]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
17eed16a6e0405857cf4b2431049384d523cc713
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 cancel_delayed_work_sync(&q->requeue_work);
343 queue_for_each_hw_ctx(q, hctx, i)
344 cancel_delayed_work_sync(&hctx->run_work);
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350
351 /**
352 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
353 * @q: The queue to run
354 *
355 * Description:
356 * Invoke request handling on a queue if there are any pending requests.
357 * May be used to restart request handling after a request has completed.
358 * This variant runs the queue whether or not the queue has been
359 * stopped. Must be called with the queue lock held and interrupts
360 * disabled. See also @blk_run_queue.
361 */
362 inline void __blk_run_queue_uncond(struct request_queue *q)
363 {
364 lockdep_assert_held(q->queue_lock);
365 WARN_ON_ONCE(q->mq_ops);
366
367 if (unlikely(blk_queue_dead(q)))
368 return;
369
370 /*
371 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
372 * the queue lock internally. As a result multiple threads may be
373 * running such a request function concurrently. Keep track of the
374 * number of active request_fn invocations such that blk_drain_queue()
375 * can wait until all these request_fn calls have finished.
376 */
377 q->request_fn_active++;
378 q->request_fn(q);
379 q->request_fn_active--;
380 }
381 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
382
383 /**
384 * __blk_run_queue - run a single device queue
385 * @q: The queue to run
386 *
387 * Description:
388 * See @blk_run_queue.
389 */
390 void __blk_run_queue(struct request_queue *q)
391 {
392 lockdep_assert_held(q->queue_lock);
393 WARN_ON_ONCE(q->mq_ops);
394
395 if (unlikely(blk_queue_stopped(q)))
396 return;
397
398 __blk_run_queue_uncond(q);
399 }
400 EXPORT_SYMBOL(__blk_run_queue);
401
402 /**
403 * blk_run_queue_async - run a single device queue in workqueue context
404 * @q: The queue to run
405 *
406 * Description:
407 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
408 * of us.
409 *
410 * Note:
411 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
412 * has canceled q->delay_work, callers must hold the queue lock to avoid
413 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
414 */
415 void blk_run_queue_async(struct request_queue *q)
416 {
417 lockdep_assert_held(q->queue_lock);
418 WARN_ON_ONCE(q->mq_ops);
419
420 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
421 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
422 }
423 EXPORT_SYMBOL(blk_run_queue_async);
424
425 /**
426 * blk_run_queue - run a single device queue
427 * @q: The queue to run
428 *
429 * Description:
430 * Invoke request handling on this queue, if it has pending work to do.
431 * May be used to restart queueing when a request has completed.
432 */
433 void blk_run_queue(struct request_queue *q)
434 {
435 unsigned long flags;
436
437 WARN_ON_ONCE(q->mq_ops);
438
439 spin_lock_irqsave(q->queue_lock, flags);
440 __blk_run_queue(q);
441 spin_unlock_irqrestore(q->queue_lock, flags);
442 }
443 EXPORT_SYMBOL(blk_run_queue);
444
445 void blk_put_queue(struct request_queue *q)
446 {
447 kobject_put(&q->kobj);
448 }
449 EXPORT_SYMBOL(blk_put_queue);
450
451 /**
452 * __blk_drain_queue - drain requests from request_queue
453 * @q: queue to drain
454 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
455 *
456 * Drain requests from @q. If @drain_all is set, all requests are drained.
457 * If not, only ELVPRIV requests are drained. The caller is responsible
458 * for ensuring that no new requests which need to be drained are queued.
459 */
460 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
461 __releases(q->queue_lock)
462 __acquires(q->queue_lock)
463 {
464 int i;
465
466 lockdep_assert_held(q->queue_lock);
467 WARN_ON_ONCE(q->mq_ops);
468
469 while (true) {
470 bool drain = false;
471
472 /*
473 * The caller might be trying to drain @q before its
474 * elevator is initialized.
475 */
476 if (q->elevator)
477 elv_drain_elevator(q);
478
479 blkcg_drain_queue(q);
480
481 /*
482 * This function might be called on a queue which failed
483 * driver init after queue creation or is not yet fully
484 * active yet. Some drivers (e.g. fd and loop) get unhappy
485 * in such cases. Kick queue iff dispatch queue has
486 * something on it and @q has request_fn set.
487 */
488 if (!list_empty(&q->queue_head) && q->request_fn)
489 __blk_run_queue(q);
490
491 drain |= q->nr_rqs_elvpriv;
492 drain |= q->request_fn_active;
493
494 /*
495 * Unfortunately, requests are queued at and tracked from
496 * multiple places and there's no single counter which can
497 * be drained. Check all the queues and counters.
498 */
499 if (drain_all) {
500 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
501 drain |= !list_empty(&q->queue_head);
502 for (i = 0; i < 2; i++) {
503 drain |= q->nr_rqs[i];
504 drain |= q->in_flight[i];
505 if (fq)
506 drain |= !list_empty(&fq->flush_queue[i]);
507 }
508 }
509
510 if (!drain)
511 break;
512
513 spin_unlock_irq(q->queue_lock);
514
515 msleep(10);
516
517 spin_lock_irq(q->queue_lock);
518 }
519
520 /*
521 * With queue marked dead, any woken up waiter will fail the
522 * allocation path, so the wakeup chaining is lost and we're
523 * left with hung waiters. We need to wake up those waiters.
524 */
525 if (q->request_fn) {
526 struct request_list *rl;
527
528 blk_queue_for_each_rl(rl, q)
529 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
530 wake_up_all(&rl->wait[i]);
531 }
532 }
533
534 /**
535 * blk_queue_bypass_start - enter queue bypass mode
536 * @q: queue of interest
537 *
538 * In bypass mode, only the dispatch FIFO queue of @q is used. This
539 * function makes @q enter bypass mode and drains all requests which were
540 * throttled or issued before. On return, it's guaranteed that no request
541 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
542 * inside queue or RCU read lock.
543 */
544 void blk_queue_bypass_start(struct request_queue *q)
545 {
546 WARN_ON_ONCE(q->mq_ops);
547
548 spin_lock_irq(q->queue_lock);
549 q->bypass_depth++;
550 queue_flag_set(QUEUE_FLAG_BYPASS, q);
551 spin_unlock_irq(q->queue_lock);
552
553 /*
554 * Queues start drained. Skip actual draining till init is
555 * complete. This avoids lenghty delays during queue init which
556 * can happen many times during boot.
557 */
558 if (blk_queue_init_done(q)) {
559 spin_lock_irq(q->queue_lock);
560 __blk_drain_queue(q, false);
561 spin_unlock_irq(q->queue_lock);
562
563 /* ensure blk_queue_bypass() is %true inside RCU read lock */
564 synchronize_rcu();
565 }
566 }
567 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
568
569 /**
570 * blk_queue_bypass_end - leave queue bypass mode
571 * @q: queue of interest
572 *
573 * Leave bypass mode and restore the normal queueing behavior.
574 *
575 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
576 * this function is called for both blk-sq and blk-mq queues.
577 */
578 void blk_queue_bypass_end(struct request_queue *q)
579 {
580 spin_lock_irq(q->queue_lock);
581 if (!--q->bypass_depth)
582 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
583 WARN_ON_ONCE(q->bypass_depth < 0);
584 spin_unlock_irq(q->queue_lock);
585 }
586 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
587
588 void blk_set_queue_dying(struct request_queue *q)
589 {
590 spin_lock_irq(q->queue_lock);
591 queue_flag_set(QUEUE_FLAG_DYING, q);
592 spin_unlock_irq(q->queue_lock);
593
594 /*
595 * When queue DYING flag is set, we need to block new req
596 * entering queue, so we call blk_freeze_queue_start() to
597 * prevent I/O from crossing blk_queue_enter().
598 */
599 blk_freeze_queue_start(q);
600
601 if (q->mq_ops)
602 blk_mq_wake_waiters(q);
603 else {
604 struct request_list *rl;
605
606 spin_lock_irq(q->queue_lock);
607 blk_queue_for_each_rl(rl, q) {
608 if (rl->rq_pool) {
609 wake_up(&rl->wait[BLK_RW_SYNC]);
610 wake_up(&rl->wait[BLK_RW_ASYNC]);
611 }
612 }
613 spin_unlock_irq(q->queue_lock);
614 }
615
616 /* Make blk_queue_enter() reexamine the DYING flag. */
617 wake_up_all(&q->mq_freeze_wq);
618 }
619 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
620
621 /**
622 * blk_cleanup_queue - shutdown a request queue
623 * @q: request queue to shutdown
624 *
625 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
626 * put it. All future requests will be failed immediately with -ENODEV.
627 */
628 void blk_cleanup_queue(struct request_queue *q)
629 {
630 spinlock_t *lock = q->queue_lock;
631
632 /* mark @q DYING, no new request or merges will be allowed afterwards */
633 mutex_lock(&q->sysfs_lock);
634 blk_set_queue_dying(q);
635 spin_lock_irq(lock);
636
637 /*
638 * A dying queue is permanently in bypass mode till released. Note
639 * that, unlike blk_queue_bypass_start(), we aren't performing
640 * synchronize_rcu() after entering bypass mode to avoid the delay
641 * as some drivers create and destroy a lot of queues while
642 * probing. This is still safe because blk_release_queue() will be
643 * called only after the queue refcnt drops to zero and nothing,
644 * RCU or not, would be traversing the queue by then.
645 */
646 q->bypass_depth++;
647 queue_flag_set(QUEUE_FLAG_BYPASS, q);
648
649 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
650 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
651 queue_flag_set(QUEUE_FLAG_DYING, q);
652 spin_unlock_irq(lock);
653 mutex_unlock(&q->sysfs_lock);
654
655 /*
656 * Drain all requests queued before DYING marking. Set DEAD flag to
657 * prevent that q->request_fn() gets invoked after draining finished.
658 */
659 blk_freeze_queue(q);
660 spin_lock_irq(lock);
661 if (!q->mq_ops)
662 __blk_drain_queue(q, true);
663 queue_flag_set(QUEUE_FLAG_DEAD, q);
664 spin_unlock_irq(lock);
665
666 /* for synchronous bio-based driver finish in-flight integrity i/o */
667 blk_flush_integrity();
668
669 /* @q won't process any more request, flush async actions */
670 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
671 blk_sync_queue(q);
672
673 if (q->mq_ops)
674 blk_mq_free_queue(q);
675 percpu_ref_exit(&q->q_usage_counter);
676
677 spin_lock_irq(lock);
678 if (q->queue_lock != &q->__queue_lock)
679 q->queue_lock = &q->__queue_lock;
680 spin_unlock_irq(lock);
681
682 /* @q is and will stay empty, shutdown and put */
683 blk_put_queue(q);
684 }
685 EXPORT_SYMBOL(blk_cleanup_queue);
686
687 /* Allocate memory local to the request queue */
688 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
689 {
690 struct request_queue *q = data;
691
692 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
693 }
694
695 static void free_request_simple(void *element, void *data)
696 {
697 kmem_cache_free(request_cachep, element);
698 }
699
700 static void *alloc_request_size(gfp_t gfp_mask, void *data)
701 {
702 struct request_queue *q = data;
703 struct request *rq;
704
705 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
706 q->node);
707 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
708 kfree(rq);
709 rq = NULL;
710 }
711 return rq;
712 }
713
714 static void free_request_size(void *element, void *data)
715 {
716 struct request_queue *q = data;
717
718 if (q->exit_rq_fn)
719 q->exit_rq_fn(q, element);
720 kfree(element);
721 }
722
723 int blk_init_rl(struct request_list *rl, struct request_queue *q,
724 gfp_t gfp_mask)
725 {
726 if (unlikely(rl->rq_pool) || q->mq_ops)
727 return 0;
728
729 rl->q = q;
730 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
731 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
732 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
733 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
734
735 if (q->cmd_size) {
736 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
737 alloc_request_size, free_request_size,
738 q, gfp_mask, q->node);
739 } else {
740 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
741 alloc_request_simple, free_request_simple,
742 q, gfp_mask, q->node);
743 }
744 if (!rl->rq_pool)
745 return -ENOMEM;
746
747 if (rl != &q->root_rl)
748 WARN_ON_ONCE(!blk_get_queue(q));
749
750 return 0;
751 }
752
753 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
754 {
755 if (rl->rq_pool) {
756 mempool_destroy(rl->rq_pool);
757 if (rl != &q->root_rl)
758 blk_put_queue(q);
759 }
760 }
761
762 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
763 {
764 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
765 }
766 EXPORT_SYMBOL(blk_alloc_queue);
767
768 int blk_queue_enter(struct request_queue *q, bool nowait)
769 {
770 while (true) {
771 int ret;
772
773 if (percpu_ref_tryget_live(&q->q_usage_counter))
774 return 0;
775
776 if (nowait)
777 return -EBUSY;
778
779 /*
780 * read pair of barrier in blk_freeze_queue_start(),
781 * we need to order reading __PERCPU_REF_DEAD flag of
782 * .q_usage_counter and reading .mq_freeze_depth or
783 * queue dying flag, otherwise the following wait may
784 * never return if the two reads are reordered.
