]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
block: Document what queue type each function is intended for
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx > ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx > ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336
337 if (q->mq_ops) {
338 struct blk_mq_hw_ctx *hctx;
339 int i;
340
341 queue_for_each_hw_ctx(q, hctx, i)
342 cancel_delayed_work_sync(&hctx->run_work);
343 } else {
344 cancel_delayed_work_sync(&q->delay_work);
345 }
346 }
347 EXPORT_SYMBOL(blk_sync_queue);
348
349 /**
350 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
351 * @q: The queue to run
352 *
353 * Description:
354 * Invoke request handling on a queue if there are any pending requests.
355 * May be used to restart request handling after a request has completed.
356 * This variant runs the queue whether or not the queue has been
357 * stopped. Must be called with the queue lock held and interrupts
358 * disabled. See also @blk_run_queue.
359 */
360 inline void __blk_run_queue_uncond(struct request_queue *q)
361 {
362 lockdep_assert_held(q->queue_lock);
363 WARN_ON_ONCE(q->mq_ops);
364
365 if (unlikely(blk_queue_dead(q)))
366 return;
367
368 /*
369 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
370 * the queue lock internally. As a result multiple threads may be
371 * running such a request function concurrently. Keep track of the
372 * number of active request_fn invocations such that blk_drain_queue()
373 * can wait until all these request_fn calls have finished.
374 */
375 q->request_fn_active++;
376 q->request_fn(q);
377 q->request_fn_active--;
378 }
379 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
380
381 /**
382 * __blk_run_queue - run a single device queue
383 * @q: The queue to run
384 *
385 * Description:
386 * See @blk_run_queue.
387 */
388 void __blk_run_queue(struct request_queue *q)
389 {
390 lockdep_assert_held(q->queue_lock);
391 WARN_ON_ONCE(q->mq_ops);
392
393 if (unlikely(blk_queue_stopped(q)))
394 return;
395
396 __blk_run_queue_uncond(q);
397 }
398 EXPORT_SYMBOL(__blk_run_queue);
399
400 /**
401 * blk_run_queue_async - run a single device queue in workqueue context
402 * @q: The queue to run
403 *
404 * Description:
405 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
406 * of us.
407 *
408 * Note:
409 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
410 * has canceled q->delay_work, callers must hold the queue lock to avoid
411 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
412 */
413 void blk_run_queue_async(struct request_queue *q)
414 {
415 lockdep_assert_held(q->queue_lock);
416 WARN_ON_ONCE(q->mq_ops);
417
418 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
419 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
420 }
421 EXPORT_SYMBOL(blk_run_queue_async);
422
423 /**
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
426 *
427 * Description:
428 * Invoke request handling on this queue, if it has pending work to do.
429 * May be used to restart queueing when a request has completed.
430 */
431 void blk_run_queue(struct request_queue *q)
432 {
433 unsigned long flags;
434
435 WARN_ON_ONCE(q->mq_ops);
436
437 spin_lock_irqsave(q->queue_lock, flags);
438 __blk_run_queue(q);
439 spin_unlock_irqrestore(q->queue_lock, flags);
440 }
441 EXPORT_SYMBOL(blk_run_queue);
442
443 void blk_put_queue(struct request_queue *q)
444 {
445 kobject_put(&q->kobj);
446 }
447 EXPORT_SYMBOL(blk_put_queue);
448
449 /**
450 * __blk_drain_queue - drain requests from request_queue
451 * @q: queue to drain
452 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
453 *
454 * Drain requests from @q. If @drain_all is set, all requests are drained.
455 * If not, only ELVPRIV requests are drained. The caller is responsible
456 * for ensuring that no new requests which need to be drained are queued.
457 */
458 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
459 __releases(q->queue_lock)
460 __acquires(q->queue_lock)
461 {
462 int i;
463
464 lockdep_assert_held(q->queue_lock);
465 WARN_ON_ONCE(q->mq_ops);
466
467 while (true) {
468 bool drain = false;
469
470 /*
471 * The caller might be trying to drain @q before its
472 * elevator is initialized.
473 */
474 if (q->elevator)
475 elv_drain_elevator(q);
476
477 blkcg_drain_queue(q);
478
479 /*
480 * This function might be called on a queue which failed
481 * driver init after queue creation or is not yet fully
482 * active yet. Some drivers (e.g. fd and loop) get unhappy
483 * in such cases. Kick queue iff dispatch queue has
484 * something on it and @q has request_fn set.
485 */
486 if (!list_empty(&q->queue_head) && q->request_fn)
487 __blk_run_queue(q);
488
489 drain |= q->nr_rqs_elvpriv;
490 drain |= q->request_fn_active;
491
492 /*
493 * Unfortunately, requests are queued at and tracked from
494 * multiple places and there's no single counter which can
495 * be drained. Check all the queues and counters.
496 */
497 if (drain_all) {
498 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
499 drain |= !list_empty(&q->queue_head);
500 for (i = 0; i < 2; i++) {
501 drain |= q->nr_rqs[i];
502 drain |= q->in_flight[i];
503 if (fq)
504 drain |= !list_empty(&fq->flush_queue[i]);
505 }
506 }
507
508 if (!drain)
509 break;
510
511 spin_unlock_irq(q->queue_lock);
512
513 msleep(10);
514
515 spin_lock_irq(q->queue_lock);
516 }
517
518 /*
519 * With queue marked dead, any woken up waiter will fail the
520 * allocation path, so the wakeup chaining is lost and we're
521 * left with hung waiters. We need to wake up those waiters.
522 */
523 if (q->request_fn) {
524 struct request_list *rl;
525
526 blk_queue_for_each_rl(rl, q)
527 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
528 wake_up_all(&rl->wait[i]);
529 }
530 }
531
532 /**
533 * blk_queue_bypass_start - enter queue bypass mode
534 * @q: queue of interest
535 *
536 * In bypass mode, only the dispatch FIFO queue of @q is used. This
537 * function makes @q enter bypass mode and drains all requests which were
538 * throttled or issued before. On return, it's guaranteed that no request
539 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
540 * inside queue or RCU read lock.
541 */
542 void blk_queue_bypass_start(struct request_queue *q)
543 {
544 WARN_ON_ONCE(q->mq_ops);
545
546 spin_lock_irq(q->queue_lock);
547 q->bypass_depth++;
548 queue_flag_set(QUEUE_FLAG_BYPASS, q);
549 spin_unlock_irq(q->queue_lock);
550
551 /*
552 * Queues start drained. Skip actual draining till init is
553 * complete. This avoids lenghty delays during queue init which
554 * can happen many times during boot.
555 */
556 if (blk_queue_init_done(q)) {
557 spin_lock_irq(q->queue_lock);
558 __blk_drain_queue(q, false);
559 spin_unlock_irq(q->queue_lock);
560
561 /* ensure blk_queue_bypass() is %true inside RCU read lock */
562 synchronize_rcu();
563 }
564 }
565 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
566
567 /**
568 * blk_queue_bypass_end - leave queue bypass mode
569 * @q: queue of interest
570 *
571 * Leave bypass mode and restore the normal queueing behavior.
572 *
573 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
574 * this function is called for both blk-sq and blk-mq queues.
575 */
576 void blk_queue_bypass_end(struct request_queue *q)
577 {
578 spin_lock_irq(q->queue_lock);
579 if (!--q->bypass_depth)
580 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
581 WARN_ON_ONCE(q->bypass_depth < 0);
582 spin_unlock_irq(q->queue_lock);
583 }
584 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
585
586 void blk_set_queue_dying(struct request_queue *q)
587 {
588 spin_lock_irq(q->queue_lock);
589 queue_flag_set(QUEUE_FLAG_DYING, q);
590 spin_unlock_irq(q->queue_lock);
591
592 /*
593 * When queue DYING flag is set, we need to block new req
594 * entering queue, so we call blk_freeze_queue_start() to
595 * prevent I/O from crossing blk_queue_enter().
596 */
597 blk_freeze_queue_start(q);
598
599 if (q->mq_ops)
600 blk_mq_wake_waiters(q);
601 else {
602 struct request_list *rl;
603
604 spin_lock_irq(q->queue_lock);
605 blk_queue_for_each_rl(rl, q) {
606 if (rl->rq_pool) {
607 wake_up(&rl->wait[BLK_RW_SYNC]);
608 wake_up(&rl->wait[BLK_RW_ASYNC]);
609 }
610 }
611 spin_unlock_irq(q->queue_lock);
612 }
613 }
614 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
615
616 /**
617 * blk_cleanup_queue - shutdown a request queue
618 * @q: request queue to shutdown
619 *
620 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
621 * put it. All future requests will be failed immediately with -ENODEV.
622 */
623 void blk_cleanup_queue(struct request_queue *q)
624 {
625 spinlock_t *lock = q->queue_lock;
626
627 /* mark @q DYING, no new request or merges will be allowed afterwards */
628 mutex_lock(&q->sysfs_lock);
629 blk_set_queue_dying(q);
630 spin_lock_irq(lock);
631
632 /*
633 * A dying queue is permanently in bypass mode till released. Note
634 * that, unlike blk_queue_bypass_start(), we aren't performing
635 * synchronize_rcu() after entering bypass mode to avoid the delay
636 * as some drivers create and destroy a lot of queues while
637 * probing. This is still safe because blk_release_queue() will be
638 * called only after the queue refcnt drops to zero and nothing,
639 * RCU or not, would be traversing the queue by then.
640 */
641 q->bypass_depth++;
642 queue_flag_set(QUEUE_FLAG_BYPASS, q);
643
644 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
645 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
646 queue_flag_set(QUEUE_FLAG_DYING, q);
647 spin_unlock_irq(lock);
648 mutex_unlock(&q->sysfs_lock);
649
650 /*
651 * Drain all requests queued before DYING marking. Set DEAD flag to
652 * prevent that q->request_fn() gets invoked after draining finished.
653 */
654 blk_freeze_queue(q);
655 spin_lock_irq(lock);
656 if (!q->mq_ops)
657 __blk_drain_queue(q, true);
658 queue_flag_set(QUEUE_FLAG_DEAD, q);
659 spin_unlock_irq(lock);
660
661 /* for synchronous bio-based driver finish in-flight integrity i/o */
662 blk_flush_integrity();
663
664 /* @q won't process any more request, flush async actions */
665 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
666 blk_sync_queue(q);
667
668 if (q->mq_ops)
669 blk_mq_free_queue(q);
670 percpu_ref_exit(&q->q_usage_counter);
671
672 spin_lock_irq(lock);
673 if (q->queue_lock != &q->__queue_lock)
674 q->queue_lock = &q->__queue_lock;
675 spin_unlock_irq(lock);
676
677 /* @q is and will stay empty, shutdown and put */
678 blk_put_queue(q);
679 }
680 EXPORT_SYMBOL(blk_cleanup_queue);
681
682 /* Allocate memory local to the request queue */
683 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
684 {
685 struct request_queue *q = data;
686
687 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
688 }
689
690 static void free_request_simple(void *element, void *data)
691 {
692 kmem_cache_free(request_cachep, element);
693 }
694
695 static void *alloc_request_size(gfp_t gfp_mask, void *data)
696 {
697 struct request_queue *q = data;
698 struct request *rq;
699
700 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
701 q->node);
702 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
703 kfree(rq);
704 rq = NULL;
705 }
706 return rq;
707 }
708
709 static void free_request_size(void *element, void *data)
710 {
711 struct request_queue *q = data;
712
713 if (q->exit_rq_fn)
714 q->exit_rq_fn(q, element);
715 kfree(element);
716 }
717
718 int blk_init_rl(struct request_list *rl, struct request_queue *q,
719 gfp_t gfp_mask)
720 {
721 if (unlikely(rl->rq_pool))
722 return 0;
723
724 rl->q = q;
725 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
726 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
727 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
728 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
729
730 if (q->cmd_size) {
731 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
732 alloc_request_size, free_request_size,
733 q, gfp_mask, q->node);
734 } else {
735 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
736 alloc_request_simple, free_request_simple,
737 q, gfp_mask, q->node);
738 }
739 if (!rl->rq_pool)
740 return -ENOMEM;
741
742 if (rl != &q->root_rl)
743 WARN_ON_ONCE(!blk_get_queue(q));
744
745 return 0;
746 }
747
748 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
749 {
750 if (rl->rq_pool) {
751 mempool_destroy(rl->rq_pool);
752 if (rl != &q->root_rl)
753 blk_put_queue(q);
754 }
755 }
756
757 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
758 {
759 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
760 }
761 EXPORT_SYMBOL(blk_alloc_queue);
762
763 int blk_queue_enter(struct request_queue *q, bool nowait)
764 {
765 while (true) {
766 int ret;
767
768 if (percpu_ref_tryget_live(&q->q_usage_counter))
769 return 0;
770
771 if (nowait)
772 return -EBUSY;
773
774 /*
775 * read pair of barrier in blk_freeze_queue_start(),
776 * we need to order reading __PERCPU_REF_DEAD flag of
777 * .q_usage_counter and reading .mq_freeze_depth or
778 * queue dying flag, otherwise the following wait may
779 * never return if the two reads are reordered.
