]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-core.c
bdi: simplify bdi_alloc
[mirror_ubuntu-hirsute-kernel.git] / block / blk-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/block.h>
44
45 #include "blk.h"
46 #include "blk-mq.h"
47 #include "blk-mq-sched.h"
48 #include "blk-pm.h"
49 #include "blk-rq-qos.h"
50
51 #ifdef CONFIG_DEBUG_FS
52 struct dentry *blk_debugfs_root;
53 #endif
54
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
60
61 DEFINE_IDA(blk_queue_ida);
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 /**
74 * blk_queue_flag_set - atomically set a queue flag
75 * @flag: flag to be set
76 * @q: request queue
77 */
78 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
79 {
80 set_bit(flag, &q->queue_flags);
81 }
82 EXPORT_SYMBOL(blk_queue_flag_set);
83
84 /**
85 * blk_queue_flag_clear - atomically clear a queue flag
86 * @flag: flag to be cleared
87 * @q: request queue
88 */
89 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
90 {
91 clear_bit(flag, &q->queue_flags);
92 }
93 EXPORT_SYMBOL(blk_queue_flag_clear);
94
95 /**
96 * blk_queue_flag_test_and_set - atomically test and set a queue flag
97 * @flag: flag to be set
98 * @q: request queue
99 *
100 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
101 * the flag was already set.
102 */
103 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
104 {
105 return test_and_set_bit(flag, &q->queue_flags);
106 }
107 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
108
109 void blk_rq_init(struct request_queue *q, struct request *rq)
110 {
111 memset(rq, 0, sizeof(*rq));
112
113 INIT_LIST_HEAD(&rq->queuelist);
114 rq->q = q;
115 rq->__sector = (sector_t) -1;
116 INIT_HLIST_NODE(&rq->hash);
117 RB_CLEAR_NODE(&rq->rb_node);
118 rq->tag = -1;
119 rq->internal_tag = -1;
120 rq->start_time_ns = ktime_get_ns();
121 rq->part = NULL;
122 refcount_set(&rq->ref, 1);
123 }
124 EXPORT_SYMBOL(blk_rq_init);
125
126 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
127 static const char *const blk_op_name[] = {
128 REQ_OP_NAME(READ),
129 REQ_OP_NAME(WRITE),
130 REQ_OP_NAME(FLUSH),
131 REQ_OP_NAME(DISCARD),
132 REQ_OP_NAME(SECURE_ERASE),
133 REQ_OP_NAME(ZONE_RESET),
134 REQ_OP_NAME(ZONE_RESET_ALL),
135 REQ_OP_NAME(ZONE_OPEN),
136 REQ_OP_NAME(ZONE_CLOSE),
137 REQ_OP_NAME(ZONE_FINISH),
138 REQ_OP_NAME(WRITE_SAME),
139 REQ_OP_NAME(WRITE_ZEROES),
140 REQ_OP_NAME(SCSI_IN),
141 REQ_OP_NAME(SCSI_OUT),
142 REQ_OP_NAME(DRV_IN),
143 REQ_OP_NAME(DRV_OUT),
144 };
145 #undef REQ_OP_NAME
146
147 /**
148 * blk_op_str - Return string XXX in the REQ_OP_XXX.
149 * @op: REQ_OP_XXX.
150 *
151 * Description: Centralize block layer function to convert REQ_OP_XXX into
152 * string format. Useful in the debugging and tracing bio or request. For
153 * invalid REQ_OP_XXX it returns string "UNKNOWN".
154 */
155 inline const char *blk_op_str(unsigned int op)
156 {
157 const char *op_str = "UNKNOWN";
158
159 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
160 op_str = blk_op_name[op];
161
162 return op_str;
163 }
164 EXPORT_SYMBOL_GPL(blk_op_str);
165
166 static const struct {
167 int errno;
168 const char *name;
169 } blk_errors[] = {
170 [BLK_STS_OK] = { 0, "" },
171 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
172 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
173 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
174 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
175 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
176 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
177 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
178 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
179 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
180 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
181 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
182
183 /* device mapper special case, should not leak out: */
184 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
185
186 /* everything else not covered above: */
187 [BLK_STS_IOERR] = { -EIO, "I/O" },
188 };
189
190 blk_status_t errno_to_blk_status(int errno)
191 {
192 int i;
193
194 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
195 if (blk_errors[i].errno == errno)
196 return (__force blk_status_t)i;
197 }
198
199 return BLK_STS_IOERR;
200 }
201 EXPORT_SYMBOL_GPL(errno_to_blk_status);
202
203 int blk_status_to_errno(blk_status_t status)
204 {
205 int idx = (__force int)status;
206
207 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
208 return -EIO;
209 return blk_errors[idx].errno;
210 }
211 EXPORT_SYMBOL_GPL(blk_status_to_errno);
212
213 static void print_req_error(struct request *req, blk_status_t status,
214 const char *caller)
215 {
216 int idx = (__force int)status;
217
218 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
219 return;
220
221 printk_ratelimited(KERN_ERR
222 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
223 "phys_seg %u prio class %u\n",
224 caller, blk_errors[idx].name,
225 req->rq_disk ? req->rq_disk->disk_name : "?",
226 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
227 req->cmd_flags & ~REQ_OP_MASK,
228 req->nr_phys_segments,
229 IOPRIO_PRIO_CLASS(req->ioprio));
230 }
231
232 static void req_bio_endio(struct request *rq, struct bio *bio,
233 unsigned int nbytes, blk_status_t error)
234 {
235 if (error)
236 bio->bi_status = error;
237
238 if (unlikely(rq->rq_flags & RQF_QUIET))
239 bio_set_flag(bio, BIO_QUIET);
240
241 bio_advance(bio, nbytes);
242
243 /* don't actually finish bio if it's part of flush sequence */
244 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
245 bio_endio(bio);
246 }
247
248 void blk_dump_rq_flags(struct request *rq, char *msg)
249 {
250 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
251 rq->rq_disk ? rq->rq_disk->disk_name : "?",
252 (unsigned long long) rq->cmd_flags);
253
254 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
255 (unsigned long long)blk_rq_pos(rq),
256 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
257 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
258 rq->bio, rq->biotail, blk_rq_bytes(rq));
259 }
260 EXPORT_SYMBOL(blk_dump_rq_flags);
261
262 /**
263 * blk_sync_queue - cancel any pending callbacks on a queue
264 * @q: the queue
265 *
266 * Description:
267 * The block layer may perform asynchronous callback activity
268 * on a queue, such as calling the unplug function after a timeout.