785 */
786 smp_rmb();
787
788 ret = wait_event_interruptible(q->mq_freeze_wq,
789 !atomic_read(&q->mq_freeze_depth) ||
790 blk_queue_dying(q));
791 if (blk_queue_dying(q))
792 return -ENODEV;
793 if (ret)
794 return ret;
795 }
796 }
797
798 void blk_queue_exit(struct request_queue *q)
799 {
800 percpu_ref_put(&q->q_usage_counter);
801 }
802
803 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
804 {
805 struct request_queue *q =
806 container_of(ref, struct request_queue, q_usage_counter);
807
808 wake_up_all(&q->mq_freeze_wq);
809 }
810
811 static void blk_rq_timed_out_timer(unsigned long data)
812 {
813 struct request_queue *q = (struct request_queue *)data;
814
815 kblockd_schedule_work(&q->timeout_work);
816 }
817
818 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
819 {
820 struct request_queue *q;
821
822 q = kmem_cache_alloc_node(blk_requestq_cachep,
823 gfp_mask | __GFP_ZERO, node_id);
824 if (!q)
825 return NULL;
826
827 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
828 if (q->id < 0)
829 goto fail_q;
830
831 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
832 if (!q->bio_split)
833 goto fail_id;
834
835 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
836 if (!q->backing_dev_info)
837 goto fail_split;
838
839 q->stats = blk_alloc_queue_stats();
840 if (!q->stats)
841 goto fail_stats;
842
843 q->backing_dev_info->ra_pages =
844 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
845 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
846 q->backing_dev_info->name = "block";
847 q->node = node_id;
848
849 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
850 laptop_mode_timer_fn, (unsigned long) q);
851 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
852 INIT_WORK(&q->timeout_work, NULL);
853 INIT_LIST_HEAD(&q->queue_head);
854 INIT_LIST_HEAD(&q->timeout_list);
855 INIT_LIST_HEAD(&q->icq_list);
856 #ifdef CONFIG_BLK_CGROUP
857 INIT_LIST_HEAD(&q->blkg_list);
858 #endif
859 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
860
861 kobject_init(&q->kobj, &blk_queue_ktype);
862
863 #ifdef CONFIG_BLK_DEV_IO_TRACE
864 mutex_init(&q->blk_trace_mutex);
865 #endif
866 mutex_init(&q->sysfs_lock);
867 spin_lock_init(&q->__queue_lock);
868
869 /*
870 * By default initialize queue_lock to internal lock and driver can
871 * override it later if need be.
872 */
873 q->queue_lock = &q->__queue_lock;
874
875 /*
876 * A queue starts its life with bypass turned on to avoid
877 * unnecessary bypass on/off overhead and nasty surprises during
878 * init. The initial bypass will be finished when the queue is
879 * registered by blk_register_queue().
880 */
881 q->bypass_depth = 1;
882 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
883
884 init_waitqueue_head(&q->mq_freeze_wq);
885
886 /*
887 * Init percpu_ref in atomic mode so that it's faster to shutdown.
888 * See blk_register_queue() for details.
889 */
890 if (percpu_ref_init(&q->q_usage_counter,
891 blk_queue_usage_counter_release,
892 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
893 goto fail_bdi;
894
895 if (blkcg_init_queue(q))
896 goto fail_ref;
897
898 return q;
899
900 fail_ref:
901 percpu_ref_exit(&q->q_usage_counter);
902 fail_bdi:
903 blk_free_queue_stats(q->stats);
904 fail_stats:
905 bdi_put(q->backing_dev_info);
906 fail_split:
907 bioset_free(q->bio_split);
908 fail_id:
909 ida_simple_remove(&blk_queue_ida, q->id);
910 fail_q:
911 kmem_cache_free(blk_requestq_cachep, q);
912 return NULL;
913 }
914 EXPORT_SYMBOL(blk_alloc_queue_node);
915
916 /**
917 * blk_init_queue - prepare a request queue for use with a block device
918 * @rfn: The function to be called to process requests that have been
919 * placed on the queue.
920 * @lock: Request queue spin lock
921 *
922 * Description:
923 * If a block device wishes to use the standard request handling procedures,
924 * which sorts requests and coalesces adjacent requests, then it must
925 * call blk_init_queue(). The function @rfn will be called when there
926 * are requests on the queue that need to be processed. If the device
927 * supports plugging, then @rfn may not be called immediately when requests
928 * are available on the queue, but may be called at some time later instead.
929 * Plugged queues are generally unplugged when a buffer belonging to one
930 * of the requests on the queue is needed, or due to memory pressure.
931 *
932 * @rfn is not required, or even expected, to remove all requests off the
933 * queue, but only as many as it can handle at a time. If it does leave
934 * requests on the queue, it is responsible for arranging that the requests
935 * get dealt with eventually.
936 *
937 * The queue spin lock must be held while manipulating the requests on the
938 * request queue; this lock will be taken also from interrupt context, so irq
939 * disabling is needed for it.
940 *
941 * Function returns a pointer to the initialized request queue, or %NULL if
942 * it didn't succeed.
943 *
944 * Note:
945 * blk_init_queue() must be paired with a blk_cleanup_queue() call
946 * when the block device is deactivated (such as at module unload).
947 **/
948
949 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
950 {
951 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
952 }
953 EXPORT_SYMBOL(blk_init_queue);
954
955 struct request_queue *
956 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
957 {
958 struct request_queue *q;
959
960 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
961 if (!q)
962 return NULL;
963
964 q->request_fn = rfn;
965 if (lock)
966 q->queue_lock = lock;
967 if (blk_init_allocated_queue(q) < 0) {
968 blk_cleanup_queue(q);
969 return NULL;
970 }
971
972 return q;
973 }
974 EXPORT_SYMBOL(blk_init_queue_node);
975
976 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
977
978
979 int blk_init_allocated_queue(struct request_queue *q)
980 {
981 WARN_ON_ONCE(q->mq_ops);
982
983 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
984 if (!q->fq)
985 return -ENOMEM;
986
987 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
988 goto out_free_flush_queue;
989
990 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
991 goto out_exit_flush_rq;
992
993 INIT_WORK(&q->timeout_work, blk_timeout_work);
994 q->queue_flags |= QUEUE_FLAG_DEFAULT;
995
996 /*
997 * This also sets hw/phys segments, boundary and size
998 */
999 blk_queue_make_request(q, blk_queue_bio);
1000
1001 q->sg_reserved_size = INT_MAX;
1002
1003 /* Protect q->elevator from elevator_change */
1004 mutex_lock(&q->sysfs_lock);
1005
1006 /* init elevator */
1007 if (elevator_init(q, NULL)) {
1008 mutex_unlock(&q->sysfs_lock);
1009 goto out_exit_flush_rq;
1010 }
1011
1012 mutex_unlock(&q->sysfs_lock);
1013 return 0;
1014
1015 out_exit_flush_rq:
1016 if (q->exit_rq_fn)
1017 q->exit_rq_fn(q, q->fq->flush_rq);
1018 out_free_flush_queue:
1019 blk_free_flush_queue(q->fq);
1020 return -ENOMEM;
1021 }
1022 EXPORT_SYMBOL(blk_init_allocated_queue);
1023
1024 bool blk_get_queue(struct request_queue *q)
1025 {
1026 if (likely(!blk_queue_dying(q))) {
1027 __blk_get_queue(q);
1028 return true;
1029 }
1030
1031 return false;
1032 }
1033 EXPORT_SYMBOL(blk_get_queue);
1034
1035 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1036 {
1037 if (rq->rq_flags & RQF_ELVPRIV) {
1038 elv_put_request(rl->q, rq);
1039 if (rq->elv.icq)
1040 put_io_context(rq->elv.icq->ioc);
1041 }
1042
1043 mempool_free(rq, rl->rq_pool);
1044 }
1045
1046 /*
1047 * ioc_batching returns true if the ioc is a valid batching request and
1048 * should be given priority access to a request.
1049 */
1050 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1051 {
1052 if (!ioc)
1053 return 0;
1054
1055 /*
1056 * Make sure the process is able to allocate at least 1 request
1057 * even if the batch times out, otherwise we could theoretically
1058 * lose wakeups.
1059 */
1060 return ioc->nr_batch_requests == q->nr_batching ||
1061 (ioc->nr_batch_requests > 0
1062 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1063 }
1064
1065 /*
1066 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1067 * will cause the process to be a "batcher" on all queues in the system. This
1068 * is the behaviour we want though - once it gets a wakeup it should be given
1069 * a nice run.
1070 */
1071 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1072 {
1073 if (!ioc || ioc_batching(q, ioc))
1074 return;
1075
1076 ioc->nr_batch_requests = q->nr_batching;
1077 ioc->last_waited = jiffies;
1078 }
1079
1080 static void __freed_request(struct request_list *rl, int sync)
1081 {
1082 struct request_queue *q = rl->q;
1083
1084 if (rl->count[sync] < queue_congestion_off_threshold(q))
1085 blk_clear_congested(rl, sync);
1086
1087 if (rl->count[sync] + 1 <= q->nr_requests) {
1088 if (waitqueue_active(&rl->wait[sync]))
1089 wake_up(&rl->wait[sync]);
1090
1091 blk_clear_rl_full(rl, sync);
1092 }
1093 }
1094
1095 /*
1096 * A request has just been released. Account for it, update the full and
1097 * congestion status, wake up any waiters. Called under q->queue_lock.
1098 */
1099 static void freed_request(struct request_list *rl, bool sync,
1100 req_flags_t rq_flags)
1101 {
1102 struct request_queue *q = rl->q;
1103
1104 q->nr_rqs[sync]--;
1105 rl->count[sync]--;
1106 if (rq_flags & RQF_ELVPRIV)
1107 q->nr_rqs_elvpriv--;
1108
1109 __freed_request(rl, sync);
1110
1111 if (unlikely(rl->starved[sync ^ 1]))
1112 __freed_request(rl, sync ^ 1);
1113 }
1114
1115 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1116 {
1117 struct request_list *rl;
1118 int on_thresh, off_thresh;
1119
1120 WARN_ON_ONCE(q->mq_ops);
1121
1122 spin_lock_irq(q->queue_lock);
1123 q->nr_requests = nr;
1124 blk_queue_congestion_threshold(q);
1125 on_thresh = queue_congestion_on_threshold(q);
1126 off_thresh = queue_congestion_off_threshold(q);
1127
1128 blk_queue_for_each_rl(rl, q) {
1129 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1130 blk_set_congested(rl, BLK_RW_SYNC);
1131 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1132 blk_clear_congested(rl, BLK_RW_SYNC);
1133
1134 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1135 blk_set_congested(rl, BLK_RW_ASYNC);
1136 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1137 blk_clear_congested(rl, BLK_RW_ASYNC);
1138
1139 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1140 blk_set_rl_full(rl, BLK_RW_SYNC);
1141 } else {
1142 blk_clear_rl_full(rl, BLK_RW_SYNC);
1143 wake_up(&rl->wait[BLK_RW_SYNC]);
1144 }
1145
1146 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1147 blk_set_rl_full(rl, BLK_RW_ASYNC);
1148 } else {
1149 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1150 wake_up(&rl->wait[BLK_RW_ASYNC]);
1151 }
1152 }
1153
1154 spin_unlock_irq(q->queue_lock);
1155 return 0;
1156 }
1157
1158 /**
1159 * __get_request - get a free request
1160 * @rl: request list to allocate from
1161 * @op: operation and flags
1162 * @bio: bio to allocate request for (can be %NULL)
1163 * @flags: BLQ_MQ_REQ_* flags
1164 *
1165 * Get a free request from @q. This function may fail under memory
1166 * pressure or if @q is dead.
1167 *
1168 * Must be called with @q->queue_lock held and,
1169 * Returns ERR_PTR on failure, with @q->queue_lock held.
1170 * Returns request pointer on success, with @q->queue_lock *not held*.
1171 */
1172 static struct request *__get_request(struct request_list *rl, unsigned int op,
1173 struct bio *bio, unsigned int flags)
1174 {
1175 struct request_queue *q = rl->q;
1176 struct request *rq;
1177 struct elevator_type *et = q->elevator->type;
1178 struct io_context *ioc = rq_ioc(bio);
1179 struct io_cq *icq = NULL;
1180 const bool is_sync = op_is_sync(op);
1181 int may_queue;
1182 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1183 __GFP_DIRECT_RECLAIM;
1184 req_flags_t rq_flags = RQF_ALLOCED;
1185
1186 lockdep_assert_held(q->queue_lock);
1187
1188 if (unlikely(blk_queue_dying(q)))
1189 return ERR_PTR(-ENODEV);
1190
1191 may_queue = elv_may_queue(q, op);
1192 if (may_queue == ELV_MQUEUE_NO)
1193 goto rq_starved;
1194
1195 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1196 if (rl->count[is_sync]+1 >= q->nr_requests) {
1197 /*
1198 * The queue will fill after this allocation, so set
1199 * it as full, and mark this process as "batching".
1200 * This process will be allowed to complete a batch of
1201 * requests, others will be blocked.