780 */
781 smp_rmb();
782
783 ret = wait_event_interruptible(q->mq_freeze_wq,
784 !atomic_read(&q->mq_freeze_depth) ||
785 blk_queue_dying(q));
786 if (blk_queue_dying(q))
787 return -ENODEV;
788 if (ret)
789 return ret;
790 }
791 }
792
793 void blk_queue_exit(struct request_queue *q)
794 {
795 percpu_ref_put(&q->q_usage_counter);
796 }
797
798 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
799 {
800 struct request_queue *q =
801 container_of(ref, struct request_queue, q_usage_counter);
802
803 wake_up_all(&q->mq_freeze_wq);
804 }
805
806 static void blk_rq_timed_out_timer(unsigned long data)
807 {
808 struct request_queue *q = (struct request_queue *)data;
809
810 kblockd_schedule_work(&q->timeout_work);
811 }
812
813 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
814 {
815 struct request_queue *q;
816
817 q = kmem_cache_alloc_node(blk_requestq_cachep,
818 gfp_mask | __GFP_ZERO, node_id);
819 if (!q)
820 return NULL;
821
822 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
823 if (q->id < 0)
824 goto fail_q;
825
826 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
827 if (!q->bio_split)
828 goto fail_id;
829
830 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
831 if (!q->backing_dev_info)
832 goto fail_split;
833
834 q->stats = blk_alloc_queue_stats();
835 if (!q->stats)
836 goto fail_stats;
837
838 q->backing_dev_info->ra_pages =
839 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
840 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
841 q->backing_dev_info->name = "block";
842 q->node = node_id;
843
844 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
845 laptop_mode_timer_fn, (unsigned long) q);
846 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
847 INIT_LIST_HEAD(&q->queue_head);
848 INIT_LIST_HEAD(&q->timeout_list);
849 INIT_LIST_HEAD(&q->icq_list);
850 #ifdef CONFIG_BLK_CGROUP
851 INIT_LIST_HEAD(&q->blkg_list);
852 #endif
853 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
854
855 kobject_init(&q->kobj, &blk_queue_ktype);
856
857 mutex_init(&q->sysfs_lock);
858 spin_lock_init(&q->__queue_lock);
859
860 /*
861 * By default initialize queue_lock to internal lock and driver can
862 * override it later if need be.
863 */
864 q->queue_lock = &q->__queue_lock;
865
866 /*
867 * A queue starts its life with bypass turned on to avoid
868 * unnecessary bypass on/off overhead and nasty surprises during
869 * init. The initial bypass will be finished when the queue is
870 * registered by blk_register_queue().
871 */
872 q->bypass_depth = 1;
873 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
874
875 init_waitqueue_head(&q->mq_freeze_wq);
876
877 /*
878 * Init percpu_ref in atomic mode so that it's faster to shutdown.
879 * See blk_register_queue() for details.
880 */
881 if (percpu_ref_init(&q->q_usage_counter,
882 blk_queue_usage_counter_release,
883 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
884 goto fail_bdi;
885
886 if (blkcg_init_queue(q))
887 goto fail_ref;
888
889 return q;
890
891 fail_ref:
892 percpu_ref_exit(&q->q_usage_counter);
893 fail_bdi:
894 blk_free_queue_stats(q->stats);
895 fail_stats:
896 bdi_put(q->backing_dev_info);
897 fail_split:
898 bioset_free(q->bio_split);
899 fail_id:
900 ida_simple_remove(&blk_queue_ida, q->id);
901 fail_q:
902 kmem_cache_free(blk_requestq_cachep, q);
903 return NULL;
904 }
905 EXPORT_SYMBOL(blk_alloc_queue_node);
906
907 /**
908 * blk_init_queue - prepare a request queue for use with a block device
909 * @rfn: The function to be called to process requests that have been
910 * placed on the queue.
911 * @lock: Request queue spin lock
912 *
913 * Description:
914 * If a block device wishes to use the standard request handling procedures,
915 * which sorts requests and coalesces adjacent requests, then it must
916 * call blk_init_queue(). The function @rfn will be called when there
917 * are requests on the queue that need to be processed. If the device
918 * supports plugging, then @rfn may not be called immediately when requests
919 * are available on the queue, but may be called at some time later instead.
920 * Plugged queues are generally unplugged when a buffer belonging to one
921 * of the requests on the queue is needed, or due to memory pressure.
922 *
923 * @rfn is not required, or even expected, to remove all requests off the
924 * queue, but only as many as it can handle at a time. If it does leave
925 * requests on the queue, it is responsible for arranging that the requests
926 * get dealt with eventually.
927 *
928 * The queue spin lock must be held while manipulating the requests on the
929 * request queue; this lock will be taken also from interrupt context, so irq
930 * disabling is needed for it.
931 *
932 * Function returns a pointer to the initialized request queue, or %NULL if
933 * it didn't succeed.
934 *
935 * Note:
936 * blk_init_queue() must be paired with a blk_cleanup_queue() call
937 * when the block device is deactivated (such as at module unload).
938 **/
939
940 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
941 {
942 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
943 }
944 EXPORT_SYMBOL(blk_init_queue);
945
946 struct request_queue *
947 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
948 {
949 struct request_queue *q;
950
951 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
952 if (!q)
953 return NULL;
954
955 q->request_fn = rfn;
956 if (lock)
957 q->queue_lock = lock;
958 if (blk_init_allocated_queue(q) < 0) {
959 blk_cleanup_queue(q);
960 return NULL;
961 }
962
963 return q;
964 }
965 EXPORT_SYMBOL(blk_init_queue_node);
966
967 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
968
969
970 int blk_init_allocated_queue(struct request_queue *q)
971 {
972 WARN_ON_ONCE(q->mq_ops);
973
974 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
975 if (!q->fq)
976 return -ENOMEM;
977
978 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
979 goto out_free_flush_queue;
980
981 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
982 goto out_exit_flush_rq;
983
984 INIT_WORK(&q->timeout_work, blk_timeout_work);
985 q->queue_flags |= QUEUE_FLAG_DEFAULT;
986
987 /*
988 * This also sets hw/phys segments, boundary and size
989 */
990 blk_queue_make_request(q, blk_queue_bio);
991
992 q->sg_reserved_size = INT_MAX;
993
994 /* Protect q->elevator from elevator_change */
995 mutex_lock(&q->sysfs_lock);
996
997 /* init elevator */
998 if (elevator_init(q, NULL)) {
999 mutex_unlock(&q->sysfs_lock);
1000 goto out_exit_flush_rq;
1001 }
1002
1003 mutex_unlock(&q->sysfs_lock);
1004 return 0;
1005
1006 out_exit_flush_rq:
1007 if (q->exit_rq_fn)
1008 q->exit_rq_fn(q, q->fq->flush_rq);
1009 out_free_flush_queue:
1010 blk_free_flush_queue(q->fq);
1011 return -ENOMEM;
1012 }
1013 EXPORT_SYMBOL(blk_init_allocated_queue);
1014
1015 bool blk_get_queue(struct request_queue *q)
1016 {
1017 if (likely(!blk_queue_dying(q))) {
1018 __blk_get_queue(q);
1019 return true;
1020 }
1021
1022 return false;
1023 }
1024 EXPORT_SYMBOL(blk_get_queue);
1025
1026 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1027 {
1028 if (rq->rq_flags & RQF_ELVPRIV) {
1029 elv_put_request(rl->q, rq);
1030 if (rq->elv.icq)
1031 put_io_context(rq->elv.icq->ioc);
1032 }
1033
1034 mempool_free(rq, rl->rq_pool);
1035 }
1036
1037 /*
1038 * ioc_batching returns true if the ioc is a valid batching request and
1039 * should be given priority access to a request.
1040 */
1041 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1042 {
1043 if (!ioc)
1044 return 0;
1045
1046 /*
1047 * Make sure the process is able to allocate at least 1 request
1048 * even if the batch times out, otherwise we could theoretically
1049 * lose wakeups.
1050 */
1051 return ioc->nr_batch_requests == q->nr_batching ||
1052 (ioc->nr_batch_requests > 0
1053 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1054 }
1055
1056 /*
1057 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1058 * will cause the process to be a "batcher" on all queues in the system. This
1059 * is the behaviour we want though - once it gets a wakeup it should be given
1060 * a nice run.
1061 */
1062 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1063 {
1064 if (!ioc || ioc_batching(q, ioc))
1065 return;
1066
1067 ioc->nr_batch_requests = q->nr_batching;
1068 ioc->last_waited = jiffies;
1069 }
1070
1071 static void __freed_request(struct request_list *rl, int sync)
1072 {
1073 struct request_queue *q = rl->q;
1074
1075 if (rl->count[sync] < queue_congestion_off_threshold(q))
1076 blk_clear_congested(rl, sync);
1077
1078 if (rl->count[sync] + 1 <= q->nr_requests) {
1079 if (waitqueue_active(&rl->wait[sync]))
1080 wake_up(&rl->wait[sync]);
1081
1082 blk_clear_rl_full(rl, sync);
1083 }
1084 }
1085
1086 /*
1087 * A request has just been released. Account for it, update the full and
1088 * congestion status, wake up any waiters. Called under q->queue_lock.
1089 */
1090 static void freed_request(struct request_list *rl, bool sync,
1091 req_flags_t rq_flags)
1092 {
1093 struct request_queue *q = rl->q;
1094
1095 q->nr_rqs[sync]--;
1096 rl->count[sync]--;
1097 if (rq_flags & RQF_ELVPRIV)
1098 q->nr_rqs_elvpriv--;
1099
1100 __freed_request(rl, sync);
1101
1102 if (unlikely(rl->starved[sync ^ 1]))
1103 __freed_request(rl, sync ^ 1);
1104 }
1105
1106 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1107 {
1108 struct request_list *rl;
1109 int on_thresh, off_thresh;
1110
1111 WARN_ON_ONCE(q->mq_ops);
1112
1113 spin_lock_irq(q->queue_lock);
1114 q->nr_requests = nr;
1115 blk_queue_congestion_threshold(q);
1116 on_thresh = queue_congestion_on_threshold(q);
1117 off_thresh = queue_congestion_off_threshold(q);
1118
1119 blk_queue_for_each_rl(rl, q) {
1120 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1121 blk_set_congested(rl, BLK_RW_SYNC);
1122 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1123 blk_clear_congested(rl, BLK_RW_SYNC);
1124
1125 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1126 blk_set_congested(rl, BLK_RW_ASYNC);
1127 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1128 blk_clear_congested(rl, BLK_RW_ASYNC);
1129
1130 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1131 blk_set_rl_full(rl, BLK_RW_SYNC);
1132 } else {
1133 blk_clear_rl_full(rl, BLK_RW_SYNC);
1134 wake_up(&rl->wait[BLK_RW_SYNC]);
1135 }
1136
1137 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1138 blk_set_rl_full(rl, BLK_RW_ASYNC);
1139 } else {
1140 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1141 wake_up(&rl->wait[BLK_RW_ASYNC]);
1142 }
1143 }
1144
1145 spin_unlock_irq(q->queue_lock);
1146 return 0;
1147 }
1148
1149 /**
1150 * __get_request - get a free request
1151 * @rl: request list to allocate from
1152 * @op: operation and flags
1153 * @bio: bio to allocate request for (can be %NULL)
1154 * @gfp_mask: allocation mask
1155 *
1156 * Get a free request from @q. This function may fail under memory
1157 * pressure or if @q is dead.
1158 *
1159 * Must be called with @q->queue_lock held and,
1160 * Returns ERR_PTR on failure, with @q->queue_lock held.
1161 * Returns request pointer on success, with @q->queue_lock *not held*.
1162 */
1163 static struct request *__get_request(struct request_list *rl, unsigned int op,
1164 struct bio *bio, gfp_t gfp_mask)
1165 {
1166 struct request_queue *q = rl->q;
1167 struct request *rq;
1168 struct elevator_type *et = q->elevator->type;
1169 struct io_context *ioc = rq_ioc(bio);
1170 struct io_cq *icq = NULL;
1171 const bool is_sync = op_is_sync(op);
1172 int may_queue;
1173 req_flags_t rq_flags = RQF_ALLOCED;
1174
1175 lockdep_assert_held(q->queue_lock);
1176
1177 if (unlikely(blk_queue_dying(q)))
1178 return ERR_PTR(-ENODEV);
1179
1180 may_queue = elv_may_queue(q, op);
1181 if (may_queue == ELV_MQUEUE_NO)
1182 goto rq_starved;
1183
1184 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1185 if (rl->count[is_sync]+1 >= q->nr_requests) {
1186 /*
1187 * The queue will fill after this allocation, so set
1188 * it as full, and mark this process as "batching".