269 * A block device may call blk_sync_queue to ensure that any
270 * such activity is cancelled, thus allowing it to release resources
271 * that the callbacks might use. The caller must already have made sure
272 * that its ->make_request_fn will not re-add plugging prior to calling
273 * this function.
274 *
275 * This function does not cancel any asynchronous activity arising
276 * out of elevator or throttling code. That would require elevator_exit()
277 * and blkcg_exit_queue() to be called with queue lock initialized.
278 *
279 */
280 void blk_sync_queue(struct request_queue *q)
281 {
282 del_timer_sync(&q->timeout);
283 cancel_work_sync(&q->timeout_work);
284 }
285 EXPORT_SYMBOL(blk_sync_queue);
286
287 /**
288 * blk_set_pm_only - increment pm_only counter
289 * @q: request queue pointer
290 */
291 void blk_set_pm_only(struct request_queue *q)
292 {
293 atomic_inc(&q->pm_only);
294 }
295 EXPORT_SYMBOL_GPL(blk_set_pm_only);
296
297 void blk_clear_pm_only(struct request_queue *q)
298 {
299 int pm_only;
300
301 pm_only = atomic_dec_return(&q->pm_only);
302 WARN_ON_ONCE(pm_only < 0);
303 if (pm_only == 0)
304 wake_up_all(&q->mq_freeze_wq);
305 }
306 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
307
308 void blk_put_queue(struct request_queue *q)
309 {
310 kobject_put(&q->kobj);
311 }
312 EXPORT_SYMBOL(blk_put_queue);
313
314 void blk_set_queue_dying(struct request_queue *q)
315 {
316 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
317
318 /*
319 * When queue DYING flag is set, we need to block new req
320 * entering queue, so we call blk_freeze_queue_start() to
321 * prevent I/O from crossing blk_queue_enter().
322 */
323 blk_freeze_queue_start(q);
324
325 if (queue_is_mq(q))
326 blk_mq_wake_waiters(q);
327
328 /* Make blk_queue_enter() reexamine the DYING flag. */
329 wake_up_all(&q->mq_freeze_wq);
330 }
331 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
332
333 /**
334 * blk_cleanup_queue - shutdown a request queue
335 * @q: request queue to shutdown
336 *
337 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
338 * put it. All future requests will be failed immediately with -ENODEV.
339 */
340 void blk_cleanup_queue(struct request_queue *q)
341 {
342 WARN_ON_ONCE(blk_queue_registered(q));
343
344 /* mark @q DYING, no new request or merges will be allowed afterwards */
345 blk_set_queue_dying(q);
346
347 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
348 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
349
350 /*
351 * Drain all requests queued before DYING marking. Set DEAD flag to
352 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
353 * after draining finished.
354 */
355 blk_freeze_queue(q);
356
357 rq_qos_exit(q);
358
359 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
360
361 /* for synchronous bio-based driver finish in-flight integrity i/o */
362 blk_flush_integrity();
363
364 /* @q won't process any more request, flush async actions */
365 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
366 blk_sync_queue(q);
367
368 if (queue_is_mq(q))
369 blk_mq_exit_queue(q);
370
371 /*
372 * In theory, request pool of sched_tags belongs to request queue.
373 * However, the current implementation requires tag_set for freeing
374 * requests, so free the pool now.
375 *
376 * Queue has become frozen, there can't be any in-queue requests, so
377 * it is safe to free requests now.
378 */
379 mutex_lock(&q->sysfs_lock);
380 if (q->elevator)
381 blk_mq_sched_free_requests(q);
382 mutex_unlock(&q->sysfs_lock);
383
384 percpu_ref_exit(&q->q_usage_counter);
385
386 /* @q is and will stay empty, shutdown and put */
387 blk_put_queue(q);
388 }
389 EXPORT_SYMBOL(blk_cleanup_queue);
390
391 /**
392 * blk_queue_enter() - try to increase q->q_usage_counter
393 * @q: request queue pointer
394 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
395 */
396 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
397 {
398 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
399
400 while (true) {
401 bool success = false;
402
403 rcu_read_lock();
404 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
405 /*
406 * The code that increments the pm_only counter is
407 * responsible for ensuring that that counter is
408 * globally visible before the queue is unfrozen.
409 */
410 if (pm || !blk_queue_pm_only(q)) {
411 success = true;
412 } else {
413 percpu_ref_put(&q->q_usage_counter);
414 }
415 }
416 rcu_read_unlock();
417
418 if (success)
419 return 0;
420
421 if (flags & BLK_MQ_REQ_NOWAIT)
422 return -EBUSY;
423
424 /*
425 * read pair of barrier in blk_freeze_queue_start(),
426 * we need to order reading __PERCPU_REF_DEAD flag of
427 * .q_usage_counter and reading .mq_freeze_depth or
428 * queue dying flag, otherwise the following wait may
429 * never return if the two reads are reordered.
430 */
431 smp_rmb();
432
433 wait_event(q->mq_freeze_wq,
434 (!q->mq_freeze_depth &&
435 (pm || (blk_pm_request_resume(q),
436 !blk_queue_pm_only(q)))) ||
437 blk_queue_dying(q));
438 if (blk_queue_dying(q))
439 return -ENODEV;
440 }
441 }
442
443 static inline int bio_queue_enter(struct bio *bio)
444 {
445 struct request_queue *q = bio->bi_disk->queue;
446 bool nowait = bio->bi_opf & REQ_NOWAIT;
447 int ret;
448
449 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
450 if (unlikely(ret)) {
451 if (nowait && !blk_queue_dying(q))
452 bio_wouldblock_error(bio);
453 else
454 bio_io_error(bio);
455 }
456
457 return ret;
458 }
459
460 void blk_queue_exit(struct request_queue *q)
461 {
462 percpu_ref_put(&q->q_usage_counter);
463 }
464
465 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
466 {
467 struct request_queue *q =
468 container_of(ref, struct request_queue, q_usage_counter);
469
470 wake_up_all(&q->mq_freeze_wq);
471 }
472
473 static void blk_rq_timed_out_timer(struct timer_list *t)
474 {
475 struct request_queue *q = from_timer(q, t, timeout);
476
477 kblockd_schedule_work(&q->timeout_work);
478 }
479
480 static void blk_timeout_work(struct work_struct *work)
481 {
482 }
483
484 struct request_queue *__blk_alloc_queue(int node_id)
485 {
486 struct request_queue *q;
487 int ret;
488
489 q = kmem_cache_alloc_node(blk_requestq_cachep,
490 GFP_KERNEL | __GFP_ZERO, node_id);
491 if (!q)
492 return NULL;
493
494 q->last_merge = NULL;
495
496 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
497 if (q->id < 0)
498 goto fail_q;
499
500 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
501 if (ret)
502 goto fail_id;
503
504 q->backing_dev_info = bdi_alloc(node_id);
505 if (!q->backing_dev_info)
506 goto fail_split;
507
508 q->stats = blk_alloc_queue_stats();
509 if (!q->stats)
510 goto fail_stats;
511
512 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
513 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
514 q->backing_dev_info->name = "block";
515 q->node = node_id;
516
517 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
518 laptop_mode_timer_fn, 0);
519 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
520 INIT_WORK(&q->timeout_work, blk_timeout_work);
521 INIT_LIST_HEAD(&q->icq_list);
522 #ifdef CONFIG_BLK_CGROUP
523 INIT_LIST_HEAD(&q->blkg_list);
524 #endif
525
526 kobject_init(&q->kobj, &blk_queue_ktype);
527
528 #ifdef CONFIG_BLK_DEV_IO_TRACE
529 mutex_init(&q->blk_trace_mutex);
530 #endif
531 mutex_init(&q->sysfs_lock);
532 mutex_init(&q->sysfs_dir_lock);
533 spin_lock_init(&q->queue_lock);
534
535 init_waitqueue_head(&q->mq_freeze_wq);
536 mutex_init(&q->mq_freeze_lock);
537
538 /*
539 * Init percpu_ref in atomic mode so that it's faster to shutdown.