1202 */
1203 if (!blk_rl_full(rl, is_sync)) {
1204 ioc_set_batching(q, ioc);
1205 blk_set_rl_full(rl, is_sync);
1206 } else {
1207 if (may_queue != ELV_MQUEUE_MUST
1208 && !ioc_batching(q, ioc)) {
1209 /*
1210 * The queue is full and the allocating
1211 * process is not a "batcher", and not
1212 * exempted by the IO scheduler
1213 */
1214 return ERR_PTR(-ENOMEM);
1215 }
1216 }
1217 }
1218 blk_set_congested(rl, is_sync);
1219 }
1220
1221 /*
1222 * Only allow batching queuers to allocate up to 50% over the defined
1223 * limit of requests, otherwise we could have thousands of requests
1224 * allocated with any setting of ->nr_requests
1225 */
1226 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1227 return ERR_PTR(-ENOMEM);
1228
1229 q->nr_rqs[is_sync]++;
1230 rl->count[is_sync]++;
1231 rl->starved[is_sync] = 0;
1232
1233 /*
1234 * Decide whether the new request will be managed by elevator. If
1235 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1236 * prevent the current elevator from being destroyed until the new
1237 * request is freed. This guarantees icq's won't be destroyed and
1238 * makes creating new ones safe.
1239 *
1240 * Flush requests do not use the elevator so skip initialization.
1241 * This allows a request to share the flush and elevator data.
1242 *
1243 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1244 * it will be created after releasing queue_lock.
1245 */
1246 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1247 rq_flags |= RQF_ELVPRIV;
1248 q->nr_rqs_elvpriv++;
1249 if (et->icq_cache && ioc)
1250 icq = ioc_lookup_icq(ioc, q);
1251 }
1252
1253 if (blk_queue_io_stat(q))
1254 rq_flags |= RQF_IO_STAT;
1255 spin_unlock_irq(q->queue_lock);
1256
1257 /* allocate and init request */
1258 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1259 if (!rq)
1260 goto fail_alloc;
1261
1262 blk_rq_init(q, rq);
1263 blk_rq_set_rl(rq, rl);
1264 rq->cmd_flags = op;
1265 rq->rq_flags = rq_flags;
1266 if (flags & BLK_MQ_REQ_PREEMPT)
1267 rq->rq_flags |= RQF_PREEMPT;
1268
1269 /* init elvpriv */
1270 if (rq_flags & RQF_ELVPRIV) {
1271 if (unlikely(et->icq_cache && !icq)) {
1272 if (ioc)
1273 icq = ioc_create_icq(ioc, q, gfp_mask);
1274 if (!icq)
1275 goto fail_elvpriv;
1276 }
1277
1278 rq->elv.icq = icq;
1279 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1280 goto fail_elvpriv;
1281
1282 /* @rq->elv.icq holds io_context until @rq is freed */
1283 if (icq)
1284 get_io_context(icq->ioc);
1285 }
1286 out:
1287 /*
1288 * ioc may be NULL here, and ioc_batching will be false. That's
1289 * OK, if the queue is under the request limit then requests need
1290 * not count toward the nr_batch_requests limit. There will always
1291 * be some limit enforced by BLK_BATCH_TIME.
1292 */
1293 if (ioc_batching(q, ioc))
1294 ioc->nr_batch_requests--;
1295
1296 trace_block_getrq(q, bio, op);
1297 return rq;
1298
1299 fail_elvpriv:
1300 /*
1301 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1302 * and may fail indefinitely under memory pressure and thus
1303 * shouldn't stall IO. Treat this request as !elvpriv. This will
1304 * disturb iosched and blkcg but weird is bettern than dead.
1305 */
1306 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1307 __func__, dev_name(q->backing_dev_info->dev));
1308
1309 rq->rq_flags &= ~RQF_ELVPRIV;
1310 rq->elv.icq = NULL;
1311
1312 spin_lock_irq(q->queue_lock);
1313 q->nr_rqs_elvpriv--;
1314 spin_unlock_irq(q->queue_lock);
1315 goto out;
1316
1317 fail_alloc:
1318 /*
1319 * Allocation failed presumably due to memory. Undo anything we
1320 * might have messed up.
1321 *
1322 * Allocating task should really be put onto the front of the wait
1323 * queue, but this is pretty rare.
1324 */
1325 spin_lock_irq(q->queue_lock);
1326 freed_request(rl, is_sync, rq_flags);
1327
1328 /*
1329 * in the very unlikely event that allocation failed and no
1330 * requests for this direction was pending, mark us starved so that
1331 * freeing of a request in the other direction will notice
1332 * us. another possible fix would be to split the rq mempool into
1333 * READ and WRITE
1334 */
1335 rq_starved:
1336 if (unlikely(rl->count[is_sync] == 0))
1337 rl->starved[is_sync] = 1;
1338 return ERR_PTR(-ENOMEM);
1339 }
1340
1341 /**
1342 * get_request - get a free request
1343 * @q: request_queue to allocate request from
1344 * @op: operation and flags
1345 * @bio: bio to allocate request for (can be %NULL)
1346 * @flags: BLK_MQ_REQ_* flags.
1347 *
1348 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1349 * this function keeps retrying under memory pressure and fails iff @q is dead.
1350 *
1351 * Must be called with @q->queue_lock held and,
1352 * Returns ERR_PTR on failure, with @q->queue_lock held.
1353 * Returns request pointer on success, with @q->queue_lock *not held*.
1354 */
1355 static struct request *get_request(struct request_queue *q, unsigned int op,
1356 struct bio *bio, unsigned int flags)
1357 {
1358 const bool is_sync = op_is_sync(op);
1359 DEFINE_WAIT(wait);
1360 struct request_list *rl;
1361 struct request *rq;
1362
1363 lockdep_assert_held(q->queue_lock);
1364 WARN_ON_ONCE(q->mq_ops);
1365
1366 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1367 retry:
1368 rq = __get_request(rl, op, bio, flags);
1369 if (!IS_ERR(rq))
1370 return rq;
1371
1372 if (op & REQ_NOWAIT) {
1373 blk_put_rl(rl);
1374 return ERR_PTR(-EAGAIN);
1375 }
1376
1377 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1378 blk_put_rl(rl);
1379 return rq;
1380 }
1381
1382 /* wait on @rl and retry */
1383 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1384 TASK_UNINTERRUPTIBLE);
1385
1386 trace_block_sleeprq(q, bio, op);
1387
1388 spin_unlock_irq(q->queue_lock);
1389 io_schedule();
1390
1391 /*
1392 * After sleeping, we become a "batching" process and will be able
1393 * to allocate at least one request, and up to a big batch of them
1394 * for a small period time. See ioc_batching, ioc_set_batching
1395 */
1396 ioc_set_batching(q, current->io_context);
1397
1398 spin_lock_irq(q->queue_lock);
1399 finish_wait(&rl->wait[is_sync], &wait);
1400
1401 goto retry;
1402 }
1403
1404 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1405 static struct request *blk_old_get_request(struct request_queue *q,
1406 unsigned int op, unsigned int flags)
1407 {
1408 struct request *rq;
1409 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1410 __GFP_DIRECT_RECLAIM;
1411 int ret = 0;
1412
1413 WARN_ON_ONCE(q->mq_ops);
1414
1415 /* create ioc upfront */
1416 create_io_context(gfp_mask, q->node);
1417
1418 ret = blk_queue_enter(q, !(gfp_mask & __GFP_DIRECT_RECLAIM) ||
1419 (op & REQ_NOWAIT));
1420 if (ret)
1421 return ERR_PTR(ret);
1422 spin_lock_irq(q->queue_lock);
1423 rq = get_request(q, op, NULL, flags);
1424 if (IS_ERR(rq)) {
1425 spin_unlock_irq(q->queue_lock);
1426 blk_queue_exit(q);
1427 return rq;
1428 }
1429
1430 /* q->queue_lock is unlocked at this point */
1431 rq->__data_len = 0;
1432 rq->__sector = (sector_t) -1;
1433 rq->bio = rq->biotail = NULL;
1434 return rq;
1435 }
1436
1437 /**
1438 * blk_get_request_flags - allocate a request
1439 * @q: request queue to allocate a request for
1440 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1441 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1442 */
1443 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1444 unsigned int flags)
1445 {
1446 struct request *req;
1447
1448 WARN_ON_ONCE(op & REQ_NOWAIT);
1449 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1450
1451 if (q->mq_ops) {
1452 req = blk_mq_alloc_request(q, op, flags);
1453 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1454 q->mq_ops->initialize_rq_fn(req);
1455 } else {
1456 req = blk_old_get_request(q, op, flags);
1457 if (!IS_ERR(req) && q->initialize_rq_fn)
1458 q->initialize_rq_fn(req);
1459 }
1460
1461 return req;
1462 }
1463 EXPORT_SYMBOL(blk_get_request_flags);
1464
1465 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1466 gfp_t gfp_mask)
1467 {
1468 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1469 0 : BLK_MQ_REQ_NOWAIT);
1470 }
1471 EXPORT_SYMBOL(blk_get_request);
1472
1473 /**
1474 * blk_requeue_request - put a request back on queue
1475 * @q: request queue where request should be inserted
1476 * @rq: request to be inserted
1477 *
1478 * Description:
1479 * Drivers often keep queueing requests until the hardware cannot accept
1480 * more, when that condition happens we need to put the request back
1481 * on the queue. Must be called with queue lock held.
1482 */
1483 void blk_requeue_request(struct request_queue *q, struct request *rq)
1484 {
1485 lockdep_assert_held(q->queue_lock);
1486 WARN_ON_ONCE(q->mq_ops);
1487
1488 blk_delete_timer(rq);
1489 blk_clear_rq_complete(rq);
1490 trace_block_rq_requeue(q, rq);
1491 wbt_requeue(q->rq_wb, &rq->issue_stat);
1492
1493 if (rq->rq_flags & RQF_QUEUED)
1494 blk_queue_end_tag(q, rq);
1495
1496 BUG_ON(blk_queued_rq(rq));
1497
1498 elv_requeue_request(q, rq);
1499 }
1500 EXPORT_SYMBOL(blk_requeue_request);
1501
1502 static void add_acct_request(struct request_queue *q, struct request *rq,
1503 int where)
1504 {
1505 blk_account_io_start(rq, true);
1506 __elv_add_request(q, rq, where);
1507 }
1508
1509 static void part_round_stats_single(struct request_queue *q, int cpu,
1510 struct hd_struct *part, unsigned long now,
1511 unsigned int inflight)
1512 {
1513 if (inflight) {
1514 __part_stat_add(cpu, part, time_in_queue,
1515 inflight * (now - part->stamp));
1516 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1517 }
1518 part->stamp = now;
1519 }
1520
1521 /**
1522 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1523 * @q: target block queue
1524 * @cpu: cpu number for stats access
1525 * @part: target partition
1526 *
1527 * The average IO queue length and utilisation statistics are maintained
1528 * by observing the current state of the queue length and the amount of
1529 * time it has been in this state for.
1530 *
1531 * Normally, that accounting is done on IO completion, but that can result
1532 * in more than a second's worth of IO being accounted for within any one
1533 * second, leading to >100% utilisation. To deal with that, we call this
1534 * function to do a round-off before returning the results when reading
1535 * /proc/diskstats. This accounts immediately for all queue usage up to
1536 * the current jiffies and restarts the counters again.
