new queue limits
1113 * @q: the queue
1114 * @rq: the request being checked
1115 *
1116 * Description:
1117 * @rq may have been made based on weaker limitations of upper-level queues
1118 * in request stacking drivers, and it may violate the limitation of @q.
1119 * Since the block layer and the underlying device driver trust @rq
1120 * after it is inserted to @q, it should be checked against @q before
1121 * the insertion using this generic function.
1122 *
1123 * Request stacking drivers like request-based dm may change the queue
1124 * limits when retrying requests on other queues. Those requests need
1125 * to be checked against the new queue limits again during dispatch.
1126 */
1127 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1128 struct request *rq)
1129 {
1130 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1131
1132 if (blk_rq_sectors(rq) > max_sectors) {
1133 /*
1134 * SCSI device does not have a good way to return if
1135 * Write Same/Zero is actually supported. If a device rejects
1136 * a non-read/write command (discard, write same,etc.) the
1137 * low-level device driver will set the relevant queue limit to
1138 * 0 to prevent blk-lib from issuing more of the offending
1139 * operations. Commands queued prior to the queue limit being
1140 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1141 * errors being propagated to upper layers.
1142 */
1143 if (max_sectors == 0)
1144 return BLK_STS_NOTSUPP;
1145
1146 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1147 __func__, blk_rq_sectors(rq), max_sectors);
1148 return BLK_STS_IOERR;
1149 }
1150
1151 /*
1152 * The queue settings related to segment counting may differ from the
1153 * original queue.
1154 */
1155 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1156 if (rq->nr_phys_segments > queue_max_segments(q)) {
1157 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1158 __func__, rq->nr_phys_segments, queue_max_segments(q));
1159 return BLK_STS_IOERR;
1160 }
1161
1162 return BLK_STS_OK;
1163 }
1164
1165 /**
1166 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1167 * @q: the queue to submit the request
1168 * @rq: the request being queued
1169 */
1170 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1171 {
1172 blk_status_t ret;
1173
1174 ret = blk_cloned_rq_check_limits(q, rq);
1175 if (ret != BLK_STS_OK)
1176 return ret;
1177
1178 if (rq->rq_disk &&
1179 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1180 return BLK_STS_IOERR;
1181
1182 if (blk_crypto_insert_cloned_request(rq))
1183 return BLK_STS_IOERR;
1184
1185 if (blk_queue_io_stat(q))
1186 blk_account_io_start(rq);
1187
1188 /*
1189 * Since we have a scheduler attached on the top device,
1190 * bypass a potential scheduler on the bottom device for
1191 * insert.
1192 */
1193 return blk_mq_request_issue_directly(rq, true);
1194 }
1195 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1196
1197 /**
1198 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1199 * @rq: request to examine
1200 *
1201 * Description:
1202 * A request could be merge of IOs which require different failure
1203 * handling. This function determines the number of bytes which
1204 * can be failed from the beginning of the request without
1205 * crossing into area which need to be retried further.
1206 *
1207 * Return:
1208 * The number of bytes to fail.
1209 */
1210 unsigned int blk_rq_err_bytes(const struct request *rq)
1211 {
1212 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1213 unsigned int bytes = 0;
1214 struct bio *bio;
1215
1216 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1217 return blk_rq_bytes(rq);
1218
1219 /*
1220 * Currently the only 'mixing' which can happen is between
1221 * different fastfail types. We can safely fail portions
1222 * which have all the failfast bits that the first one has -
1223 * the ones which are at least as eager to fail as the first
1224 * one.