540 * See blk_register_queue() for details.
541 */
542 if (percpu_ref_init(&q->q_usage_counter,
543 blk_queue_usage_counter_release,
544 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
545 goto fail_bdi;
546
547 if (blkcg_init_queue(q))
548 goto fail_ref;
549
550 blk_queue_dma_alignment(q, 511);
551 blk_set_default_limits(&q->limits);
552
553 return q;
554
555 fail_ref:
556 percpu_ref_exit(&q->q_usage_counter);
557 fail_bdi:
558 blk_free_queue_stats(q->stats);
559 fail_stats:
560 bdi_put(q->backing_dev_info);
561 fail_split:
562 bioset_exit(&q->bio_split);
563 fail_id:
564 ida_simple_remove(&blk_queue_ida, q->id);
565 fail_q:
566 kmem_cache_free(blk_requestq_cachep, q);
567 return NULL;
568 }
569
570 struct request_queue *blk_alloc_queue(make_request_fn make_request, int node_id)
571 {
572 struct request_queue *q;
573
574 if (WARN_ON_ONCE(!make_request))
575 return NULL;
576
577 q = __blk_alloc_queue(node_id);
578 if (!q)
579 return NULL;
580 q->make_request_fn = make_request;
581 q->nr_requests = BLKDEV_MAX_RQ;
582 return q;
583 }
584 EXPORT_SYMBOL(blk_alloc_queue);
585
586 bool blk_get_queue(struct request_queue *q)
587 {
588 if (likely(!blk_queue_dying(q))) {
589 __blk_get_queue(q);
590 return true;
591 }
592
593 return false;
594 }
595 EXPORT_SYMBOL(blk_get_queue);
596
597 /**
598 * blk_get_request - allocate a request
599 * @q: request queue to allocate a request for
600 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
601 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
602 */
603 struct request *blk_get_request(struct request_queue *q, unsigned int op,
604 blk_mq_req_flags_t flags)
605 {
606 struct request *req;
607
608 WARN_ON_ONCE(op & REQ_NOWAIT);
609 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
610
611 req = blk_mq_alloc_request(q, op, flags);
612 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
613 q->mq_ops->initialize_rq_fn(req);
614
615 return req;
616 }
617 EXPORT_SYMBOL(blk_get_request);
618
619 void blk_put_request(struct request *req)
620 {
621 blk_mq_free_request(req);
622 }
623 EXPORT_SYMBOL(blk_put_request);
624
625 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
626 unsigned int nr_segs)
627 {
628 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
629
630 if (!ll_back_merge_fn(req, bio, nr_segs))
631 return false;
632
633 trace_block_bio_backmerge(req->q, req, bio);
634 rq_qos_merge(req->q, req, bio);
635
636 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
637 blk_rq_set_mixed_merge(req);
638
639 req->biotail->bi_next = bio;
640 req->biotail = bio;
641 req->__data_len += bio->bi_iter.bi_size;
642
643 blk_account_io_start(req, false);
644 return true;
645 }
646
647 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
648 unsigned int nr_segs)
649 {
650 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
651
652 if (!ll_front_merge_fn(req, bio, nr_segs))
653 return false;
654
655 trace_block_bio_frontmerge(req->q, req, bio);
656 rq_qos_merge(req->q, req, bio);
657
658 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
659 blk_rq_set_mixed_merge(req);
660
661 bio->bi_next = req->bio;
662 req->bio = bio;
663
664 req->__sector = bio->bi_iter.bi_sector;
665 req->__data_len += bio->bi_iter.bi_size;
666
667 blk_account_io_start(req, false);
668 return true;
669 }
670
671 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
672 struct bio *bio)
673 {
674 unsigned short segments = blk_rq_nr_discard_segments(req);
675
676 if (segments >= queue_max_discard_segments(q))
677 goto no_merge;
678 if (blk_rq_sectors(req) + bio_sectors(bio) >
679 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
680 goto no_merge;
681
682 rq_qos_merge(q, req, bio);
683
684 req->biotail->bi_next = bio;
685 req->biotail = bio;
686 req->__data_len += bio->bi_iter.bi_size;
687 req->nr_phys_segments = segments + 1;
688
689 blk_account_io_start(req, false);
690 return true;
691 no_merge:
692 req_set_nomerge(q, req);
693 return false;
694 }
695
696 /**
697 * blk_attempt_plug_merge - try to merge with %current's plugged list
698 * @q: request_queue new bio is being queued at
699 * @bio: new bio being queued
700 * @nr_segs: number of segments in @bio
701 * @same_queue_rq: pointer to &struct request that gets filled in when
702 * another request associated with @q is found on the plug list
703 * (optional, may be %NULL)
704 *
705 * Determine whether @bio being queued on @q can be merged with a request
706 * on %current's plugged list. Returns %true if merge was successful,
707 * otherwise %false.
708 *
709 * Plugging coalesces IOs from the same issuer for the same purpose without
710 * going through @q->queue_lock. As such it's more of an issuing mechanism
711 * than scheduling, and the request, while may have elvpriv data, is not
712 * added on the elevator at this point. In addition, we don't have
713 * reliable access to the elevator outside queue lock. Only check basic
714 * merging parameters without querying the elevator.
715 *
716 * Caller must ensure !blk_queue_nomerges(q) beforehand.