1537 */
1538 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1539 {
1540 struct hd_struct *part2 = NULL;
1541 unsigned long now = jiffies;
1542 unsigned int inflight[2];
1543 int stats = 0;
1544
1545 if (part->stamp != now)
1546 stats |= 1;
1547
1548 if (part->partno) {
1549 part2 = &part_to_disk(part)->part0;
1550 if (part2->stamp != now)
1551 stats |= 2;
1552 }
1553
1554 if (!stats)
1555 return;
1556
1557 part_in_flight(q, part, inflight);
1558
1559 if (stats & 2)
1560 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1561 if (stats & 1)
1562 part_round_stats_single(q, cpu, part, now, inflight[0]);
1563 }
1564 EXPORT_SYMBOL_GPL(part_round_stats);
1565
1566 #ifdef CONFIG_PM
1567 static void blk_pm_put_request(struct request *rq)
1568 {
1569 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1570 pm_runtime_mark_last_busy(rq->q->dev);
1571 }
1572 #else
1573 static inline void blk_pm_put_request(struct request *rq) {}
1574 #endif
1575
1576 void __blk_put_request(struct request_queue *q, struct request *req)
1577 {
1578 req_flags_t rq_flags = req->rq_flags;
1579
1580 if (unlikely(!q))
1581 return;
1582
1583 if (q->mq_ops) {
1584 blk_mq_free_request(req);
1585 return;
1586 }
1587
1588 lockdep_assert_held(q->queue_lock);
1589
1590 blk_pm_put_request(req);
1591
1592 elv_completed_request(q, req);
1593
1594 /* this is a bio leak */
1595 WARN_ON(req->bio != NULL);
1596
1597 wbt_done(q->rq_wb, &req->issue_stat);
1598
1599 /*
1600 * Request may not have originated from ll_rw_blk. if not,
1601 * it didn't come out of our reserved rq pools
1602 */
1603 if (rq_flags & RQF_ALLOCED) {
1604 struct request_list *rl = blk_rq_rl(req);
1605 bool sync = op_is_sync(req->cmd_flags);
1606
1607 BUG_ON(!list_empty(&req->queuelist));
1608 BUG_ON(ELV_ON_HASH(req));
1609
1610 blk_free_request(rl, req);
1611 freed_request(rl, sync, rq_flags);
1612 blk_put_rl(rl);
1613 blk_queue_exit(q);
1614 }
1615 }
1616 EXPORT_SYMBOL_GPL(__blk_put_request);
1617
1618 void blk_put_request(struct request *req)
1619 {
1620 struct request_queue *q = req->q;
1621
1622 if (q->mq_ops)
1623 blk_mq_free_request(req);
1624 else {
1625 unsigned long flags;
1626
1627 spin_lock_irqsave(q->queue_lock, flags);
1628 __blk_put_request(q, req);
1629 spin_unlock_irqrestore(q->queue_lock, flags);
1630 }
1631 }
1632 EXPORT_SYMBOL(blk_put_request);
1633
1634 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1635 struct bio *bio)
1636 {
1637 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1638
1639 if (!ll_back_merge_fn(q, req, bio))
1640 return false;
1641
1642 trace_block_bio_backmerge(q, req, bio);
1643
1644 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1645 blk_rq_set_mixed_merge(req);
1646
1647 req->biotail->bi_next = bio;
1648 req->biotail = bio;
1649 req->__data_len += bio->bi_iter.bi_size;
1650 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1651
1652 blk_account_io_start(req, false);
1653 return true;
1654 }
1655
1656 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1657 struct bio *bio)
1658 {
1659 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1660
1661 if (!ll_front_merge_fn(q, req, bio))
1662 return false;
1663
1664 trace_block_bio_frontmerge(q, req, bio);
1665
1666 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1667 blk_rq_set_mixed_merge(req);
1668
1669 bio->bi_next = req->bio;
1670 req->bio = bio;
1671
1672 req->__sector = bio->bi_iter.bi_sector;
1673 req->__data_len += bio->bi_iter.bi_size;
1674 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1675
1676 blk_account_io_start(req, false);
1677 return true;
1678 }
1679
1680 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1681 struct bio *bio)
1682 {
1683 unsigned short segments = blk_rq_nr_discard_segments(req);
1684
1685 if (segments >= queue_max_discard_segments(q))
1686 goto no_merge;
1687 if (blk_rq_sectors(req) + bio_sectors(bio) >
1688 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1689 goto no_merge;
1690
1691 req->biotail->bi_next = bio;
1692 req->biotail = bio;
1693 req->__data_len += bio->bi_iter.bi_size;
1694 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1695 req->nr_phys_segments = segments + 1;
1696
1697 blk_account_io_start(req, false);
1698 return true;
1699 no_merge:
1700 req_set_nomerge(q, req);
1701 return false;
1702 }
1703
1704 /**
1705 * blk_attempt_plug_merge - try to merge with %current's plugged list
1706 * @q: request_queue new bio is being queued at
1707 * @bio: new bio being queued
1708 * @request_count: out parameter for number of traversed plugged requests
1709 * @same_queue_rq: pointer to &struct request that gets filled in when
1710 * another request associated with @q is found on the plug list
1711 * (optional, may be %NULL)
1712 *
1713 * Determine whether @bio being queued on @q can be merged with a request
1714 * on %current's plugged list. Returns %true if merge was successful,
1715 * otherwise %false.
1716 *
1717 * Plugging coalesces IOs from the same issuer for the same purpose without
1718 * going through @q->queue_lock. As such it's more of an issuing mechanism
1719 * than scheduling, and the request, while may have elvpriv data, is not
1720 * added on the elevator at this point. In addition, we don't have
1721 * reliable access to the elevator outside queue lock. Only check basic
1722 * merging parameters without querying the elevator.
1723 *
1724 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1725 */
1726 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1727 unsigned int *request_count,
1728 struct request **same_queue_rq)
1729 {
1730 struct blk_plug *plug;
1731 struct request *rq;
1732 struct list_head *plug_list;
1733
1734 plug = current->plug;
1735 if (!plug)
1736 return false;
1737 *request_count = 0;
1738
1739 if (q->mq_ops)
1740 plug_list = &plug->mq_list;
1741 else
1742 plug_list = &plug->list;
1743
1744 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1745 bool merged = false;
1746
1747 if (rq->q == q) {
1748 (*request_count)++;
1749 /*
1750 * Only blk-mq multiple hardware queues case checks the
1751 * rq in the same queue, there should be only one such
1752 * rq in a queue
1753 **/
1754 if (same_queue_rq)
1755 *same_queue_rq = rq;
1756 }
1757
1758 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1759 continue;
1760
1761 switch (blk_try_merge(rq, bio)) {
1762 case ELEVATOR_BACK_MERGE:
1763 merged = bio_attempt_back_merge(q, rq, bio);
1764 break;
1765 case ELEVATOR_FRONT_MERGE:
1766 merged = bio_attempt_front_merge(q, rq, bio);
1767 break;
1768 case ELEVATOR_DISCARD_MERGE:
1769 merged = bio_attempt_discard_merge(q, rq, bio);
1770 break;
1771 default:
1772 break;
1773 }
1774
1775 if (merged)
1776 return true;
1777 }
1778
1779 return false;
1780 }
1781
1782 unsigned int blk_plug_queued_count(struct request_queue *q)
1783 {
1784 struct blk_plug *plug;
1785 struct request *rq;
1786 struct list_head *plug_list;
1787 unsigned int ret = 0;
1788
1789 plug = current->plug;
1790 if (!plug)
1791 goto out;
1792
1793 if (q->mq_ops)
1794 plug_list = &plug->mq_list;
1795 else
1796 plug_list = &plug->list;
1797
1798 list_for_each_entry(rq, plug_list, queuelist) {
1799 if (rq->q == q)
1800 ret++;
1801 }
1802 out:
1803 return ret;
1804 }
1805
1806 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1807 {
1808 struct io_context *ioc = rq_ioc(bio);
1809
1810 if (bio->bi_opf & REQ_RAHEAD)
1811 req->cmd_flags |= REQ_FAILFAST_MASK;
1812
1813 req->__sector = bio->bi_iter.bi_sector;
1814 if (ioprio_valid(bio_prio(bio)))
1815 req->ioprio = bio_prio(bio);
1816 else if (ioc)
1817 req->ioprio = ioc->ioprio;
1818 else
1819 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1820 req->write_hint = bio->bi_write_hint;
1821 blk_rq_bio_prep(req->q, req, bio);
1822 }
1823 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1824
1825 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1826 {
1827 struct blk_plug *plug;
1828 int where = ELEVATOR_INSERT_SORT;
1829 struct request *req, *free;
1830 unsigned int request_count = 0;
1831 unsigned int wb_acct;
1832
1833 /*
1834 * low level driver can indicate that it wants pages above a
1835 * certain limit bounced to low memory (ie for highmem, or even
1836 * ISA dma in theory)
1837 */
1838 blk_queue_bounce(q, &bio);
1839
1840 blk_queue_split(q, &bio);
1841
1842 if (!bio_integrity_prep(bio))
1843 return BLK_QC_T_NONE;
1844
1845 if (op_is_flush(bio->bi_opf)) {
1846 spin_lock_irq(q->queue_lock);
1847 where = ELEVATOR_INSERT_FLUSH;
1848 goto get_rq;
1849 }
1850
1851 /*
1852 * Check if we can merge with the plugged list before grabbing
1853 * any locks.
1854 */
1855 if (!blk_queue_nomerges(q)) {
1856 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1857 return BLK_QC_T_NONE;
1858 } else
1859 request_count = blk_plug_queued_count(q);
1860
1861 spin_lock_irq(q->queue_lock);
1862
1863 switch (elv_merge(q, &req, bio)) {
1864 case ELEVATOR_BACK_MERGE:
1865 if (!bio_attempt_back_merge(q, req, bio))
1866 break;
1867 elv_bio_merged(q, req, bio);
1868 free = attempt_back_merge(q, req);
1869 if (free)
1870 __blk_put_request(q, free);
1871 else
1872 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1873 goto out_unlock;
1874 case ELEVATOR_FRONT_MERGE:
1875 if (!bio_attempt_front_merge(q, req, bio))
1876 break;
1877 elv_bio_merged(q, req, bio);
1878 free = attempt_front_merge(q, req);
1879 if (free)
1880 __blk_put_request(q, free);
1881 else
1882 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1883 goto out_unlock;
1884 default:
1885 break;
1886 }
1887
1888 get_rq:
1889 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1890
1891 /*
1892 * Grab a free request. This is might sleep but can not fail.
1893 * Returns with the queue unlocked.
1894 */
1895 blk_queue_enter_live(q);
1896 req = get_request(q, bio->bi_opf, bio, 0);
1897 if (IS_ERR(req)) {
1898 blk_queue_exit(q);
1899 __wbt_done(q->rq_wb, wb_acct);
1900 if (PTR_ERR(req) == -ENOMEM)
1901 bio->bi_status = BLK_STS_RESOURCE;
1902 else
1903 bio->bi_status = BLK_STS_IOERR;
1904 bio_endio(bio);
1905 goto out_unlock;
1906 }
1907
1908 wbt_track(&req->issue_stat, wb_acct);
1909
1910 /*
1911 * After dropping the lock and possibly sleeping here, our request
1912 * may now be mergeable after it had proven unmergeable (above).
1913 * We don't worry about that case for efficiency. It won't happen
1914 * often, and the elevators are able to handle it.
1915 */
1916 blk_init_request_from_bio(req, bio);
1917
1918 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1919 req->cpu = raw_smp_processor_id();
1920
1921 plug = current->plug;
1922 if (plug) {
1923 /*
1924 * If this is the first request added after a plug, fire
1925 * of a plug trace.
1926 *
1927 * @request_count may become stale because of schedule
1928 * out, so check plug list again.
1929 */
1930 if (!request_count || list_empty(&plug->list))
1931 trace_block_plug(q);
1932 else {
1933 struct request *last = list_entry_rq(plug->list.prev);
1934 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1935 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1936 blk_flush_plug_list(plug, false);
1937 trace_block_plug(q);
1938 }
1939 }
1940 list_add_tail(&req->queuelist, &plug->list);
1941 blk_account_io_start(req, true);
1942 } else {
1943 spin_lock_irq(q->queue_lock);
1944 add_acct_request(q, req, where);
1945 __blk_run_queue(q);
1946 out_unlock:
1947 spin_unlock_irq(q->queue_lock);
1948 }
1949
1950 return BLK_QC_T_NONE;
1951 }
1952
1953 static void handle_bad_sector(struct bio *bio)
1954 {
1955 char b[BDEVNAME_SIZE];
1956
1957 printk(KERN_INFO "attempt to access beyond end of device\n");
1958 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1959 bio_devname(bio, b), bio->bi_opf,
1960 (unsigned long long)bio_end_sector(bio),
1961 (long long)get_capacity(bio->bi_disk));
1962 }
1963
1964 #ifdef CONFIG_FAIL_MAKE_REQUEST
1965
1966 static DECLARE_FAULT_ATTR(fail_make_request);
1967
1968 static int __init setup_fail_make_request(char *str)
1969 {
1970 return setup_fault_attr(&fail_make_request, str);
1971 }
1972 __setup("fail_make_request=", setup_fail_make_request);
1973
1974 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1975 {
1976 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1977 }
1978
1979 static int __init fail_make_request_debugfs(void)
1980 {
1981 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1982 NULL, &fail_make_request);
1983
1984 return PTR_ERR_OR_ZERO(dir);
1985 }
1986
1987 late_initcall(fail_make_request_debugfs);
1988
1989 #else /* CONFIG_FAIL_MAKE_REQUEST */
1990
1991 static inline bool should_fail_request(struct hd_struct *part,
1992 unsigned int bytes)
1993 {
1994 return false;
1995 }
1996
1997 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1998
1999 /*
2000 * Remap block n of partition p to block n+start(p) of the disk.
2001 */
2002 static inline int blk_partition_remap(struct bio *bio)
2003 {
2004 struct hd_struct *p;
2005 int ret = 0;
2006
2007 /*
2008 * Zone reset does not include bi_size so bio_sectors() is always 0.
2009 * Include a test for the reset op code and perform the remap if needed.
2010 */
2011 if (!bio->bi_partno ||
2012 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2013 return 0;
2014
2015 rcu_read_lock();
2016 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2017 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2018 bio->bi_iter.bi_sector += p->start_sect;
2019 bio->bi_partno = 0;
2020 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2021 bio->bi_iter.bi_sector - p->start_sect);
2022 } else {
2023 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2024 ret = -EIO;
2025 }
2026 rcu_read_unlock();
2027
2028 return ret;
2029 }
2030
2031 /*
2032 * Check whether this bio extends beyond the end of the device.
2033 */
2034 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2035 {
2036 sector_t maxsector;
2037
2038 if (!nr_sectors)
2039 return 0;
2040
2041 /* Test device or partition size, when known. */
2042 maxsector = get_capacity(bio->bi_disk);
2043 if (maxsector) {
2044 sector_t sector = bio->bi_iter.bi_sector;
2045
2046 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2047 /*
2048 * This may well happen - the kernel calls bread()
2049 * without checking the size of the device, e.g., when
2050 * mounting a device.
2051 */
2052 handle_bad_sector(bio);
2053 return 1;
2054 }
2055 }
2056
2057 return 0;
2058 }
2059
2060 static noinline_for_stack bool
2061 generic_make_request_checks(struct bio *bio)
2062 {
2063 struct request_queue *q;
2064 int nr_sectors = bio_sectors(bio);
2065 blk_status_t status = BLK_STS_IOERR;
2066 char b[BDEVNAME_SIZE];
2067
2068 might_sleep();
2069
2070 if (bio_check_eod(bio, nr_sectors))
2071 goto end_io;
2072
2073 q = bio->bi_disk->queue;
2074 if (unlikely(!q)) {
2075 printk(KERN_ERR
2076 "generic_make_request: Trying to access "
2077 "nonexistent block-device %s (%Lu)\n",
2078 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2079 goto end_io;
2080 }
2081
2082 /*
2083 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2084 * if queue is not a request based queue.