1225 */
1226 for (bio = rq->bio; bio; bio = bio->bi_next) {
1227 if ((bio->bi_opf & ff) != ff)
1228 break;
1229 bytes += bio->bi_iter.bi_size;
1230 }
1231
1232 /* this could lead to infinite loop */
1233 BUG_ON(blk_rq_bytes(rq) && !bytes);
1234 return bytes;
1235 }
1236 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1237
1238 static void update_io_ticks(struct block_device *part, unsigned long now,
1239 bool end)
1240 {
1241 unsigned long stamp;
1242 again:
1243 stamp = READ_ONCE(part->bd_stamp);
1244 if (unlikely(time_after(now, stamp))) {
1245 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1246 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1247 }
1248 if (part->bd_partno) {
1249 part = bdev_whole(part);
1250 goto again;
1251 }
1252 }
1253
1254 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1255 {
1256 if (req->part && blk_do_io_stat(req)) {
1257 const int sgrp = op_stat_group(req_op(req));
1258
1259 part_stat_lock();
1260 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1261 part_stat_unlock();
1262 }
1263 }
1264
1265 void blk_account_io_done(struct request *req, u64 now)
1266 {
1267 /*
1268 * Account IO completion. flush_rq isn't accounted as a
1269 * normal IO on queueing nor completion. Accounting the
1270 * containing request is enough.
1271 */
1272 if (req->part && blk_do_io_stat(req) &&
1273 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1274 const int sgrp = op_stat_group(req_op(req));
1275
1276 part_stat_lock();
1277 update_io_ticks(req->part, jiffies, true);
1278 part_stat_inc(req->part, ios[sgrp]);
1279 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1280 part_stat_unlock();
1281 }
1282 }
1283
1284 void blk_account_io_start(struct request *rq)
1285 {
1286 if (!blk_do_io_stat(rq))
1287 return;
1288
1289 /* passthrough requests can hold bios that do not have ->bi_bdev set */
1290 if (rq->bio && rq->bio->bi_bdev)
1291 rq->part = rq->bio->bi_bdev;
1292 else
1293 rq->part = rq->rq_disk->part0;
1294
1295 part_stat_lock();
1296 update_io_ticks(rq->part, jiffies, false);
1297 part_stat_unlock();
1298 }
1299
1300 static unsigned long __part_start_io_acct(struct block_device *part,
1301 unsigned int sectors, unsigned int op)
1302 {
1303 const int sgrp = op_stat_group(op);
1304 unsigned long now = READ_ONCE(jiffies);
1305
1306 part_stat_lock();
1307 update_io_ticks(part, now, false);
1308 part_stat_inc(part, ios[sgrp]);
1309 part_stat_add(part, sectors[sgrp], sectors);
1310 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1311 part_stat_unlock();
1312
1313 return now;
1314 }
1315
1316 /**
1317 * bio_start_io_acct - start I/O accounting for bio based drivers
1318 * @bio: bio to start account for
1319 *
1320 * Returns the start time that should be passed back to bio_end_io_acct().
1321 */
1322 unsigned long bio_start_io_acct(struct bio *bio)
1323 {
1324 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1325 }
1326 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1327
1328 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1329 unsigned int op)
1330 {
1331 return __part_start_io_acct(disk->part0, sectors, op);
1332 }
1333 EXPORT_SYMBOL(disk_start_io_acct);
1334
1335 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1336 unsigned long start_time)
1337 {
1338 const int sgrp = op_stat_group(op);
1339 unsigned long now = READ_ONCE(jiffies);
1340 unsigned long duration = now - start_time;
1341
1342 part_stat_lock();
1343 update_io_ticks(part, now, true);
1344 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1345 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1346 part_stat_unlock();
1347 }
1348
1349 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1350 struct block_device *orig_bdev)
1351 {
1352 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1353 }
1354 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1355
1356 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1357 unsigned long start_time)
1358 {
1359 __part_end_io_acct(disk->part0, op, start_time);
1360 }
1361 EXPORT_SYMBOL(disk_end_io_acct);
1362
1363 /*
1364 * Steal bios from a request and add them to a bio list.
1365 * The request must not have been partially completed before.
1366 */
1367 void blk_steal_bios(struct bio_list *list, struct request *rq)
1368 {
1369 if (rq->bio) {
1370 if (list->tail)
1371 list->tail->bi_next = rq->bio;
1372 else
1373 list->head = rq->bio;
1374 list->tail = rq->biotail;
1375
1376 rq->bio = NULL;
1377 rq->biotail = NULL;
1378 }
1379
1380 rq->__data_len = 0;
1381 }
1382 EXPORT_SYMBOL_GPL(blk_steal_bios);
1383
1384 /**
1385 * blk_update_request - Complete multiple bytes without completing the request
1386 * @req: the request being processed
1387 * @error: block status code
1388 * @nr_bytes: number of bytes to complete for @req
1389 *
1390 * Description:
1391 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1392 * the request structure even if @req doesn't have leftover.