717 */
718 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
719 unsigned int nr_segs, struct request **same_queue_rq)
720 {
721 struct blk_plug *plug;
722 struct request *rq;
723 struct list_head *plug_list;
724
725 plug = blk_mq_plug(q, bio);
726 if (!plug)
727 return false;
728
729 plug_list = &plug->mq_list;
730
731 list_for_each_entry_reverse(rq, plug_list, queuelist) {
732 bool merged = false;
733
734 if (rq->q == q && same_queue_rq) {
735 /*
736 * Only blk-mq multiple hardware queues case checks the
737 * rq in the same queue, there should be only one such
738 * rq in a queue
739 **/
740 *same_queue_rq = rq;
741 }
742
743 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
744 continue;
745
746 switch (blk_try_merge(rq, bio)) {
747 case ELEVATOR_BACK_MERGE:
748 merged = bio_attempt_back_merge(rq, bio, nr_segs);
749 break;
750 case ELEVATOR_FRONT_MERGE:
751 merged = bio_attempt_front_merge(rq, bio, nr_segs);
752 break;
753 case ELEVATOR_DISCARD_MERGE:
754 merged = bio_attempt_discard_merge(q, rq, bio);
755 break;
756 default:
757 break;
758 }
759
760 if (merged)
761 return true;
762 }
763
764 return false;
765 }
766
767 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
768 {
769 char b[BDEVNAME_SIZE];
770
771 printk(KERN_INFO "attempt to access beyond end of device\n");
772 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
773 bio_devname(bio, b), bio->bi_opf,
774 (unsigned long long)bio_end_sector(bio),
775 (long long)maxsector);
776 }
777
778 #ifdef CONFIG_FAIL_MAKE_REQUEST
779
780 static DECLARE_FAULT_ATTR(fail_make_request);
781
782 static int __init setup_fail_make_request(char *str)
783 {
784 return setup_fault_attr(&fail_make_request, str);
785 }
786 __setup("fail_make_request=", setup_fail_make_request);
787
788 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
789 {
790 return part->make_it_fail && should_fail(&fail_make_request, bytes);
791 }
792
793 static int __init fail_make_request_debugfs(void)
794 {
795 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
796 NULL, &fail_make_request);
797
798 return PTR_ERR_OR_ZERO(dir);
799 }
800
801 late_initcall(fail_make_request_debugfs);
802
803 #else /* CONFIG_FAIL_MAKE_REQUEST */
804
805 static inline bool should_fail_request(struct hd_struct *part,
806 unsigned int bytes)
807 {
808 return false;
809 }
810
811 #endif /* CONFIG_FAIL_MAKE_REQUEST */
812
813 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
814 {
815 const int op = bio_op(bio);
816
817 if (part->policy && op_is_write(op)) {
818 char b[BDEVNAME_SIZE];
819
820 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
821 return false;
822
823 WARN_ONCE(1,
824 "generic_make_request: Trying to write "
825 "to read-only block-device %s (partno %d)\n",
826 bio_devname(bio, b), part->partno);
827 /* Older lvm-tools actually trigger this */
828 return false;
829 }
830
831 return false;
832 }
833
834 static noinline int should_fail_bio(struct bio *bio)
835 {
836 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
837 return -EIO;
838 return 0;
839 }
840 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
841
842 /*
843 * Check whether this bio extends beyond the end of the device or partition.
844 * This may well happen - the kernel calls bread() without checking the size of
845 * the device, e.g., when mounting a file system.
846 */
847 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
848 {
849 unsigned int nr_sectors = bio_sectors(bio);
850
851 if (nr_sectors && maxsector &&
852 (nr_sectors > maxsector ||
853 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
854 handle_bad_sector(bio, maxsector);
855 return -EIO;
856 }
857 return 0;
858 }
859
860 /*
861 * Remap block n of partition p to block n+start(p) of the disk.
862 */
863 static inline int blk_partition_remap(struct bio *bio)
864 {
865 struct hd_struct *p;
866 int ret = -EIO;
867
868 rcu_read_lock();
869 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
870 if (unlikely(!p))
871 goto out;
872 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
873 goto out;
874 if (unlikely(bio_check_ro(bio, p)))
875 goto out;
876
877 if (bio_sectors(bio)) {
878 if (bio_check_eod(bio, part_nr_sects_read(p)))
879 goto out;
880 bio->bi_iter.bi_sector += p->start_sect;
881 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
882 bio->bi_iter.bi_sector - p->start_sect);
883 }
884 bio->bi_partno = 0;
885 ret = 0;
886 out:
887 rcu_read_unlock();
888 return ret;
889 }
890
891 static noinline_for_stack bool
892 generic_make_request_checks(struct bio *bio)
893 {
894 struct request_queue *q;
895 int nr_sectors = bio_sectors(bio);
896 blk_status_t status = BLK_STS_IOERR;
897 char b[BDEVNAME_SIZE];
898
899 might_sleep();
900
901 q = bio->bi_disk->queue;
902 if (unlikely(!q)) {
903 printk(KERN_ERR
904 "generic_make_request: Trying to access "
905 "nonexistent block-device %s (%Lu)\n",
906 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
907 goto end_io;
908 }
909
910 /*
911 * Non-mq queues do not honor REQ_NOWAIT, so complete a bio
912 * with BLK_STS_AGAIN status in order to catch -EAGAIN and
913 * to give a chance to the caller to repeat request gracefully.
914 */
915 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) {
916 status = BLK_STS_AGAIN;
917 goto end_io;
918 }
919
920 if (should_fail_bio(bio))
921 goto end_io;
922
923 if (bio->bi_partno) {
924 if (unlikely(blk_partition_remap(bio)))
925 goto end_io;
926 } else {
927 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
928 goto end_io;
929 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
930 goto end_io;
931 }
932
933 /*
934 * Filter flush bio's early so that make_request based
935 * drivers without flush support don't have to worry
936 * about them.
937 */
938 if (op_is_flush(bio->bi_opf) &&
939 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
940 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
941 if (!nr_sectors) {
942 status = BLK_STS_OK;
943 goto end_io;
944 }
945 }
946
947 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
948 bio->bi_opf &= ~REQ_HIPRI;
949
950 switch (bio_op(bio)) {
951 case REQ_OP_DISCARD:
952 if (!blk_queue_discard(q))
953 goto not_supported;
954 break;
955 case REQ_OP_SECURE_ERASE:
956 if (!blk_queue_secure_erase(q))
957 goto not_supported;
958 break;
959 case REQ_OP_WRITE_SAME:
960 if (!q->limits.max_write_same_sectors)
961 goto not_supported;
962 break;
963 case REQ_OP_ZONE_RESET:
964 case REQ_OP_ZONE_OPEN:
965 case REQ_OP_ZONE_CLOSE:
966 case REQ_OP_ZONE_FINISH:
967 if (!blk_queue_is_zoned(q))
968 goto not_supported;
969 break;
970 case REQ_OP_ZONE_RESET_ALL:
971 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
972 goto not_supported;
973 break;
974 case REQ_OP_WRITE_ZEROES:
975 if (!q->limits.max_write_zeroes_sectors)
976 goto not_supported;
977 break;
978 default:
979 break;
980 }
981
982 /*
983 * Various block parts want %current->io_context, so allocate it up
984 * front rather than dealing with lots of pain to allocate it only
985 * where needed. This may fail and the block layer knows how to live
986 * with it.