2085 */
2086
2087 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2088 goto not_supported;
2089
2090 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2091 goto end_io;
2092
2093 if (blk_partition_remap(bio))
2094 goto end_io;
2095
2096 if (bio_check_eod(bio, nr_sectors))
2097 goto end_io;
2098
2099 /*
2100 * Filter flush bio's early so that make_request based
2101 * drivers without flush support don't have to worry
2102 * about them.
2103 */
2104 if (op_is_flush(bio->bi_opf) &&
2105 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2106 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2107 if (!nr_sectors) {
2108 status = BLK_STS_OK;
2109 goto end_io;
2110 }
2111 }
2112
2113 switch (bio_op(bio)) {
2114 case REQ_OP_DISCARD:
2115 if (!blk_queue_discard(q))
2116 goto not_supported;
2117 break;
2118 case REQ_OP_SECURE_ERASE:
2119 if (!blk_queue_secure_erase(q))
2120 goto not_supported;
2121 break;
2122 case REQ_OP_WRITE_SAME:
2123 if (!q->limits.max_write_same_sectors)
2124 goto not_supported;
2125 break;
2126 case REQ_OP_ZONE_REPORT:
2127 case REQ_OP_ZONE_RESET:
2128 if (!blk_queue_is_zoned(q))
2129 goto not_supported;
2130 break;
2131 case REQ_OP_WRITE_ZEROES:
2132 if (!q->limits.max_write_zeroes_sectors)
2133 goto not_supported;
2134 break;
2135 default:
2136 break;
2137 }
2138
2139 /*
2140 * Various block parts want %current->io_context and lazy ioc
2141 * allocation ends up trading a lot of pain for a small amount of
2142 * memory. Just allocate it upfront. This may fail and block
2143 * layer knows how to live with it.
2144 */
2145 create_io_context(GFP_ATOMIC, q->node);
2146
2147 if (!blkcg_bio_issue_check(q, bio))
2148 return false;
2149
2150 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2151 trace_block_bio_queue(q, bio);
2152 /* Now that enqueuing has been traced, we need to trace
2153 * completion as well.
2154 */
2155 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2156 }
2157 return true;
2158
2159 not_supported:
2160 status = BLK_STS_NOTSUPP;
2161 end_io:
2162 bio->bi_status = status;
2163 bio_endio(bio);
2164 return false;
2165 }
2166
2167 /**
2168 * generic_make_request - hand a buffer to its device driver for I/O
2169 * @bio: The bio describing the location in memory and on the device.
2170 *
2171 * generic_make_request() is used to make I/O requests of block
2172 * devices. It is passed a &struct bio, which describes the I/O that needs
2173 * to be done.
2174 *
2175 * generic_make_request() does not return any status. The
2176 * success/failure status of the request, along with notification of
2177 * completion, is delivered asynchronously through the bio->bi_end_io
2178 * function described (one day) else where.
2179 *
2180 * The caller of generic_make_request must make sure that bi_io_vec
2181 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2182 * set to describe the device address, and the
2183 * bi_end_io and optionally bi_private are set to describe how
2184 * completion notification should be signaled.
2185 *
2186 * generic_make_request and the drivers it calls may use bi_next if this
2187 * bio happens to be merged with someone else, and may resubmit the bio to
2188 * a lower device by calling into generic_make_request recursively, which
2189 * means the bio should NOT be touched after the call to ->make_request_fn.
2190 */
2191 blk_qc_t generic_make_request(struct bio *bio)
2192 {
2193 /*
2194 * bio_list_on_stack[0] contains bios submitted by the current
2195 * make_request_fn.
2196 * bio_list_on_stack[1] contains bios that were submitted before
2197 * the current make_request_fn, but that haven't been processed
2198 * yet.
2199 */
2200 struct bio_list bio_list_on_stack[2];
2201 blk_qc_t ret = BLK_QC_T_NONE;
2202
2203 if (!generic_make_request_checks(bio))
2204 goto out;
2205
2206 /*
2207 * We only want one ->make_request_fn to be active at a time, else
2208 * stack usage with stacked devices could be a problem. So use
2209 * current->bio_list to keep a list of requests submited by a
2210 * make_request_fn function. current->bio_list is also used as a
2211 * flag to say if generic_make_request is currently active in this
2212 * task or not. If it is NULL, then no make_request is active. If
2213 * it is non-NULL, then a make_request is active, and new requests
2214 * should be added at the tail
2215 */
2216 if (current->bio_list) {
2217 bio_list_add(&current->bio_list[0], bio);
2218 goto out;
2219 }
2220
2221 /* following loop may be a bit non-obvious, and so deserves some
2222 * explanation.
2223 * Before entering the loop, bio->bi_next is NULL (as all callers
2224 * ensure that) so we have a list with a single bio.
2225 * We pretend that we have just taken it off a longer list, so
2226 * we assign bio_list to a pointer to the bio_list_on_stack,
2227 * thus initialising the bio_list of new bios to be
2228 * added. ->make_request() may indeed add some more bios
2229 * through a recursive call to generic_make_request. If it
2230 * did, we find a non-NULL value in bio_list and re-enter the loop
2231 * from the top. In this case we really did just take the bio
2232 * of the top of the list (no pretending) and so remove it from
2233 * bio_list, and call into ->make_request() again.
2234 */
2235 BUG_ON(bio->bi_next);
2236 bio_list_init(&bio_list_on_stack[0]);
2237 current->bio_list = bio_list_on_stack;
2238 do {
2239 struct request_queue *q = bio->bi_disk->queue;
2240
2241 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
2242 struct bio_list lower, same;
2243
2244 /* Create a fresh bio_list for all subordinate requests */
2245 bio_list_on_stack[1] = bio_list_on_stack[0];
2246 bio_list_init(&bio_list_on_stack[0]);
2247 ret = q->make_request_fn(q, bio);
2248
2249 blk_queue_exit(q);
2250
2251 /* sort new bios into those for a lower level
2252 * and those for the same level
2253 */
2254 bio_list_init(&lower);
2255 bio_list_init(&same);
2256 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2257 if (q == bio->bi_disk->queue)
2258 bio_list_add(&same, bio);
2259 else
2260 bio_list_add(&lower, bio);
2261 /* now assemble so we handle the lowest level first */
2262 bio_list_merge(&bio_list_on_stack[0], &lower);
2263 bio_list_merge(&bio_list_on_stack[0], &same);
2264 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2265 } else {
2266 if (unlikely(!blk_queue_dying(q) &&
2267 (bio->bi_opf & REQ_NOWAIT)))
2268 bio_wouldblock_error(bio);
2269 else
2270 bio_io_error(bio);
2271 }
2272 bio = bio_list_pop(&bio_list_on_stack[0]);
2273 } while (bio);
2274 current->bio_list = NULL; /* deactivate */
2275
2276 out:
2277 return ret;
2278 }
2279 EXPORT_SYMBOL(generic_make_request);
2280
2281 /**
2282 * direct_make_request - hand a buffer directly to its device driver for I/O
2283 * @bio: The bio describing the location in memory and on the device.
2284 *
2285 * This function behaves like generic_make_request(), but does not protect
2286 * against recursion. Must only be used if the called driver is known
2287 * to not call generic_make_request (or direct_make_request) again from
2288 * its make_request function. (Calling direct_make_request again from
2289 * a workqueue is perfectly fine as that doesn't recurse).
2290 */
2291 blk_qc_t direct_make_request(struct bio *bio)
2292 {
2293 struct request_queue *q = bio->bi_disk->queue;
2294 bool nowait = bio->bi_opf & REQ_NOWAIT;
2295 blk_qc_t ret;
2296
2297 if (!generic_make_request_checks(bio))
2298 return BLK_QC_T_NONE;
2299
2300 if (unlikely(blk_queue_enter(q, nowait))) {
2301 if (nowait && !blk_queue_dying(q))
2302 bio->bi_status = BLK_STS_AGAIN;
2303 else
2304 bio->bi_status = BLK_STS_IOERR;
2305 bio_endio(bio);
2306 return BLK_QC_T_NONE;
2307 }
2308
2309 ret = q->make_request_fn(q, bio);
2310 blk_queue_exit(q);
2311 return ret;
2312 }
2313 EXPORT_SYMBOL_GPL(direct_make_request);
2314
2315 /**
2316 * submit_bio - submit a bio to the block device layer for I/O
2317 * @bio: The &struct bio which describes the I/O
2318 *
2319 * submit_bio() is very similar in purpose to generic_make_request(), and
2320 * uses that function to do most of the work. Both are fairly rough
2321 * interfaces; @bio must be presetup and ready for I/O.
2322 *
2323 */
2324 blk_qc_t submit_bio(struct bio *bio)
2325 {
2326 /*
2327 * If it's a regular read/write or a barrier with data attached,
2328 * go through the normal accounting stuff before submission.
2329 */
2330 if (bio_has_data(bio)) {
2331 unsigned int count;
2332
2333 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2334 count = queue_logical_block_size(bio->bi_disk->queue);
2335 else
2336 count = bio_sectors(bio);
2337
2338 if (op_is_write(bio_op(bio))) {
2339 count_vm_events(PGPGOUT, count);
2340 } else {
2341 task_io_account_read(bio->bi_iter.bi_size);
2342 count_vm_events(PGPGIN, count);
2343 }
2344
2345 if (unlikely(block_dump)) {
2346 char b[BDEVNAME_SIZE];
2347 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2348 current->comm, task_pid_nr(current),
2349 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2350 (unsigned long long)bio->bi_iter.bi_sector,
2351 bio_devname(bio, b), count);
2352 }
2353 }
2354
2355 return generic_make_request(bio);
2356 }
2357 EXPORT_SYMBOL(submit_bio);
2358
2359 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2360 {
2361 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2362 return false;
2363
2364 if (current->plug)
2365 blk_flush_plug_list(current->plug, false);
2366 return q->poll_fn(q, cookie);
2367 }
2368 EXPORT_SYMBOL_GPL(blk_poll);
2369
2370 /**
2371 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2372 * for new the queue limits
2373 * @q: the queue
2374 * @rq: the request being checked
2375 *
2376 * Description:
2377 * @rq may have been made based on weaker limitations of upper-level queues
2378 * in request stacking drivers, and it may violate the limitation of @q.
2379 * Since the block layer and the underlying device driver trust @rq
2380 * after it is inserted to @q, it should be checked against @q before
2381 * the insertion using this generic function.
2382 *
2383 * Request stacking drivers like request-based dm may change the queue
2384 * limits when retrying requests on other queues. Those requests need
2385 * to be checked against the new queue limits again during dispatch.
2386 */
2387 static int blk_cloned_rq_check_limits(struct request_queue *q,
2388 struct request *rq)
2389 {
2390 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2391 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2392 return -EIO;
2393 }
2394
2395 /*
2396 * queue's settings related to segment counting like q->bounce_pfn
2397 * may differ from that of other stacking queues.
2398 * Recalculate it to check the request correctly on this queue's
2399 * limitation.
2400 */
2401 blk_recalc_rq_segments(rq);
2402 if (rq->nr_phys_segments > queue_max_segments(q)) {
2403 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2404 return -EIO;
2405 }
2406
2407 return 0;
2408 }
2409
2410 /**
2411 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2412 * @q: the queue to submit the request
2413 * @rq: the request being queued
2414 */
2415 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2416 {
2417 unsigned long flags;
2418 int where = ELEVATOR_INSERT_BACK;
2419
2420 if (blk_cloned_rq_check_limits(q, rq))
2421 return BLK_STS_IOERR;
2422
2423 if (rq->rq_disk &&
2424 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2425 return BLK_STS_IOERR;
2426
2427 if (q->mq_ops) {
2428 if (blk_queue_io_stat(q))
2429 blk_account_io_start(rq, true);
2430 /*
2431 * Since we have a scheduler attached on the top device,
2432 * bypass a potential scheduler on the bottom device for
2433 * insert.
2434 */
2435 blk_mq_request_bypass_insert(rq, true);
2436 return BLK_STS_OK;
2437 }
2438
2439 spin_lock_irqsave(q->queue_lock, flags);
2440 if (unlikely(blk_queue_dying(q))) {
2441 spin_unlock_irqrestore(q->queue_lock, flags);
2442 return BLK_STS_IOERR;
2443 }
2444
2445 /*
2446 * Submitting request must be dequeued before calling this function
2447 * because it will be linked to another request_queue
2448 */
2449 BUG_ON(blk_queued_rq(rq));
2450
2451 if (op_is_flush(rq->cmd_flags))
2452 where = ELEVATOR_INSERT_FLUSH;
2453
2454 add_acct_request(q, rq, where);
2455 if (where == ELEVATOR_INSERT_FLUSH)
2456 __blk_run_queue(q);
2457 spin_unlock_irqrestore(q->queue_lock, flags);
2458
2459 return BLK_STS_OK;
2460 }
2461 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2462
2463 /**
2464 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2465 * @rq: request to examine
2466 *
2467 * Description:
2468 * A request could be merge of IOs which require different failure
2469 * handling. This function determines the number of bytes which
2470 * can be failed from the beginning of the request without
2471 * crossing into area which need to be retried further.
2472 *
2473 * Return:
2474 * The number of bytes to fail.