1393 * If @req has leftover, sets it up for the next range of segments.
1394 *
1395 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1396 * %false return from this function.
1397 *
1398 * Note:
1399 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
1400 * except in the consistency check at the end of this function.
1401 *
1402 * Return:
1403 * %false - this request doesn't have any more data
1404 * %true - this request has more data
1405 **/
1406 bool blk_update_request(struct request *req, blk_status_t error,
1407 unsigned int nr_bytes)
1408 {
1409 int total_bytes;
1410
1411 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1412
1413 if (!req->bio)
1414 return false;
1415
1416 #ifdef CONFIG_BLK_DEV_INTEGRITY
1417 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1418 error == BLK_STS_OK)
1419 req->q->integrity.profile->complete_fn(req, nr_bytes);
1420 #endif
1421
1422 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1423 !(req->rq_flags & RQF_QUIET)))
1424 print_req_error(req, error, __func__);
1425
1426 blk_account_io_completion(req, nr_bytes);
1427
1428 total_bytes = 0;
1429 while (req->bio) {
1430 struct bio *bio = req->bio;
1431 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1432
1433 if (bio_bytes == bio->bi_iter.bi_size)
1434 req->bio = bio->bi_next;
1435
1436 /* Completion has already been traced */
1437 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1438 req_bio_endio(req, bio, bio_bytes, error);
1439
1440 total_bytes += bio_bytes;
1441 nr_bytes -= bio_bytes;
1442
1443 if (!nr_bytes)
1444 break;
1445 }
1446
1447 /*
1448 * completely done
1449 */
1450 if (!req->bio) {
1451 /*
1452 * Reset counters so that the request stacking driver
1453 * can find how many bytes remain in the request
1454 * later.
1455 */
1456 req->__data_len = 0;
1457 return false;
1458 }
1459
1460 req->__data_len -= total_bytes;
1461
1462 /* update sector only for requests with clear definition of sector */
1463 if (!blk_rq_is_passthrough(req))
1464 req->__sector += total_bytes >> 9;
1465
1466 /* mixed attributes always follow the first bio */
1467 if (req->rq_flags & RQF_MIXED_MERGE) {
1468 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1469 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1470 }
1471
1472 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1473 /*
1474 * If total number of sectors is less than the first segment
1475 * size, something has gone terribly wrong.
1476 */
1477 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1478 blk_dump_rq_flags(req, "request botched");
1479 req->__data_len = blk_rq_cur_bytes(req);
1480 }
1481
1482 /* recalculate the number of segments */
1483 req->nr_phys_segments = blk_recalc_rq_segments(req);
1484 }
1485
1486 return true;
1487 }
1488 EXPORT_SYMBOL_GPL(blk_update_request);
1489
1490 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1491 /**
1492 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1493 * @rq: the request to be flushed
1494 *
1495 * Description:
1496 * Flush all pages in @rq.
1497 */
1498 void rq_flush_dcache_pages(struct request *rq)
1499 {
1500 struct req_iterator iter;
1501 struct bio_vec bvec;
1502
1503 rq_for_each_segment(bvec, rq, iter)
1504 flush_dcache_page(bvec.bv_page);
1505 }
1506 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1507 #endif
1508
1509 /**
1510 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1511 * @q : the queue of the device being checked
1512 *
1513 * Description:
1514 * Check if underlying low-level drivers of a device are busy.
1515 * If the drivers want to export their busy state, they must set own
1516 * exporting function using blk_queue_lld_busy() first.
1517 *
1518 * Basically, this function is used only by request stacking drivers
1519 * to stop dispatching requests to underlying devices when underlying
1520 * devices are busy. This behavior helps more I/O merging on the queue
1521 * of the request stacking driver and prevents I/O throughput regression
1522 * on burst I/O load.