987 */
988 if (unlikely(!current->io_context))
989 create_task_io_context(current, GFP_ATOMIC, q->node);
990
991 if (!blkcg_bio_issue_check(q, bio))
992 return false;
993
994 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
995 trace_block_bio_queue(q, bio);
996 /* Now that enqueuing has been traced, we need to trace
997 * completion as well.
998 */
999 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1000 }
1001 return true;
1002
1003 not_supported:
1004 status = BLK_STS_NOTSUPP;
1005 end_io:
1006 bio->bi_status = status;
1007 bio_endio(bio);
1008 return false;
1009 }
1010
1011 /**
1012 * generic_make_request - re-submit a bio to the block device layer for I/O
1013 * @bio: The bio describing the location in memory and on the device.
1014 *
1015 * This is a version of submit_bio() that shall only be used for I/O that is
1016 * resubmitted to lower level drivers by stacking block drivers. All file
1017 * systems and other upper level users of the block layer should use
1018 * submit_bio() instead.
1019 */
1020 blk_qc_t generic_make_request(struct bio *bio)
1021 {
1022 /*
1023 * bio_list_on_stack[0] contains bios submitted by the current
1024 * make_request_fn.
1025 * bio_list_on_stack[1] contains bios that were submitted before
1026 * the current make_request_fn, but that haven't been processed
1027 * yet.
1028 */
1029 struct bio_list bio_list_on_stack[2];
1030 blk_qc_t ret = BLK_QC_T_NONE;
1031
1032 if (!generic_make_request_checks(bio))
1033 goto out;
1034
1035 /*
1036 * We only want one ->make_request_fn to be active at a time, else
1037 * stack usage with stacked devices could be a problem. So use
1038 * current->bio_list to keep a list of requests submited by a
1039 * make_request_fn function. current->bio_list is also used as a
1040 * flag to say if generic_make_request is currently active in this
1041 * task or not. If it is NULL, then no make_request is active. If
1042 * it is non-NULL, then a make_request is active, and new requests
1043 * should be added at the tail
1044 */
1045 if (current->bio_list) {
1046 bio_list_add(&current->bio_list[0], bio);
1047 goto out;
1048 }
1049
1050 /* following loop may be a bit non-obvious, and so deserves some
1051 * explanation.
1052 * Before entering the loop, bio->bi_next is NULL (as all callers
1053 * ensure that) so we have a list with a single bio.
1054 * We pretend that we have just taken it off a longer list, so
1055 * we assign bio_list to a pointer to the bio_list_on_stack,
1056 * thus initialising the bio_list of new bios to be
1057 * added. ->make_request() may indeed add some more bios
1058 * through a recursive call to generic_make_request. If it
1059 * did, we find a non-NULL value in bio_list and re-enter the loop
1060 * from the top. In this case we really did just take the bio
1061 * of the top of the list (no pretending) and so remove it from
1062 * bio_list, and call into ->make_request() again.
1063 */
1064 BUG_ON(bio->bi_next);
1065 bio_list_init(&bio_list_on_stack[0]);
1066 current->bio_list = bio_list_on_stack;
1067 do {
1068 struct request_queue *q = bio->bi_disk->queue;
1069
1070 if (likely(bio_queue_enter(bio) == 0)) {
1071 struct bio_list lower, same;
1072
1073 /* Create a fresh bio_list for all subordinate requests */
1074 bio_list_on_stack[1] = bio_list_on_stack[0];
1075 bio_list_init(&bio_list_on_stack[0]);
1076 if (q->make_request_fn)
1077 ret = q->make_request_fn(q, bio);
1078 else
1079 ret = blk_mq_make_request(q, bio);
1080
1081 blk_queue_exit(q);
1082
1083 /* sort new bios into those for a lower level
1084 * and those for the same level
1085 */
1086 bio_list_init(&lower);
1087 bio_list_init(&same);
1088 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1089 if (q == bio->bi_disk->queue)
1090 bio_list_add(&same, bio);
1091 else
1092 bio_list_add(&lower, bio);
1093 /* now assemble so we handle the lowest level first */
1094 bio_list_merge(&bio_list_on_stack[0], &lower);
1095 bio_list_merge(&bio_list_on_stack[0], &same);
1096 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1097 }
1098 bio = bio_list_pop(&bio_list_on_stack[0]);
1099 } while (bio);
1100 current->bio_list = NULL; /* deactivate */
1101
1102 out:
1103 return ret;
1104 }
1105 EXPORT_SYMBOL(generic_make_request);
1106
1107 /**
1108 * direct_make_request - hand a buffer directly to its device driver for I/O
1109 * @bio: The bio describing the location in memory and on the device.
1110 *
1111 * This function behaves like generic_make_request(), but does not protect
1112 * against recursion. Must only be used if the called driver is known
1113 * to be blk-mq based.
1114 */
1115 blk_qc_t direct_make_request(struct bio *bio)
1116 {
1117 struct request_queue *q = bio->bi_disk->queue;
1118 blk_qc_t ret;
1119
1120 if (WARN_ON_ONCE(q->make_request_fn)) {
1121 bio_io_error(bio);
1122 return BLK_QC_T_NONE;
1123 }
1124 if (!generic_make_request_checks(bio))
1125 return BLK_QC_T_NONE;
1126 if (unlikely(bio_queue_enter(bio)))
1127 return BLK_QC_T_NONE;
1128 ret = blk_mq_make_request(q, bio);
1129 blk_queue_exit(q);
1130 return ret;
1131 }
1132 EXPORT_SYMBOL_GPL(direct_make_request);
1133
1134 /**
1135 * submit_bio - submit a bio to the block device layer for I/O
1136 * @bio: The &struct bio which describes the I/O
1137 *
1138 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1139 * fully set up &struct bio that describes the I/O that needs to be done. The
1140 * bio will be send to the device described by the bi_disk and bi_partno fields.
1141 *
1142 * The success/failure status of the request, along with notification of
1143 * completion, is delivered asynchronously through the ->bi_end_io() callback
1144 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1145 * been called.