2475 */
2476 unsigned int blk_rq_err_bytes(const struct request *rq)
2477 {
2478 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2479 unsigned int bytes = 0;
2480 struct bio *bio;
2481
2482 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2483 return blk_rq_bytes(rq);
2484
2485 /*
2486 * Currently the only 'mixing' which can happen is between
2487 * different fastfail types. We can safely fail portions
2488 * which have all the failfast bits that the first one has -
2489 * the ones which are at least as eager to fail as the first
2490 * one.
2491 */
2492 for (bio = rq->bio; bio; bio = bio->bi_next) {
2493 if ((bio->bi_opf & ff) != ff)
2494 break;
2495 bytes += bio->bi_iter.bi_size;
2496 }
2497
2498 /* this could lead to infinite loop */
2499 BUG_ON(blk_rq_bytes(rq) && !bytes);
2500 return bytes;
2501 }
2502 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2503
2504 void blk_account_io_completion(struct request *req, unsigned int bytes)
2505 {
2506 if (blk_do_io_stat(req)) {
2507 const int rw = rq_data_dir(req);
2508 struct hd_struct *part;
2509 int cpu;
2510
2511 cpu = part_stat_lock();
2512 part = req->part;
2513 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2514 part_stat_unlock();
2515 }
2516 }
2517
2518 void blk_account_io_done(struct request *req)
2519 {
2520 /*
2521 * Account IO completion. flush_rq isn't accounted as a
2522 * normal IO on queueing nor completion. Accounting the
2523 * containing request is enough.
2524 */
2525 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2526 unsigned long duration = jiffies - req->start_time;
2527 const int rw = rq_data_dir(req);
2528 struct hd_struct *part;
2529 int cpu;
2530
2531 cpu = part_stat_lock();
2532 part = req->part;
2533
2534 part_stat_inc(cpu, part, ios[rw]);
2535 part_stat_add(cpu, part, ticks[rw], duration);
2536 part_round_stats(req->q, cpu, part);
2537 part_dec_in_flight(req->q, part, rw);
2538
2539 hd_struct_put(part);
2540 part_stat_unlock();
2541 }
2542 }
2543
2544 #ifdef CONFIG_PM
2545 /*
2546 * Don't process normal requests when queue is suspended
2547 * or in the process of suspending/resuming
2548 */
2549 static bool blk_pm_allow_request(struct request *rq)
2550 {
2551 switch (rq->q->rpm_status) {
2552 case RPM_RESUMING:
2553 case RPM_SUSPENDING:
2554 return rq->rq_flags & RQF_PM;
2555 case RPM_SUSPENDED:
2556 return false;
2557 }
2558
2559 return true;
2560 }
2561 #else
2562 static bool blk_pm_allow_request(struct request *rq)
2563 {
2564 return true;
2565 }
2566 #endif
2567
2568 void blk_account_io_start(struct request *rq, bool new_io)
2569 {
2570 struct hd_struct *part;
2571 int rw = rq_data_dir(rq);
2572 int cpu;
2573
2574 if (!blk_do_io_stat(rq))
2575 return;
2576
2577 cpu = part_stat_lock();
2578
2579 if (!new_io) {
2580 part = rq->part;
2581 part_stat_inc(cpu, part, merges[rw]);
2582 } else {
2583 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2584 if (!hd_struct_try_get(part)) {
2585 /*
2586 * The partition is already being removed,
2587 * the request will be accounted on the disk only
2588 *
2589 * We take a reference on disk->part0 although that
2590 * partition will never be deleted, so we can treat
2591 * it as any other partition.
2592 */
2593 part = &rq->rq_disk->part0;
2594 hd_struct_get(part);
2595 }
2596 part_round_stats(rq->q, cpu, part);
2597 part_inc_in_flight(rq->q, part, rw);
2598 rq->part = part;
2599 }
2600
2601 part_stat_unlock();
2602 }
2603
2604 static struct request *elv_next_request(struct request_queue *q)
2605 {
2606 struct request *rq;
2607 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2608
2609 WARN_ON_ONCE(q->mq_ops);
2610
2611 while (1) {
2612 list_for_each_entry(rq, &q->queue_head, queuelist) {
2613 if (blk_pm_allow_request(rq))
2614 return rq;
2615
2616 if (rq->rq_flags & RQF_SOFTBARRIER)
2617 break;
2618 }
2619
2620 /*
2621 * Flush request is running and flush request isn't queueable
2622 * in the drive, we can hold the queue till flush request is
2623 * finished. Even we don't do this, driver can't dispatch next
2624 * requests and will requeue them. And this can improve
2625 * throughput too. For example, we have request flush1, write1,
2626 * flush 2. flush1 is dispatched, then queue is hold, write1
2627 * isn't inserted to queue. After flush1 is finished, flush2
2628 * will be dispatched. Since disk cache is already clean,
2629 * flush2 will be finished very soon, so looks like flush2 is
2630 * folded to flush1.
2631 * Since the queue is hold, a flag is set to indicate the queue
2632 * should be restarted later. Please see flush_end_io() for
2633 * details.
2634 */
2635 if (fq->flush_pending_idx != fq->flush_running_idx &&
2636 !queue_flush_queueable(q)) {
2637 fq->flush_queue_delayed = 1;
2638 return NULL;
2639 }
2640 if (unlikely(blk_queue_bypass(q)) ||
2641 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2642 return NULL;
2643 }
2644 }
2645
2646 /**
2647 * blk_peek_request - peek at the top of a request queue
2648 * @q: request queue to peek at
2649 *
2650 * Description:
2651 * Return the request at the top of @q. The returned request
2652 * should be started using blk_start_request() before LLD starts
2653 * processing it.
2654 *
2655 * Return:
2656 * Pointer to the request at the top of @q if available. Null
2657 * otherwise.
2658 */
2659 struct request *blk_peek_request(struct request_queue *q)
2660 {
2661 struct request *rq;
2662 int ret;
2663
2664 lockdep_assert_held(q->queue_lock);
2665 WARN_ON_ONCE(q->mq_ops);
2666
2667 while ((rq = elv_next_request(q)) != NULL) {
2668 if (!(rq->rq_flags & RQF_STARTED)) {
2669 /*
2670 * This is the first time the device driver
2671 * sees this request (possibly after
2672 * requeueing). Notify IO scheduler.
2673 */
2674 if (rq->rq_flags & RQF_SORTED)
2675 elv_activate_rq(q, rq);
2676
2677 /*
2678 * just mark as started even if we don't start
2679 * it, a request that has been delayed should
2680 * not be passed by new incoming requests
2681 */
2682 rq->rq_flags |= RQF_STARTED;
2683 trace_block_rq_issue(q, rq);
2684 }
2685
2686 if (!q->boundary_rq || q->boundary_rq == rq) {
2687 q->end_sector = rq_end_sector(rq);
2688 q->boundary_rq = NULL;
2689 }
2690
2691 if (rq->rq_flags & RQF_DONTPREP)
2692 break;
2693
2694 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2695 /*
2696 * make sure space for the drain appears we
2697 * know we can do this because max_hw_segments
2698 * has been adjusted to be one fewer than the
2699 * device can handle
2700 */
2701 rq->nr_phys_segments++;
2702 }
2703
2704 if (!q->prep_rq_fn)
2705 break;
2706
2707 ret = q->prep_rq_fn(q, rq);
2708 if (ret == BLKPREP_OK) {
2709 break;
2710 } else if (ret == BLKPREP_DEFER) {
2711 /*
2712 * the request may have been (partially) prepped.
2713 * we need to keep this request in the front to
2714 * avoid resource deadlock. RQF_STARTED will
2715 * prevent other fs requests from passing this one.
2716 */
2717 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2718 !(rq->rq_flags & RQF_DONTPREP)) {
2719 /*
2720 * remove the space for the drain we added
2721 * so that we don't add it again
2722 */
2723 --rq->nr_phys_segments;
2724 }
2725
2726 rq = NULL;
2727 break;
2728 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2729 rq->rq_flags |= RQF_QUIET;
2730 /*
2731 * Mark this request as started so we don't trigger
2732 * any debug logic in the end I/O path.
2733 */
2734 blk_start_request(rq);
2735 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2736 BLK_STS_TARGET : BLK_STS_IOERR);
2737 } else {
2738 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2739 break;
2740 }
2741 }
2742
2743 return rq;
2744 }
2745 EXPORT_SYMBOL(blk_peek_request);
2746
2747 static void blk_dequeue_request(struct request *rq)
2748 {
2749 struct request_queue *q = rq->q;
2750
2751 BUG_ON(list_empty(&rq->queuelist));
2752 BUG_ON(ELV_ON_HASH(rq));
2753
2754 list_del_init(&rq->queuelist);
2755
2756 /*
2757 * the time frame between a request being removed from the lists
2758 * and to it is freed is accounted as io that is in progress at
2759 * the driver side.
2760 */
2761 if (blk_account_rq(rq)) {
2762 q->in_flight[rq_is_sync(rq)]++;
2763 set_io_start_time_ns(rq);
2764 }
2765 }
2766
2767 /**
2768 * blk_start_request - start request processing on the driver
2769 * @req: request to dequeue
2770 *
2771 * Description:
2772 * Dequeue @req and start timeout timer on it. This hands off the
2773 * request to the driver.
2774 */
2775 void blk_start_request(struct request *req)
2776 {
2777 lockdep_assert_held(req->q->queue_lock);
2778 WARN_ON_ONCE(req->q->mq_ops);
2779
2780 blk_dequeue_request(req);
2781
2782 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2783 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2784 req->rq_flags |= RQF_STATS;
2785 wbt_issue(req->q->rq_wb, &req->issue_stat);
2786 }
2787
2788 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2789 blk_add_timer(req);
2790 }
2791 EXPORT_SYMBOL(blk_start_request);
2792
2793 /**
2794 * blk_fetch_request - fetch a request from a request queue
2795 * @q: request queue to fetch a request from
2796 *
2797 * Description:
2798 * Return the request at the top of @q. The request is started on
2799 * return and LLD can start processing it immediately.
2800 *
2801 * Return:
2802 * Pointer to the request at the top of @q if available. Null
2803 * otherwise.
2804 */
2805 struct request *blk_fetch_request(struct request_queue *q)
2806 {
2807 struct request *rq;
2808
2809 lockdep_assert_held(q->queue_lock);
2810 WARN_ON_ONCE(q->mq_ops);
2811
2812 rq = blk_peek_request(q);
2813 if (rq)
2814 blk_start_request(rq);
2815 return rq;
2816 }
2817 EXPORT_SYMBOL(blk_fetch_request);
2818
2819 /*
2820 * Steal bios from a request and add them to a bio list.
2821 * The request must not have been partially completed before.
2822 */
2823 void blk_steal_bios(struct bio_list *list, struct request *rq)
2824 {
2825 if (rq->bio) {
2826 if (list->tail)
2827 list->tail->bi_next = rq->bio;
2828 else
2829 list->head = rq->bio;
2830 list->tail = rq->biotail;
2831
2832 rq->bio = NULL;
2833 rq->biotail = NULL;
2834 }
2835
2836 rq->__data_len = 0;
2837 }
2838 EXPORT_SYMBOL_GPL(blk_steal_bios);
2839
2840 /**
2841 * blk_update_request - Special helper function for request stacking drivers
2842 * @req: the request being processed
2843 * @error: block status code
2844 * @nr_bytes: number of bytes to complete @req
2845 *
2846 * Description:
2847 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2848 * the request structure even if @req doesn't have leftover.
2849 * If @req has leftover, sets it up for the next range of segments.
2850 *
2851 * This special helper function is only for request stacking drivers
2852 * (e.g. request-based dm) so that they can handle partial completion.
2853 * Actual device drivers should use blk_end_request instead.
2854 *
2855 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2856 * %false return from this function.
2857 *
2858 * Return:
2859 * %false - this request doesn't have any more data
2860 * %true - this request has more data
2861 **/
2862 bool blk_update_request(struct request *req, blk_status_t error,
2863 unsigned int nr_bytes)
2864 {
2865 int total_bytes;
2866
2867 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2868
2869 if (!req->bio)
2870 return false;
2871
2872 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2873 !(req->rq_flags & RQF_QUIET)))
2874 print_req_error(req, error);
2875
2876 blk_account_io_completion(req, nr_bytes);
2877
2878 total_bytes = 0;
2879 while (req->bio) {
2880 struct bio *bio = req->bio;
2881 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2882
2883 if (bio_bytes == bio->bi_iter.bi_size)
2884 req->bio = bio->bi_next;
2885
2886 /* Completion has already been traced */
2887 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2888 req_bio_endio(req, bio, bio_bytes, error);
2889
2890 total_bytes += bio_bytes;
2891 nr_bytes -= bio_bytes;
2892
2893 if (!nr_bytes)
2894 break;
2895 }
2896
2897 /*
2898 * completely done
2899 */
2900 if (!req->bio) {
2901 /*
2902 * Reset counters so that the request stacking driver
2903 * can find how many bytes remain in the request
2904 * later.
2905 */
2906 req->__data_len = 0;
2907 return false;
2908 }
2909
2910 req->__data_len -= total_bytes;
2911
2912 /* update sector only for requests with clear definition of sector */
2913 if (!blk_rq_is_passthrough(req))
2914 req->__sector += total_bytes >> 9;
2915
2916 /* mixed attributes always follow the first bio */
2917 if (req->rq_flags & RQF_MIXED_MERGE) {
2918 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2919 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2920 }
2921
2922 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2923 /*
2924 * If total number of sectors is less than the first segment
2925 * size, something has gone terribly wrong.