1189 * This process will be allowed to complete a batch of
1190 * requests, others will be blocked.
1191 */
1192 if (!blk_rl_full(rl, is_sync)) {
1193 ioc_set_batching(q, ioc);
1194 blk_set_rl_full(rl, is_sync);
1195 } else {
1196 if (may_queue != ELV_MQUEUE_MUST
1197 && !ioc_batching(q, ioc)) {
1198 /*
1199 * The queue is full and the allocating
1200 * process is not a "batcher", and not
1201 * exempted by the IO scheduler
1202 */
1203 return ERR_PTR(-ENOMEM);
1204 }
1205 }
1206 }
1207 blk_set_congested(rl, is_sync);
1208 }
1209
1210 /*
1211 * Only allow batching queuers to allocate up to 50% over the defined
1212 * limit of requests, otherwise we could have thousands of requests
1213 * allocated with any setting of ->nr_requests
1214 */
1215 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1216 return ERR_PTR(-ENOMEM);
1217
1218 q->nr_rqs[is_sync]++;
1219 rl->count[is_sync]++;
1220 rl->starved[is_sync] = 0;
1221
1222 /*
1223 * Decide whether the new request will be managed by elevator. If
1224 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1225 * prevent the current elevator from being destroyed until the new
1226 * request is freed. This guarantees icq's won't be destroyed and
1227 * makes creating new ones safe.
1228 *
1229 * Flush requests do not use the elevator so skip initialization.
1230 * This allows a request to share the flush and elevator data.
1231 *
1232 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1233 * it will be created after releasing queue_lock.
1234 */
1235 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1236 rq_flags |= RQF_ELVPRIV;
1237 q->nr_rqs_elvpriv++;
1238 if (et->icq_cache && ioc)
1239 icq = ioc_lookup_icq(ioc, q);
1240 }
1241
1242 if (blk_queue_io_stat(q))
1243 rq_flags |= RQF_IO_STAT;
1244 spin_unlock_irq(q->queue_lock);
1245
1246 /* allocate and init request */
1247 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1248 if (!rq)
1249 goto fail_alloc;
1250
1251 blk_rq_init(q, rq);
1252 blk_rq_set_rl(rq, rl);
1253 rq->cmd_flags = op;
1254 rq->rq_flags = rq_flags;
1255
1256 /* init elvpriv */
1257 if (rq_flags & RQF_ELVPRIV) {
1258 if (unlikely(et->icq_cache && !icq)) {
1259 if (ioc)
1260 icq = ioc_create_icq(ioc, q, gfp_mask);
1261 if (!icq)
1262 goto fail_elvpriv;
1263 }
1264
1265 rq->elv.icq = icq;
1266 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1267 goto fail_elvpriv;
1268
1269 /* @rq->elv.icq holds io_context until @rq is freed */
1270 if (icq)
1271 get_io_context(icq->ioc);
1272 }
1273 out:
1274 /*
1275 * ioc may be NULL here, and ioc_batching will be false. That's
1276 * OK, if the queue is under the request limit then requests need
1277 * not count toward the nr_batch_requests limit. There will always
1278 * be some limit enforced by BLK_BATCH_TIME.
1279 */
1280 if (ioc_batching(q, ioc))
1281 ioc->nr_batch_requests--;
1282
1283 trace_block_getrq(q, bio, op);
1284 return rq;
1285
1286 fail_elvpriv:
1287 /*
1288 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1289 * and may fail indefinitely under memory pressure and thus
1290 * shouldn't stall IO. Treat this request as !elvpriv. This will
1291 * disturb iosched and blkcg but weird is bettern than dead.
1292 */
1293 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1294 __func__, dev_name(q->backing_dev_info->dev));
1295
1296 rq->rq_flags &= ~RQF_ELVPRIV;
1297 rq->elv.icq = NULL;
1298
1299 spin_lock_irq(q->queue_lock);
1300 q->nr_rqs_elvpriv--;
1301 spin_unlock_irq(q->queue_lock);
1302 goto out;
1303
1304 fail_alloc:
1305 /*
1306 * Allocation failed presumably due to memory. Undo anything we
1307 * might have messed up.
1308 *
1309 * Allocating task should really be put onto the front of the wait
1310 * queue, but this is pretty rare.
1311 */
1312 spin_lock_irq(q->queue_lock);
1313 freed_request(rl, is_sync, rq_flags);
1314
1315 /*
1316 * in the very unlikely event that allocation failed and no
1317 * requests for this direction was pending, mark us starved so that
1318 * freeing of a request in the other direction will notice
1319 * us. another possible fix would be to split the rq mempool into
1320 * READ and WRITE
1321 */
1322 rq_starved:
1323 if (unlikely(rl->count[is_sync] == 0))
1324 rl->starved[is_sync] = 1;
1325 return ERR_PTR(-ENOMEM);
1326 }
1327
1328 /**
1329 * get_request - get a free request
1330 * @q: request_queue to allocate request from
1331 * @op: operation and flags
1332 * @bio: bio to allocate request for (can be %NULL)
1333 * @gfp_mask: allocation mask
1334 *
1335 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1336 * this function keeps retrying under memory pressure and fails iff @q is dead.
1337 *
1338 * Must be called with @q->queue_lock held and,
1339 * Returns ERR_PTR on failure, with @q->queue_lock held.
1340 * Returns request pointer on success, with @q->queue_lock *not held*.
1341 */
1342 static struct request *get_request(struct request_queue *q, unsigned int op,
1343 struct bio *bio, gfp_t gfp_mask)
1344 {
1345 const bool is_sync = op_is_sync(op);
1346 DEFINE_WAIT(wait);
1347 struct request_list *rl;
1348 struct request *rq;
1349
1350 lockdep_assert_held(q->queue_lock);
1351 WARN_ON_ONCE(q->mq_ops);
1352
1353 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1354 retry:
1355 rq = __get_request(rl, op, bio, gfp_mask);
1356 if (!IS_ERR(rq))
1357 return rq;
1358
1359 if (op & REQ_NOWAIT) {
1360 blk_put_rl(rl);
1361 return ERR_PTR(-EAGAIN);
1362 }
1363
1364 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1365 blk_put_rl(rl);
1366 return rq;
1367 }
1368
1369 /* wait on @rl and retry */
1370 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1371 TASK_UNINTERRUPTIBLE);
1372
1373 trace_block_sleeprq(q, bio, op);
1374
1375 spin_unlock_irq(q->queue_lock);
1376 io_schedule();
1377
1378 /*
1379 * After sleeping, we become a "batching" process and will be able
1380 * to allocate at least one request, and up to a big batch of them
1381 * for a small period time. See ioc_batching, ioc_set_batching
1382 */
1383 ioc_set_batching(q, current->io_context);
1384
1385 spin_lock_irq(q->queue_lock);
1386 finish_wait(&rl->wait[is_sync], &wait);
1387
1388 goto retry;
1389 }
1390
1391 static struct request *blk_old_get_request(struct request_queue *q,
1392 unsigned int op, gfp_t gfp_mask)
1393 {
1394 struct request *rq;
1395
1396 WARN_ON_ONCE(q->mq_ops);
1397
1398 /* create ioc upfront */
1399 create_io_context(gfp_mask, q->node);
1400
1401 spin_lock_irq(q->queue_lock);
1402 rq = get_request(q, op, NULL, gfp_mask);
1403 if (IS_ERR(rq)) {
1404 spin_unlock_irq(q->queue_lock);
1405 return rq;
1406 }
1407
1408 /* q->queue_lock is unlocked at this point */
1409 rq->__data_len = 0;
1410 rq->__sector = (sector_t) -1;
1411 rq->bio = rq->biotail = NULL;
1412 return rq;
1413 }
1414
1415 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1416 gfp_t gfp_mask)
1417 {
1418 struct request *req;
1419
1420 if (q->mq_ops) {
1421 req = blk_mq_alloc_request(q, op,
1422 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1423 0 : BLK_MQ_REQ_NOWAIT);
1424 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1425 q->mq_ops->initialize_rq_fn(req);
1426 } else {
1427 req = blk_old_get_request(q, op, gfp_mask);
1428 if (!IS_ERR(req) && q->initialize_rq_fn)
1429 q->initialize_rq_fn(req);
1430 }
1431
1432 return req;
1433 }
1434 EXPORT_SYMBOL(blk_get_request);
1435
1436 /**
1437 * blk_requeue_request - put a request back on queue
1438 * @q: request queue where request should be inserted
1439 * @rq: request to be inserted
1440 *
1441 * Description:
1442 * Drivers often keep queueing requests until the hardware cannot accept
1443 * more, when that condition happens we need to put the request back
1444 * on the queue. Must be called with queue lock held.
1445 */
1446 void blk_requeue_request(struct request_queue *q, struct request *rq)
1447 {
1448 lockdep_assert_held(q->queue_lock);
1449 WARN_ON_ONCE(q->mq_ops);
1450
1451 blk_delete_timer(rq);
1452 blk_clear_rq_complete(rq);
1453 trace_block_rq_requeue(q, rq);
1454 wbt_requeue(q->rq_wb, &rq->issue_stat);
1455
1456 if (rq->rq_flags & RQF_QUEUED)
1457 blk_queue_end_tag(q, rq);
1458
1459 BUG_ON(blk_queued_rq(rq));
1460
1461 elv_requeue_request(q, rq);
1462 }
1463 EXPORT_SYMBOL(blk_requeue_request);
1464
1465 static void add_acct_request(struct request_queue *q, struct request *rq,
1466 int where)
1467 {
1468 blk_account_io_start(rq, true);
1469 __elv_add_request(q, rq, where);
1470 }
1471
1472 static void part_round_stats_single(int cpu, struct hd_struct *part,
1473 unsigned long now)
1474 {
1475 int inflight;
1476
1477 if (now == part->stamp)
1478 return;
1479
1480 inflight = part_in_flight(part);
1481 if (inflight) {
1482 __part_stat_add(cpu, part, time_in_queue,
1483 inflight * (now - part->stamp));
1484 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1485 }
1486 part->stamp = now;
1487 }
1488
1489 /**
1490 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1491 * @cpu: cpu number for stats access
1492 * @part: target partition
1493 *
1494 * The average IO queue length and utilisation statistics are maintained
1495 * by observing the current state of the queue length and the amount of
1496 * time it has been in this state for.
1497 *
1498 * Normally, that accounting is done on IO completion, but that can result
1499 * in more than a second's worth of IO being accounted for within any one
1500 * second, leading to >100% utilisation. To deal with that, we call this
1501 * function to do a round-off before returning the results when reading
1502 * /proc/diskstats. This accounts immediately for all queue usage up to
1503 * the current jiffies and restarts the counters again.