1146 */
1147 blk_qc_t submit_bio(struct bio *bio)
1148 {
1149 if (blkcg_punt_bio_submit(bio))
1150 return BLK_QC_T_NONE;
1151
1152 /*
1153 * If it's a regular read/write or a barrier with data attached,
1154 * go through the normal accounting stuff before submission.
1155 */
1156 if (bio_has_data(bio)) {
1157 unsigned int count;
1158
1159 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1160 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1161 else
1162 count = bio_sectors(bio);
1163
1164 if (op_is_write(bio_op(bio))) {
1165 count_vm_events(PGPGOUT, count);
1166 } else {
1167 task_io_account_read(bio->bi_iter.bi_size);
1168 count_vm_events(PGPGIN, count);
1169 }
1170
1171 if (unlikely(block_dump)) {
1172 char b[BDEVNAME_SIZE];
1173 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1174 current->comm, task_pid_nr(current),
1175 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1176 (unsigned long long)bio->bi_iter.bi_sector,
1177 bio_devname(bio, b), count);
1178 }
1179 }
1180
1181 /*
1182 * If we're reading data that is part of the userspace workingset, count
1183 * submission time as memory stall. When the device is congested, or
1184 * the submitting cgroup IO-throttled, submission can be a significant
1185 * part of overall IO time.
1186 */
1187 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1188 bio_flagged(bio, BIO_WORKINGSET))) {
1189 unsigned long pflags;
1190 blk_qc_t ret;
1191
1192 psi_memstall_enter(&pflags);
1193 ret = generic_make_request(bio);
1194 psi_memstall_leave(&pflags);
1195
1196 return ret;
1197 }
1198
1199 return generic_make_request(bio);
1200 }
1201 EXPORT_SYMBOL(submit_bio);
1202
1203 /**
1204 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1205 * for the new queue limits
1206 * @q: the queue
1207 * @rq: the request being checked
1208 *
1209 * Description:
1210 * @rq may have been made based on weaker limitations of upper-level queues
1211 * in request stacking drivers, and it may violate the limitation of @q.
1212 * Since the block layer and the underlying device driver trust @rq
1213 * after it is inserted to @q, it should be checked against @q before
1214 * the insertion using this generic function.
1215 *
1216 * Request stacking drivers like request-based dm may change the queue
1217 * limits when retrying requests on other queues. Those requests need
1218 * to be checked against the new queue limits again during dispatch.
1219 */
1220 static int blk_cloned_rq_check_limits(struct request_queue *q,
1221 struct request *rq)
1222 {
1223 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1224 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1225 __func__, blk_rq_sectors(rq),
1226 blk_queue_get_max_sectors(q, req_op(rq)));
1227 return -EIO;
1228 }
1229
1230 /*
1231 * queue's settings related to segment counting like q->bounce_pfn
1232 * may differ from that of other stacking queues.
1233 * Recalculate it to check the request correctly on this queue's
1234 * limitation.
1235 */
1236 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1237 if (rq->nr_phys_segments > queue_max_segments(q)) {
1238 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1239 __func__, rq->nr_phys_segments, queue_max_segments(q));
1240 return -EIO;
1241 }
1242
1243 return 0;
1244 }
1245
1246 /**
1247 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1248 * @q: the queue to submit the request
1249 * @rq: the request being queued
1250 */
1251 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1252 {
1253 if (blk_cloned_rq_check_limits(q, rq))
1254 return BLK_STS_IOERR;
1255
1256 if (rq->rq_disk &&
1257 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1258 return BLK_STS_IOERR;
1259
1260 if (blk_queue_io_stat(q))
1261 blk_account_io_start(rq, true);
1262
1263 /*
1264 * Since we have a scheduler attached on the top device,
1265 * bypass a potential scheduler on the bottom device for
1266 * insert.
1267 */
1268 return blk_mq_request_issue_directly(rq, true);
1269 }
1270 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1271
1272 /**
1273 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1274 * @rq: request to examine
1275 *
1276 * Description:
1277 * A request could be merge of IOs which require different failure
1278 * handling. This function determines the number of bytes which
1279 * can be failed from the beginning of the request without
1280 * crossing into area which need to be retried further.
1281 *
1282 * Return:
1283 * The number of bytes to fail.
1284 */
1285 unsigned int blk_rq_err_bytes(const struct request *rq)
1286 {
1287 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1288 unsigned int bytes = 0;
1289 struct bio *bio;
1290
1291 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1292 return blk_rq_bytes(rq);
1293
1294 /*
1295 * Currently the only 'mixing' which can happen is between
1296 * different fastfail types. We can safely fail portions
1297 * which have all the failfast bits that the first one has -
1298 * the ones which are at least as eager to fail as the first
1299 * one.
1300 */
1301 for (bio = rq->bio; bio; bio = bio->bi_next) {
1302 if ((bio->bi_opf & ff) != ff)
1303 break;
1304 bytes += bio->bi_iter.bi_size;
1305 }
1306
1307 /* this could lead to infinite loop */
1308 BUG_ON(blk_rq_bytes(rq) && !bytes);
1309 return bytes;
1310 }
1311 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1312
1313 void blk_account_io_completion(struct request *req, unsigned int bytes)
1314 {
1315 if (req->part && blk_do_io_stat(req)) {
1316 const int sgrp = op_stat_group(req_op(req));
1317 struct hd_struct *part;
1318
1319 part_stat_lock();
1320 part = req->part;
1321 part_stat_add(part, sectors[sgrp], bytes >> 9);
1322 part_stat_unlock();
1323 }
1324 }
1325
1326 void blk_account_io_done(struct request *req, u64 now)
1327 {
1328 /*
1329 * Account IO completion. flush_rq isn't accounted as a
1330 * normal IO on queueing nor completion. Accounting the
1331 * containing request is enough.
1332 */
1333 if (req->part && blk_do_io_stat(req) &&
1334 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1335 const int sgrp = op_stat_group(req_op(req));
1336 struct hd_struct *part;
1337
1338 part_stat_lock();
1339 part = req->part;
1340
1341 update_io_ticks(part, jiffies, true);
1342 part_stat_inc(part, ios[sgrp]);
1343 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1344 part_dec_in_flight(req->q, part, rq_data_dir(req));
1345
1346 hd_struct_put(part);
1347 part_stat_unlock();
1348 }
1349 }
1350
1351 void blk_account_io_start(struct request *rq, bool new_io)
1352 {
1353 struct hd_struct *part;
1354 int rw = rq_data_dir(rq);
1355
1356 if (!blk_do_io_stat(rq))
1357 return;
1358
1359 part_stat_lock();
1360
1361 if (!new_io) {
1362 part = rq->part;
1363 part_stat_inc(part, merges[rw]);
1364 } else {
1365 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1366 if (!hd_struct_try_get(part)) {
1367 /*
1368 * The partition is already being removed,
1369 * the request will be accounted on the disk only
1370 *
1371 * We take a reference on disk->part0 although that
1372 * partition will never be deleted, so we can treat
1373 * it as any other partition.