2926 */
2927 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2928 blk_dump_rq_flags(req, "request botched");
2929 req->__data_len = blk_rq_cur_bytes(req);
2930 }
2931
2932 /* recalculate the number of segments */
2933 blk_recalc_rq_segments(req);
2934 }
2935
2936 return true;
2937 }
2938 EXPORT_SYMBOL_GPL(blk_update_request);
2939
2940 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2941 unsigned int nr_bytes,
2942 unsigned int bidi_bytes)
2943 {
2944 if (blk_update_request(rq, error, nr_bytes))
2945 return true;
2946
2947 /* Bidi request must be completed as a whole */
2948 if (unlikely(blk_bidi_rq(rq)) &&
2949 blk_update_request(rq->next_rq, error, bidi_bytes))
2950 return true;
2951
2952 if (blk_queue_add_random(rq->q))
2953 add_disk_randomness(rq->rq_disk);
2954
2955 return false;
2956 }
2957
2958 /**
2959 * blk_unprep_request - unprepare a request
2960 * @req: the request
2961 *
2962 * This function makes a request ready for complete resubmission (or
2963 * completion). It happens only after all error handling is complete,
2964 * so represents the appropriate moment to deallocate any resources
2965 * that were allocated to the request in the prep_rq_fn. The queue
2966 * lock is held when calling this.
2967 */
2968 void blk_unprep_request(struct request *req)
2969 {
2970 struct request_queue *q = req->q;
2971
2972 req->rq_flags &= ~RQF_DONTPREP;
2973 if (q->unprep_rq_fn)
2974 q->unprep_rq_fn(q, req);
2975 }
2976 EXPORT_SYMBOL_GPL(blk_unprep_request);
2977
2978 void blk_finish_request(struct request *req, blk_status_t error)
2979 {
2980 struct request_queue *q = req->q;
2981
2982 lockdep_assert_held(req->q->queue_lock);
2983 WARN_ON_ONCE(q->mq_ops);
2984
2985 if (req->rq_flags & RQF_STATS)
2986 blk_stat_add(req);
2987
2988 if (req->rq_flags & RQF_QUEUED)
2989 blk_queue_end_tag(q, req);
2990
2991 BUG_ON(blk_queued_rq(req));
2992
2993 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2994 laptop_io_completion(req->q->backing_dev_info);
2995
2996 blk_delete_timer(req);
2997
2998 if (req->rq_flags & RQF_DONTPREP)
2999 blk_unprep_request(req);
3000
3001 blk_account_io_done(req);
3002
3003 if (req->end_io) {
3004 wbt_done(req->q->rq_wb, &req->issue_stat);
3005 req->end_io(req, error);
3006 } else {
3007 if (blk_bidi_rq(req))
3008 __blk_put_request(req->next_rq->q, req->next_rq);
3009
3010 __blk_put_request(q, req);
3011 }
3012 }
3013 EXPORT_SYMBOL(blk_finish_request);
3014
3015 /**
3016 * blk_end_bidi_request - Complete a bidi request
3017 * @rq: the request to complete
3018 * @error: block status code
3019 * @nr_bytes: number of bytes to complete @rq
3020 * @bidi_bytes: number of bytes to complete @rq->next_rq
3021 *
3022 * Description:
3023 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3024 * Drivers that supports bidi can safely call this member for any
3025 * type of request, bidi or uni. In the later case @bidi_bytes is
3026 * just ignored.
3027 *
3028 * Return:
3029 * %false - we are done with this request
3030 * %true - still buffers pending for this request
3031 **/
3032 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3033 unsigned int nr_bytes, unsigned int bidi_bytes)
3034 {
3035 struct request_queue *q = rq->q;
3036 unsigned long flags;
3037
3038 WARN_ON_ONCE(q->mq_ops);
3039
3040 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3041 return true;
3042
3043 spin_lock_irqsave(q->queue_lock, flags);
3044 blk_finish_request(rq, error);
3045 spin_unlock_irqrestore(q->queue_lock, flags);
3046
3047 return false;
3048 }
3049
3050 /**
3051 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3052 * @rq: the request to complete
3053 * @error: block status code
3054 * @nr_bytes: number of bytes to complete @rq
3055 * @bidi_bytes: number of bytes to complete @rq->next_rq
3056 *
3057 * Description:
3058 * Identical to blk_end_bidi_request() except that queue lock is
3059 * assumed to be locked on entry and remains so on return.
3060 *
3061 * Return:
3062 * %false - we are done with this request
3063 * %true - still buffers pending for this request
3064 **/
3065 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3066 unsigned int nr_bytes, unsigned int bidi_bytes)
3067 {
3068 lockdep_assert_held(rq->q->queue_lock);
3069 WARN_ON_ONCE(rq->q->mq_ops);
3070
3071 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3072 return true;
3073
3074 blk_finish_request(rq, error);
3075
3076 return false;
3077 }
3078
3079 /**
3080 * blk_end_request - Helper function for drivers to complete the request.
3081 * @rq: the request being processed
3082 * @error: block status code
3083 * @nr_bytes: number of bytes to complete
3084 *
3085 * Description:
3086 * Ends I/O on a number of bytes attached to @rq.
3087 * If @rq has leftover, sets it up for the next range of segments.
3088 *
3089 * Return:
3090 * %false - we are done with this request
3091 * %true - still buffers pending for this request
3092 **/
3093 bool blk_end_request(struct request *rq, blk_status_t error,
3094 unsigned int nr_bytes)
3095 {
3096 WARN_ON_ONCE(rq->q->mq_ops);
3097 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3098 }
3099 EXPORT_SYMBOL(blk_end_request);
3100
3101 /**
3102 * blk_end_request_all - Helper function for drives to finish the request.
3103 * @rq: the request to finish
3104 * @error: block status code
3105 *
3106 * Description:
3107 * Completely finish @rq.
3108 */
3109 void blk_end_request_all(struct request *rq, blk_status_t error)
3110 {
3111 bool pending;
3112 unsigned int bidi_bytes = 0;
3113
3114 if (unlikely(blk_bidi_rq(rq)))
3115 bidi_bytes = blk_rq_bytes(rq->next_rq);
3116
3117 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3118 BUG_ON(pending);
3119 }
3120 EXPORT_SYMBOL(blk_end_request_all);
3121
3122 /**
3123 * __blk_end_request - Helper function for drivers to complete the request.
3124 * @rq: the request being processed
3125 * @error: block status code
3126 * @nr_bytes: number of bytes to complete
3127 *
3128 * Description:
3129 * Must be called with queue lock held unlike blk_end_request().
3130 *
3131 * Return:
3132 * %false - we are done with this request
3133 * %true - still buffers pending for this request
3134 **/
3135 bool __blk_end_request(struct request *rq, blk_status_t error,
3136 unsigned int nr_bytes)
3137 {
3138 lockdep_assert_held(rq->q->queue_lock);
3139 WARN_ON_ONCE(rq->q->mq_ops);
3140
3141 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3142 }
3143 EXPORT_SYMBOL(__blk_end_request);
3144
3145 /**
3146 * __blk_end_request_all - Helper function for drives to finish the request.
3147 * @rq: the request to finish
3148 * @error: block status code
3149 *
3150 * Description:
3151 * Completely finish @rq. Must be called with queue lock held.
3152 */
3153 void __blk_end_request_all(struct request *rq, blk_status_t error)
3154 {
3155 bool pending;
3156 unsigned int bidi_bytes = 0;
3157
3158 lockdep_assert_held(rq->q->queue_lock);
3159 WARN_ON_ONCE(rq->q->mq_ops);
3160
3161 if (unlikely(blk_bidi_rq(rq)))
3162 bidi_bytes = blk_rq_bytes(rq->next_rq);
3163
3164 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3165 BUG_ON(pending);
3166 }
3167 EXPORT_SYMBOL(__blk_end_request_all);
3168
3169 /**
3170 * __blk_end_request_cur - Helper function to finish the current request chunk.
3171 * @rq: the request to finish the current chunk for
3172 * @error: block status code
3173 *
3174 * Description:
3175 * Complete the current consecutively mapped chunk from @rq. Must
3176 * be called with queue lock held.
3177 *
3178 * Return:
3179 * %false - we are done with this request
3180 * %true - still buffers pending for this request
3181 */
3182 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3183 {
3184 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3185 }
3186 EXPORT_SYMBOL(__blk_end_request_cur);
3187
3188 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3189 struct bio *bio)
3190 {
3191 if (bio_has_data(bio))
3192 rq->nr_phys_segments = bio_phys_segments(q, bio);
3193
3194 rq->__data_len = bio->bi_iter.bi_size;
3195 rq->bio = rq->biotail = bio;
3196
3197 if (bio->bi_disk)
3198 rq->rq_disk = bio->bi_disk;
3199 }
3200
3201 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3202 /**
3203 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3204 * @rq: the request to be flushed
3205 *
3206 * Description:
3207 * Flush all pages in @rq.
3208 */
3209 void rq_flush_dcache_pages(struct request *rq)
3210 {
3211 struct req_iterator iter;
3212 struct bio_vec bvec;
3213
3214 rq_for_each_segment(bvec, rq, iter)
3215 flush_dcache_page(bvec.bv_page);
3216 }
3217 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3218 #endif
3219
3220 /**
3221 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3222 * @q : the queue of the device being checked
3223 *
3224 * Description:
3225 * Check if underlying low-level drivers of a device are busy.
3226 * If the drivers want to export their busy state, they must set own
3227 * exporting function using blk_queue_lld_busy() first.
3228 *
3229 * Basically, this function is used only by request stacking drivers
3230 * to stop dispatching requests to underlying devices when underlying
3231 * devices are busy. This behavior helps more I/O merging on the queue
3232 * of the request stacking driver and prevents I/O throughput regression
3233 * on burst I/O load.
3234 *
3235 * Return:
3236 * 0 - Not busy (The request stacking driver should dispatch request)
3237 * 1 - Busy (The request stacking driver should stop dispatching request)
3238 */
3239 int blk_lld_busy(struct request_queue *q)
3240 {
3241 if (q->lld_busy_fn)
3242 return q->lld_busy_fn(q);
3243
3244 return 0;
3245 }
3246 EXPORT_SYMBOL_GPL(blk_lld_busy);
3247
3248 /**
3249 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3250 * @rq: the clone request to be cleaned up
3251 *
3252 * Description:
3253 * Free all bios in @rq for a cloned request.
3254 */
3255 void blk_rq_unprep_clone(struct request *rq)
3256 {
3257 struct bio *bio;
3258
3259 while ((bio = rq->bio) != NULL) {
3260 rq->bio = bio->bi_next;
3261
3262 bio_put(bio);
3263 }
3264 }
3265 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3266
3267 /*
3268 * Copy attributes of the original request to the clone request.
3269 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3270 */
3271 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3272 {
3273 dst->cpu = src->cpu;
3274 dst->__sector = blk_rq_pos(src);
3275 dst->__data_len = blk_rq_bytes(src);
3276 dst->nr_phys_segments = src->nr_phys_segments;
3277 dst->ioprio = src->ioprio;
3278 dst->extra_len = src->extra_len;
3279 }
3280
3281 /**
3282 * blk_rq_prep_clone - Helper function to setup clone request
3283 * @rq: the request to be setup
3284 * @rq_src: original request to be cloned
3285 * @bs: bio_set that bios for clone are allocated from
3286 * @gfp_mask: memory allocation mask for bio
3287 * @bio_ctr: setup function to be called for each clone bio.
3288 * Returns %0 for success, non %0 for failure.
3289 * @data: private data to be passed to @bio_ctr
3290 *
3291 * Description:
3292 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3293 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3294 * are not copied, and copying such parts is the caller's responsibility.
3295 * Also, pages which the original bios are pointing to are not copied
3296 * and the cloned bios just point same pages.
3297 * So cloned bios must be completed before original bios, which means
3298 * the caller must complete @rq before @rq_src.
3299 */
3300 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3301 struct bio_set *bs, gfp_t gfp_mask,
3302 int (*bio_ctr)(struct bio *, struct bio *, void *),
3303 void *data)
3304 {
3305 struct bio *bio, *bio_src;
3306
3307 if (!bs)
3308 bs = fs_bio_set;
3309
3310 __rq_for_each_bio(bio_src, rq_src) {
3311 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3312 if (!bio)
3313 goto free_and_out;
3314
3315 if (bio_ctr && bio_ctr(bio, bio_src, data))
3316 goto free_and_out;
3317
3318 if (rq->bio) {
3319 rq->biotail->bi_next = bio;
3320 rq->biotail = bio;
3321 } else
3322 rq->bio = rq->biotail = bio;
3323 }
3324
3325 __blk_rq_prep_clone(rq, rq_src);
3326
3327 return 0;
3328
3329 free_and_out:
3330 if (bio)
3331 bio_put(bio);
3332 blk_rq_unprep_clone(rq);
3333
3334 return -ENOMEM;
3335 }
3336 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3337
3338 int kblockd_schedule_work(struct work_struct *work)
3339 {
3340 return queue_work(kblockd_workqueue, work);
3341 }
3342 EXPORT_SYMBOL(kblockd_schedule_work);
3343
3344 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3345 {
3346 return queue_work_on(cpu, kblockd_workqueue, work);
3347 }
3348 EXPORT_SYMBOL(kblockd_schedule_work_on);
3349
3350 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3351 unsigned long delay)
3352 {
3353 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3354 }
3355 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3356
3357 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3358 unsigned long delay)
3359 {
3360 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3361 }
3362 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3363
3364 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3365 unsigned long delay)
3366 {
3367 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3368 }
3369 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3370
3371 /**
3372 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3373 * @plug: The &struct blk_plug that needs to be initialized
3374 *
3375 * Description:
3376 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3377 * pending I/O should the task end up blocking between blk_start_plug() and
3378 * blk_finish_plug(). This is important from a performance perspective, but
3379 * also ensures that we don't deadlock. For instance, if the task is blocking
3380 * for a memory allocation, memory reclaim could end up wanting to free a
3381 * page belonging to that request that is currently residing in our private
3382 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3383 * this kind of deadlock.