1523 *
1524 * Return:
1525 * 0 - Not busy (The request stacking driver should dispatch request)
1526 * 1 - Busy (The request stacking driver should stop dispatching request)
1527 */
1528 int blk_lld_busy(struct request_queue *q)
1529 {
1530 if (queue_is_mq(q) && q->mq_ops->busy)
1531 return q->mq_ops->busy(q);
1532
1533 return 0;
1534 }
1535 EXPORT_SYMBOL_GPL(blk_lld_busy);
1536
1537 /**
1538 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1539 * @rq: the clone request to be cleaned up
1540 *
1541 * Description:
1542 * Free all bios in @rq for a cloned request.
1543 */
1544 void blk_rq_unprep_clone(struct request *rq)
1545 {
1546 struct bio *bio;
1547
1548 while ((bio = rq->bio) != NULL) {
1549 rq->bio = bio->bi_next;
1550
1551 bio_put(bio);
1552 }
1553 }
1554 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1555
1556 /**
1557 * blk_rq_prep_clone - Helper function to setup clone request
1558 * @rq: the request to be setup
1559 * @rq_src: original request to be cloned
1560 * @bs: bio_set that bios for clone are allocated from
1561 * @gfp_mask: memory allocation mask for bio
1562 * @bio_ctr: setup function to be called for each clone bio.
1563 * Returns %0 for success, non %0 for failure.
1564 * @data: private data to be passed to @bio_ctr
1565 *
1566 * Description:
1567 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1568 * Also, pages which the original bios are pointing to are not copied
1569 * and the cloned bios just point same pages.
1570 * So cloned bios must be completed before original bios, which means
1571 * the caller must complete @rq before @rq_src.
1572 */
1573 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1574 struct bio_set *bs, gfp_t gfp_mask,
1575 int (*bio_ctr)(struct bio *, struct bio *, void *),
1576 void *data)
1577 {
1578 struct bio *bio, *bio_src;
1579
1580 if (!bs)
1581 bs = &fs_bio_set;
1582
1583 __rq_for_each_bio(bio_src, rq_src) {
1584 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1585 if (!bio)
1586 goto free_and_out;
1587
1588 if (bio_ctr && bio_ctr(bio, bio_src, data))
1589 goto free_and_out;
1590
1591 if (rq->bio) {
1592 rq->biotail->bi_next = bio;
1593 rq->biotail = bio;
1594 } else {
1595 rq->bio = rq->biotail = bio;
1596 }
1597 bio = NULL;
1598 }
1599
1600 /* Copy attributes of the original request to the clone request. */
1601 rq->__sector = blk_rq_pos(rq_src);
1602 rq->__data_len = blk_rq_bytes(rq_src);
1603 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1604 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1605 rq->special_vec = rq_src->special_vec;
1606 }
1607 rq->nr_phys_segments = rq_src->nr_phys_segments;
1608 rq->ioprio = rq_src->ioprio;
1609
1610 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1611 goto free_and_out;
1612
1613 return 0;
1614
1615 free_and_out:
1616 if (bio)
1617 bio_put(bio);
1618 blk_rq_unprep_clone(rq);
1619
1620 return -ENOMEM;
1621 }
1622 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1623
1624 int kblockd_schedule_work(struct work_struct *work)
1625 {
1626 return queue_work(kblockd_workqueue, work);
1627 }
1628 EXPORT_SYMBOL(kblockd_schedule_work);
1629
1630 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1631 unsigned long delay)
1632 {
1633 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1634 }
1635 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1636
1637 /**
1638 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1639 * @plug: The &struct blk_plug that needs to be initialized
1640 *
1641 * Description:
1642 * blk_start_plug() indicates to the block layer an intent by the caller
1643 * to submit multiple I/O requests in a batch. The block layer may use
1644 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1645 * is called. However, the block layer may choose to submit requests
1646 * before a call to blk_finish_plug() if the number of queued I/Os
1647 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1648 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1649 * the task schedules (see below).
1650 *
1651 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1652 * pending I/O should the task end up blocking between blk_start_plug() and
1653 * blk_finish_plug(). This is important from a performance perspective, but
1654 * also ensures that we don't deadlock. For instance, if the task is blocking
1655 * for a memory allocation, memory reclaim could end up wanting to free a
1656 * page belonging to that request that is currently residing in our private
1657 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1658 * this kind of deadlock.