1374 */
1375 part = &rq->rq_disk->part0;
1376 hd_struct_get(part);
1377 }
1378 part_inc_in_flight(rq->q, part, rw);
1379 rq->part = part;
1380 }
1381
1382 update_io_ticks(part, jiffies, false);
1383
1384 part_stat_unlock();
1385 }
1386
1387 /*
1388 * Steal bios from a request and add them to a bio list.
1389 * The request must not have been partially completed before.
1390 */
1391 void blk_steal_bios(struct bio_list *list, struct request *rq)
1392 {
1393 if (rq->bio) {
1394 if (list->tail)
1395 list->tail->bi_next = rq->bio;
1396 else
1397 list->head = rq->bio;
1398 list->tail = rq->biotail;
1399
1400 rq->bio = NULL;
1401 rq->biotail = NULL;
1402 }
1403
1404 rq->__data_len = 0;
1405 }
1406 EXPORT_SYMBOL_GPL(blk_steal_bios);
1407
1408 /**
1409 * blk_update_request - Special helper function for request stacking drivers
1410 * @req: the request being processed
1411 * @error: block status code
1412 * @nr_bytes: number of bytes to complete @req
1413 *
1414 * Description:
1415 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1416 * the request structure even if @req doesn't have leftover.
1417 * If @req has leftover, sets it up for the next range of segments.
1418 *
1419 * This special helper function is only for request stacking drivers
1420 * (e.g. request-based dm) so that they can handle partial completion.
1421 * Actual device drivers should use blk_mq_end_request instead.
1422 *
1423 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1424 * %false return from this function.
1425 *
1426 * Note:
1427 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1428 * blk_rq_bytes() and in blk_update_request().
1429 *
1430 * Return:
1431 * %false - this request doesn't have any more data
1432 * %true - this request has more data
1433 **/
1434 bool blk_update_request(struct request *req, blk_status_t error,
1435 unsigned int nr_bytes)
1436 {
1437 int total_bytes;
1438
1439 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1440
1441 if (!req->bio)
1442 return false;
1443
1444 #ifdef CONFIG_BLK_DEV_INTEGRITY
1445 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1446 error == BLK_STS_OK)
1447 req->q->integrity.profile->complete_fn(req, nr_bytes);
1448 #endif
1449
1450 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1451 !(req->rq_flags & RQF_QUIET)))
1452 print_req_error(req, error, __func__);
1453
1454 blk_account_io_completion(req, nr_bytes);
1455
1456 total_bytes = 0;
1457 while (req->bio) {
1458 struct bio *bio = req->bio;
1459 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1460
1461 if (bio_bytes == bio->bi_iter.bi_size)
1462 req->bio = bio->bi_next;
1463
1464 /* Completion has already been traced */
1465 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1466 req_bio_endio(req, bio, bio_bytes, error);
1467
1468 total_bytes += bio_bytes;
1469 nr_bytes -= bio_bytes;
1470
1471 if (!nr_bytes)
1472 break;
1473 }
1474
1475 /*
1476 * completely done
1477 */
1478 if (!req->bio) {
1479 /*
1480 * Reset counters so that the request stacking driver
1481 * can find how many bytes remain in the request
1482 * later.
1483 */
1484 req->__data_len = 0;
1485 return false;
1486 }
1487
1488 req->__data_len -= total_bytes;
1489
1490 /* update sector only for requests with clear definition of sector */
1491 if (!blk_rq_is_passthrough(req))
1492 req->__sector += total_bytes >> 9;
1493
1494 /* mixed attributes always follow the first bio */
1495 if (req->rq_flags & RQF_MIXED_MERGE) {
1496 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1497 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1498 }
1499
1500 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1501 /*
1502 * If total number of sectors is less than the first segment
1503 * size, something has gone terribly wrong.
1504 */
1505 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1506 blk_dump_rq_flags(req, "request botched");
1507 req->__data_len = blk_rq_cur_bytes(req);
1508 }
1509
1510 /* recalculate the number of segments */
1511 req->nr_phys_segments = blk_recalc_rq_segments(req);
1512 }
1513
1514 return true;
1515 }
1516 EXPORT_SYMBOL_GPL(blk_update_request);
1517
1518 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1519 /**
1520 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1521 * @rq: the request to be flushed
1522 *
1523 * Description:
1524 * Flush all pages in @rq.
1525 */
1526 void rq_flush_dcache_pages(struct request *rq)
1527 {
1528 struct req_iterator iter;
1529 struct bio_vec bvec;
1530
1531 rq_for_each_segment(bvec, rq, iter)
1532 flush_dcache_page(bvec.bv_page);
1533 }
1534 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1535 #endif
1536
1537 /**
1538 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1539 * @q : the queue of the device being checked
1540 *
1541 * Description:
1542 * Check if underlying low-level drivers of a device are busy.
1543 * If the drivers want to export their busy state, they must set own
1544 * exporting function using blk_queue_lld_busy() first.
1545 *
1546 * Basically, this function is used only by request stacking drivers
1547 * to stop dispatching requests to underlying devices when underlying
1548 * devices are busy. This behavior helps more I/O merging on the queue
1549 * of the request stacking driver and prevents I/O throughput regression
1550 * on burst I/O load.
1551 *
1552 * Return:
1553 * 0 - Not busy (The request stacking driver should dispatch request)
1554 * 1 - Busy (The request stacking driver should stop dispatching request)
1555 */
1556 int blk_lld_busy(struct request_queue *q)
1557 {
1558 if (queue_is_mq(q) && q->mq_ops->busy)
1559 return q->mq_ops->busy(q);
1560
1561 return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(blk_lld_busy);
1564
1565 /**
1566 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1567 * @rq: the clone request to be cleaned up
1568 *
1569 * Description:
1570 * Free all bios in @rq for a cloned request.
1571 */
1572 void blk_rq_unprep_clone(struct request *rq)
1573 {
1574 struct bio *bio;
1575
1576 while ((bio = rq->bio) != NULL) {
1577 rq->bio = bio->bi_next;
1578
1579 bio_put(bio);
1580 }
1581 }
1582 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1583
1584 /**
1585 * blk_rq_prep_clone - Helper function to setup clone request
1586 * @rq: the request to be setup
1587 * @rq_src: original request to be cloned
1588 * @bs: bio_set that bios for clone are allocated from
1589 * @gfp_mask: memory allocation mask for bio
1590 * @bio_ctr: setup function to be called for each clone bio.