1504 */
1505 void part_round_stats(int cpu, struct hd_struct *part)
1506 {
1507 unsigned long now = jiffies;
1508
1509 if (part->partno)
1510 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1511 part_round_stats_single(cpu, part, now);
1512 }
1513 EXPORT_SYMBOL_GPL(part_round_stats);
1514
1515 #ifdef CONFIG_PM
1516 static void blk_pm_put_request(struct request *rq)
1517 {
1518 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1519 pm_runtime_mark_last_busy(rq->q->dev);
1520 }
1521 #else
1522 static inline void blk_pm_put_request(struct request *rq) {}
1523 #endif
1524
1525 void __blk_put_request(struct request_queue *q, struct request *req)
1526 {
1527 req_flags_t rq_flags = req->rq_flags;
1528
1529 if (unlikely(!q))
1530 return;
1531
1532 if (q->mq_ops) {
1533 blk_mq_free_request(req);
1534 return;
1535 }
1536
1537 lockdep_assert_held(q->queue_lock);
1538
1539 blk_pm_put_request(req);
1540
1541 elv_completed_request(q, req);
1542
1543 /* this is a bio leak */
1544 WARN_ON(req->bio != NULL);
1545
1546 wbt_done(q->rq_wb, &req->issue_stat);
1547
1548 /*
1549 * Request may not have originated from ll_rw_blk. if not,
1550 * it didn't come out of our reserved rq pools
1551 */
1552 if (rq_flags & RQF_ALLOCED) {
1553 struct request_list *rl = blk_rq_rl(req);
1554 bool sync = op_is_sync(req->cmd_flags);
1555
1556 BUG_ON(!list_empty(&req->queuelist));
1557 BUG_ON(ELV_ON_HASH(req));
1558
1559 blk_free_request(rl, req);
1560 freed_request(rl, sync, rq_flags);
1561 blk_put_rl(rl);
1562 }
1563 }
1564 EXPORT_SYMBOL_GPL(__blk_put_request);
1565
1566 void blk_put_request(struct request *req)
1567 {
1568 struct request_queue *q = req->q;
1569
1570 if (q->mq_ops)
1571 blk_mq_free_request(req);
1572 else {
1573 unsigned long flags;
1574
1575 spin_lock_irqsave(q->queue_lock, flags);
1576 __blk_put_request(q, req);
1577 spin_unlock_irqrestore(q->queue_lock, flags);
1578 }
1579 }
1580 EXPORT_SYMBOL(blk_put_request);
1581
1582 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1583 struct bio *bio)
1584 {
1585 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1586
1587 if (!ll_back_merge_fn(q, req, bio))
1588 return false;
1589
1590 trace_block_bio_backmerge(q, req, bio);
1591
1592 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1593 blk_rq_set_mixed_merge(req);
1594
1595 req->biotail->bi_next = bio;
1596 req->biotail = bio;
1597 req->__data_len += bio->bi_iter.bi_size;
1598 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1599
1600 blk_account_io_start(req, false);
1601 return true;
1602 }
1603
1604 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1605 struct bio *bio)
1606 {
1607 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1608
1609 if (!ll_front_merge_fn(q, req, bio))
1610 return false;
1611
1612 trace_block_bio_frontmerge(q, req, bio);
1613
1614 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1615 blk_rq_set_mixed_merge(req);
1616
1617 bio->bi_next = req->bio;
1618 req->bio = bio;
1619
1620 req->__sector = bio->bi_iter.bi_sector;
1621 req->__data_len += bio->bi_iter.bi_size;
1622 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1623
1624 blk_account_io_start(req, false);
1625 return true;
1626 }
1627
1628 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1629 struct bio *bio)
1630 {
1631 unsigned short segments = blk_rq_nr_discard_segments(req);
1632
1633 if (segments >= queue_max_discard_segments(q))
1634 goto no_merge;
1635 if (blk_rq_sectors(req) + bio_sectors(bio) >
1636 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1637 goto no_merge;
1638
1639 req->biotail->bi_next = bio;
1640 req->biotail = bio;
1641 req->__data_len += bio->bi_iter.bi_size;
1642 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1643 req->nr_phys_segments = segments + 1;
1644
1645 blk_account_io_start(req, false);
1646 return true;
1647 no_merge:
1648 req_set_nomerge(q, req);
1649 return false;
1650 }
1651
1652 /**
1653 * blk_attempt_plug_merge - try to merge with %current's plugged list
1654 * @q: request_queue new bio is being queued at
1655 * @bio: new bio being queued
1656 * @request_count: out parameter for number of traversed plugged requests
1657 * @same_queue_rq: pointer to &struct request that gets filled in when
1658 * another request associated with @q is found on the plug list
1659 * (optional, may be %NULL)
1660 *
1661 * Determine whether @bio being queued on @q can be merged with a request
1662 * on %current's plugged list. Returns %true if merge was successful,
1663 * otherwise %false.
1664 *
1665 * Plugging coalesces IOs from the same issuer for the same purpose without
1666 * going through @q->queue_lock. As such it's more of an issuing mechanism
1667 * than scheduling, and the request, while may have elvpriv data, is not
1668 * added on the elevator at this point. In addition, we don't have
1669 * reliable access to the elevator outside queue lock. Only check basic
1670 * merging parameters without querying the elevator.
1671 *
1672 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1673 */
1674 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1675 unsigned int *request_count,
1676 struct request **same_queue_rq)
1677 {
1678 struct blk_plug *plug;
1679 struct request *rq;
1680 struct list_head *plug_list;
1681
1682 plug = current->plug;
1683 if (!plug)
1684 return false;
1685 *request_count = 0;
1686
1687 if (q->mq_ops)
1688 plug_list = &plug->mq_list;
1689 else
1690 plug_list = &plug->list;
1691
1692 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1693 bool merged = false;
1694
1695 if (rq->q == q) {
1696 (*request_count)++;
1697 /*
1698 * Only blk-mq multiple hardware queues case checks the
1699 * rq in the same queue, there should be only one such
1700 * rq in a queue
1701 **/
1702 if (same_queue_rq)
1703 *same_queue_rq = rq;
1704 }
1705
1706 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1707 continue;
1708
1709 switch (blk_try_merge(rq, bio)) {
1710 case ELEVATOR_BACK_MERGE:
1711 merged = bio_attempt_back_merge(q, rq, bio);
1712 break;
1713 case ELEVATOR_FRONT_MERGE:
1714 merged = bio_attempt_front_merge(q, rq, bio);
1715 break;
1716 case ELEVATOR_DISCARD_MERGE:
1717 merged = bio_attempt_discard_merge(q, rq, bio);
1718 break;
1719 default:
1720 break;
1721 }
1722
1723 if (merged)
1724 return true;
1725 }
1726
1727 return false;
1728 }
1729
1730 unsigned int blk_plug_queued_count(struct request_queue *q)
1731 {
1732 struct blk_plug *plug;
1733 struct request *rq;
1734 struct list_head *plug_list;
1735 unsigned int ret = 0;
1736
1737 plug = current->plug;
1738 if (!plug)
1739 goto out;
1740
1741 if (q->mq_ops)
1742 plug_list = &plug->mq_list;
1743 else
1744 plug_list = &plug->list;
1745
1746 list_for_each_entry(rq, plug_list, queuelist) {
1747 if (rq->q == q)
1748 ret++;
1749 }
1750 out:
1751 return ret;
1752 }
1753
1754 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1755 {
1756 struct io_context *ioc = rq_ioc(bio);
1757
1758 if (bio->bi_opf & REQ_RAHEAD)
1759 req->cmd_flags |= REQ_FAILFAST_MASK;
1760
1761 req->__sector = bio->bi_iter.bi_sector;
1762 if (ioprio_valid(bio_prio(bio)))
1763 req->ioprio = bio_prio(bio);
1764 else if (ioc)
1765 req->ioprio = ioc->ioprio;
1766 else
1767 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1768 blk_rq_bio_prep(req->q, req, bio);
1769 }
1770 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1771
1772 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1773 {
1774 struct blk_plug *plug;
1775 int where = ELEVATOR_INSERT_SORT;
1776 struct request *req, *free;
1777 unsigned int request_count = 0;
1778 unsigned int wb_acct;
1779
1780 /*
1781 * low level driver can indicate that it wants pages above a
1782 * certain limit bounced to low memory (ie for highmem, or even
1783 * ISA dma in theory)
1784 */
1785 blk_queue_bounce(q, &bio);
1786
1787 blk_queue_split(q, &bio);
1788
1789 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1790 bio->bi_status = BLK_STS_IOERR;
1791 bio_endio(bio);
1792 return BLK_QC_T_NONE;
1793 }
1794
1795 if (op_is_flush(bio->bi_opf)) {
1796 spin_lock_irq(q->queue_lock);
1797 where = ELEVATOR_INSERT_FLUSH;
1798 goto get_rq;
1799 }
1800
1801 /*
1802 * Check if we can merge with the plugged list before grabbing
1803 * any locks.
1804 */
1805 if (!blk_queue_nomerges(q)) {
1806 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1807 return BLK_QC_T_NONE;
1808 } else
1809 request_count = blk_plug_queued_count(q);
1810
1811 spin_lock_irq(q->queue_lock);
1812
1813 switch (elv_merge(q, &req, bio)) {
1814 case ELEVATOR_BACK_MERGE:
1815 if (!bio_attempt_back_merge(q, req, bio))
1816 break;
1817 elv_bio_merged(q, req, bio);
1818 free = attempt_back_merge(q, req);
1819 if (free)
1820 __blk_put_request(q, free);
1821 else
1822 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1823 goto out_unlock;
1824 case ELEVATOR_FRONT_MERGE:
1825 if (!bio_attempt_front_merge(q, req, bio))
1826 break;
1827 elv_bio_merged(q, req, bio);
1828 free = attempt_front_merge(q, req);
1829 if (free)
1830 __blk_put_request(q, free);
1831 else
1832 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1833 goto out_unlock;
1834 default:
1835 break;
1836 }
1837
1838 get_rq:
1839 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1840
1841 /*
1842 * Grab a free request. This is might sleep but can not fail.
1843 * Returns with the queue unlocked.
1844 */
1845 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1846 if (IS_ERR(req)) {
1847 __wbt_done(q->rq_wb, wb_acct);
1848 if (PTR_ERR(req) == -ENOMEM)
1849 bio->bi_status = BLK_STS_RESOURCE;
1850 else
1851 bio->bi_status = BLK_STS_IOERR;
1852 bio_endio(bio);
1853 goto out_unlock;
1854 }
1855
1856 wbt_track(&req->issue_stat, wb_acct);
1857
1858 /*
1859 * After dropping the lock and possibly sleeping here, our request
1860 * may now be mergeable after it had proven unmergeable (above).
1861 * We don't worry about that case for efficiency. It won't happen
1862 * often, and the elevators are able to handle it.
1863 */
1864 blk_init_request_from_bio(req, bio);
1865
1866 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1867 req->cpu = raw_smp_processor_id();
1868
1869 plug = current->plug;
1870 if (plug) {
1871 /*
1872 * If this is the first request added after a plug, fire
1873 * of a plug trace.
1874 *
1875 * @request_count may become stale because of schedule
1876 * out, so check plug list again.
1877 */
1878 if (!request_count || list_empty(&plug->list))
1879 trace_block_plug(q);
1880 else {
1881 struct request *last = list_entry_rq(plug->list.prev);
1882 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1883 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1884 blk_flush_plug_list(plug, false);
1885 trace_block_plug(q);
1886 }
1887 }
1888 list_add_tail(&req->queuelist, &plug->list);
1889 blk_account_io_start(req, true);
1890 } else {
1891 spin_lock_irq(q->queue_lock);
1892 add_acct_request(q, req, where);
1893 __blk_run_queue(q);
1894 out_unlock:
1895 spin_unlock_irq(q->queue_lock);
1896 }
1897
1898 return BLK_QC_T_NONE;
1899 }
1900
1901 /*
1902 * If bio->bi_dev is a partition, remap the location
1903 */
1904 static inline void blk_partition_remap(struct bio *bio)
1905 {
1906 struct block_device *bdev = bio->bi_bdev;
1907
1908 /*
1909 * Zone reset does not include bi_size so bio_sectors() is always 0.
1910 * Include a test for the reset op code and perform the remap if needed.
1911 */
1912 if (bdev != bdev->bd_contains &&
1913 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1914 struct hd_struct *p = bdev->bd_part;
1915
1916 bio->bi_iter.bi_sector += p->start_sect;
1917 bio->bi_bdev = bdev->bd_contains;
1918
1919 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1920 bdev->bd_dev,
1921 bio->bi_iter.bi_sector - p->start_sect);
1922 }
1923 }
1924
1925 static void handle_bad_sector(struct bio *bio)
1926 {
1927 char b[BDEVNAME_SIZE];
1928
1929 printk(KERN_INFO "attempt to access beyond end of device\n");
1930 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1931 bdevname(bio->bi_bdev, b),
1932 bio->bi_opf,
1933 (unsigned long long)bio_end_sector(bio),
1934 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1935 }
1936
1937 #ifdef CONFIG_FAIL_MAKE_REQUEST
1938
1939 static DECLARE_FAULT_ATTR(fail_make_request);
1940
1941 static int __init setup_fail_make_request(char *str)
1942 {
1943 return setup_fault_attr(&fail_make_request, str);
1944 }
1945 __setup("fail_make_request=", setup_fail_make_request);
1946
1947 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1948 {
1949 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1950 }
1951
1952 static int __init fail_make_request_debugfs(void)
1953 {
1954 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1955 NULL, &fail_make_request);
1956
1957 return PTR_ERR_OR_ZERO(dir);
1958 }
1959
1960 late_initcall(fail_make_request_debugfs);
1961
1962 #else /* CONFIG_FAIL_MAKE_REQUEST */
1963
1964 static inline bool should_fail_request(struct hd_struct *part,
1965 unsigned int bytes)
1966 {
1967 return false;
1968 }
1969
1970 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1971
1972 /*
1973 * Check whether this bio extends beyond the end of the device.
1974 */
1975 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1976 {
1977 sector_t maxsector;
1978
1979 if (!nr_sectors)
1980 return 0;
1981
1982 /* Test device or partition size, when known. */
1983 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1984 if (maxsector) {
1985 sector_t sector = bio->bi_iter.bi_sector;
1986
1987 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1988 /*
1989 * This may well happen - the kernel calls bread()
1990 * without checking the size of the device, e.g., when
1991 * mounting a device.