3384 */
3385 void blk_start_plug(struct blk_plug *plug)
3386 {
3387 struct task_struct *tsk = current;
3388
3389 /*
3390 * If this is a nested plug, don't actually assign it.
3391 */
3392 if (tsk->plug)
3393 return;
3394
3395 INIT_LIST_HEAD(&plug->list);
3396 INIT_LIST_HEAD(&plug->mq_list);
3397 INIT_LIST_HEAD(&plug->cb_list);
3398 /*
3399 * Store ordering should not be needed here, since a potential
3400 * preempt will imply a full memory barrier
3401 */
3402 tsk->plug = plug;
3403 }
3404 EXPORT_SYMBOL(blk_start_plug);
3405
3406 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3407 {
3408 struct request *rqa = container_of(a, struct request, queuelist);
3409 struct request *rqb = container_of(b, struct request, queuelist);
3410
3411 return !(rqa->q < rqb->q ||
3412 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3413 }
3414
3415 /*
3416 * If 'from_schedule' is true, then postpone the dispatch of requests
3417 * until a safe kblockd context. We due this to avoid accidental big
3418 * additional stack usage in driver dispatch, in places where the originally
3419 * plugger did not intend it.
3420 */
3421 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3422 bool from_schedule)
3423 __releases(q->queue_lock)
3424 {
3425 lockdep_assert_held(q->queue_lock);
3426
3427 trace_block_unplug(q, depth, !from_schedule);
3428
3429 if (from_schedule)
3430 blk_run_queue_async(q);
3431 else
3432 __blk_run_queue(q);
3433 spin_unlock(q->queue_lock);
3434 }
3435
3436 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3437 {
3438 LIST_HEAD(callbacks);
3439
3440 while (!list_empty(&plug->cb_list)) {
3441 list_splice_init(&plug->cb_list, &callbacks);
3442
3443 while (!list_empty(&callbacks)) {
3444 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3445 struct blk_plug_cb,
3446 list);
3447 list_del(&cb->list);
3448 cb->callback(cb, from_schedule);
3449 }
3450 }
3451 }
3452
3453 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3454 int size)
3455 {
3456 struct blk_plug *plug = current->plug;
3457 struct blk_plug_cb *cb;
3458
3459 if (!plug)
3460 return NULL;
3461
3462 list_for_each_entry(cb, &plug->cb_list, list)
3463 if (cb->callback == unplug && cb->data == data)
3464 return cb;
3465
3466 /* Not currently on the callback list */
3467 BUG_ON(size < sizeof(*cb));
3468 cb = kzalloc(size, GFP_ATOMIC);
3469 if (cb) {
3470 cb->data = data;
3471 cb->callback = unplug;
3472 list_add(&cb->list, &plug->cb_list);
3473 }
3474 return cb;
3475 }
3476 EXPORT_SYMBOL(blk_check_plugged);
3477
3478 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3479 {
3480 struct request_queue *q;
3481 unsigned long flags;
3482 struct request *rq;
3483 LIST_HEAD(list);
3484 unsigned int depth;
3485
3486 flush_plug_callbacks(plug, from_schedule);
3487
3488 if (!list_empty(&plug->mq_list))
3489 blk_mq_flush_plug_list(plug, from_schedule);
3490
3491 if (list_empty(&plug->list))
3492 return;
3493
3494 list_splice_init(&plug->list, &list);
3495
3496 list_sort(NULL, &list, plug_rq_cmp);
3497
3498 q = NULL;
3499 depth = 0;
3500
3501 /*
3502 * Save and disable interrupts here, to avoid doing it for every
3503 * queue lock we have to take.
3504 */
3505 local_irq_save(flags);
3506 while (!list_empty(&list)) {
3507 rq = list_entry_rq(list.next);
3508 list_del_init(&rq->queuelist);
3509 BUG_ON(!rq->q);
3510 if (rq->q != q) {
3511 /*
3512 * This drops the queue lock
3513 */
3514 if (q)
3515 queue_unplugged(q, depth, from_schedule);
3516 q = rq->q;
3517 depth = 0;
3518 spin_lock(q->queue_lock);
3519 }
3520
3521 /*
3522 * Short-circuit if @q is dead
3523 */
3524 if (unlikely(blk_queue_dying(q))) {
3525 __blk_end_request_all(rq, BLK_STS_IOERR);
3526 continue;
3527 }
3528
3529 /*
3530 * rq is already accounted, so use raw insert
3531 */
3532 if (op_is_flush(rq->cmd_flags))
3533 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3534 else
3535 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3536
3537 depth++;
3538 }
3539
3540 /*
3541 * This drops the queue lock
3542 */
3543 if (q)
3544 queue_unplugged(q, depth, from_schedule);
3545
3546 local_irq_restore(flags);
3547 }
3548
3549 void blk_finish_plug(struct blk_plug *plug)
3550 {
3551 if (plug != current->plug)
3552 return;
3553 blk_flush_plug_list(plug, false);
3554
3555 current->plug = NULL;
3556 }
3557 EXPORT_SYMBOL(blk_finish_plug);
3558
3559 #ifdef CONFIG_PM
3560 /**
3561 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3562 * @q: the queue of the device
3563 * @dev: the device the queue belongs to
3564 *
3565 * Description:
3566 * Initialize runtime-PM-related fields for @q and start auto suspend for
3567 * @dev. Drivers that want to take advantage of request-based runtime PM
3568 * should call this function after @dev has been initialized, and its
3569 * request queue @q has been allocated, and runtime PM for it can not happen
3570 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3571 * cases, driver should call this function before any I/O has taken place.
3572 *
3573 * This function takes care of setting up using auto suspend for the device,
3574 * the autosuspend delay is set to -1 to make runtime suspend impossible
3575 * until an updated value is either set by user or by driver. Drivers do
3576 * not need to touch other autosuspend settings.
3577 *
3578 * The block layer runtime PM is request based, so only works for drivers
3579 * that use request as their IO unit instead of those directly use bio's.
3580 */
3581 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3582 {
3583 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3584 if (q->mq_ops)
3585 return;
3586
3587 q->dev = dev;
3588 q->rpm_status = RPM_ACTIVE;
3589 pm_runtime_set_autosuspend_delay(q->dev, -1);
3590 pm_runtime_use_autosuspend(q->dev);
3591 }
3592 EXPORT_SYMBOL(blk_pm_runtime_init);
3593
3594 /**
3595 * blk_pre_runtime_suspend - Pre runtime suspend check
3596 * @q: the queue of the device
3597 *
3598 * Description:
3599 * This function will check if runtime suspend is allowed for the device
3600 * by examining if there are any requests pending in the queue. If there
3601 * are requests pending, the device can not be runtime suspended; otherwise,
3602 * the queue's status will be updated to SUSPENDING and the driver can
3603 * proceed to suspend the device.
3604 *
3605 * For the not allowed case, we mark last busy for the device so that
3606 * runtime PM core will try to autosuspend it some time later.
3607 *
3608 * This function should be called near the start of the device's
3609 * runtime_suspend callback.
3610 *
3611 * Return:
3612 * 0 - OK to runtime suspend the device
3613 * -EBUSY - Device should not be runtime suspended
3614 */
3615 int blk_pre_runtime_suspend(struct request_queue *q)
3616 {
3617 int ret = 0;
3618
3619 if (!q->dev)
3620 return ret;
3621
3622 spin_lock_irq(q->queue_lock);
3623 if (q->nr_pending) {
3624 ret = -EBUSY;
3625 pm_runtime_mark_last_busy(q->dev);
3626 } else {
3627 q->rpm_status = RPM_SUSPENDING;
3628 }
3629 spin_unlock_irq(q->queue_lock);
3630 return ret;
3631 }
3632 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3633
3634 /**
3635 * blk_post_runtime_suspend - Post runtime suspend processing
3636 * @q: the queue of the device
3637 * @err: return value of the device's runtime_suspend function
3638 *
3639 * Description:
3640 * Update the queue's runtime status according to the return value of the
3641 * device's runtime suspend function and mark last busy for the device so
3642 * that PM core will try to auto suspend the device at a later time.
3643 *
3644 * This function should be called near the end of the device's
3645 * runtime_suspend callback.
3646 */
3647 void blk_post_runtime_suspend(struct request_queue *q, int err)
3648 {
3649 if (!q->dev)
3650 return;
3651
3652 spin_lock_irq(q->queue_lock);
3653 if (!err) {
3654 q->rpm_status = RPM_SUSPENDED;
3655 } else {
3656 q->rpm_status = RPM_ACTIVE;
3657 pm_runtime_mark_last_busy(q->dev);
3658 }
3659 spin_unlock_irq(q->queue_lock);
3660 }
3661 EXPORT_SYMBOL(blk_post_runtime_suspend);
3662
3663 /**
3664 * blk_pre_runtime_resume - Pre runtime resume processing
3665 * @q: the queue of the device
3666 *
3667 * Description:
3668 * Update the queue's runtime status to RESUMING in preparation for the
3669 * runtime resume of the device.
3670 *
3671 * This function should be called near the start of the device's
3672 * runtime_resume callback.
3673 */
3674 void blk_pre_runtime_resume(struct request_queue *q)
3675 {
3676 if (!q->dev)
3677 return;
3678
3679 spin_lock_irq(q->queue_lock);
3680 q->rpm_status = RPM_RESUMING;
3681 spin_unlock_irq(q->queue_lock);
3682 }
3683 EXPORT_SYMBOL(blk_pre_runtime_resume);
3684
3685 /**
3686 * blk_post_runtime_resume - Post runtime resume processing
3687 * @q: the queue of the device
3688 * @err: return value of the device's runtime_resume function
3689 *
3690 * Description:
3691 * Update the queue's runtime status according to the return value of the
3692 * device's runtime_resume function. If it is successfully resumed, process
3693 * the requests that are queued into the device's queue when it is resuming
3694 * and then mark last busy and initiate autosuspend for it.
3695 *
3696 * This function should be called near the end of the device's
3697 * runtime_resume callback.
3698 */
3699 void blk_post_runtime_resume(struct request_queue *q, int err)
3700 {
3701 if (!q->dev)
3702 return;
3703
3704 spin_lock_irq(q->queue_lock);
3705 if (!err) {
3706 q->rpm_status = RPM_ACTIVE;
3707 __blk_run_queue(q);
3708 pm_runtime_mark_last_busy(q->dev);
3709 pm_request_autosuspend(q->dev);
3710 } else {
3711 q->rpm_status = RPM_SUSPENDED;
3712 }
3713 spin_unlock_irq(q->queue_lock);
3714 }
3715 EXPORT_SYMBOL(blk_post_runtime_resume);
3716
3717 /**
3718 * blk_set_runtime_active - Force runtime status of the queue to be active
3719 * @q: the queue of the device
3720 *
3721 * If the device is left runtime suspended during system suspend the resume
3722 * hook typically resumes the device and corrects runtime status
3723 * accordingly. However, that does not affect the queue runtime PM status
3724 * which is still "suspended". This prevents processing requests from the
3725 * queue.
3726 *
3727 * This function can be used in driver's resume hook to correct queue
3728 * runtime PM status and re-enable peeking requests from the queue. It
3729 * should be called before first request is added to the queue.
3730 */
3731 void blk_set_runtime_active(struct request_queue *q)
3732 {
3733 spin_lock_irq(q->queue_lock);
3734 q->rpm_status = RPM_ACTIVE;
3735 pm_runtime_mark_last_busy(q->dev);
3736 pm_request_autosuspend(q->dev);
3737 spin_unlock_irq(q->queue_lock);
3738 }
3739 EXPORT_SYMBOL(blk_set_runtime_active);
3740 #endif
3741
3742 int __init blk_dev_init(void)
3743 {
3744 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3745 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3746 FIELD_SIZEOF(struct request, cmd_flags));
3747 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3748 FIELD_SIZEOF(struct bio, bi_opf));
3749
3750 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3751 kblockd_workqueue = alloc_workqueue("kblockd",
3752 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3753 if (!kblockd_workqueue)
3754 panic("Failed to create kblockd\n");
3755
3756 request_cachep = kmem_cache_create("blkdev_requests",
3757 sizeof(struct request), 0, SLAB_PANIC, NULL);
3758
3759 blk_requestq_cachep = kmem_cache_create("request_queue",
3760 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3761
3762 #ifdef CONFIG_DEBUG_FS
3763 blk_debugfs_root = debugfs_create_dir("block", NULL);
3764 #endif
3765
3766 return 0;
3767 }