1591 * Returns %0 for success, non %0 for failure.
1592 * @data: private data to be passed to @bio_ctr
1593 *
1594 * Description:
1595 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1596 * Also, pages which the original bios are pointing to are not copied
1597 * and the cloned bios just point same pages.
1598 * So cloned bios must be completed before original bios, which means
1599 * the caller must complete @rq before @rq_src.
1600 */
1601 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1602 struct bio_set *bs, gfp_t gfp_mask,
1603 int (*bio_ctr)(struct bio *, struct bio *, void *),
1604 void *data)
1605 {
1606 struct bio *bio, *bio_src;
1607
1608 if (!bs)
1609 bs = &fs_bio_set;
1610
1611 __rq_for_each_bio(bio_src, rq_src) {
1612 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1613 if (!bio)
1614 goto free_and_out;
1615
1616 if (bio_ctr && bio_ctr(bio, bio_src, data))
1617 goto free_and_out;
1618
1619 if (rq->bio) {
1620 rq->biotail->bi_next = bio;
1621 rq->biotail = bio;
1622 } else
1623 rq->bio = rq->biotail = bio;
1624 }
1625
1626 /* Copy attributes of the original request to the clone request. */
1627 rq->__sector = blk_rq_pos(rq_src);
1628 rq->__data_len = blk_rq_bytes(rq_src);
1629 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1630 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1631 rq->special_vec = rq_src->special_vec;
1632 }
1633 rq->nr_phys_segments = rq_src->nr_phys_segments;
1634 rq->ioprio = rq_src->ioprio;
1635
1636 return 0;
1637
1638 free_and_out:
1639 if (bio)
1640 bio_put(bio);
1641 blk_rq_unprep_clone(rq);
1642
1643 return -ENOMEM;
1644 }
1645 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1646
1647 int kblockd_schedule_work(struct work_struct *work)
1648 {
1649 return queue_work(kblockd_workqueue, work);
1650 }
1651 EXPORT_SYMBOL(kblockd_schedule_work);
1652
1653 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1654 unsigned long delay)
1655 {
1656 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1657 }
1658 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1659
1660 /**
1661 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1662 * @plug: The &struct blk_plug that needs to be initialized
1663 *
1664 * Description:
1665 * blk_start_plug() indicates to the block layer an intent by the caller
1666 * to submit multiple I/O requests in a batch. The block layer may use
1667 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1668 * is called. However, the block layer may choose to submit requests
1669 * before a call to blk_finish_plug() if the number of queued I/Os
1670 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1671 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1672 * the task schedules (see below).
1673 *
1674 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1675 * pending I/O should the task end up blocking between blk_start_plug() and
1676 * blk_finish_plug(). This is important from a performance perspective, but
1677 * also ensures that we don't deadlock. For instance, if the task is blocking
1678 * for a memory allocation, memory reclaim could end up wanting to free a
1679 * page belonging to that request that is currently residing in our private
1680 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1681 * this kind of deadlock.
1682 */
1683 void blk_start_plug(struct blk_plug *plug)
1684 {
1685 struct task_struct *tsk = current;
1686
1687 /*
1688 * If this is a nested plug, don't actually assign it.
1689 */
1690 if (tsk->plug)
1691 return;
1692
1693 INIT_LIST_HEAD(&plug->mq_list);
1694 INIT_LIST_HEAD(&plug->cb_list);
1695 plug->rq_count = 0;
1696 plug->multiple_queues = false;
1697
1698 /*
1699 * Store ordering should not be needed here, since a potential
1700 * preempt will imply a full memory barrier
1701 */
1702 tsk->plug = plug;
1703 }
1704 EXPORT_SYMBOL(blk_start_plug);
1705
1706 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1707 {
1708 LIST_HEAD(callbacks);
1709
1710 while (!list_empty(&plug->cb_list)) {
1711 list_splice_init(&plug->cb_list, &callbacks);
1712
1713 while (!list_empty(&callbacks)) {
1714 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1715 struct blk_plug_cb,
1716 list);
1717 list_del(&cb->list);
1718 cb->callback(cb, from_schedule);
1719 }
1720 }
1721 }
1722
1723 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1724 int size)
1725 {
1726 struct blk_plug *plug = current->plug;
1727 struct blk_plug_cb *cb;
1728
1729 if (!plug)
1730 return NULL;
1731
1732 list_for_each_entry(cb, &plug->cb_list, list)
1733 if (cb->callback == unplug && cb->data == data)
1734 return cb;
1735
1736 /* Not currently on the callback list */
1737 BUG_ON(size < sizeof(*cb));
1738 cb = kzalloc(size, GFP_ATOMIC);
1739 if (cb) {
1740 cb->data = data;
1741 cb->callback = unplug;
1742 list_add(&cb->list, &plug->cb_list);
1743 }
1744 return cb;
1745 }
1746 EXPORT_SYMBOL(blk_check_plugged);
1747
1748 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1749 {
1750 flush_plug_callbacks(plug, from_schedule);
1751
1752 if (!list_empty(&plug->mq_list))
1753 blk_mq_flush_plug_list(plug, from_schedule);
1754 }
1755
1756 /**
1757 * blk_finish_plug - mark the end of a batch of submitted I/O
1758 * @plug: The &struct blk_plug passed to blk_start_plug()
1759 *
1760 * Description:
1761 * Indicate that a batch of I/O submissions is complete. This function
1762 * must be paired with an initial call to blk_start_plug(). The intent
1763 * is to allow the block layer to optimize I/O submission. See the
1764 * documentation for blk_start_plug() for more information.
1765 */
1766 void blk_finish_plug(struct blk_plug *plug)
1767 {
1768 if (plug != current->plug)
1769 return;
1770 blk_flush_plug_list(plug, false);
1771
1772 current->plug = NULL;
1773 }
1774 EXPORT_SYMBOL(blk_finish_plug);
1775
1776 int __init blk_dev_init(void)
1777 {
1778 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1779 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1780 sizeof_field(struct request, cmd_flags));
1781 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1782 sizeof_field(struct bio, bi_opf));
1783
1784 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1785 kblockd_workqueue = alloc_workqueue("kblockd",
1786 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1787 if (!kblockd_workqueue)
1788 panic("Failed to create kblockd\n");
1789
1790 blk_requestq_cachep = kmem_cache_create("request_queue",
1791 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1792
1793 #ifdef CONFIG_DEBUG_FS
1794 blk_debugfs_root = debugfs_create_dir("block", NULL);
1795 #endif
1796
1797 return 0;
1798 }