1992 */
1993 handle_bad_sector(bio);
1994 return 1;
1995 }
1996 }
1997
1998 return 0;
1999 }
2000
2001 static noinline_for_stack bool
2002 generic_make_request_checks(struct bio *bio)
2003 {
2004 struct request_queue *q;
2005 int nr_sectors = bio_sectors(bio);
2006 blk_status_t status = BLK_STS_IOERR;
2007 char b[BDEVNAME_SIZE];
2008 struct hd_struct *part;
2009
2010 might_sleep();
2011
2012 if (bio_check_eod(bio, nr_sectors))
2013 goto end_io;
2014
2015 q = bdev_get_queue(bio->bi_bdev);
2016 if (unlikely(!q)) {
2017 printk(KERN_ERR
2018 "generic_make_request: Trying to access "
2019 "nonexistent block-device %s (%Lu)\n",
2020 bdevname(bio->bi_bdev, b),
2021 (long long) bio->bi_iter.bi_sector);
2022 goto end_io;
2023 }
2024
2025 /*
2026 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2027 * if queue is not a request based queue.
2028 */
2029
2030 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2031 goto not_supported;
2032
2033 part = bio->bi_bdev->bd_part;
2034 if (should_fail_request(part, bio->bi_iter.bi_size) ||
2035 should_fail_request(&part_to_disk(part)->part0,
2036 bio->bi_iter.bi_size))
2037 goto end_io;
2038
2039 /*
2040 * If this device has partitions, remap block n
2041 * of partition p to block n+start(p) of the disk.
2042 */
2043 blk_partition_remap(bio);
2044
2045 if (bio_check_eod(bio, nr_sectors))
2046 goto end_io;
2047
2048 /*
2049 * Filter flush bio's early so that make_request based
2050 * drivers without flush support don't have to worry
2051 * about them.
2052 */
2053 if (op_is_flush(bio->bi_opf) &&
2054 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2055 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2056 if (!nr_sectors) {
2057 status = BLK_STS_OK;
2058 goto end_io;
2059 }
2060 }
2061
2062 switch (bio_op(bio)) {
2063 case REQ_OP_DISCARD:
2064 if (!blk_queue_discard(q))
2065 goto not_supported;
2066 break;
2067 case REQ_OP_SECURE_ERASE:
2068 if (!blk_queue_secure_erase(q))
2069 goto not_supported;
2070 break;
2071 case REQ_OP_WRITE_SAME:
2072 if (!bdev_write_same(bio->bi_bdev))
2073 goto not_supported;
2074 break;
2075 case REQ_OP_ZONE_REPORT:
2076 case REQ_OP_ZONE_RESET:
2077 if (!bdev_is_zoned(bio->bi_bdev))
2078 goto not_supported;
2079 break;
2080 case REQ_OP_WRITE_ZEROES:
2081 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
2082 goto not_supported;
2083 break;
2084 default:
2085 break;
2086 }
2087
2088 /*
2089 * Various block parts want %current->io_context and lazy ioc
2090 * allocation ends up trading a lot of pain for a small amount of
2091 * memory. Just allocate it upfront. This may fail and block
2092 * layer knows how to live with it.
2093 */
2094 create_io_context(GFP_ATOMIC, q->node);
2095
2096 if (!blkcg_bio_issue_check(q, bio))
2097 return false;
2098
2099 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2100 trace_block_bio_queue(q, bio);
2101 /* Now that enqueuing has been traced, we need to trace
2102 * completion as well.
2103 */
2104 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2105 }
2106 return true;
2107
2108 not_supported:
2109 status = BLK_STS_NOTSUPP;
2110 end_io:
2111 bio->bi_status = status;
2112 bio_endio(bio);
2113 return false;
2114 }
2115
2116 /**
2117 * generic_make_request - hand a buffer to its device driver for I/O
2118 * @bio: The bio describing the location in memory and on the device.
2119 *
2120 * generic_make_request() is used to make I/O requests of block
2121 * devices. It is passed a &struct bio, which describes the I/O that needs
2122 * to be done.
2123 *
2124 * generic_make_request() does not return any status. The
2125 * success/failure status of the request, along with notification of
2126 * completion, is delivered asynchronously through the bio->bi_end_io
2127 * function described (one day) else where.
2128 *
2129 * The caller of generic_make_request must make sure that bi_io_vec
2130 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2131 * set to describe the device address, and the
2132 * bi_end_io and optionally bi_private are set to describe how
2133 * completion notification should be signaled.
2134 *
2135 * generic_make_request and the drivers it calls may use bi_next if this
2136 * bio happens to be merged with someone else, and may resubmit the bio to
2137 * a lower device by calling into generic_make_request recursively, which
2138 * means the bio should NOT be touched after the call to ->make_request_fn.
2139 */
2140 blk_qc_t generic_make_request(struct bio *bio)
2141 {
2142 /*
2143 * bio_list_on_stack[0] contains bios submitted by the current
2144 * make_request_fn.
2145 * bio_list_on_stack[1] contains bios that were submitted before
2146 * the current make_request_fn, but that haven't been processed
2147 * yet.
2148 */
2149 struct bio_list bio_list_on_stack[2];
2150 blk_qc_t ret = BLK_QC_T_NONE;
2151
2152 if (!generic_make_request_checks(bio))
2153 goto out;
2154
2155 /*
2156 * We only want one ->make_request_fn to be active at a time, else
2157 * stack usage with stacked devices could be a problem. So use
2158 * current->bio_list to keep a list of requests submited by a
2159 * make_request_fn function. current->bio_list is also used as a
2160 * flag to say if generic_make_request is currently active in this
2161 * task or not. If it is NULL, then no make_request is active. If
2162 * it is non-NULL, then a make_request is active, and new requests
2163 * should be added at the tail
2164 */
2165 if (current->bio_list) {
2166 bio_list_add(&current->bio_list[0], bio);
2167 goto out;
2168 }
2169
2170 /* following loop may be a bit non-obvious, and so deserves some
2171 * explanation.
2172 * Before entering the loop, bio->bi_next is NULL (as all callers
2173 * ensure that) so we have a list with a single bio.
2174 * We pretend that we have just taken it off a longer list, so
2175 * we assign bio_list to a pointer to the bio_list_on_stack,
2176 * thus initialising the bio_list of new bios to be
2177 * added. ->make_request() may indeed add some more bios
2178 * through a recursive call to generic_make_request. If it
2179 * did, we find a non-NULL value in bio_list and re-enter the loop
2180 * from the top. In this case we really did just take the bio
2181 * of the top of the list (no pretending) and so remove it from
2182 * bio_list, and call into ->make_request() again.
2183 */
2184 BUG_ON(bio->bi_next);
2185 bio_list_init(&bio_list_on_stack[0]);
2186 current->bio_list = bio_list_on_stack;
2187 do {
2188 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2189
2190 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
2191 struct bio_list lower, same;
2192
2193 /* Create a fresh bio_list for all subordinate requests */
2194 bio_list_on_stack[1] = bio_list_on_stack[0];
2195 bio_list_init(&bio_list_on_stack[0]);
2196 ret = q->make_request_fn(q, bio);
2197
2198 blk_queue_exit(q);
2199
2200 /* sort new bios into those for a lower level
2201 * and those for the same level
2202 */
2203 bio_list_init(&lower);
2204 bio_list_init(&same);
2205 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2206 if (q == bdev_get_queue(bio->bi_bdev))
2207 bio_list_add(&same, bio);
2208 else
2209 bio_list_add(&lower, bio);
2210 /* now assemble so we handle the lowest level first */
2211 bio_list_merge(&bio_list_on_stack[0], &lower);
2212 bio_list_merge(&bio_list_on_stack[0], &same);
2213 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2214 } else {
2215 if (unlikely(!blk_queue_dying(q) &&
2216 (bio->bi_opf & REQ_NOWAIT)))
2217 bio_wouldblock_error(bio);
2218 else
2219 bio_io_error(bio);
2220 }
2221 bio = bio_list_pop(&bio_list_on_stack[0]);
2222 } while (bio);
2223 current->bio_list = NULL; /* deactivate */
2224
2225 out:
2226 return ret;
2227 }
2228 EXPORT_SYMBOL(generic_make_request);
2229
2230 /**
2231 * submit_bio - submit a bio to the block device layer for I/O
2232 * @bio: The &struct bio which describes the I/O
2233 *
2234 * submit_bio() is very similar in purpose to generic_make_request(), and
2235 * uses that function to do most of the work. Both are fairly rough
2236 * interfaces; @bio must be presetup and ready for I/O.
2237 *
2238 */
2239 blk_qc_t submit_bio(struct bio *bio)
2240 {
2241 /*
2242 * If it's a regular read/write or a barrier with data attached,
2243 * go through the normal accounting stuff before submission.
2244 */
2245 if (bio_has_data(bio)) {
2246 unsigned int count;
2247
2248 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2249 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2250 else
2251 count = bio_sectors(bio);
2252
2253 if (op_is_write(bio_op(bio))) {
2254 count_vm_events(PGPGOUT, count);
2255 } else {
2256 task_io_account_read(bio->bi_iter.bi_size);
2257 count_vm_events(PGPGIN, count);
2258 }
2259
2260 if (unlikely(block_dump)) {
2261 char b[BDEVNAME_SIZE];
2262 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2263 current->comm, task_pid_nr(current),
2264 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2265 (unsigned long long)bio->bi_iter.bi_sector,
2266 bdevname(bio->bi_bdev, b),
2267 count);
2268 }
2269 }
2270
2271 return generic_make_request(bio);
2272 }
2273 EXPORT_SYMBOL(submit_bio);
2274
2275 /**
2276 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2277 * for new the queue limits
2278 * @q: the queue
2279 * @rq: the request being checked
2280 *
2281 * Description:
2282 * @rq may have been made based on weaker limitations of upper-level queues
2283 * in request stacking drivers, and it may violate the limitation of @q.
2284 * Since the block layer and the underlying device driver trust @rq
2285 * after it is inserted to @q, it should be checked against @q before
2286 * the insertion using this generic function.
2287 *
2288 * Request stacking drivers like request-based dm may change the queue
2289 * limits when retrying requests on other queues. Those requests need
2290 * to be checked against the new queue limits again during dispatch.
2291 */
2292 static int blk_cloned_rq_check_limits(struct request_queue *q,
2293 struct request *rq)
2294 {
2295 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2296 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2297 return -EIO;
2298 }
2299
2300 /*
2301 * queue's settings related to segment counting like q->bounce_pfn
2302 * may differ from that of other stacking queues.
2303 * Recalculate it to check the request correctly on this queue's
2304 * limitation.
2305 */
2306 blk_recalc_rq_segments(rq);
2307 if (rq->nr_phys_segments > queue_max_segments(q)) {
2308 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2309 return -EIO;
2310 }
2311
2312 return 0;
2313 }
2314
2315 /**
2316 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2317 * @q: the queue to submit the request
2318 * @rq: the request being queued
2319 */
2320 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2321 {
2322 unsigned long flags;
2323 int where = ELEVATOR_INSERT_BACK;
2324
2325 if (blk_cloned_rq_check_limits(q, rq))
2326 return BLK_STS_IOERR;
2327
2328 if (rq->rq_disk &&
2329 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2330 return BLK_STS_IOERR;
2331
2332 if (q->mq_ops) {
2333 if (blk_queue_io_stat(q))
2334 blk_account_io_start(rq, true);
2335 blk_mq_sched_insert_request(rq, false, true, false, false);
2336 return BLK_STS_OK;
2337 }
2338
2339 spin_lock_irqsave(q->queue_lock, flags);
2340 if (unlikely(blk_queue_dying(q))) {
2341 spin_unlock_irqrestore(q->queue_lock, flags);
2342 return BLK_STS_IOERR;
2343 }
2344
2345 /*
2346 * Submitting request must be dequeued before calling this function
2347 * because it will be linked to another request_queue
2348 */
2349 BUG_ON(blk_queued_rq(rq));
2350
2351 if (op_is_flush(rq->cmd_flags))
2352 where = ELEVATOR_INSERT_FLUSH;
2353
2354 add_acct_request(q, rq, where);
2355 if (where == ELEVATOR_INSERT_FLUSH)
2356 __blk_run_queue(q);
2357 spin_unlock_irqrestore(q->queue_lock, flags);
2358
2359 return BLK_STS_OK;
2360 }
2361 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2362
2363 /**
2364 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2365 * @rq: request to examine
2366 *
2367 * Description:
2368 * A request could be merge of IOs which require different failure
2369 * handling. This function determines the number of bytes which
2370 * can be failed from the beginning of the request without
2371 * crossing into area which need to be retried further.