1659 */
1660 void blk_start_plug(struct blk_plug *plug)
1661 {
1662 struct task_struct *tsk = current;
1663
1664 /*
1665 * If this is a nested plug, don't actually assign it.
1666 */
1667 if (tsk->plug)
1668 return;
1669
1670 INIT_LIST_HEAD(&plug->mq_list);
1671 INIT_LIST_HEAD(&plug->cb_list);
1672 plug->rq_count = 0;
1673 plug->multiple_queues = false;
1674 plug->nowait = false;
1675
1676 /*
1677 * Store ordering should not be needed here, since a potential
1678 * preempt will imply a full memory barrier
1679 */
1680 tsk->plug = plug;
1681 }
1682 EXPORT_SYMBOL(blk_start_plug);
1683
1684 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1685 {
1686 LIST_HEAD(callbacks);
1687
1688 while (!list_empty(&plug->cb_list)) {
1689 list_splice_init(&plug->cb_list, &callbacks);
1690
1691 while (!list_empty(&callbacks)) {
1692 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1693 struct blk_plug_cb,
1694 list);
1695 list_del(&cb->list);
1696 cb->callback(cb, from_schedule);
1697 }
1698 }
1699 }
1700
1701 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1702 int size)
1703 {
1704 struct blk_plug *plug = current->plug;
1705 struct blk_plug_cb *cb;
1706
1707 if (!plug)
1708 return NULL;
1709
1710 list_for_each_entry(cb, &plug->cb_list, list)
1711 if (cb->callback == unplug && cb->data == data)
1712 return cb;
1713
1714 /* Not currently on the callback list */
1715 BUG_ON(size < sizeof(*cb));
1716 cb = kzalloc(size, GFP_ATOMIC);
1717 if (cb) {
1718 cb->data = data;
1719 cb->callback = unplug;
1720 list_add(&cb->list, &plug->cb_list);
1721 }
1722 return cb;
1723 }
1724 EXPORT_SYMBOL(blk_check_plugged);
1725
1726 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1727 {
1728 flush_plug_callbacks(plug, from_schedule);
1729
1730 if (!list_empty(&plug->mq_list))
1731 blk_mq_flush_plug_list(plug, from_schedule);
1732 }
1733
1734 /**
1735 * blk_finish_plug - mark the end of a batch of submitted I/O
1736 * @plug: The &struct blk_plug passed to blk_start_plug()
1737 *
1738 * Description:
1739 * Indicate that a batch of I/O submissions is complete. This function
1740 * must be paired with an initial call to blk_start_plug(). The intent
1741 * is to allow the block layer to optimize I/O submission. See the
1742 * documentation for blk_start_plug() for more information.
1743 */
1744 void blk_finish_plug(struct blk_plug *plug)
1745 {
1746 if (plug != current->plug)
1747 return;
1748 blk_flush_plug_list(plug, false);
1749
1750 current->plug = NULL;
1751 }
1752 EXPORT_SYMBOL(blk_finish_plug);
1753
1754 void blk_io_schedule(void)
1755 {
1756 /* Prevent hang_check timer from firing at us during very long I/O */
1757 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1758
1759 if (timeout)
1760 io_schedule_timeout(timeout);
1761 else
1762 io_schedule();
1763 }
1764 EXPORT_SYMBOL_GPL(blk_io_schedule);
1765
1766 int __init blk_dev_init(void)
1767 {
1768 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1769 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1770 sizeof_field(struct request, cmd_flags));
1771 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1772 sizeof_field(struct bio, bi_opf));
1773
1774 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1775 kblockd_workqueue = alloc_workqueue("kblockd",
1776 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1777 if (!kblockd_workqueue)
1778 panic("Failed to create kblockd\n");
1779
1780 blk_requestq_cachep = kmem_cache_create("request_queue",
1781 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1782
1783 blk_debugfs_root = debugfs_create_dir("block", NULL);
1784
1785 return 0;
1786 }