2372 *
2373 * Return:
2374 * The number of bytes to fail.
2375 */
2376 unsigned int blk_rq_err_bytes(const struct request *rq)
2377 {
2378 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2379 unsigned int bytes = 0;
2380 struct bio *bio;
2381
2382 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2383 return blk_rq_bytes(rq);
2384
2385 /*
2386 * Currently the only 'mixing' which can happen is between
2387 * different fastfail types. We can safely fail portions
2388 * which have all the failfast bits that the first one has -
2389 * the ones which are at least as eager to fail as the first
2390 * one.
2391 */
2392 for (bio = rq->bio; bio; bio = bio->bi_next) {
2393 if ((bio->bi_opf & ff) != ff)
2394 break;
2395 bytes += bio->bi_iter.bi_size;
2396 }
2397
2398 /* this could lead to infinite loop */
2399 BUG_ON(blk_rq_bytes(rq) && !bytes);
2400 return bytes;
2401 }
2402 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2403
2404 void blk_account_io_completion(struct request *req, unsigned int bytes)
2405 {
2406 if (blk_do_io_stat(req)) {
2407 const int rw = rq_data_dir(req);
2408 struct hd_struct *part;
2409 int cpu;
2410
2411 cpu = part_stat_lock();
2412 part = req->part;
2413 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2414 part_stat_unlock();
2415 }
2416 }
2417
2418 void blk_account_io_done(struct request *req)
2419 {
2420 /*
2421 * Account IO completion. flush_rq isn't accounted as a
2422 * normal IO on queueing nor completion. Accounting the
2423 * containing request is enough.
2424 */
2425 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2426 unsigned long duration = jiffies - req->start_time;
2427 const int rw = rq_data_dir(req);
2428 struct hd_struct *part;
2429 int cpu;
2430
2431 cpu = part_stat_lock();
2432 part = req->part;
2433
2434 part_stat_inc(cpu, part, ios[rw]);
2435 part_stat_add(cpu, part, ticks[rw], duration);
2436 part_round_stats(cpu, part);
2437 part_dec_in_flight(part, rw);
2438
2439 hd_struct_put(part);
2440 part_stat_unlock();
2441 }
2442 }
2443
2444 #ifdef CONFIG_PM
2445 /*
2446 * Don't process normal requests when queue is suspended
2447 * or in the process of suspending/resuming
2448 */
2449 static struct request *blk_pm_peek_request(struct request_queue *q,
2450 struct request *rq)
2451 {
2452 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2453 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2454 return NULL;
2455 else
2456 return rq;
2457 }
2458 #else
2459 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2460 struct request *rq)
2461 {
2462 return rq;
2463 }
2464 #endif
2465
2466 void blk_account_io_start(struct request *rq, bool new_io)
2467 {
2468 struct hd_struct *part;
2469 int rw = rq_data_dir(rq);
2470 int cpu;
2471
2472 if (!blk_do_io_stat(rq))
2473 return;
2474
2475 cpu = part_stat_lock();
2476
2477 if (!new_io) {
2478 part = rq->part;
2479 part_stat_inc(cpu, part, merges[rw]);
2480 } else {
2481 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2482 if (!hd_struct_try_get(part)) {
2483 /*
2484 * The partition is already being removed,
2485 * the request will be accounted on the disk only
2486 *
2487 * We take a reference on disk->part0 although that
2488 * partition will never be deleted, so we can treat
2489 * it as any other partition.
2490 */
2491 part = &rq->rq_disk->part0;
2492 hd_struct_get(part);
2493 }
2494 part_round_stats(cpu, part);
2495 part_inc_in_flight(part, rw);
2496 rq->part = part;
2497 }
2498
2499 part_stat_unlock();
2500 }
2501
2502 /**
2503 * blk_peek_request - peek at the top of a request queue
2504 * @q: request queue to peek at
2505 *
2506 * Description:
2507 * Return the request at the top of @q. The returned request
2508 * should be started using blk_start_request() before LLD starts
2509 * processing it.
2510 *
2511 * Return:
2512 * Pointer to the request at the top of @q if available. Null
2513 * otherwise.
2514 */
2515 struct request *blk_peek_request(struct request_queue *q)
2516 {
2517 struct request *rq;
2518 int ret;
2519
2520 lockdep_assert_held(q->queue_lock);
2521 WARN_ON_ONCE(q->mq_ops);
2522
2523 while ((rq = __elv_next_request(q)) != NULL) {
2524
2525 rq = blk_pm_peek_request(q, rq);
2526 if (!rq)
2527 break;
2528
2529 if (!(rq->rq_flags & RQF_STARTED)) {
2530 /*
2531 * This is the first time the device driver
2532 * sees this request (possibly after
2533 * requeueing). Notify IO scheduler.
2534 */
2535 if (rq->rq_flags & RQF_SORTED)
2536 elv_activate_rq(q, rq);
2537
2538 /*
2539 * just mark as started even if we don't start
2540 * it, a request that has been delayed should
2541 * not be passed by new incoming requests
2542 */
2543 rq->rq_flags |= RQF_STARTED;
2544 trace_block_rq_issue(q, rq);
2545 }
2546
2547 if (!q->boundary_rq || q->boundary_rq == rq) {
2548 q->end_sector = rq_end_sector(rq);
2549 q->boundary_rq = NULL;
2550 }
2551
2552 if (rq->rq_flags & RQF_DONTPREP)
2553 break;
2554
2555 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2556 /*
2557 * make sure space for the drain appears we
2558 * know we can do this because max_hw_segments
2559 * has been adjusted to be one fewer than the
2560 * device can handle
2561 */
2562 rq->nr_phys_segments++;
2563 }
2564
2565 if (!q->prep_rq_fn)
2566 break;
2567
2568 ret = q->prep_rq_fn(q, rq);
2569 if (ret == BLKPREP_OK) {
2570 break;
2571 } else if (ret == BLKPREP_DEFER) {
2572 /*
2573 * the request may have been (partially) prepped.
2574 * we need to keep this request in the front to
2575 * avoid resource deadlock. RQF_STARTED will
2576 * prevent other fs requests from passing this one.
2577 */
2578 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2579 !(rq->rq_flags & RQF_DONTPREP)) {
2580 /*
2581 * remove the space for the drain we added
2582 * so that we don't add it again
2583 */
2584 --rq->nr_phys_segments;
2585 }
2586
2587 rq = NULL;
2588 break;
2589 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2590 rq->rq_flags |= RQF_QUIET;
2591 /*
2592 * Mark this request as started so we don't trigger
2593 * any debug logic in the end I/O path.
2594 */
2595 blk_start_request(rq);
2596 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2597 BLK_STS_TARGET : BLK_STS_IOERR);
2598 } else {
2599 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2600 break;
2601 }
2602 }
2603
2604 return rq;
2605 }
2606 EXPORT_SYMBOL(blk_peek_request);
2607
2608 void blk_dequeue_request(struct request *rq)
2609 {
2610 struct request_queue *q = rq->q;
2611
2612 BUG_ON(list_empty(&rq->queuelist));
2613 BUG_ON(ELV_ON_HASH(rq));
2614
2615 list_del_init(&rq->queuelist);
2616
2617 /*
2618 * the time frame between a request being removed from the lists
2619 * and to it is freed is accounted as io that is in progress at
2620 * the driver side.
2621 */
2622 if (blk_account_rq(rq)) {
2623 q->in_flight[rq_is_sync(rq)]++;
2624 set_io_start_time_ns(rq);
2625 }
2626 }
2627
2628 /**
2629 * blk_start_request - start request processing on the driver
2630 * @req: request to dequeue
2631 *
2632 * Description:
2633 * Dequeue @req and start timeout timer on it. This hands off the
2634 * request to the driver.
2635 *
2636 * Block internal functions which don't want to start timer should
2637 * call blk_dequeue_request().
2638 */
2639 void blk_start_request(struct request *req)
2640 {
2641 lockdep_assert_held(req->q->queue_lock);
2642 WARN_ON_ONCE(req->q->mq_ops);
2643
2644 blk_dequeue_request(req);
2645
2646 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2647 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2648 req->rq_flags |= RQF_STATS;
2649 wbt_issue(req->q->rq_wb, &req->issue_stat);
2650 }
2651
2652 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2653 blk_add_timer(req);
2654 }
2655 EXPORT_SYMBOL(blk_start_request);
2656
2657 /**
2658 * blk_fetch_request - fetch a request from a request queue
2659 * @q: request queue to fetch a request from
2660 *
2661 * Description:
2662 * Return the request at the top of @q. The request is started on
2663 * return and LLD can start processing it immediately.
2664 *
2665 * Return:
2666 * Pointer to the request at the top of @q if available. Null
2667 * otherwise.
2668 */
2669 struct request *blk_fetch_request(struct request_queue *q)
2670 {
2671 struct request *rq;
2672
2673 lockdep_assert_held(q->queue_lock);
2674 WARN_ON_ONCE(q->mq_ops);
2675
2676 rq = blk_peek_request(q);
2677 if (rq)
2678 blk_start_request(rq);
2679 return rq;
2680 }
2681 EXPORT_SYMBOL(blk_fetch_request);
2682
2683 /**
2684 * blk_update_request - Special helper function for request stacking drivers
2685 * @req: the request being processed
2686 * @error: block status code
2687 * @nr_bytes: number of bytes to complete @req
2688 *
2689 * Description:
2690 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2691 * the request structure even if @req doesn't have leftover.
2692 * If @req has leftover, sets it up for the next range of segments.
2693 *
2694 * This special helper function is only for request stacking drivers
2695 * (e.g. request-based dm) so that they can handle partial completion.
2696 * Actual device drivers should use blk_end_request instead.
2697 *
2698 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2699 * %false return from this function.
2700 *
2701 * Return:
2702 * %false - this request doesn't have any more data
2703 * %true - this request has more data
2704 **/
2705 bool blk_update_request(struct request *req, blk_status_t error,
2706 unsigned int nr_bytes)
2707 {
2708 int total_bytes;
2709
2710 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2711
2712 if (!req->bio)
2713 return false;
2714
2715 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2716 !(req->rq_flags & RQF_QUIET)))
2717 print_req_error(req, error);
2718
2719 blk_account_io_completion(req, nr_bytes);
2720
2721 total_bytes = 0;
2722 while (req->bio) {
2723 struct bio *bio = req->bio;
2724 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2725
2726 if (bio_bytes == bio->bi_iter.bi_size)
2727 req->bio = bio->bi_next;
2728
2729 /* Completion has already been traced */
2730 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2731 req_bio_endio(req, bio, bio_bytes, error);
2732
2733 total_bytes += bio_bytes;
2734 nr_bytes -= bio_bytes;
2735
2736 if (!nr_bytes)
2737 break;
2738 }
2739
2740 /*
2741 * completely done
2742 */
2743 if (!req->bio) {
2744 /*
2745 * Reset counters so that the request stacking driver
2746 * can find how many bytes remain in the request
2747 * later.
2748 */
2749 req->__data_len = 0;
2750 return false;
2751 }
2752
2753 req->__data_len -= total_bytes;
2754
2755 /* update sector only for requests with clear definition of sector */
2756 if (!blk_rq_is_passthrough(req))
2757 req->__sector += total_bytes >> 9;
2758
2759 /* mixed attributes always follow the first bio */
2760 if (req->rq_flags & RQF_MIXED_MERGE) {
2761 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2762 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2763 }
2764
2765 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2766 /*
2767 * If total number of sectors is less than the first segment
2768 * size, something has gone terribly wrong.
2769 */
2770 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2771 blk_dump_rq_flags(req, "request botched");
2772 req->__data_len = blk_rq_cur_bytes(req);
2773 }
2774
2775 /* recalculate the number of segments */
2776 blk_recalc_rq_segments(req);
2777 }
2778
2779 return true;
2780 }
2781 EXPORT_SYMBOL_GPL(blk_update_request);
2782
2783 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2784 unsigned int nr_bytes,
2785 unsigned int bidi_bytes)
2786 {
2787 if (blk_update_request(rq, error, nr_bytes))
2788 return true;
2789
2790 /* Bidi request must be completed as a whole */
2791 if (unlikely(blk_bidi_rq(rq)) &&
2792 blk_update_request(rq->next_rq, error, bidi_bytes))
2793 return true;
2794
2795 if (blk_queue_add_random(rq->q))
2796 add_disk_randomness(rq->rq_disk);
2797
2798 return false;
2799 }
2800
2801 /**
2802 * blk_unprep_request - unprepare a request
2803 * @req: the request
2804 *
2805 * This function makes a request ready for complete resubmission (or
2806 * completion). It happens only after all error handling is complete,
2807 * so represents the appropriate moment to deallocate any resources
2808 * that were allocated to the request in the prep_rq_fn. The queue
2809 * lock is held when calling this.
2810 */
2811 void blk_unprep_request(struct request *req)
2812 {
2813 struct request_queue *q = req->q;
2814
2815 req->rq_flags &= ~RQF_DONTPREP;
2816 if (q->unprep_rq_fn)
2817 q->unprep_rq_fn(q, req);
2818 }
2819 EXPORT_SYMBOL_GPL(blk_unprep_request);
2820
2821 void blk_finish_request(struct request *req, blk_status_t error)
2822 {
2823 struct request_queue *q = req->q;
2824
2825 lockdep_assert_held(req->q->queue_lock);
2826 WARN_ON_ONCE(q->mq_ops);
2827
2828 if (req->rq_flags & RQF_STATS)
2829 blk_stat_add(req);
2830
2831 if (req->rq_flags & RQF_QUEUED)
2832 blk_queue_end_tag(q, req);
2833
2834 BUG_ON(blk_queued_rq(req));
2835
2836 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2837 laptop_io_completion(req->q->backing_dev_info);
2838
2839 blk_delete_timer(req);
2840
2841 if (req->rq_flags & RQF_DONTPREP)
2842 blk_unprep_request(req);
2843
2844 blk_account_io_done(req);
2845
2846 if (req->end_io) {
2847 wbt_done(req->q->rq_wb, &req->issue_stat);
2848 req->end_io(req, error);
2849 } else {
2850 if (blk_bidi_rq(req))
2851 __blk_put_request(req->next_rq->q, req->next_rq);
2852
2853 __blk_put_request(q, req);
2854 }
2855 }
2856 EXPORT_SYMBOL(blk_finish_request);
2857
2858 /**
2859 * blk_end_bidi_request - Complete a bidi request
2860 * @rq: the request to complete
2861 * @error: block status code
2862 * @nr_bytes: number of bytes to complete @rq
2863 * @bidi_bytes: number of bytes to complete @rq->next_rq
2864 *
2865 * Description:
2866 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2867 * Drivers that supports bidi can safely call this member for any
2868 * type of request, bidi or uni. In the later case @bidi_bytes is
2869 * just ignored.
2870 *
2871 * Return:
2872 * %false - we are done with this request
2873 * %true - still buffers pending for this request
2874 **/
2875 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
2876 unsigned int nr_bytes, unsigned int bidi_bytes)
2877 {
2878 struct request_queue *q = rq->q;
2879 unsigned long flags;
2880
2881 WARN_ON_ONCE(q->mq_ops);
2882
2883 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2884 return true;
2885
2886 spin_lock_irqsave(q->queue_lock, flags);
2887 blk_finish_request(rq, error);
2888 spin_unlock_irqrestore(q->queue_lock, flags);
2889
2890 return false;
2891 }
2892
2893 /**
2894 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2895 * @rq: the request to complete
2896 * @error: block status code
2897 * @nr_bytes: number of bytes to complete @rq
2898 * @bidi_bytes: number of bytes to complete @rq->next_rq
2899 *
2900 * Description:
2901 * Identical to blk_end_bidi_request() except that queue lock is
2902 * assumed to be locked on entry and remains so on return.
2903 *
2904 * Return:
2905 * %false - we are done with this request
2906 * %true - still buffers pending for this request
2907 **/
2908 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
2909 unsigned int nr_bytes, unsigned int bidi_bytes)
2910 {
2911 lockdep_assert_held(rq->q->queue_lock);
2912 WARN_ON_ONCE(rq->q->mq_ops);
2913
2914 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2915 return true;
2916
2917 blk_finish_request(rq, error);
2918
2919 return false;
2920 }
2921
2922 /**
2923 * blk_end_request - Helper function for drivers to complete the request.
2924 * @rq: the request being processed
2925 * @error: block status code
2926 * @nr_bytes: number of bytes to complete
2927 *
2928 * Description:
2929 * Ends I/O on a number of bytes attached to @rq.
2930 * If @rq has leftover, sets it up for the next range of segments.
2931 *
2932 * Return:
2933 * %false - we are done with this request
2934 * %true - still buffers pending for this request
2935 **/
2936 bool blk_end_request(struct request *rq, blk_status_t error,
2937 unsigned int nr_bytes)
2938 {
2939 WARN_ON_ONCE(rq->q->mq_ops);
2940 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2941 }
2942 EXPORT_SYMBOL(blk_end_request);
2943
2944 /**
2945 * blk_end_request_all - Helper function for drives to finish the request.
2946 * @rq: the request to finish
2947 * @error: block status code
2948 *
2949 * Description:
2950 * Completely finish @rq.
2951 */
2952 void blk_end_request_all(struct request *rq, blk_status_t error)
2953 {
2954 bool pending;
2955 unsigned int bidi_bytes = 0;
2956
2957 if (unlikely(blk_bidi_rq(rq)))
2958 bidi_bytes = blk_rq_bytes(rq->next_rq);
2959
2960 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2961 BUG_ON(pending);
2962 }
2963 EXPORT_SYMBOL(blk_end_request_all);
2964
2965 /**
2966 * __blk_end_request - Helper function for drivers to complete the request.
2967 * @rq: the request being processed
2968 * @error: block status code
2969 * @nr_bytes: number of bytes to complete
2970 *
2971 * Description:
2972 * Must be called with queue lock held unlike blk_end_request().
2973 *
2974 * Return:
2975 * %false - we are done with this request
2976 * %true - still buffers pending for this request
2977 **/
2978 bool __blk_end_request(struct request *rq, blk_status_t error,
2979 unsigned int nr_bytes)
2980 {
2981 lockdep_assert_held(rq->q->queue_lock);
2982 WARN_ON_ONCE(rq->q->mq_ops);
2983
2984 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2985 }
2986 EXPORT_SYMBOL(__blk_end_request);
2987
2988 /**
2989 * __blk_end_request_all - Helper function for drives to finish the request.
2990 * @rq: the request to finish
2991 * @error: block status code
2992 *
2993 * Description:
2994 * Completely finish @rq. Must be called with queue lock held.
2995 */
2996 void __blk_end_request_all(struct request *rq, blk_status_t error)
2997 {
2998 bool pending;
2999 unsigned int bidi_bytes = 0;
3000
3001 lockdep_assert_held(rq->q->queue_lock);
3002 WARN_ON_ONCE(rq->q->mq_ops);
3003
3004 if (unlikely(blk_bidi_rq(rq)))
3005 bidi_bytes = blk_rq_bytes(rq->next_rq);
3006
3007 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3008 BUG_ON(pending);
3009 }
3010 EXPORT_SYMBOL(__blk_end_request_all);
3011
3012 /**
3013 * __blk_end_request_cur - Helper function to finish the current request chunk.
3014 * @rq: the request to finish the current chunk for
3015 * @error: block status code
3016 *
3017 * Description:
3018 * Complete the current consecutively mapped chunk from @rq. Must
3019 * be called with queue lock held.
3020 *
3021 * Return:
3022 * %false - we are done with this request
3023 * %true - still buffers pending for this request
3024 */
3025 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3026 {
3027 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3028 }
3029 EXPORT_SYMBOL(__blk_end_request_cur);
3030
3031 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3032 struct bio *bio)
3033 {
3034 if (bio_has_data(bio))
3035 rq->nr_phys_segments = bio_phys_segments(q, bio);
3036
3037 rq->__data_len = bio->bi_iter.bi_size;
3038 rq->bio = rq->biotail = bio;
3039
3040 if (bio->bi_bdev)
3041 rq->rq_disk = bio->bi_bdev->bd_disk;
3042 }
3043
3044 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3045 /**
3046 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3047 * @rq: the request to be flushed
3048 *
3049 * Description:
3050 * Flush all pages in @rq.
3051 */
3052 void rq_flush_dcache_pages(struct request *rq)
3053 {
3054 struct req_iterator iter;
3055 struct bio_vec bvec;
3056
3057 rq_for_each_segment(bvec, rq, iter)
3058 flush_dcache_page(bvec.bv_page);
3059 }
3060 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3061 #endif
3062
3063 /**
3064 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3065 * @q : the queue of the device being checked
3066 *
3067 * Description:
3068 * Check if underlying low-level drivers of a device are busy.
3069 * If the drivers want to export their busy state, they must set own
3070 * exporting function using blk_queue_lld_busy() first.
3071 *
3072 * Basically, this function is used only by request stacking drivers
3073 * to stop dispatching requests to underlying devices when underlying
3074 * devices are busy. This behavior helps more I/O merging on the queue
3075 * of the request stacking driver and prevents I/O throughput regression
3076 * on burst I/O load.
3077 *
3078 * Return:
3079 * 0 - Not busy (The request stacking driver should dispatch request)
3080 * 1 - Busy (The request stacking driver should stop dispatching request)
3081 */
3082 int blk_lld_busy(struct request_queue *q)
3083 {
3084 if (q->lld_busy_fn)
3085 return q->lld_busy_fn(q);
3086
3087 return 0;
3088 }
3089 EXPORT_SYMBOL_GPL(blk_lld_busy);
3090
3091 /**
3092 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3093 * @rq: the clone request to be cleaned up
3094 *
3095 * Description:
3096 * Free all bios in @rq for a cloned request.
3097 */
3098 void blk_rq_unprep_clone(struct request *rq)
3099 {
3100 struct bio *bio;
3101
3102 while ((bio = rq->bio) != NULL) {
3103 rq->bio = bio->bi_next;
3104
3105 bio_put(bio);
3106 }
3107 }
3108 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3109
3110 /*
3111 * Copy attributes of the original request to the clone request.
3112 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3113 */
3114 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3115 {
3116 dst->cpu = src->cpu;
3117 dst->__sector = blk_rq_pos(src);
3118 dst->__data_len = blk_rq_bytes(src);
3119 dst->nr_phys_segments = src->nr_phys_segments;
3120 dst->ioprio = src->ioprio;
3121 dst->extra_len = src->extra_len;
3122 }
3123
3124 /**
3125 * blk_rq_prep_clone - Helper function to setup clone request
3126 * @rq: the request to be setup
3127 * @rq_src: original request to be cloned
3128 * @bs: bio_set that bios for clone are allocated from
3129 * @gfp_mask: memory allocation mask for bio
3130 * @bio_ctr: setup function to be called for each clone bio.
3131 * Returns %0 for success, non %0 for failure.
3132 * @data: private data to be passed to @bio_ctr
3133 *
3134 * Description:
3135 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3136 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3137 * are not copied, and copying such parts is the caller's responsibility.
3138 * Also, pages which the original bios are pointing to are not copied
3139 * and the cloned bios just point same pages.
3140 * So cloned bios must be completed before original bios, which means
3141 * the caller must complete @rq before @rq_src.
3142 */
3143 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3144 struct bio_set *bs, gfp_t gfp_mask,
3145 int (*bio_ctr)(struct bio *, struct bio *, void *),
3146 void *data)
3147 {
3148 struct bio *bio, *bio_src;
3149
3150 if (!bs)
3151 bs = fs_bio_set;
3152
3153 __rq_for_each_bio(bio_src, rq_src) {
3154 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3155 if (!bio)
3156 goto free_and_out;
3157
3158 if (bio_ctr && bio_ctr(bio, bio_src, data))
3159 goto free_and_out;
3160
3161 if (rq->bio) {
3162 rq->biotail->bi_next = bio;
3163 rq->biotail = bio;
3164 } else
3165 rq->bio = rq->biotail = bio;
3166 }
3167
3168 __blk_rq_prep_clone(rq, rq_src);
3169
3170 return 0;
3171
3172 free_and_out:
3173 if (bio)
3174 bio_put(bio);
3175 blk_rq_unprep_clone(rq);
3176
3177 return -ENOMEM;
3178 }
3179 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3180
3181 int kblockd_schedule_work(struct work_struct *work)
3182 {
3183 return queue_work(kblockd_workqueue, work);
3184 }
3185 EXPORT_SYMBOL(kblockd_schedule_work);
3186
3187 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3188 {
3189 return queue_work_on(cpu, kblockd_workqueue, work);
3190 }
3191 EXPORT_SYMBOL(kblockd_schedule_work_on);
3192
3193 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3194 unsigned long delay)
3195 {
3196 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3197 }
3198 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3199
3200 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3201 unsigned long delay)
3202 {
3203 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3204 }
3205 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3206
3207 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3208 unsigned long delay)
3209 {
3210 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3211 }
3212 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3213
3214 /**
3215 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3216 * @plug: The &struct blk_plug that needs to be initialized
3217 *
3218 * Description:
3219 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3220 * pending I/O should the task end up blocking between blk_start_plug() and
3221 * blk_finish_plug(). This is important from a performance perspective, but
3222 * also ensures that we don't deadlock. For instance, if the task is blocking
3223 * for a memory allocation, memory reclaim could end up wanting to free a
3224 * page belonging to that request that is currently residing in our private
3225 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3226 * this kind of deadlock.
3227 */
3228 void blk_start_plug(struct blk_plug *plug)
3229 {
3230 struct task_struct *tsk = current;
3231
3232 /*
3233 * If this is a nested plug, don't actually assign it.
3234 */
3235 if (tsk->plug)
3236 return;
3237
3238 INIT_LIST_HEAD(&plug->list);
3239 INIT_LIST_HEAD(&plug->mq_list);
3240 INIT_LIST_HEAD(&plug->cb_list);
3241 /*
3242 * Store ordering should not be needed here, since a potential
3243 * preempt will imply a full memory barrier
3244 */
3245 tsk->plug = plug;
3246 }
3247 EXPORT_SYMBOL(blk_start_plug);
3248
3249 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3250 {
3251 struct request *rqa = container_of(a, struct request, queuelist);
3252 struct request *rqb = container_of(b, struct request, queuelist);
3253
3254 return !(rqa->q < rqb->q ||
3255 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3256 }
3257
3258 /*
3259 * If 'from_schedule' is true, then postpone the dispatch of requests
3260 * until a safe kblockd context. We due this to avoid accidental big
3261 * additional stack usage in driver dispatch, in places where the originally
3262 * plugger did not intend it.
3263 */
3264 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3265 bool from_schedule)
3266 __releases(q->queue_lock)
3267 {
3268 lockdep_assert_held(q->queue_lock);
3269
3270 trace_block_unplug(q, depth, !from_schedule);
3271
3272 if (from_schedule)
3273 blk_run_queue_async(q);
3274 else
3275 __blk_run_queue(q);
3276 spin_unlock(q->queue_lock);
3277 }
3278
3279 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3280 {
3281 LIST_HEAD(callbacks);
3282
3283 while (!list_empty(&plug->cb_list)) {
3284 list_splice_init(&plug->cb_list, &callbacks);
3285
3286 while (!list_empty(&callbacks)) {
3287 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3288 struct blk_plug_cb,
3289 list);
3290 list_del(&cb->list);
3291 cb->callback(cb, from_schedule);
3292 }
3293 }
3294 }
3295
3296 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3297 int size)
3298 {
3299 struct blk_plug *plug = current->plug;
3300 struct blk_plug_cb *cb;
3301
3302 if (!plug)
3303 return NULL;
3304
3305 list_for_each_entry(cb, &plug->cb_list, list)
3306 if (cb->callback == unplug && cb->data == data)
3307 return cb;
3308
3309 /* Not currently on the callback list */
3310 BUG_ON(size < sizeof(*cb));
3311 cb = kzalloc(size, GFP_ATOMIC);
3312 if (cb) {
3313 cb->data = data;
3314 cb->callback = unplug;
3315 list_add(&cb->list, &plug->cb_list);
3316 }
3317 return cb;
3318 }
3319 EXPORT_SYMBOL(blk_check_plugged);
3320
3321 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3322 {
3323 struct request_queue *q;
3324 unsigned long flags;
3325 struct request *rq;
3326 LIST_HEAD(list);
3327 unsigned int depth;
3328
3329 flush_plug_callbacks(plug, from_schedule);
3330
3331 if (!list_empty(&plug->mq_list))
3332 blk_mq_flush_plug_list(plug, from_schedule);
3333
3334 if (list_empty(&plug->list))
3335 return;
3336
3337 list_splice_init(&plug->list, &list);
3338
3339 list_sort(NULL, &list, plug_rq_cmp);
3340
3341 q = NULL;
3342 depth = 0;
3343
3344 /*
3345 * Save and disable interrupts here, to avoid doing it for every
3346 * queue lock we have to take.
3347 */
3348 local_irq_save(flags);
3349 while (!list_empty(&list)) {
3350 rq = list_entry_rq(list.next);
3351 list_del_init(&rq->queuelist);
3352 BUG_ON(!rq->q);
3353 if (rq->q != q) {
3354 /*
3355 * This drops the queue lock
3356 */
3357 if (q)
3358 queue_unplugged(q, depth, from_schedule);
3359 q = rq->q;
3360 depth = 0;
3361 spin_lock(q->queue_lock);
3362 }
3363
3364 /*
3365 * Short-circuit if @q is dead
3366 */
3367 if (unlikely(blk_queue_dying(q))) {
3368 __blk_end_request_all(rq, BLK_STS_IOERR);
3369 continue;
3370 }
3371
3372 /*
3373 * rq is already accounted, so use raw insert
3374 */
3375 if (op_is_flush(rq->cmd_flags))
3376 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3377 else
3378 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3379
3380 depth++;
3381 }
3382
3383 /*
3384 * This drops the queue lock
3385 */
3386 if (q)
3387 queue_unplugged(q, depth, from_schedule);
3388
3389 local_irq_restore(flags);
3390 }
3391
3392 void blk_finish_plug(struct blk_plug *plug)
3393 {
3394 if (plug != current->plug)
3395 return;
3396 blk_flush_plug_list(plug, false);
3397
3398 current->plug = NULL;
3399 }
3400 EXPORT_SYMBOL(blk_finish_plug);
3401
3402 #ifdef CONFIG_PM
3403 /**
3404 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3405 * @q: the queue of the device
3406 * @dev: the device the queue belongs to
3407 *
3408 * Description:
3409 * Initialize runtime-PM-related fields for @q and start auto suspend for
3410 * @dev. Drivers that want to take advantage of request-based runtime PM
3411 * should call this function after @dev has been initialized, and its
3412 * request queue @q has been allocated, and runtime PM for it can not happen
3413 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3414 * cases, driver should call this function before any I/O has taken place.
3415 *
3416 * This function takes care of setting up using auto suspend for the device,
3417 * the autosuspend delay is set to -1 to make runtime suspend impossible
3418 * until an updated value is either set by user or by driver. Drivers do
3419 * not need to touch other autosuspend settings.
3420 *
3421 * The block layer runtime PM is request based, so only works for drivers
3422 * that use request as their IO unit instead of those directly use bio's.
3423 */
3424 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3425 {
3426 q->dev = dev;
3427 q->rpm_status = RPM_ACTIVE;
3428 pm_runtime_set_autosuspend_delay(q->dev, -1);
3429 pm_runtime_use_autosuspend(q->dev);
3430 }
3431 EXPORT_SYMBOL(blk_pm_runtime_init);
3432
3433 /**
3434 * blk_pre_runtime_suspend - Pre runtime suspend check
3435 * @q: the queue of the device
3436 *
3437 * Description:
3438 * This function will check if runtime suspend is allowed for the device
3439 * by examining if there are any requests pending in the queue. If there
3440 * are requests pending, the device can not be runtime suspended; otherwise,
3441 * the queue's status will be updated to SUSPENDING and the driver can
3442 * proceed to suspend the device.
3443 *
3444 * For the not allowed case, we mark last busy for the device so that
3445 * runtime PM core will try to autosuspend it some time later.
3446 *
3447 * This function should be called near the start of the device's
3448 * runtime_suspend callback.
3449 *
3450 * Return:
3451 * 0 - OK to runtime suspend the device
3452 * -EBUSY - Device should not be runtime suspended
3453 */
3454 int blk_pre_runtime_suspend(struct request_queue *q)
3455 {
3456 int ret = 0;
3457
3458 if (!q->dev)
3459 return ret;
3460
3461 spin_lock_irq(q->queue_lock);
3462 if (q->nr_pending) {
3463 ret = -EBUSY;
3464 pm_runtime_mark_last_busy(q->dev);
3465 } else {
3466 q->rpm_status = RPM_SUSPENDING;
3467 }
3468 spin_unlock_irq(q->queue_lock);
3469 return ret;
3470 }
3471 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3472
3473 /**
3474 * blk_post_runtime_suspend - Post runtime suspend processing
3475 * @q: the queue of the device
3476 * @err: return value of the device's runtime_suspend function
3477 *
3478 * Description:
3479 * Update the queue's runtime status according to the return value of the
3480 * device's runtime suspend function and mark last busy for the device so
3481 * that PM core will try to auto suspend the device at a later time.
3482 *
3483 * This function should be called near the end of the device's
3484 * runtime_suspend callback.
3485 */
3486 void blk_post_runtime_suspend(struct request_queue *q, int err)
3487 {
3488 if (!q->dev)
3489 return;
3490
3491 spin_lock_irq(q->queue_lock);
3492 if (!err) {
3493 q->rpm_status = RPM_SUSPENDED;
3494 } else {
3495 q->rpm_status = RPM_ACTIVE;
3496 pm_runtime_mark_last_busy(q->dev);
3497 }
3498 spin_unlock_irq(q->queue_lock);
3499 }
3500 EXPORT_SYMBOL(blk_post_runtime_suspend);
3501
3502 /**
3503 * blk_pre_runtime_resume - Pre runtime resume processing
3504 * @q: the queue of the device
3505 *
3506 * Description:
3507 * Update the queue's runtime status to RESUMING in preparation for the
3508 * runtime resume of the device.
3509 *
3510 * This function should be called near the start of the device's
3511 * runtime_resume callback.
3512 */
3513 void blk_pre_runtime_resume(struct request_queue *q)
3514 {
3515 if (!q->dev)
3516 return;
3517
3518 spin_lock_irq(q->queue_lock);
3519 q->rpm_status = RPM_RESUMING;
3520 spin_unlock_irq(q->queue_lock);
3521 }
3522 EXPORT_SYMBOL(blk_pre_runtime_resume);
3523
3524 /**
3525 * blk_post_runtime_resume - Post runtime resume processing
3526 * @q: the queue of the device
3527 * @err: return value of the device's runtime_resume function
3528 *
3529 * Description:
3530 * Update the queue's runtime status according to the return value of the
3531 * device's runtime_resume function. If it is successfully resumed, process
3532 * the requests that are queued into the device's queue when it is resuming
3533 * and then mark last busy and initiate autosuspend for it.
3534 *
3535 * This function should be called near the end of the device's
3536 * runtime_resume callback.
3537 */
3538 void blk_post_runtime_resume(struct request_queue *q, int err)
3539 {
3540 if (!q->dev)
3541 return;
3542
3543 spin_lock_irq(q->queue_lock);
3544 if (!err) {
3545 q->rpm_status = RPM_ACTIVE;
3546 __blk_run_queue(q);
3547 pm_runtime_mark_last_busy(q->dev);
3548 pm_request_autosuspend(q->dev);
3549 } else {
3550 q->rpm_status = RPM_SUSPENDED;
3551 }
3552 spin_unlock_irq(q->queue_lock);
3553 }
3554 EXPORT_SYMBOL(blk_post_runtime_resume);
3555
3556 /**
3557 * blk_set_runtime_active - Force runtime status of the queue to be active
3558 * @q: the queue of the device
3559 *
3560 * If the device is left runtime suspended during system suspend the resume
3561 * hook typically resumes the device and corrects runtime status
3562 * accordingly. However, that does not affect the queue runtime PM status
3563 * which is still "suspended". This prevents processing requests from the
3564 * queue.
3565 *
3566 * This function can be used in driver's resume hook to correct queue
3567 * runtime PM status and re-enable peeking requests from the queue. It
3568 * should be called before first request is added to the queue.
3569 */
3570 void blk_set_runtime_active(struct request_queue *q)
3571 {
3572 spin_lock_irq(q->queue_lock);
3573 q->rpm_status = RPM_ACTIVE;
3574 pm_runtime_mark_last_busy(q->dev);
3575 pm_request_autosuspend(q->dev);
3576 spin_unlock_irq(q->queue_lock);
3577 }
3578 EXPORT_SYMBOL(blk_set_runtime_active);
3579 #endif
3580
3581 int __init blk_dev_init(void)
3582 {
3583 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3584 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3585 FIELD_SIZEOF(struct request, cmd_flags));
3586 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3587 FIELD_SIZEOF(struct bio, bi_opf));
3588
3589 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3590 kblockd_workqueue = alloc_workqueue("kblockd",
3591 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3592 if (!kblockd_workqueue)
3593 panic("Failed to create kblockd\n");
3594
3595 request_cachep = kmem_cache_create("blkdev_requests",
3596 sizeof(struct request), 0, SLAB_PANIC, NULL);
3597
3598 blk_requestq_cachep = kmem_cache_create("request_queue",
3599 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3600
3601 #ifdef CONFIG_DEBUG_FS
3602 blk_debugfs_root = debugfs_create_dir("block", NULL);
3603 #endif
3604
3605 return 0;
3606 }